1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/systm.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_action.h> 53 #include <net80211/ieee80211_input.h> 54 55 /* define here, used throughout file */ 56 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 57 #define SM(_v, _f) (((_v) << _f##_S) & _f) 58 59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 60 { 13, 14, 27, 30 }, /* MCS 0 */ 61 { 26, 29, 54, 60 }, /* MCS 1 */ 62 { 39, 43, 81, 90 }, /* MCS 2 */ 63 { 52, 58, 108, 120 }, /* MCS 3 */ 64 { 78, 87, 162, 180 }, /* MCS 4 */ 65 { 104, 116, 216, 240 }, /* MCS 5 */ 66 { 117, 130, 243, 270 }, /* MCS 6 */ 67 { 130, 144, 270, 300 }, /* MCS 7 */ 68 { 26, 29, 54, 60 }, /* MCS 8 */ 69 { 52, 58, 108, 120 }, /* MCS 9 */ 70 { 78, 87, 162, 180 }, /* MCS 10 */ 71 { 104, 116, 216, 240 }, /* MCS 11 */ 72 { 156, 173, 324, 360 }, /* MCS 12 */ 73 { 208, 231, 432, 480 }, /* MCS 13 */ 74 { 234, 260, 486, 540 }, /* MCS 14 */ 75 { 260, 289, 540, 600 }, /* MCS 15 */ 76 { 39, 43, 81, 90 }, /* MCS 16 */ 77 { 78, 87, 162, 180 }, /* MCS 17 */ 78 { 117, 130, 243, 270 }, /* MCS 18 */ 79 { 156, 173, 324, 360 }, /* MCS 19 */ 80 { 234, 260, 486, 540 }, /* MCS 20 */ 81 { 312, 347, 648, 720 }, /* MCS 21 */ 82 { 351, 390, 729, 810 }, /* MCS 22 */ 83 { 390, 433, 810, 900 }, /* MCS 23 */ 84 { 52, 58, 108, 120 }, /* MCS 24 */ 85 { 104, 116, 216, 240 }, /* MCS 25 */ 86 { 156, 173, 324, 360 }, /* MCS 26 */ 87 { 208, 231, 432, 480 }, /* MCS 27 */ 88 { 312, 347, 648, 720 }, /* MCS 28 */ 89 { 416, 462, 864, 960 }, /* MCS 29 */ 90 { 468, 520, 972, 1080 }, /* MCS 30 */ 91 { 520, 578, 1080, 1200 }, /* MCS 31 */ 92 { 0, 0, 12, 13 }, /* MCS 32 */ 93 { 78, 87, 162, 180 }, /* MCS 33 */ 94 { 104, 116, 216, 240 }, /* MCS 34 */ 95 { 130, 144, 270, 300 }, /* MCS 35 */ 96 { 117, 130, 243, 270 }, /* MCS 36 */ 97 { 156, 173, 324, 360 }, /* MCS 37 */ 98 { 195, 217, 405, 450 }, /* MCS 38 */ 99 { 104, 116, 216, 240 }, /* MCS 39 */ 100 { 130, 144, 270, 300 }, /* MCS 40 */ 101 { 130, 144, 270, 300 }, /* MCS 41 */ 102 { 156, 173, 324, 360 }, /* MCS 42 */ 103 { 182, 202, 378, 420 }, /* MCS 43 */ 104 { 182, 202, 378, 420 }, /* MCS 44 */ 105 { 208, 231, 432, 480 }, /* MCS 45 */ 106 { 156, 173, 324, 360 }, /* MCS 46 */ 107 { 195, 217, 405, 450 }, /* MCS 47 */ 108 { 195, 217, 405, 450 }, /* MCS 48 */ 109 { 234, 260, 486, 540 }, /* MCS 49 */ 110 { 273, 303, 567, 630 }, /* MCS 50 */ 111 { 273, 303, 567, 630 }, /* MCS 51 */ 112 { 312, 347, 648, 720 }, /* MCS 52 */ 113 { 130, 144, 270, 300 }, /* MCS 53 */ 114 { 156, 173, 324, 360 }, /* MCS 54 */ 115 { 182, 202, 378, 420 }, /* MCS 55 */ 116 { 156, 173, 324, 360 }, /* MCS 56 */ 117 { 182, 202, 378, 420 }, /* MCS 57 */ 118 { 208, 231, 432, 480 }, /* MCS 58 */ 119 { 234, 260, 486, 540 }, /* MCS 59 */ 120 { 208, 231, 432, 480 }, /* MCS 60 */ 121 { 234, 260, 486, 540 }, /* MCS 61 */ 122 { 260, 289, 540, 600 }, /* MCS 62 */ 123 { 260, 289, 540, 600 }, /* MCS 63 */ 124 { 286, 318, 594, 660 }, /* MCS 64 */ 125 { 195, 217, 405, 450 }, /* MCS 65 */ 126 { 234, 260, 486, 540 }, /* MCS 66 */ 127 { 273, 303, 567, 630 }, /* MCS 67 */ 128 { 234, 260, 486, 540 }, /* MCS 68 */ 129 { 273, 303, 567, 630 }, /* MCS 69 */ 130 { 312, 347, 648, 720 }, /* MCS 70 */ 131 { 351, 390, 729, 810 }, /* MCS 71 */ 132 { 312, 347, 648, 720 }, /* MCS 72 */ 133 { 351, 390, 729, 810 }, /* MCS 73 */ 134 { 390, 433, 810, 900 }, /* MCS 74 */ 135 { 390, 433, 810, 900 }, /* MCS 75 */ 136 { 429, 477, 891, 990 }, /* MCS 76 */ 137 }; 138 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 144 static int ieee80211_recv_bar_ena = 1; 145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 146 0, "BAR frame processing (ena/dis)"); 147 148 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 ieee80211_ampdu_age = msecs_to_ticks(500); 180 ieee80211_addba_timeout = msecs_to_ticks(250); 181 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 182 ieee80211_bar_timeout = msecs_to_ticks(250); 183 /* 184 * Register action frame handlers. 185 */ 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 193 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 196 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 204 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 205 } 206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 207 208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 209 struct ieee80211_tx_ampdu *tap); 210 static int ieee80211_addba_request(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap, 212 int dialogtoken, int baparamset, int batimeout); 213 static int ieee80211_addba_response(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int code, int baparamset, int batimeout); 216 static void ieee80211_addba_stop(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap); 218 static void null_addba_response_timeout(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 221 static void ieee80211_bar_response(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap, int status); 223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 226 int baparamset, int batimeout, int baseqctl); 227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 228 229 void 230 ieee80211_ht_attach(struct ieee80211com *ic) 231 { 232 /* setup default aggregation policy */ 233 ic->ic_recv_action = ieee80211_recv_action; 234 ic->ic_send_action = ieee80211_send_action; 235 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 236 ic->ic_addba_request = ieee80211_addba_request; 237 ic->ic_addba_response = ieee80211_addba_response; 238 ic->ic_addba_response_timeout = null_addba_response_timeout; 239 ic->ic_addba_stop = ieee80211_addba_stop; 240 ic->ic_bar_response = ieee80211_bar_response; 241 ic->ic_ampdu_rx_start = ampdu_rx_start; 242 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 243 244 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 245 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 246 } 247 248 void 249 ieee80211_ht_detach(struct ieee80211com *ic) 250 { 251 } 252 253 void 254 ieee80211_ht_vattach(struct ieee80211vap *vap) 255 { 256 257 /* driver can override defaults */ 258 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 259 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 260 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 261 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 262 /* tx aggregation traffic thresholds */ 263 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 264 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 265 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 266 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 267 268 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 269 /* 270 * Device is HT capable; enable all HT-related 271 * facilities by default. 272 * XXX these choices may be too aggressive. 273 */ 274 vap->iv_flags_ht |= IEEE80211_FHT_HT 275 | IEEE80211_FHT_HTCOMPAT 276 ; 277 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 278 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 279 /* XXX infer from channel list? */ 280 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 281 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 282 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 283 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 284 } 285 /* enable RIFS if capable */ 286 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 287 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 288 289 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 290 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 291 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 292 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 293 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 296 297 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 298 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 299 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 300 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 301 302 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) 303 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; 304 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) 305 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; 306 } 307 /* NB: disable default legacy WDS, too many issues right now */ 308 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 309 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 310 } 311 312 void 313 ieee80211_ht_vdetach(struct ieee80211vap *vap) 314 { 315 } 316 317 static int 318 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 319 int ratetype) 320 { 321 int mword, rate; 322 323 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 324 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 325 return (0); 326 switch (ratetype) { 327 case 0: 328 rate = ieee80211_htrates[index].ht20_rate_800ns; 329 break; 330 case 1: 331 rate = ieee80211_htrates[index].ht20_rate_400ns; 332 break; 333 case 2: 334 rate = ieee80211_htrates[index].ht40_rate_800ns; 335 break; 336 default: 337 rate = ieee80211_htrates[index].ht40_rate_400ns; 338 break; 339 } 340 return (rate); 341 } 342 343 static struct printranges { 344 int minmcs; 345 int maxmcs; 346 int txstream; 347 int ratetype; 348 int htcapflags; 349 } ranges[] = { 350 { 0, 7, 1, 0, 0 }, 351 { 8, 15, 2, 0, 0 }, 352 { 16, 23, 3, 0, 0 }, 353 { 24, 31, 4, 0, 0 }, 354 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 355 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 356 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 357 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 358 { 0, 0, 0, 0, 0 }, 359 }; 360 361 static void 362 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 363 { 364 int minrate, maxrate; 365 struct printranges *range; 366 367 for (range = ranges; range->txstream != 0; range++) { 368 if (ic->ic_txstream < range->txstream) 369 continue; 370 if (range->htcapflags && 371 (ic->ic_htcaps & range->htcapflags) == 0) 372 continue; 373 if (ratetype < range->ratetype) 374 continue; 375 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 376 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 377 if (range->maxmcs) { 378 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 379 range->minmcs, range->maxmcs, 380 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 381 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 382 } else { 383 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 384 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 385 } 386 } 387 } 388 389 static void 390 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 391 { 392 const char *modestr = ieee80211_phymode_name[mode]; 393 394 ic_printf(ic, "%s MCS 20MHz\n", modestr); 395 ht_rateprint(ic, mode, 0); 396 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 397 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 398 ht_rateprint(ic, mode, 1); 399 } 400 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 401 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 402 ht_rateprint(ic, mode, 2); 403 } 404 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 405 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 406 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 407 ht_rateprint(ic, mode, 3); 408 } 409 } 410 411 void 412 ieee80211_ht_announce(struct ieee80211com *ic) 413 { 414 415 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 416 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 417 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 418 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 419 ht_announce(ic, IEEE80211_MODE_11NA); 420 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 421 ht_announce(ic, IEEE80211_MODE_11NG); 422 } 423 424 void 425 ieee80211_init_suphtrates(struct ieee80211com *ic) 426 { 427 #define ADDRATE(x) do { \ 428 htrateset->rs_rates[htrateset->rs_nrates] = x; \ 429 htrateset->rs_nrates++; \ 430 } while (0) 431 struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; 432 int i; 433 434 memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); 435 for (i = 0; i < ic->ic_txstream * 8; i++) 436 ADDRATE(i); 437 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 438 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 439 ADDRATE(32); 440 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 441 if (ic->ic_txstream >= 2) { 442 for (i = 33; i <= 38; i++) 443 ADDRATE(i); 444 } 445 if (ic->ic_txstream >= 3) { 446 for (i = 39; i <= 52; i++) 447 ADDRATE(i); 448 } 449 if (ic->ic_txstream == 4) { 450 for (i = 53; i <= 76; i++) 451 ADDRATE(i); 452 } 453 } 454 #undef ADDRATE 455 } 456 457 /* 458 * Receive processing. 459 */ 460 461 /* 462 * Decap the encapsulated A-MSDU frames and dispatch all but 463 * the last for delivery. The last frame is returned for 464 * delivery via the normal path. 465 */ 466 struct mbuf * 467 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 468 { 469 struct ieee80211vap *vap = ni->ni_vap; 470 int framelen; 471 struct mbuf *n; 472 473 /* discard 802.3 header inserted by ieee80211_decap */ 474 m_adj(m, sizeof(struct ether_header)); 475 476 vap->iv_stats.is_amsdu_decap++; 477 478 for (;;) { 479 /* 480 * Decap the first frame, bust it apart from the 481 * remainder and deliver. We leave the last frame 482 * delivery to the caller (for consistency with other 483 * code paths, could also do it here). 484 */ 485 m = ieee80211_decap1(m, &framelen); 486 if (m == NULL) { 487 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 488 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 489 vap->iv_stats.is_amsdu_tooshort++; 490 return NULL; 491 } 492 if (m->m_pkthdr.len == framelen) 493 break; 494 n = m_split(m, framelen, M_NOWAIT); 495 if (n == NULL) { 496 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 497 ni->ni_macaddr, "a-msdu", 498 "%s", "unable to split encapsulated frames"); 499 vap->iv_stats.is_amsdu_split++; 500 m_freem(m); /* NB: must reclaim */ 501 return NULL; 502 } 503 vap->iv_deliver_data(vap, ni, m); 504 505 /* 506 * Remove frame contents; each intermediate frame 507 * is required to be aligned to a 4-byte boundary. 508 */ 509 m = n; 510 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 511 } 512 return m; /* last delivered by caller */ 513 } 514 515 /* 516 * Add the given frame to the current RX reorder slot. 517 * 518 * For future offloaded A-MSDU handling where multiple frames with 519 * the same sequence number show up here, this routine will append 520 * those frames as long as they're appropriately tagged. 521 */ 522 static int 523 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid, 524 ieee80211_seq rxseq, 525 struct ieee80211_node *ni, 526 struct mbuf *m) 527 { 528 struct ieee80211vap *vap = ni->ni_vap; 529 530 if (rap->rxa_m[off] == NULL) { 531 rap->rxa_m[off] = m; 532 rap->rxa_qframes++; 533 rap->rxa_qbytes += m->m_pkthdr.len; 534 vap->iv_stats.is_ampdu_rx_reorder++; 535 return (0); 536 } else { 537 IEEE80211_DISCARD_MAC(vap, 538 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 539 ni->ni_macaddr, "a-mpdu duplicate", 540 "seqno %u tid %u BA win <%u:%u>", 541 rxseq, tid, rap->rxa_start, 542 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 543 vap->iv_stats.is_rx_dup++; 544 IEEE80211_NODE_STAT(ni, rx_dup); 545 m_freem(m); 546 return (-1); 547 } 548 } 549 550 static void 551 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i) 552 { 553 struct mbuf *m; 554 555 m = rap->rxa_m[i]; 556 if (m == NULL) 557 return; 558 559 rap->rxa_m[i] = NULL; 560 rap->rxa_qbytes -= m->m_pkthdr.len; 561 rap->rxa_qframes--; 562 m_freem(m); 563 } 564 565 /* 566 * Purge all frames in the A-MPDU re-order queue. 567 */ 568 static void 569 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 570 { 571 int i; 572 573 for (i = 0; i < rap->rxa_wnd; i++) { 574 ampdu_rx_purge_slot(rap, i); 575 if (rap->rxa_qframes == 0) 576 break; 577 } 578 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 579 ("lost %u data, %u frames on ampdu rx q", 580 rap->rxa_qbytes, rap->rxa_qframes)); 581 } 582 583 /* 584 * Start A-MPDU rx/re-order processing for the specified TID. 585 */ 586 static int 587 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 588 int baparamset, int batimeout, int baseqctl) 589 { 590 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 591 592 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 593 /* 594 * AMPDU previously setup and not terminated with a DELBA, 595 * flush the reorder q's in case anything remains. 596 */ 597 ampdu_rx_purge(rap); 598 } 599 memset(rap, 0, sizeof(*rap)); 600 rap->rxa_wnd = (bufsiz == 0) ? 601 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 602 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 603 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 604 605 return 0; 606 } 607 608 /* 609 * Public function; manually setup the RX ampdu state. 610 */ 611 int 612 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 613 { 614 struct ieee80211_rx_ampdu *rap; 615 616 /* XXX TODO: sanity check tid, seq, baw */ 617 618 rap = &ni->ni_rx_ampdu[tid]; 619 620 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 621 /* 622 * AMPDU previously setup and not terminated with a DELBA, 623 * flush the reorder q's in case anything remains. 624 */ 625 ampdu_rx_purge(rap); 626 } 627 628 memset(rap, 0, sizeof(*rap)); 629 rap->rxa_wnd = (baw== 0) ? 630 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 631 if (seq == -1) { 632 /* Wait for the first RX frame, use that as BAW */ 633 rap->rxa_start = 0; 634 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 635 } else { 636 rap->rxa_start = seq; 637 } 638 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 639 640 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 641 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 642 __func__, 643 tid, 644 seq, 645 rap->rxa_wnd, 646 rap->rxa_flags); 647 648 return 0; 649 } 650 651 /* 652 * Public function; manually stop the RX AMPDU state. 653 */ 654 void 655 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 656 { 657 struct ieee80211_rx_ampdu *rap; 658 659 /* XXX TODO: sanity check tid, seq, baw */ 660 rap = &ni->ni_rx_ampdu[tid]; 661 ampdu_rx_stop(ni, rap); 662 } 663 664 /* 665 * Stop A-MPDU rx processing for the specified TID. 666 */ 667 static void 668 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 669 { 670 671 ampdu_rx_purge(rap); 672 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 673 | IEEE80211_AGGR_XCHGPEND 674 | IEEE80211_AGGR_WAITRX); 675 } 676 677 /* 678 * Dispatch a frame from the A-MPDU reorder queue. The 679 * frame is fed back into ieee80211_input marked with an 680 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 681 * permits ieee80211_input to optimize re-processing). 682 */ 683 static __inline void 684 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 685 { 686 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 687 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 688 (void) ieee80211_input(ni, m, 0, 0); 689 } 690 691 static int 692 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 693 int i) 694 { 695 struct mbuf *m; 696 697 if (rap->rxa_m[i] == NULL) 698 return (0); 699 700 m = rap->rxa_m[i]; 701 rap->rxa_m[i] = NULL; 702 rap->rxa_qbytes -= m->m_pkthdr.len; 703 rap->rxa_qframes--; 704 705 ampdu_dispatch(ni, m); 706 707 return (1); 708 } 709 710 static void 711 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 712 int i, int winstart) 713 { 714 struct ieee80211vap *vap = ni->ni_vap; 715 716 if (rap->rxa_qframes != 0) { 717 int n = rap->rxa_qframes, j; 718 719 if (winstart != -1) { 720 /* 721 * NB: in window-sliding mode, loop assumes i > 0 722 * and/or rxa_m[0] is NULL 723 */ 724 KASSERT(rap->rxa_m[0] == NULL, 725 ("%s: BA window slot 0 occupied", __func__)); 726 } 727 for (j = i+1; j < rap->rxa_wnd; j++) { 728 if (rap->rxa_m[j] != NULL) { 729 rap->rxa_m[j-i] = rap->rxa_m[j]; 730 rap->rxa_m[j] = NULL; 731 if (--n == 0) 732 break; 733 } 734 } 735 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 736 "BA win <%d:%d> winstart %d", 737 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 738 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 739 winstart)); 740 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 741 } 742 } 743 744 /* 745 * Dispatch as many frames as possible from the re-order queue. 746 * Frames will always be "at the front"; we process all frames 747 * up to the first empty slot in the window. On completion we 748 * cleanup state if there are still pending frames in the current 749 * BA window. We assume the frame at slot 0 is already handled 750 * by the caller; we always start at slot 1. 751 */ 752 static void 753 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 754 { 755 struct ieee80211vap *vap = ni->ni_vap; 756 int i; 757 758 /* flush run of frames */ 759 for (i = 1; i < rap->rxa_wnd; i++) { 760 if (ampdu_dispatch_slot(rap, ni, i) == 0) 761 break; 762 } 763 764 /* 765 * If frames remain, copy the mbuf pointers down so 766 * they correspond to the offsets in the new window. 767 */ 768 ampdu_rx_moveup(rap, ni, i, -1); 769 770 /* 771 * Adjust the start of the BA window to 772 * reflect the frames just dispatched. 773 */ 774 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 775 vap->iv_stats.is_ampdu_rx_oor += i; 776 } 777 778 /* 779 * Dispatch all frames in the A-MPDU re-order queue. 780 */ 781 static void 782 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 783 { 784 struct ieee80211vap *vap = ni->ni_vap; 785 int i, r; 786 787 for (i = 0; i < rap->rxa_wnd; i++) { 788 r = ampdu_dispatch_slot(rap, ni, i); 789 if (r == 0) 790 continue; 791 vap->iv_stats.is_ampdu_rx_oor += r; 792 793 if (rap->rxa_qframes == 0) 794 break; 795 } 796 } 797 798 /* 799 * Dispatch all frames in the A-MPDU re-order queue 800 * preceding the specified sequence number. This logic 801 * handles window moves due to a received MSDU or BAR. 802 */ 803 static void 804 ampdu_rx_flush_upto(struct ieee80211_node *ni, 805 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 806 { 807 struct ieee80211vap *vap = ni->ni_vap; 808 ieee80211_seq seqno; 809 int i, r; 810 811 /* 812 * Flush any complete MSDU's with a sequence number lower 813 * than winstart. Gaps may exist. Note that we may actually 814 * dispatch frames past winstart if a run continues; this is 815 * an optimization that avoids having to do a separate pass 816 * to dispatch frames after moving the BA window start. 817 */ 818 seqno = rap->rxa_start; 819 for (i = 0; i < rap->rxa_wnd; i++) { 820 r = ampdu_dispatch_slot(rap, ni, i); 821 if (r == 0) { 822 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 823 break; 824 } 825 vap->iv_stats.is_ampdu_rx_oor += r; 826 seqno = IEEE80211_SEQ_INC(seqno); 827 } 828 /* 829 * If frames remain, copy the mbuf pointers down so 830 * they correspond to the offsets in the new window. 831 */ 832 ampdu_rx_moveup(rap, ni, i, winstart); 833 834 /* 835 * Move the start of the BA window; we use the 836 * sequence number of the last MSDU that was 837 * passed up the stack+1 or winstart if stopped on 838 * a gap in the reorder buffer. 839 */ 840 rap->rxa_start = seqno; 841 } 842 843 /* 844 * Process a received QoS data frame for an HT station. Handle 845 * A-MPDU reordering: if this frame is received out of order 846 * and falls within the BA window hold onto it. Otherwise if 847 * this frame completes a run, flush any pending frames. We 848 * return 1 if the frame is consumed. A 0 is returned if 849 * the frame should be processed normally by the caller. 850 */ 851 int 852 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m, 853 const struct ieee80211_rx_stats *rxs) 854 { 855 #define PROCESS 0 /* caller should process frame */ 856 #define CONSUMED 1 /* frame consumed, caller does nothing */ 857 struct ieee80211vap *vap = ni->ni_vap; 858 struct ieee80211_qosframe *wh; 859 struct ieee80211_rx_ampdu *rap; 860 ieee80211_seq rxseq; 861 uint8_t tid; 862 int off; 863 864 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 865 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 866 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 867 868 /* NB: m_len known to be sufficient */ 869 wh = mtod(m, struct ieee80211_qosframe *); 870 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 871 /* 872 * Not QoS data, shouldn't get here but just 873 * return it to the caller for processing. 874 */ 875 return PROCESS; 876 } 877 878 /* 879 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. 880 * 881 * Multicast QoS data frames are checked against a different 882 * counter, not the per-TID counter. 883 */ 884 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 885 return PROCESS; 886 887 if (IEEE80211_IS_DSTODS(wh)) 888 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 889 else 890 tid = wh->i_qos[0]; 891 tid &= IEEE80211_QOS_TID; 892 rap = &ni->ni_rx_ampdu[tid]; 893 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 894 /* 895 * No ADDBA request yet, don't touch. 896 */ 897 return PROCESS; 898 } 899 rxseq = le16toh(*(uint16_t *)wh->i_seq); 900 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 901 /* 902 * Fragments are not allowed; toss. 903 */ 904 IEEE80211_DISCARD_MAC(vap, 905 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 906 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 907 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 908 vap->iv_stats.is_ampdu_rx_drop++; 909 IEEE80211_NODE_STAT(ni, rx_drop); 910 m_freem(m); 911 return CONSUMED; 912 } 913 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 914 rap->rxa_nframes++; 915 916 /* 917 * Handle waiting for the first frame to define the BAW. 918 * Some firmware doesn't provide the RX of the starting point 919 * of the BAW and we have to cope. 920 */ 921 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 922 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 923 rap->rxa_start = rxseq; 924 } 925 again: 926 if (rxseq == rap->rxa_start) { 927 /* 928 * First frame in window. 929 */ 930 if (rap->rxa_qframes != 0) { 931 /* 932 * Dispatch as many packets as we can. 933 */ 934 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 935 ampdu_dispatch(ni, m); 936 ampdu_rx_dispatch(rap, ni); 937 return CONSUMED; 938 } else { 939 /* 940 * In order; advance window and notify 941 * caller to dispatch directly. 942 */ 943 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 944 return PROCESS; 945 } 946 } 947 /* 948 * Frame is out of order; store if in the BA window. 949 */ 950 /* calculate offset in BA window */ 951 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 952 if (off < rap->rxa_wnd) { 953 /* 954 * Common case (hopefully): in the BA window. 955 * Sec 9.10.7.6.2 a) (p.137) 956 */ 957 958 /* 959 * Check for frames sitting too long in the reorder queue. 960 * This should only ever happen if frames are not delivered 961 * without the sender otherwise notifying us (e.g. with a 962 * BAR to move the window). Typically this happens because 963 * of vendor bugs that cause the sequence number to jump. 964 * When this happens we get a gap in the reorder queue that 965 * leaves frame sitting on the queue until they get pushed 966 * out due to window moves. When the vendor does not send 967 * BAR this move only happens due to explicit packet sends 968 * 969 * NB: we only track the time of the oldest frame in the 970 * reorder q; this means that if we flush we might push 971 * frames that still "new"; if this happens then subsequent 972 * frames will result in BA window moves which cost something 973 * but is still better than a big throughput dip. 974 */ 975 if (rap->rxa_qframes != 0) { 976 /* XXX honor batimeout? */ 977 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 978 /* 979 * Too long since we received the first 980 * frame; flush the reorder buffer. 981 */ 982 if (rap->rxa_qframes != 0) { 983 vap->iv_stats.is_ampdu_rx_age += 984 rap->rxa_qframes; 985 ampdu_rx_flush(ni, rap); 986 } 987 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 988 return PROCESS; 989 } 990 } else { 991 /* 992 * First frame, start aging timer. 993 */ 994 rap->rxa_age = ticks; 995 } 996 997 /* save packet - this consumes, no matter what */ 998 ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m); 999 1000 return CONSUMED; 1001 } 1002 if (off < IEEE80211_SEQ_BA_RANGE) { 1003 /* 1004 * Outside the BA window, but within range; 1005 * flush the reorder q and move the window. 1006 * Sec 9.10.7.6.2 b) (p.138) 1007 */ 1008 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1009 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 1010 rap->rxa_start, 1011 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1012 rap->rxa_qframes, rxseq, tid); 1013 vap->iv_stats.is_ampdu_rx_move++; 1014 1015 /* 1016 * The spec says to flush frames up to but not including: 1017 * WinStart_B = rxseq - rap->rxa_wnd + 1 1018 * Then insert the frame or notify the caller to process 1019 * it immediately. We can safely do this by just starting 1020 * over again because we know the frame will now be within 1021 * the BA window. 1022 */ 1023 /* NB: rxa_wnd known to be >0 */ 1024 ampdu_rx_flush_upto(ni, rap, 1025 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 1026 goto again; 1027 } else { 1028 /* 1029 * Outside the BA window and out of range; toss. 1030 * Sec 9.10.7.6.2 c) (p.138) 1031 */ 1032 IEEE80211_DISCARD_MAC(vap, 1033 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1034 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1035 rap->rxa_start, 1036 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1037 rap->rxa_qframes, rxseq, tid, 1038 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1039 vap->iv_stats.is_ampdu_rx_drop++; 1040 IEEE80211_NODE_STAT(ni, rx_drop); 1041 m_freem(m); 1042 return CONSUMED; 1043 } 1044 #undef CONSUMED 1045 #undef PROCESS 1046 } 1047 1048 /* 1049 * Process a BAR ctl frame. Dispatch all frames up to 1050 * the sequence number of the frame. If this frame is 1051 * out of range it's discarded. 1052 */ 1053 void 1054 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1055 { 1056 struct ieee80211vap *vap = ni->ni_vap; 1057 struct ieee80211_frame_bar *wh; 1058 struct ieee80211_rx_ampdu *rap; 1059 ieee80211_seq rxseq; 1060 int tid, off; 1061 1062 if (!ieee80211_recv_bar_ena) { 1063 #if 0 1064 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1065 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1066 #endif 1067 vap->iv_stats.is_ampdu_bar_bad++; 1068 return; 1069 } 1070 wh = mtod(m0, struct ieee80211_frame_bar *); 1071 /* XXX check basic BAR */ 1072 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1073 rap = &ni->ni_rx_ampdu[tid]; 1074 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1075 /* 1076 * No ADDBA request yet, don't touch. 1077 */ 1078 IEEE80211_DISCARD_MAC(vap, 1079 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1080 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1081 vap->iv_stats.is_ampdu_bar_bad++; 1082 return; 1083 } 1084 vap->iv_stats.is_ampdu_bar_rx++; 1085 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1086 if (rxseq == rap->rxa_start) 1087 return; 1088 /* calculate offset in BA window */ 1089 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1090 if (off < IEEE80211_SEQ_BA_RANGE) { 1091 /* 1092 * Flush the reorder q up to rxseq and move the window. 1093 * Sec 9.10.7.6.3 a) (p.138) 1094 */ 1095 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1096 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1097 rap->rxa_start, 1098 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1099 rap->rxa_qframes, rxseq, tid); 1100 vap->iv_stats.is_ampdu_bar_move++; 1101 1102 ampdu_rx_flush_upto(ni, rap, rxseq); 1103 if (off >= rap->rxa_wnd) { 1104 /* 1105 * BAR specifies a window start to the right of BA 1106 * window; we must move it explicitly since 1107 * ampdu_rx_flush_upto will not. 1108 */ 1109 rap->rxa_start = rxseq; 1110 } 1111 } else { 1112 /* 1113 * Out of range; toss. 1114 * Sec 9.10.7.6.3 b) (p.138) 1115 */ 1116 IEEE80211_DISCARD_MAC(vap, 1117 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1118 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1119 rap->rxa_start, 1120 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1121 rap->rxa_qframes, rxseq, tid, 1122 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1123 vap->iv_stats.is_ampdu_bar_oow++; 1124 IEEE80211_NODE_STAT(ni, rx_drop); 1125 } 1126 } 1127 1128 /* 1129 * Setup HT-specific state in a node. Called only 1130 * when HT use is negotiated so we don't do extra 1131 * work for temporary and/or legacy sta's. 1132 */ 1133 void 1134 ieee80211_ht_node_init(struct ieee80211_node *ni) 1135 { 1136 struct ieee80211_tx_ampdu *tap; 1137 int tid; 1138 1139 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1140 ni, 1141 "%s: called (%p)", 1142 __func__, 1143 ni); 1144 1145 if (ni->ni_flags & IEEE80211_NODE_HT) { 1146 /* 1147 * Clean AMPDU state on re-associate. This handles the case 1148 * where a station leaves w/o notifying us and then returns 1149 * before node is reaped for inactivity. 1150 */ 1151 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1152 ni, 1153 "%s: calling cleanup (%p)", 1154 __func__, ni); 1155 ieee80211_ht_node_cleanup(ni); 1156 } 1157 for (tid = 0; tid < WME_NUM_TID; tid++) { 1158 tap = &ni->ni_tx_ampdu[tid]; 1159 tap->txa_tid = tid; 1160 tap->txa_ni = ni; 1161 ieee80211_txampdu_init_pps(tap); 1162 /* NB: further initialization deferred */ 1163 } 1164 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1165 } 1166 1167 /* 1168 * Cleanup HT-specific state in a node. Called only 1169 * when HT use has been marked. 1170 */ 1171 void 1172 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1173 { 1174 struct ieee80211com *ic = ni->ni_ic; 1175 int i; 1176 1177 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1178 ni, 1179 "%s: called (%p)", 1180 __func__, ni); 1181 1182 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1183 1184 /* XXX optimize this */ 1185 for (i = 0; i < WME_NUM_TID; i++) { 1186 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1187 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1188 ampdu_tx_stop(tap); 1189 } 1190 for (i = 0; i < WME_NUM_TID; i++) 1191 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1192 1193 ni->ni_htcap = 0; 1194 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1195 } 1196 1197 /* 1198 * Age out HT resources for a station. 1199 */ 1200 void 1201 ieee80211_ht_node_age(struct ieee80211_node *ni) 1202 { 1203 struct ieee80211vap *vap = ni->ni_vap; 1204 uint8_t tid; 1205 1206 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1207 1208 for (tid = 0; tid < WME_NUM_TID; tid++) { 1209 struct ieee80211_rx_ampdu *rap; 1210 1211 rap = &ni->ni_rx_ampdu[tid]; 1212 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1213 continue; 1214 if (rap->rxa_qframes == 0) 1215 continue; 1216 /* 1217 * Check for frames sitting too long in the reorder queue. 1218 * See above for more details on what's happening here. 1219 */ 1220 /* XXX honor batimeout? */ 1221 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1222 /* 1223 * Too long since we received the first 1224 * frame; flush the reorder buffer. 1225 */ 1226 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1227 ampdu_rx_flush(ni, rap); 1228 } 1229 } 1230 } 1231 1232 static struct ieee80211_channel * 1233 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1234 { 1235 return ieee80211_find_channel(ic, c->ic_freq, 1236 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1237 } 1238 1239 /* 1240 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1241 */ 1242 struct ieee80211_channel * 1243 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1244 struct ieee80211_channel *chan, int flags) 1245 { 1246 struct ieee80211_channel *c; 1247 1248 if (flags & IEEE80211_FHT_HT) { 1249 /* promote to HT if possible */ 1250 if (flags & IEEE80211_FHT_USEHT40) { 1251 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1252 /* NB: arbitrarily pick ht40+ over ht40- */ 1253 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1254 if (c == NULL) 1255 c = findhtchan(ic, chan, 1256 IEEE80211_CHAN_HT40D); 1257 if (c == NULL) 1258 c = findhtchan(ic, chan, 1259 IEEE80211_CHAN_HT20); 1260 if (c != NULL) 1261 chan = c; 1262 } 1263 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1264 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1265 if (c != NULL) 1266 chan = c; 1267 } 1268 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1269 /* demote to legacy, HT use is disabled */ 1270 c = ieee80211_find_channel(ic, chan->ic_freq, 1271 chan->ic_flags &~ IEEE80211_CHAN_HT); 1272 if (c != NULL) 1273 chan = c; 1274 } 1275 return chan; 1276 } 1277 1278 /* 1279 * Setup HT-specific state for a legacy WDS peer. 1280 */ 1281 void 1282 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1283 { 1284 struct ieee80211vap *vap = ni->ni_vap; 1285 struct ieee80211_tx_ampdu *tap; 1286 int tid; 1287 1288 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1289 1290 /* XXX check scan cache in case peer has an ap and we have info */ 1291 /* 1292 * If setup with a legacy channel; locate an HT channel. 1293 * Otherwise if the inherited channel (from a companion 1294 * AP) is suitable use it so we use the same location 1295 * for the extension channel). 1296 */ 1297 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1298 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1299 1300 ni->ni_htcap = 0; 1301 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1302 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1303 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1304 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1305 ni->ni_chw = 40; 1306 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1307 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1308 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1309 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1310 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1311 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1312 } else { 1313 ni->ni_chw = 20; 1314 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1315 } 1316 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1317 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1318 ni->ni_flags |= IEEE80211_NODE_RIFS; 1319 /* XXX does it make sense to enable SMPS? */ 1320 1321 ni->ni_htopmode = 0; /* XXX need protection state */ 1322 ni->ni_htstbc = 0; /* XXX need info */ 1323 1324 for (tid = 0; tid < WME_NUM_TID; tid++) { 1325 tap = &ni->ni_tx_ampdu[tid]; 1326 tap->txa_tid = tid; 1327 ieee80211_txampdu_init_pps(tap); 1328 } 1329 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1330 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1331 } 1332 1333 /* 1334 * Notify hostap vaps of a change in the HTINFO ie. 1335 */ 1336 static void 1337 htinfo_notify(struct ieee80211com *ic) 1338 { 1339 struct ieee80211vap *vap; 1340 int first = 1; 1341 1342 IEEE80211_LOCK_ASSERT(ic); 1343 1344 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1345 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1346 continue; 1347 if (vap->iv_state != IEEE80211_S_RUN || 1348 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1349 continue; 1350 if (first) { 1351 IEEE80211_NOTE(vap, 1352 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1353 vap->iv_bss, 1354 "HT bss occupancy change: %d sta, %d ht, " 1355 "%d ht40%s, HT protmode now 0x%x" 1356 , ic->ic_sta_assoc 1357 , ic->ic_ht_sta_assoc 1358 , ic->ic_ht40_sta_assoc 1359 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1360 ", non-HT sta present" : "" 1361 , ic->ic_curhtprotmode); 1362 first = 0; 1363 } 1364 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1365 } 1366 } 1367 1368 /* 1369 * Calculate HT protection mode from current 1370 * state and handle updates. 1371 */ 1372 static void 1373 htinfo_update(struct ieee80211com *ic) 1374 { 1375 uint8_t protmode; 1376 1377 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1378 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1379 | IEEE80211_HTINFO_NONHT_PRESENT; 1380 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1381 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1382 | IEEE80211_HTINFO_NONHT_PRESENT; 1383 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1384 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1385 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1386 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1387 } else { 1388 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1389 } 1390 if (protmode != ic->ic_curhtprotmode) { 1391 ic->ic_curhtprotmode = protmode; 1392 htinfo_notify(ic); 1393 } 1394 } 1395 1396 /* 1397 * Handle an HT station joining a BSS. 1398 */ 1399 void 1400 ieee80211_ht_node_join(struct ieee80211_node *ni) 1401 { 1402 struct ieee80211com *ic = ni->ni_ic; 1403 1404 IEEE80211_LOCK_ASSERT(ic); 1405 1406 if (ni->ni_flags & IEEE80211_NODE_HT) { 1407 ic->ic_ht_sta_assoc++; 1408 if (ni->ni_chw == 40) 1409 ic->ic_ht40_sta_assoc++; 1410 } 1411 htinfo_update(ic); 1412 } 1413 1414 /* 1415 * Handle an HT station leaving a BSS. 1416 */ 1417 void 1418 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1419 { 1420 struct ieee80211com *ic = ni->ni_ic; 1421 1422 IEEE80211_LOCK_ASSERT(ic); 1423 1424 if (ni->ni_flags & IEEE80211_NODE_HT) { 1425 ic->ic_ht_sta_assoc--; 1426 if (ni->ni_chw == 40) 1427 ic->ic_ht40_sta_assoc--; 1428 } 1429 htinfo_update(ic); 1430 } 1431 1432 /* 1433 * Public version of htinfo_update; used for processing 1434 * beacon frames from overlapping bss. 1435 * 1436 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1437 * (on receipt of a beacon that advertises MIXED) or 1438 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1439 * from an overlapping legacy bss). We treat MIXED with 1440 * a higher precedence than PROTOPT (i.e. we will not change 1441 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1442 * corresponds to how we handle things in htinfo_update. 1443 */ 1444 void 1445 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1446 { 1447 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1448 IEEE80211_LOCK(ic); 1449 1450 /* track non-HT station presence */ 1451 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1452 ("protmode 0x%x", protmode)); 1453 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1454 ic->ic_lastnonht = ticks; 1455 1456 if (protmode != ic->ic_curhtprotmode && 1457 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1458 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1459 /* push beacon update */ 1460 ic->ic_curhtprotmode = protmode; 1461 htinfo_notify(ic); 1462 } 1463 IEEE80211_UNLOCK(ic); 1464 #undef OPMODE 1465 } 1466 1467 /* 1468 * Time out presence of an overlapping bss with non-HT 1469 * stations. When operating in hostap mode we listen for 1470 * beacons from other stations and if we identify a non-HT 1471 * station is present we update the opmode field of the 1472 * HTINFO ie. To identify when all non-HT stations are 1473 * gone we time out this condition. 1474 */ 1475 void 1476 ieee80211_ht_timeout(struct ieee80211com *ic) 1477 { 1478 IEEE80211_LOCK_ASSERT(ic); 1479 1480 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1481 ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1482 #if 0 1483 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1484 "%s", "time out non-HT STA present on channel"); 1485 #endif 1486 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1487 htinfo_update(ic); 1488 } 1489 } 1490 1491 /* 1492 * Process an 802.11n HT capabilities ie. 1493 */ 1494 void 1495 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1496 { 1497 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1498 /* 1499 * Station used Vendor OUI ie to associate; 1500 * mark the node so when we respond we'll use 1501 * the Vendor OUI's and not the standard ie's. 1502 */ 1503 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1504 ie += 4; 1505 } else 1506 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1507 1508 ni->ni_htcap = le16dec(ie + 1509 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1510 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1511 } 1512 1513 static void 1514 htinfo_parse(struct ieee80211_node *ni, 1515 const struct ieee80211_ie_htinfo *htinfo) 1516 { 1517 uint16_t w; 1518 1519 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1520 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1521 w = le16dec(&htinfo->hi_byte2); 1522 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1523 w = le16dec(&htinfo->hi_byte45); 1524 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1525 } 1526 1527 /* 1528 * Parse an 802.11n HT info ie and save useful information 1529 * to the node state. Note this does not effect any state 1530 * changes such as for channel width change. 1531 */ 1532 void 1533 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1534 { 1535 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1536 ie += 4; 1537 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1538 } 1539 1540 /* 1541 * Handle 11n/11ac channel switch. 1542 * 1543 * Use the received HT/VHT ie's to identify the right channel to use. 1544 * If we cannot locate it in the channel table then fallback to 1545 * legacy operation. 1546 * 1547 * Note that we use this information to identify the node's 1548 * channel only; the caller is responsible for insuring any 1549 * required channel change is done (e.g. in sta mode when 1550 * parsing the contents of a beacon frame). 1551 */ 1552 static int 1553 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1554 { 1555 struct ieee80211com *ic = ni->ni_ic; 1556 struct ieee80211_channel *c; 1557 int chanflags; 1558 int ret = 0; 1559 1560 /* 1561 * First step - do HT/VHT only channel lookup based on operating mode 1562 * flags. This involves masking out the VHT flags as well. 1563 * Otherwise we end up doing the full channel walk each time 1564 * we trigger this, which is expensive. 1565 */ 1566 chanflags = (ni->ni_chan->ic_flags &~ 1567 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1568 1569 if (chanflags == ni->ni_chan->ic_flags) 1570 goto done; 1571 1572 /* 1573 * If HT /or/ VHT flags have changed then check both. 1574 * We need to start by picking a HT channel anyway. 1575 */ 1576 1577 c = NULL; 1578 chanflags = (ni->ni_chan->ic_flags &~ 1579 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1580 /* XXX not right for ht40- */ 1581 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1582 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1583 /* 1584 * No HT40 channel entry in our table; fall back 1585 * to HT20 operation. This should not happen. 1586 */ 1587 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1588 #if 0 1589 IEEE80211_NOTE(ni->ni_vap, 1590 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1591 "no HT40 channel (freq %u), falling back to HT20", 1592 ni->ni_chan->ic_freq); 1593 #endif 1594 /* XXX stat */ 1595 } 1596 1597 /* Nothing found - leave it alone; move onto VHT */ 1598 if (c == NULL) 1599 c = ni->ni_chan; 1600 1601 /* 1602 * If it's non-HT, then bail out now. 1603 */ 1604 if (! IEEE80211_IS_CHAN_HT(c)) { 1605 IEEE80211_NOTE(ni->ni_vap, 1606 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1607 "not HT; skipping VHT check (%u/0x%x)", 1608 c->ic_freq, c->ic_flags); 1609 goto done; 1610 } 1611 1612 /* 1613 * Next step - look at the current VHT flags and determine 1614 * if we need to upgrade. Mask out the VHT and HT flags since 1615 * the vhtflags field will already have the correct HT 1616 * flags to use. 1617 */ 1618 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1619 chanflags = (c->ic_flags 1620 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1621 | vhtflags; 1622 IEEE80211_NOTE(ni->ni_vap, 1623 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1624 ni, 1625 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1626 __func__, ni->ni_vht_chanwidth, vhtflags); 1627 1628 IEEE80211_NOTE(ni->ni_vap, 1629 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1630 ni, 1631 "%s: VHT; trying lookup for %d/0x%08x", 1632 __func__, c->ic_freq, chanflags); 1633 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1634 } 1635 1636 /* Finally, if it's changed */ 1637 if (c != NULL && c != ni->ni_chan) { 1638 IEEE80211_NOTE(ni->ni_vap, 1639 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1640 "switch station to %s%d channel %u/0x%x", 1641 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1642 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1643 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1644 c->ic_freq, c->ic_flags); 1645 ni->ni_chan = c; 1646 ret = 1; 1647 } 1648 /* NB: caller responsible for forcing any channel change */ 1649 1650 done: 1651 /* update node's (11n) tx channel width */ 1652 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1653 return (ret); 1654 } 1655 1656 /* 1657 * Update 11n MIMO PS state according to received htcap. 1658 */ 1659 static __inline int 1660 htcap_update_mimo_ps(struct ieee80211_node *ni) 1661 { 1662 uint16_t oflags = ni->ni_flags; 1663 1664 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1665 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1666 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1667 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1668 break; 1669 case IEEE80211_HTCAP_SMPS_ENA: 1670 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1671 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1672 break; 1673 case IEEE80211_HTCAP_SMPS_OFF: 1674 default: /* disable on rx of reserved value */ 1675 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1676 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1677 break; 1678 } 1679 return (oflags ^ ni->ni_flags); 1680 } 1681 1682 /* 1683 * Update short GI state according to received htcap 1684 * and local settings. 1685 */ 1686 static __inline void 1687 htcap_update_shortgi(struct ieee80211_node *ni) 1688 { 1689 struct ieee80211vap *vap = ni->ni_vap; 1690 1691 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1692 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1693 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1694 ni->ni_flags |= IEEE80211_NODE_SGI20; 1695 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1696 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1697 ni->ni_flags |= IEEE80211_NODE_SGI40; 1698 } 1699 1700 /* 1701 * Update LDPC state according to received htcap 1702 * and local settings. 1703 */ 1704 static __inline void 1705 htcap_update_ldpc(struct ieee80211_node *ni) 1706 { 1707 struct ieee80211vap *vap = ni->ni_vap; 1708 1709 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && 1710 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) 1711 ni->ni_flags |= IEEE80211_NODE_LDPC; 1712 } 1713 1714 /* 1715 * Parse and update HT-related state extracted from 1716 * the HT cap and info ie's. 1717 * 1718 * This is called from the STA management path and 1719 * the ieee80211_node_join() path. It will take into 1720 * account the IEs discovered during scanning and 1721 * adjust things accordingly. 1722 */ 1723 void 1724 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1725 const uint8_t *htcapie, const uint8_t *htinfoie) 1726 { 1727 struct ieee80211vap *vap = ni->ni_vap; 1728 const struct ieee80211_ie_htinfo *htinfo; 1729 1730 ieee80211_parse_htcap(ni, htcapie); 1731 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1732 htcap_update_mimo_ps(ni); 1733 htcap_update_shortgi(ni); 1734 htcap_update_ldpc(ni); 1735 1736 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1737 htinfoie += 4; 1738 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1739 htinfo_parse(ni, htinfo); 1740 1741 /* 1742 * Defer the node channel change; we need to now 1743 * update VHT parameters before we do it. 1744 */ 1745 1746 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1747 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1748 ni->ni_flags |= IEEE80211_NODE_RIFS; 1749 else 1750 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1751 } 1752 1753 static uint32_t 1754 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1755 { 1756 struct ieee80211vap *vap = ni->ni_vap; 1757 uint32_t vhtflags = 0; 1758 1759 vhtflags = 0; 1760 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 1761 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1762 /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ 1763 (MS(vap->iv_vhtcaps, 1764 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && 1765 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) { 1766 vhtflags = IEEE80211_CHAN_VHT160; 1767 /* Mirror the HT40 flags */ 1768 if (htflags == IEEE80211_CHAN_HT40U) { 1769 vhtflags |= IEEE80211_CHAN_HT40U; 1770 } else if (htflags == IEEE80211_CHAN_HT40D) { 1771 vhtflags |= IEEE80211_CHAN_HT40D; 1772 } 1773 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1774 /* XXX 2 means "160MHz and 80+80MHz" */ 1775 (MS(vap->iv_vhtcaps, 1776 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && 1777 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) { 1778 vhtflags = IEEE80211_CHAN_VHT80_80; 1779 /* Mirror the HT40 flags */ 1780 if (htflags == IEEE80211_CHAN_HT40U) { 1781 vhtflags |= IEEE80211_CHAN_HT40U; 1782 } else if (htflags == IEEE80211_CHAN_HT40D) { 1783 vhtflags |= IEEE80211_CHAN_HT40D; 1784 } 1785 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1786 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) { 1787 vhtflags = IEEE80211_CHAN_VHT80; 1788 /* Mirror the HT40 flags */ 1789 if (htflags == IEEE80211_CHAN_HT40U) { 1790 vhtflags |= IEEE80211_CHAN_HT40U; 1791 } else if (htflags == IEEE80211_CHAN_HT40D) { 1792 vhtflags |= IEEE80211_CHAN_HT40D; 1793 } 1794 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1795 /* Mirror the HT40 flags */ 1796 /* 1797 * XXX TODO: if ht40 is disabled, but vht40 isn't 1798 * disabled then this logic will get very, very sad. 1799 * It's quite possible the only sane thing to do is 1800 * to not have vht40 as an option, and just obey 1801 * 'ht40' as that flag. 1802 */ 1803 if ((htflags == IEEE80211_CHAN_HT40U) && 1804 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1805 vhtflags = IEEE80211_CHAN_VHT40U 1806 | IEEE80211_CHAN_HT40U; 1807 } else if (htflags == IEEE80211_CHAN_HT40D && 1808 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1809 vhtflags = IEEE80211_CHAN_VHT40D 1810 | IEEE80211_CHAN_HT40D; 1811 } else if (htflags == IEEE80211_CHAN_HT20) { 1812 vhtflags = IEEE80211_CHAN_VHT20 1813 | IEEE80211_CHAN_HT20; 1814 } 1815 } else { 1816 vhtflags = IEEE80211_CHAN_VHT20; 1817 } 1818 } 1819 return (vhtflags); 1820 } 1821 1822 /* 1823 * Final part of updating the HT parameters. 1824 * 1825 * This is called from the STA management path and 1826 * the ieee80211_node_join() path. It will take into 1827 * account the IEs discovered during scanning and 1828 * adjust things accordingly. 1829 * 1830 * This is done after a call to ieee80211_ht_updateparams() 1831 * because it (and the upcoming VHT version of updateparams) 1832 * needs to ensure everything is parsed before htinfo_update_chw() 1833 * is called - which will change the channel config for the 1834 * node for us. 1835 */ 1836 int 1837 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 1838 const uint8_t *htcapie, const uint8_t *htinfoie) 1839 { 1840 struct ieee80211vap *vap = ni->ni_vap; 1841 const struct ieee80211_ie_htinfo *htinfo; 1842 int htflags, vhtflags; 1843 int ret = 0; 1844 1845 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1846 1847 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1848 IEEE80211_CHAN_HT20 : 0; 1849 1850 /* NB: honor operating mode constraint */ 1851 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1852 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1853 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1854 htflags = IEEE80211_CHAN_HT40U; 1855 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1856 htflags = IEEE80211_CHAN_HT40D; 1857 } 1858 1859 /* 1860 * VHT flags - do much the same; check whether VHT is available 1861 * and if so, what our ideal channel use would be based on our 1862 * capabilities and the (pre-parsed) VHT info IE. 1863 */ 1864 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 1865 1866 if (htinfo_update_chw(ni, htflags, vhtflags)) 1867 ret = 1; 1868 1869 return (ret); 1870 } 1871 1872 /* 1873 * Parse and update HT-related state extracted from the HT cap ie 1874 * for a station joining an HT BSS. 1875 * 1876 * This is called from the hostap path for each station. 1877 */ 1878 void 1879 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1880 { 1881 struct ieee80211vap *vap = ni->ni_vap; 1882 1883 ieee80211_parse_htcap(ni, htcapie); 1884 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1885 htcap_update_mimo_ps(ni); 1886 htcap_update_shortgi(ni); 1887 htcap_update_ldpc(ni); 1888 } 1889 1890 /* 1891 * Called once HT and VHT capabilities are parsed in hostap mode - 1892 * this will adjust the channel configuration of the given node 1893 * based on the configuration and capabilities. 1894 */ 1895 void 1896 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 1897 { 1898 struct ieee80211vap *vap = ni->ni_vap; 1899 int htflags; 1900 int vhtflags; 1901 1902 /* NB: honor operating mode constraint */ 1903 /* XXX 40 MHz intolerant */ 1904 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1905 IEEE80211_CHAN_HT20 : 0; 1906 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1907 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1908 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1909 htflags = IEEE80211_CHAN_HT40U; 1910 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1911 htflags = IEEE80211_CHAN_HT40D; 1912 } 1913 /* 1914 * VHT flags - do much the same; check whether VHT is available 1915 * and if so, what our ideal channel use would be based on our 1916 * capabilities and the (pre-parsed) VHT info IE. 1917 */ 1918 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 1919 1920 (void) htinfo_update_chw(ni, htflags, vhtflags); 1921 } 1922 1923 /* 1924 * Install received HT rate set by parsing the HT cap ie. 1925 */ 1926 int 1927 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1928 { 1929 struct ieee80211com *ic = ni->ni_ic; 1930 struct ieee80211vap *vap = ni->ni_vap; 1931 const struct ieee80211_ie_htcap *htcap; 1932 struct ieee80211_htrateset *rs; 1933 int i, maxequalmcs, maxunequalmcs; 1934 1935 maxequalmcs = ic->ic_txstream * 8 - 1; 1936 maxunequalmcs = 0; 1937 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1938 if (ic->ic_txstream >= 2) 1939 maxunequalmcs = 38; 1940 if (ic->ic_txstream >= 3) 1941 maxunequalmcs = 52; 1942 if (ic->ic_txstream >= 4) 1943 maxunequalmcs = 76; 1944 } 1945 1946 rs = &ni->ni_htrates; 1947 memset(rs, 0, sizeof(*rs)); 1948 if (ie != NULL) { 1949 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1950 ie += 4; 1951 htcap = (const struct ieee80211_ie_htcap *) ie; 1952 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1953 if (isclr(htcap->hc_mcsset, i)) 1954 continue; 1955 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1956 IEEE80211_NOTE(vap, 1957 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1958 "WARNING, HT rate set too large; only " 1959 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1960 vap->iv_stats.is_rx_rstoobig++; 1961 break; 1962 } 1963 if (i <= 31 && i > maxequalmcs) 1964 continue; 1965 if (i == 32 && 1966 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1967 continue; 1968 if (i > 32 && i > maxunequalmcs) 1969 continue; 1970 rs->rs_rates[rs->rs_nrates++] = i; 1971 } 1972 } 1973 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1974 } 1975 1976 /* 1977 * Mark rates in a node's HT rate set as basic according 1978 * to the information in the supplied HT info ie. 1979 */ 1980 void 1981 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1982 { 1983 const struct ieee80211_ie_htinfo *htinfo; 1984 struct ieee80211_htrateset *rs; 1985 int i, j; 1986 1987 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1988 ie += 4; 1989 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1990 rs = &ni->ni_htrates; 1991 if (rs->rs_nrates == 0) { 1992 IEEE80211_NOTE(ni->ni_vap, 1993 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1994 "%s", "WARNING, empty HT rate set"); 1995 return; 1996 } 1997 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1998 if (isclr(htinfo->hi_basicmcsset, i)) 1999 continue; 2000 for (j = 0; j < rs->rs_nrates; j++) 2001 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 2002 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 2003 } 2004 } 2005 2006 static void 2007 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 2008 { 2009 callout_init(&tap->txa_timer, 1); 2010 tap->txa_flags |= IEEE80211_AGGR_SETUP; 2011 tap->txa_lastsample = ticks; 2012 } 2013 2014 static void 2015 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 2016 { 2017 struct ieee80211_node *ni = tap->txa_ni; 2018 struct ieee80211com *ic = ni->ni_ic; 2019 2020 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2021 tap->txa_ni, 2022 "%s: called", 2023 __func__); 2024 2025 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 2026 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 2027 TID_TO_WME_AC(tap->txa_tid))); 2028 2029 /* 2030 * Stop BA stream if setup so driver has a chance 2031 * to reclaim any resources it might have allocated. 2032 */ 2033 ic->ic_addba_stop(ni, tap); 2034 /* 2035 * Stop any pending BAR transmit. 2036 */ 2037 bar_stop_timer(tap); 2038 2039 /* 2040 * Reset packet estimate. 2041 */ 2042 ieee80211_txampdu_init_pps(tap); 2043 2044 /* NB: clearing NAK means we may re-send ADDBA */ 2045 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 2046 } 2047 2048 /* 2049 * ADDBA response timeout. 2050 * 2051 * If software aggregation and per-TID queue management was done here, 2052 * that queue would be unpaused after the ADDBA timeout occurs. 2053 */ 2054 static void 2055 addba_timeout(void *arg) 2056 { 2057 struct ieee80211_tx_ampdu *tap = arg; 2058 struct ieee80211_node *ni = tap->txa_ni; 2059 struct ieee80211com *ic = ni->ni_ic; 2060 2061 /* XXX ? */ 2062 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2063 tap->txa_attempts++; 2064 ic->ic_addba_response_timeout(ni, tap); 2065 } 2066 2067 static void 2068 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2069 { 2070 /* XXX use CALLOUT_PENDING instead? */ 2071 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2072 addba_timeout, tap); 2073 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2074 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2075 } 2076 2077 static void 2078 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2079 { 2080 /* XXX use CALLOUT_PENDING instead? */ 2081 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2082 callout_stop(&tap->txa_timer); 2083 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2084 } 2085 } 2086 2087 static void 2088 null_addba_response_timeout(struct ieee80211_node *ni, 2089 struct ieee80211_tx_ampdu *tap) 2090 { 2091 } 2092 2093 /* 2094 * Default method for requesting A-MPDU tx aggregation. 2095 * We setup the specified state block and start a timer 2096 * to wait for an ADDBA response frame. 2097 */ 2098 static int 2099 ieee80211_addba_request(struct ieee80211_node *ni, 2100 struct ieee80211_tx_ampdu *tap, 2101 int dialogtoken, int baparamset, int batimeout) 2102 { 2103 int bufsiz; 2104 2105 /* XXX locking */ 2106 tap->txa_token = dialogtoken; 2107 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2108 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2109 tap->txa_wnd = (bufsiz == 0) ? 2110 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2111 addba_start_timeout(tap); 2112 return 1; 2113 } 2114 2115 /* 2116 * Called by drivers that wish to request an ADDBA session be 2117 * setup. This brings it up and starts the request timer. 2118 */ 2119 int 2120 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2121 { 2122 struct ieee80211_tx_ampdu *tap; 2123 2124 if (tid < 0 || tid > 15) 2125 return (0); 2126 tap = &ni->ni_tx_ampdu[tid]; 2127 2128 /* XXX locking */ 2129 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2130 /* do deferred setup of state */ 2131 ampdu_tx_setup(tap); 2132 } 2133 /* XXX hack for not doing proper locking */ 2134 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2135 addba_start_timeout(tap); 2136 return (1); 2137 } 2138 2139 /* 2140 * Called by drivers that have marked a session as active. 2141 */ 2142 int 2143 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2144 int status) 2145 { 2146 struct ieee80211_tx_ampdu *tap; 2147 2148 if (tid < 0 || tid > 15) 2149 return (0); 2150 tap = &ni->ni_tx_ampdu[tid]; 2151 2152 /* XXX locking */ 2153 addba_stop_timeout(tap); 2154 if (status == 1) { 2155 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2156 tap->txa_attempts = 0; 2157 } else { 2158 /* mark tid so we don't try again */ 2159 tap->txa_flags |= IEEE80211_AGGR_NAK; 2160 } 2161 return (1); 2162 } 2163 2164 /* 2165 * Default method for processing an A-MPDU tx aggregation 2166 * response. We shutdown any pending timer and update the 2167 * state block according to the reply. 2168 */ 2169 static int 2170 ieee80211_addba_response(struct ieee80211_node *ni, 2171 struct ieee80211_tx_ampdu *tap, 2172 int status, int baparamset, int batimeout) 2173 { 2174 int bufsiz, tid; 2175 2176 /* XXX locking */ 2177 addba_stop_timeout(tap); 2178 if (status == IEEE80211_STATUS_SUCCESS) { 2179 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2180 /* XXX override our request? */ 2181 tap->txa_wnd = (bufsiz == 0) ? 2182 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2183 /* XXX AC/TID */ 2184 tid = MS(baparamset, IEEE80211_BAPS_TID); 2185 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2186 tap->txa_attempts = 0; 2187 } else { 2188 /* mark tid so we don't try again */ 2189 tap->txa_flags |= IEEE80211_AGGR_NAK; 2190 } 2191 return 1; 2192 } 2193 2194 /* 2195 * Default method for stopping A-MPDU tx aggregation. 2196 * Any timer is cleared and we drain any pending frames. 2197 */ 2198 static void 2199 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2200 { 2201 /* XXX locking */ 2202 addba_stop_timeout(tap); 2203 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2204 /* XXX clear aggregation queue */ 2205 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 2206 } 2207 tap->txa_attempts = 0; 2208 } 2209 2210 /* 2211 * Process a received action frame using the default aggregation 2212 * policy. We intercept ADDBA-related frames and use them to 2213 * update our aggregation state. All other frames are passed up 2214 * for processing by ieee80211_recv_action. 2215 */ 2216 static int 2217 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2218 const struct ieee80211_frame *wh, 2219 const uint8_t *frm, const uint8_t *efrm) 2220 { 2221 struct ieee80211com *ic = ni->ni_ic; 2222 struct ieee80211vap *vap = ni->ni_vap; 2223 struct ieee80211_rx_ampdu *rap; 2224 uint8_t dialogtoken; 2225 uint16_t baparamset, batimeout, baseqctl; 2226 uint16_t args[5]; 2227 int tid; 2228 2229 dialogtoken = frm[2]; 2230 baparamset = le16dec(frm+3); 2231 batimeout = le16dec(frm+5); 2232 baseqctl = le16dec(frm+7); 2233 2234 tid = MS(baparamset, IEEE80211_BAPS_TID); 2235 2236 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2237 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2238 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 2239 dialogtoken, baparamset, 2240 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 2241 batimeout, 2242 MS(baseqctl, IEEE80211_BASEQ_START), 2243 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 2244 2245 rap = &ni->ni_rx_ampdu[tid]; 2246 2247 /* Send ADDBA response */ 2248 args[0] = dialogtoken; 2249 /* 2250 * NB: We ack only if the sta associated with HT and 2251 * the ap is configured to do AMPDU rx (the latter 2252 * violates the 11n spec and is mostly for testing). 2253 */ 2254 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2255 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2256 /* XXX handle ampdu_rx_start failure */ 2257 ic->ic_ampdu_rx_start(ni, rap, 2258 baparamset, batimeout, baseqctl); 2259 2260 args[1] = IEEE80211_STATUS_SUCCESS; 2261 } else { 2262 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2263 ni, "reject ADDBA request: %s", 2264 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2265 "administratively disabled" : 2266 "not negotiated for station"); 2267 vap->iv_stats.is_addba_reject++; 2268 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2269 } 2270 /* XXX honor rap flags? */ 2271 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2272 | SM(tid, IEEE80211_BAPS_TID) 2273 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2274 ; 2275 args[3] = 0; 2276 args[4] = 0; 2277 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2278 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2279 return 0; 2280 } 2281 2282 static int 2283 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2284 const struct ieee80211_frame *wh, 2285 const uint8_t *frm, const uint8_t *efrm) 2286 { 2287 struct ieee80211com *ic = ni->ni_ic; 2288 struct ieee80211vap *vap = ni->ni_vap; 2289 struct ieee80211_tx_ampdu *tap; 2290 uint8_t dialogtoken, policy; 2291 uint16_t baparamset, batimeout, code; 2292 int tid, bufsiz; 2293 2294 dialogtoken = frm[2]; 2295 code = le16dec(frm+3); 2296 baparamset = le16dec(frm+5); 2297 tid = MS(baparamset, IEEE80211_BAPS_TID); 2298 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2299 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2300 batimeout = le16dec(frm+7); 2301 2302 tap = &ni->ni_tx_ampdu[tid]; 2303 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2304 IEEE80211_DISCARD_MAC(vap, 2305 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2306 ni->ni_macaddr, "ADDBA response", 2307 "no pending ADDBA, tid %d dialogtoken %u " 2308 "code %d", tid, dialogtoken, code); 2309 vap->iv_stats.is_addba_norequest++; 2310 return 0; 2311 } 2312 if (dialogtoken != tap->txa_token) { 2313 IEEE80211_DISCARD_MAC(vap, 2314 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2315 ni->ni_macaddr, "ADDBA response", 2316 "dialogtoken mismatch: waiting for %d, " 2317 "received %d, tid %d code %d", 2318 tap->txa_token, dialogtoken, tid, code); 2319 vap->iv_stats.is_addba_badtoken++; 2320 return 0; 2321 } 2322 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2323 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2324 IEEE80211_DISCARD_MAC(vap, 2325 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2326 ni->ni_macaddr, "ADDBA response", 2327 "policy mismatch: expecting %s, " 2328 "received %s, tid %d code %d", 2329 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2330 policy, tid, code); 2331 vap->iv_stats.is_addba_badpolicy++; 2332 return 0; 2333 } 2334 #if 0 2335 /* XXX we take MIN in ieee80211_addba_response */ 2336 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2337 IEEE80211_DISCARD_MAC(vap, 2338 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2339 ni->ni_macaddr, "ADDBA response", 2340 "BA window too large: max %d, " 2341 "received %d, tid %d code %d", 2342 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2343 vap->iv_stats.is_addba_badbawinsize++; 2344 return 0; 2345 } 2346 #endif 2347 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2348 "recv ADDBA response: dialogtoken %u code %d " 2349 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 2350 dialogtoken, code, baparamset, tid, bufsiz, 2351 batimeout); 2352 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2353 return 0; 2354 } 2355 2356 static int 2357 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2358 const struct ieee80211_frame *wh, 2359 const uint8_t *frm, const uint8_t *efrm) 2360 { 2361 struct ieee80211com *ic = ni->ni_ic; 2362 struct ieee80211_rx_ampdu *rap; 2363 struct ieee80211_tx_ampdu *tap; 2364 uint16_t baparamset, code; 2365 int tid; 2366 2367 baparamset = le16dec(frm+2); 2368 code = le16dec(frm+4); 2369 2370 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2371 2372 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2373 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2374 "code %d", baparamset, tid, 2375 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2376 2377 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2378 tap = &ni->ni_tx_ampdu[tid]; 2379 ic->ic_addba_stop(ni, tap); 2380 } else { 2381 rap = &ni->ni_rx_ampdu[tid]; 2382 ic->ic_ampdu_rx_stop(ni, rap); 2383 } 2384 return 0; 2385 } 2386 2387 static int 2388 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2389 const struct ieee80211_frame *wh, 2390 const uint8_t *frm, const uint8_t *efrm) 2391 { 2392 int chw; 2393 2394 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2395 2396 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2397 "%s: HT txchwidth, width %d%s", 2398 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2399 if (chw != ni->ni_chw) { 2400 /* XXX does this need to change the ht40 station count? */ 2401 ni->ni_chw = chw; 2402 /* XXX notify on change */ 2403 } 2404 return 0; 2405 } 2406 2407 static int 2408 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2409 const struct ieee80211_frame *wh, 2410 const uint8_t *frm, const uint8_t *efrm) 2411 { 2412 const struct ieee80211_action_ht_mimopowersave *mps = 2413 (const struct ieee80211_action_ht_mimopowersave *) frm; 2414 2415 /* XXX check iv_htcaps */ 2416 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2417 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2418 else 2419 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2420 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2421 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2422 else 2423 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2424 /* XXX notify on change */ 2425 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2426 "%s: HT MIMO PS (%s%s)", __func__, 2427 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2428 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2429 ); 2430 return 0; 2431 } 2432 2433 /* 2434 * Transmit processing. 2435 */ 2436 2437 /* 2438 * Check if A-MPDU should be requested/enabled for a stream. 2439 * We require a traffic rate above a per-AC threshold and we 2440 * also handle backoff from previous failed attempts. 2441 * 2442 * Drivers may override this method to bring in information 2443 * such as link state conditions in making the decision. 2444 */ 2445 static int 2446 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2447 struct ieee80211_tx_ampdu *tap) 2448 { 2449 struct ieee80211vap *vap = ni->ni_vap; 2450 2451 if (tap->txa_avgpps < 2452 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2453 return 0; 2454 /* XXX check rssi? */ 2455 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2456 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2457 /* 2458 * Don't retry too often; txa_nextrequest is set 2459 * to the minimum interval we'll retry after 2460 * ieee80211_addba_maxtries failed attempts are made. 2461 */ 2462 return 0; 2463 } 2464 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2465 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2466 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2467 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2468 return 1; 2469 } 2470 2471 /* 2472 * Request A-MPDU tx aggregation. Setup local state and 2473 * issue an ADDBA request. BA use will only happen after 2474 * the other end replies with ADDBA response. 2475 */ 2476 int 2477 ieee80211_ampdu_request(struct ieee80211_node *ni, 2478 struct ieee80211_tx_ampdu *tap) 2479 { 2480 struct ieee80211com *ic = ni->ni_ic; 2481 uint16_t args[5]; 2482 int tid, dialogtoken; 2483 static int tokens = 0; /* XXX */ 2484 2485 /* XXX locking */ 2486 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2487 /* do deferred setup of state */ 2488 ampdu_tx_setup(tap); 2489 } 2490 /* XXX hack for not doing proper locking */ 2491 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2492 2493 dialogtoken = (tokens+1) % 63; /* XXX */ 2494 tid = tap->txa_tid; 2495 2496 /* 2497 * XXX TODO: This is racy with any other parallel TX going on. :( 2498 */ 2499 tap->txa_start = ni->ni_txseqs[tid]; 2500 2501 args[0] = dialogtoken; 2502 args[1] = 0; /* NB: status code not used */ 2503 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2504 | SM(tid, IEEE80211_BAPS_TID) 2505 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2506 ; 2507 args[3] = 0; /* batimeout */ 2508 /* NB: do first so there's no race against reply */ 2509 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2510 /* unable to setup state, don't make request */ 2511 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2512 ni, "%s: could not setup BA stream for TID %d AC %d", 2513 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2514 /* defer next try so we don't slam the driver with requests */ 2515 tap->txa_attempts = ieee80211_addba_maxtries; 2516 /* NB: check in case driver wants to override */ 2517 if (tap->txa_nextrequest <= ticks) 2518 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2519 return 0; 2520 } 2521 tokens = dialogtoken; /* allocate token */ 2522 /* NB: after calling ic_addba_request so driver can set txa_start */ 2523 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2524 | SM(0, IEEE80211_BASEQ_FRAG) 2525 ; 2526 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2527 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2528 } 2529 2530 /* 2531 * Terminate an AMPDU tx stream. State is reclaimed 2532 * and the peer notified with a DelBA Action frame. 2533 */ 2534 void 2535 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2536 int reason) 2537 { 2538 struct ieee80211com *ic = ni->ni_ic; 2539 struct ieee80211vap *vap = ni->ni_vap; 2540 uint16_t args[4]; 2541 2542 /* XXX locking */ 2543 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2544 if (IEEE80211_AMPDU_RUNNING(tap)) { 2545 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2546 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2547 __func__, tap->txa_tid, reason, 2548 ieee80211_reason_to_string(reason)); 2549 vap->iv_stats.is_ampdu_stop++; 2550 2551 ic->ic_addba_stop(ni, tap); 2552 args[0] = tap->txa_tid; 2553 args[1] = IEEE80211_DELBAPS_INIT; 2554 args[2] = reason; /* XXX reason code */ 2555 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2556 IEEE80211_ACTION_BA_DELBA, args); 2557 } else { 2558 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2559 ni, "%s: BA stream for TID %d not running " 2560 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2561 ieee80211_reason_to_string(reason)); 2562 vap->iv_stats.is_ampdu_stop_failed++; 2563 } 2564 } 2565 2566 /* XXX */ 2567 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2568 2569 static void 2570 bar_timeout(void *arg) 2571 { 2572 struct ieee80211_tx_ampdu *tap = arg; 2573 struct ieee80211_node *ni = tap->txa_ni; 2574 2575 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2576 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2577 2578 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2579 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2580 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2581 2582 /* guard against race with bar_tx_complete */ 2583 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2584 return; 2585 /* XXX ? */ 2586 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2587 struct ieee80211com *ic = ni->ni_ic; 2588 2589 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2590 /* 2591 * If (at least) the last BAR TX timeout was due to 2592 * an ieee80211_send_bar() failures, then we need 2593 * to make sure we notify the driver that a BAR 2594 * TX did occur and fail. This gives the driver 2595 * a chance to undo any queue pause that may 2596 * have occurred. 2597 */ 2598 ic->ic_bar_response(ni, tap, 1); 2599 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2600 } else { 2601 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2602 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2603 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2604 ni, "%s: failed to TX, starting timer\n", 2605 __func__); 2606 /* 2607 * If ieee80211_send_bar() fails here, the 2608 * timer may have stopped and/or the pending 2609 * flag may be clear. Because of this, 2610 * fake the BARPEND and reset the timer. 2611 * A retransmission attempt will then occur 2612 * during the next timeout. 2613 */ 2614 /* XXX locking */ 2615 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2616 bar_start_timer(tap); 2617 } 2618 } 2619 } 2620 2621 static void 2622 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2623 { 2624 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2625 tap->txa_ni, 2626 "%s: called", 2627 __func__); 2628 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2629 } 2630 2631 static void 2632 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2633 { 2634 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2635 tap->txa_ni, 2636 "%s: called", 2637 __func__); 2638 callout_stop(&tap->txa_timer); 2639 } 2640 2641 static void 2642 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2643 { 2644 struct ieee80211_tx_ampdu *tap = arg; 2645 2646 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2647 ni, "%s: tid %u flags 0x%x pending %d status %d", 2648 __func__, tap->txa_tid, tap->txa_flags, 2649 callout_pending(&tap->txa_timer), status); 2650 2651 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2652 /* XXX locking */ 2653 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2654 callout_pending(&tap->txa_timer)) { 2655 struct ieee80211com *ic = ni->ni_ic; 2656 2657 if (status == 0) /* ACK'd */ 2658 bar_stop_timer(tap); 2659 ic->ic_bar_response(ni, tap, status); 2660 /* NB: just let timer expire so we pace requests */ 2661 } 2662 } 2663 2664 static void 2665 ieee80211_bar_response(struct ieee80211_node *ni, 2666 struct ieee80211_tx_ampdu *tap, int status) 2667 { 2668 2669 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2670 tap->txa_ni, 2671 "%s: called", 2672 __func__); 2673 if (status == 0) { /* got ACK */ 2674 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2675 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2676 tap->txa_start, 2677 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2678 tap->txa_qframes, tap->txa_seqpending, 2679 tap->txa_tid); 2680 2681 /* NB: timer already stopped in bar_tx_complete */ 2682 tap->txa_start = tap->txa_seqpending; 2683 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2684 } 2685 } 2686 2687 /* 2688 * Transmit a BAR frame to the specified node. The 2689 * BAR contents are drawn from the supplied aggregation 2690 * state associated with the node. 2691 * 2692 * NB: we only handle immediate ACK w/ compressed bitmap. 2693 */ 2694 int 2695 ieee80211_send_bar(struct ieee80211_node *ni, 2696 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2697 { 2698 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2699 struct ieee80211vap *vap = ni->ni_vap; 2700 struct ieee80211com *ic = ni->ni_ic; 2701 struct ieee80211_frame_bar *bar; 2702 struct mbuf *m; 2703 uint16_t barctl, barseqctl; 2704 uint8_t *frm; 2705 int tid, ret; 2706 2707 2708 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2709 tap->txa_ni, 2710 "%s: called", 2711 __func__); 2712 2713 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2714 /* no ADDBA response, should not happen */ 2715 /* XXX stat+msg */ 2716 return EINVAL; 2717 } 2718 /* XXX locking */ 2719 bar_stop_timer(tap); 2720 2721 ieee80211_ref_node(ni); 2722 2723 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2724 if (m == NULL) 2725 senderr(ENOMEM, is_tx_nobuf); 2726 2727 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2728 m_freem(m); 2729 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2730 /* NOTREACHED */ 2731 } 2732 2733 bar = mtod(m, struct ieee80211_frame_bar *); 2734 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2735 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2736 bar->i_fc[1] = 0; 2737 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2738 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2739 2740 tid = tap->txa_tid; 2741 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2742 0 : IEEE80211_BAR_NOACK) 2743 | IEEE80211_BAR_COMP 2744 | SM(tid, IEEE80211_BAR_TID) 2745 ; 2746 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2747 /* NB: known to have proper alignment */ 2748 bar->i_ctl = htole16(barctl); 2749 bar->i_seq = htole16(barseqctl); 2750 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2751 2752 M_WME_SETAC(m, WME_AC_VO); 2753 2754 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2755 2756 /* XXX locking */ 2757 /* init/bump attempts counter */ 2758 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2759 tap->txa_attempts = 1; 2760 else 2761 tap->txa_attempts++; 2762 tap->txa_seqpending = seq; 2763 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2764 2765 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2766 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2767 tid, barctl, seq, tap->txa_attempts); 2768 2769 /* 2770 * ic_raw_xmit will free the node reference 2771 * regardless of queue/TX success or failure. 2772 */ 2773 IEEE80211_TX_LOCK(ic); 2774 ret = ieee80211_raw_output(vap, ni, m, NULL); 2775 IEEE80211_TX_UNLOCK(ic); 2776 if (ret != 0) { 2777 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2778 ni, "send BAR: failed: (ret = %d)\n", 2779 ret); 2780 /* xmit failed, clear state flag */ 2781 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2782 vap->iv_stats.is_ampdu_bar_tx_fail++; 2783 return ret; 2784 } 2785 /* XXX hack against tx complete happening before timer is started */ 2786 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2787 bar_start_timer(tap); 2788 return 0; 2789 bad: 2790 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2791 tap->txa_ni, 2792 "%s: bad! ret=%d", 2793 __func__, ret); 2794 vap->iv_stats.is_ampdu_bar_tx_fail++; 2795 ieee80211_free_node(ni); 2796 return ret; 2797 #undef senderr 2798 } 2799 2800 static int 2801 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2802 { 2803 struct ieee80211_bpf_params params; 2804 2805 memset(¶ms, 0, sizeof(params)); 2806 params.ibp_pri = WME_AC_VO; 2807 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2808 /* NB: we know all frames are unicast */ 2809 params.ibp_try0 = ni->ni_txparms->maxretry; 2810 params.ibp_power = ni->ni_txpower; 2811 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2812 ¶ms); 2813 } 2814 2815 #define ADDSHORT(frm, v) do { \ 2816 frm[0] = (v) & 0xff; \ 2817 frm[1] = (v) >> 8; \ 2818 frm += 2; \ 2819 } while (0) 2820 2821 /* 2822 * Send an action management frame. The arguments are stuff 2823 * into a frame without inspection; the caller is assumed to 2824 * prepare them carefully (e.g. based on the aggregation state). 2825 */ 2826 static int 2827 ht_send_action_ba_addba(struct ieee80211_node *ni, 2828 int category, int action, void *arg0) 2829 { 2830 struct ieee80211vap *vap = ni->ni_vap; 2831 struct ieee80211com *ic = ni->ni_ic; 2832 uint16_t *args = arg0; 2833 struct mbuf *m; 2834 uint8_t *frm; 2835 2836 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2837 "send ADDBA %s: dialogtoken %d status %d " 2838 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2839 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2840 "request" : "response", 2841 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2842 args[3], args[4]); 2843 2844 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2845 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2846 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2847 ieee80211_ref_node(ni); 2848 2849 m = ieee80211_getmgtframe(&frm, 2850 ic->ic_headroom + sizeof(struct ieee80211_frame), 2851 sizeof(uint16_t) /* action+category */ 2852 /* XXX may action payload */ 2853 + sizeof(struct ieee80211_action_ba_addbaresponse) 2854 ); 2855 if (m != NULL) { 2856 *frm++ = category; 2857 *frm++ = action; 2858 *frm++ = args[0]; /* dialog token */ 2859 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2860 ADDSHORT(frm, args[1]); /* status code */ 2861 ADDSHORT(frm, args[2]); /* baparamset */ 2862 ADDSHORT(frm, args[3]); /* batimeout */ 2863 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2864 ADDSHORT(frm, args[4]); /* baseqctl */ 2865 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2866 return ht_action_output(ni, m); 2867 } else { 2868 vap->iv_stats.is_tx_nobuf++; 2869 ieee80211_free_node(ni); 2870 return ENOMEM; 2871 } 2872 } 2873 2874 static int 2875 ht_send_action_ba_delba(struct ieee80211_node *ni, 2876 int category, int action, void *arg0) 2877 { 2878 struct ieee80211vap *vap = ni->ni_vap; 2879 struct ieee80211com *ic = ni->ni_ic; 2880 uint16_t *args = arg0; 2881 struct mbuf *m; 2882 uint16_t baparamset; 2883 uint8_t *frm; 2884 2885 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2886 | args[1] 2887 ; 2888 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2889 "send DELBA action: tid %d, initiator %d reason %d (%s)", 2890 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 2891 2892 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2893 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2894 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2895 ieee80211_ref_node(ni); 2896 2897 m = ieee80211_getmgtframe(&frm, 2898 ic->ic_headroom + sizeof(struct ieee80211_frame), 2899 sizeof(uint16_t) /* action+category */ 2900 /* XXX may action payload */ 2901 + sizeof(struct ieee80211_action_ba_addbaresponse) 2902 ); 2903 if (m != NULL) { 2904 *frm++ = category; 2905 *frm++ = action; 2906 ADDSHORT(frm, baparamset); 2907 ADDSHORT(frm, args[2]); /* reason code */ 2908 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2909 return ht_action_output(ni, m); 2910 } else { 2911 vap->iv_stats.is_tx_nobuf++; 2912 ieee80211_free_node(ni); 2913 return ENOMEM; 2914 } 2915 } 2916 2917 static int 2918 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2919 int category, int action, void *arg0) 2920 { 2921 struct ieee80211vap *vap = ni->ni_vap; 2922 struct ieee80211com *ic = ni->ni_ic; 2923 struct mbuf *m; 2924 uint8_t *frm; 2925 2926 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2927 "send HT txchwidth: width %d", 2928 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2929 2930 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2931 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2932 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2933 ieee80211_ref_node(ni); 2934 2935 m = ieee80211_getmgtframe(&frm, 2936 ic->ic_headroom + sizeof(struct ieee80211_frame), 2937 sizeof(uint16_t) /* action+category */ 2938 /* XXX may action payload */ 2939 + sizeof(struct ieee80211_action_ba_addbaresponse) 2940 ); 2941 if (m != NULL) { 2942 *frm++ = category; 2943 *frm++ = action; 2944 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2945 IEEE80211_A_HT_TXCHWIDTH_2040 : 2946 IEEE80211_A_HT_TXCHWIDTH_20; 2947 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2948 return ht_action_output(ni, m); 2949 } else { 2950 vap->iv_stats.is_tx_nobuf++; 2951 ieee80211_free_node(ni); 2952 return ENOMEM; 2953 } 2954 } 2955 #undef ADDSHORT 2956 2957 /* 2958 * Construct the MCS bit mask for inclusion in an HT capabilities 2959 * information element. 2960 */ 2961 static void 2962 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2963 { 2964 int i; 2965 uint8_t txparams; 2966 2967 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2968 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2969 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2970 ("ic_txstream %d out of range", ic->ic_txstream)); 2971 2972 for (i = 0; i < ic->ic_rxstream * 8; i++) 2973 setbit(frm, i); 2974 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2975 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2976 setbit(frm, 32); 2977 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2978 if (ic->ic_rxstream >= 2) { 2979 for (i = 33; i <= 38; i++) 2980 setbit(frm, i); 2981 } 2982 if (ic->ic_rxstream >= 3) { 2983 for (i = 39; i <= 52; i++) 2984 setbit(frm, i); 2985 } 2986 if (ic->ic_txstream >= 4) { 2987 for (i = 53; i <= 76; i++) 2988 setbit(frm, i); 2989 } 2990 } 2991 2992 if (ic->ic_rxstream != ic->ic_txstream) { 2993 txparams = 0x1; /* TX MCS set defined */ 2994 txparams |= 0x2; /* TX RX MCS not equal */ 2995 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2996 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2997 txparams |= 0x16; /* TX unequal modulation sup */ 2998 } else 2999 txparams = 0; 3000 frm[12] = txparams; 3001 } 3002 3003 /* 3004 * Add body of an HTCAP information element. 3005 */ 3006 static uint8_t * 3007 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 3008 { 3009 #define ADDSHORT(frm, v) do { \ 3010 frm[0] = (v) & 0xff; \ 3011 frm[1] = (v) >> 8; \ 3012 frm += 2; \ 3013 } while (0) 3014 struct ieee80211com *ic = ni->ni_ic; 3015 struct ieee80211vap *vap = ni->ni_vap; 3016 uint16_t caps, extcaps; 3017 int rxmax, density; 3018 3019 /* HT capabilities */ 3020 caps = vap->iv_htcaps & 0xffff; 3021 /* 3022 * Note channel width depends on whether we are operating as 3023 * a sta or not. When operating as a sta we are generating 3024 * a request based on our desired configuration. Otherwise 3025 * we are operational and the channel attributes identify 3026 * how we've been setup (which might be different if a fixed 3027 * channel is specified). 3028 */ 3029 if (vap->iv_opmode == IEEE80211_M_STA) { 3030 /* override 20/40 use based on config */ 3031 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 3032 caps |= IEEE80211_HTCAP_CHWIDTH40; 3033 else 3034 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3035 3036 /* Start by using the advertised settings */ 3037 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 3038 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 3039 3040 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 3041 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 3042 __func__, 3043 rxmax, 3044 density, 3045 vap->iv_ampdu_rxmax, 3046 vap->iv_ampdu_density); 3047 3048 /* Cap at VAP rxmax */ 3049 if (rxmax > vap->iv_ampdu_rxmax) 3050 rxmax = vap->iv_ampdu_rxmax; 3051 3052 /* 3053 * If the VAP ampdu density value greater, use that. 3054 * 3055 * (Larger density value == larger minimum gap between A-MPDU 3056 * subframes.) 3057 */ 3058 if (vap->iv_ampdu_density > density) 3059 density = vap->iv_ampdu_density; 3060 3061 /* 3062 * NB: Hardware might support HT40 on some but not all 3063 * channels. We can't determine this earlier because only 3064 * after association the channel is upgraded to HT based 3065 * on the negotiated capabilities. 3066 */ 3067 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3068 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3069 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3070 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3071 } else { 3072 /* override 20/40 use based on current channel */ 3073 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3074 caps |= IEEE80211_HTCAP_CHWIDTH40; 3075 else 3076 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3077 3078 /* XXX TODO should it start by using advertised settings? */ 3079 rxmax = vap->iv_ampdu_rxmax; 3080 density = vap->iv_ampdu_density; 3081 } 3082 3083 /* adjust short GI based on channel and config */ 3084 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3085 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3086 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3087 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3088 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3089 3090 /* adjust STBC based on receive capabilities */ 3091 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3092 caps &= ~IEEE80211_HTCAP_RXSTBC; 3093 3094 /* adjust LDPC based on receive capabilites */ 3095 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) 3096 caps &= ~IEEE80211_HTCAP_LDPC; 3097 3098 ADDSHORT(frm, caps); 3099 3100 /* HT parameters */ 3101 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3102 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3103 ; 3104 frm++; 3105 3106 /* pre-zero remainder of ie */ 3107 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3108 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3109 3110 /* supported MCS set */ 3111 /* 3112 * XXX: For sta mode the rate set should be restricted based 3113 * on the AP's capabilities, but ni_htrates isn't setup when 3114 * we're called to form an AssocReq frame so for now we're 3115 * restricted to the device capabilities. 3116 */ 3117 ieee80211_set_mcsset(ni->ni_ic, frm); 3118 3119 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3120 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3121 3122 /* HT extended capabilities */ 3123 extcaps = vap->iv_htextcaps & 0xffff; 3124 3125 ADDSHORT(frm, extcaps); 3126 3127 frm += sizeof(struct ieee80211_ie_htcap) - 3128 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3129 3130 return frm; 3131 #undef ADDSHORT 3132 } 3133 3134 /* 3135 * Add 802.11n HT capabilities information element 3136 */ 3137 uint8_t * 3138 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3139 { 3140 frm[0] = IEEE80211_ELEMID_HTCAP; 3141 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3142 return ieee80211_add_htcap_body(frm + 2, ni); 3143 } 3144 3145 /* 3146 * Non-associated probe request - add HT capabilities based on 3147 * the current channel configuration. 3148 */ 3149 static uint8_t * 3150 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3151 struct ieee80211_channel *c) 3152 { 3153 #define ADDSHORT(frm, v) do { \ 3154 frm[0] = (v) & 0xff; \ 3155 frm[1] = (v) >> 8; \ 3156 frm += 2; \ 3157 } while (0) 3158 struct ieee80211com *ic = vap->iv_ic; 3159 uint16_t caps, extcaps; 3160 int rxmax, density; 3161 3162 /* HT capabilities */ 3163 caps = vap->iv_htcaps & 0xffff; 3164 3165 /* 3166 * We don't use this in STA mode; only in IBSS mode. 3167 * So in IBSS mode we base our HTCAP flags on the 3168 * given channel. 3169 */ 3170 3171 /* override 20/40 use based on current channel */ 3172 if (IEEE80211_IS_CHAN_HT40(c)) 3173 caps |= IEEE80211_HTCAP_CHWIDTH40; 3174 else 3175 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3176 3177 /* Use the currently configured values */ 3178 rxmax = vap->iv_ampdu_rxmax; 3179 density = vap->iv_ampdu_density; 3180 3181 /* adjust short GI based on channel and config */ 3182 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3183 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3184 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3185 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3186 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3187 ADDSHORT(frm, caps); 3188 3189 /* HT parameters */ 3190 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3191 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3192 ; 3193 frm++; 3194 3195 /* pre-zero remainder of ie */ 3196 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3197 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3198 3199 /* supported MCS set */ 3200 /* 3201 * XXX: For sta mode the rate set should be restricted based 3202 * on the AP's capabilities, but ni_htrates isn't setup when 3203 * we're called to form an AssocReq frame so for now we're 3204 * restricted to the device capabilities. 3205 */ 3206 ieee80211_set_mcsset(ic, frm); 3207 3208 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3209 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3210 3211 /* HT extended capabilities */ 3212 extcaps = vap->iv_htextcaps & 0xffff; 3213 3214 ADDSHORT(frm, extcaps); 3215 3216 frm += sizeof(struct ieee80211_ie_htcap) - 3217 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3218 3219 return frm; 3220 #undef ADDSHORT 3221 } 3222 3223 /* 3224 * Add 802.11n HT capabilities information element 3225 */ 3226 uint8_t * 3227 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3228 struct ieee80211_channel *c) 3229 { 3230 frm[0] = IEEE80211_ELEMID_HTCAP; 3231 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3232 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3233 } 3234 3235 /* 3236 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3237 * used for compatibility w/ pre-draft implementations. 3238 */ 3239 uint8_t * 3240 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3241 { 3242 frm[0] = IEEE80211_ELEMID_VENDOR; 3243 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3244 frm[2] = (BCM_OUI >> 0) & 0xff; 3245 frm[3] = (BCM_OUI >> 8) & 0xff; 3246 frm[4] = (BCM_OUI >> 16) & 0xff; 3247 frm[5] = BCM_OUI_HTCAP; 3248 return ieee80211_add_htcap_body(frm + 6, ni); 3249 } 3250 3251 /* 3252 * Construct the MCS bit mask of basic rates 3253 * for inclusion in an HT information element. 3254 */ 3255 static void 3256 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3257 { 3258 int i; 3259 3260 for (i = 0; i < rs->rs_nrates; i++) { 3261 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3262 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3263 r < IEEE80211_HTRATE_MAXSIZE) { 3264 /* NB: this assumes a particular implementation */ 3265 setbit(frm, r); 3266 } 3267 } 3268 } 3269 3270 /* 3271 * Update the HTINFO ie for a beacon frame. 3272 */ 3273 void 3274 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3275 struct ieee80211_beacon_offsets *bo) 3276 { 3277 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3278 struct ieee80211_node *ni; 3279 const struct ieee80211_channel *bsschan; 3280 struct ieee80211com *ic = vap->iv_ic; 3281 struct ieee80211_ie_htinfo *ht = 3282 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3283 3284 ni = ieee80211_ref_node(vap->iv_bss); 3285 bsschan = ni->ni_chan; 3286 3287 /* XXX only update on channel change */ 3288 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3289 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3290 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3291 else 3292 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3293 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3294 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3295 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3296 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3297 else 3298 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3299 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3300 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3301 3302 /* protection mode */ 3303 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3304 3305 ieee80211_free_node(ni); 3306 3307 /* XXX propagate to vendor ie's */ 3308 #undef PROTMODE 3309 } 3310 3311 /* 3312 * Add body of an HTINFO information element. 3313 * 3314 * NB: We don't use struct ieee80211_ie_htinfo because we can 3315 * be called to fillin both a standard ie and a compat ie that 3316 * has a vendor OUI at the front. 3317 */ 3318 static uint8_t * 3319 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3320 { 3321 struct ieee80211vap *vap = ni->ni_vap; 3322 struct ieee80211com *ic = ni->ni_ic; 3323 3324 /* pre-zero remainder of ie */ 3325 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3326 3327 /* primary/control channel center */ 3328 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3329 3330 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3331 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3332 else 3333 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3334 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3335 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3336 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3337 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3338 else 3339 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3340 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3341 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3342 3343 frm[1] = ic->ic_curhtprotmode; 3344 3345 frm += 5; 3346 3347 /* basic MCS set */ 3348 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3349 frm += sizeof(struct ieee80211_ie_htinfo) - 3350 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3351 return frm; 3352 } 3353 3354 /* 3355 * Add 802.11n HT information information element. 3356 */ 3357 uint8_t * 3358 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3359 { 3360 frm[0] = IEEE80211_ELEMID_HTINFO; 3361 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3362 return ieee80211_add_htinfo_body(frm + 2, ni); 3363 } 3364 3365 /* 3366 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3367 * used for compatibility w/ pre-draft implementations. 3368 */ 3369 uint8_t * 3370 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3371 { 3372 frm[0] = IEEE80211_ELEMID_VENDOR; 3373 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3374 frm[2] = (BCM_OUI >> 0) & 0xff; 3375 frm[3] = (BCM_OUI >> 8) & 0xff; 3376 frm[4] = (BCM_OUI >> 16) & 0xff; 3377 frm[5] = BCM_OUI_HTINFO; 3378 return ieee80211_add_htinfo_body(frm + 6, ni); 3379 } 3380