1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/systm.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_action.h> 53 #include <net80211/ieee80211_input.h> 54 55 /* define here, used throughout file */ 56 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 57 #define SM(_v, _f) (((_v) << _f##_S) & _f) 58 59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 60 { 13, 14, 27, 30 }, /* MCS 0 */ 61 { 26, 29, 54, 60 }, /* MCS 1 */ 62 { 39, 43, 81, 90 }, /* MCS 2 */ 63 { 52, 58, 108, 120 }, /* MCS 3 */ 64 { 78, 87, 162, 180 }, /* MCS 4 */ 65 { 104, 116, 216, 240 }, /* MCS 5 */ 66 { 117, 130, 243, 270 }, /* MCS 6 */ 67 { 130, 144, 270, 300 }, /* MCS 7 */ 68 { 26, 29, 54, 60 }, /* MCS 8 */ 69 { 52, 58, 108, 120 }, /* MCS 9 */ 70 { 78, 87, 162, 180 }, /* MCS 10 */ 71 { 104, 116, 216, 240 }, /* MCS 11 */ 72 { 156, 173, 324, 360 }, /* MCS 12 */ 73 { 208, 231, 432, 480 }, /* MCS 13 */ 74 { 234, 260, 486, 540 }, /* MCS 14 */ 75 { 260, 289, 540, 600 }, /* MCS 15 */ 76 { 39, 43, 81, 90 }, /* MCS 16 */ 77 { 78, 87, 162, 180 }, /* MCS 17 */ 78 { 117, 130, 243, 270 }, /* MCS 18 */ 79 { 156, 173, 324, 360 }, /* MCS 19 */ 80 { 234, 260, 486, 540 }, /* MCS 20 */ 81 { 312, 347, 648, 720 }, /* MCS 21 */ 82 { 351, 390, 729, 810 }, /* MCS 22 */ 83 { 390, 433, 810, 900 }, /* MCS 23 */ 84 { 52, 58, 108, 120 }, /* MCS 24 */ 85 { 104, 116, 216, 240 }, /* MCS 25 */ 86 { 156, 173, 324, 360 }, /* MCS 26 */ 87 { 208, 231, 432, 480 }, /* MCS 27 */ 88 { 312, 347, 648, 720 }, /* MCS 28 */ 89 { 416, 462, 864, 960 }, /* MCS 29 */ 90 { 468, 520, 972, 1080 }, /* MCS 30 */ 91 { 520, 578, 1080, 1200 }, /* MCS 31 */ 92 { 0, 0, 12, 13 }, /* MCS 32 */ 93 { 78, 87, 162, 180 }, /* MCS 33 */ 94 { 104, 116, 216, 240 }, /* MCS 34 */ 95 { 130, 144, 270, 300 }, /* MCS 35 */ 96 { 117, 130, 243, 270 }, /* MCS 36 */ 97 { 156, 173, 324, 360 }, /* MCS 37 */ 98 { 195, 217, 405, 450 }, /* MCS 38 */ 99 { 104, 116, 216, 240 }, /* MCS 39 */ 100 { 130, 144, 270, 300 }, /* MCS 40 */ 101 { 130, 144, 270, 300 }, /* MCS 41 */ 102 { 156, 173, 324, 360 }, /* MCS 42 */ 103 { 182, 202, 378, 420 }, /* MCS 43 */ 104 { 182, 202, 378, 420 }, /* MCS 44 */ 105 { 208, 231, 432, 480 }, /* MCS 45 */ 106 { 156, 173, 324, 360 }, /* MCS 46 */ 107 { 195, 217, 405, 450 }, /* MCS 47 */ 108 { 195, 217, 405, 450 }, /* MCS 48 */ 109 { 234, 260, 486, 540 }, /* MCS 49 */ 110 { 273, 303, 567, 630 }, /* MCS 50 */ 111 { 273, 303, 567, 630 }, /* MCS 51 */ 112 { 312, 347, 648, 720 }, /* MCS 52 */ 113 { 130, 144, 270, 300 }, /* MCS 53 */ 114 { 156, 173, 324, 360 }, /* MCS 54 */ 115 { 182, 202, 378, 420 }, /* MCS 55 */ 116 { 156, 173, 324, 360 }, /* MCS 56 */ 117 { 182, 202, 378, 420 }, /* MCS 57 */ 118 { 208, 231, 432, 480 }, /* MCS 58 */ 119 { 234, 260, 486, 540 }, /* MCS 59 */ 120 { 208, 231, 432, 480 }, /* MCS 60 */ 121 { 234, 260, 486, 540 }, /* MCS 61 */ 122 { 260, 289, 540, 600 }, /* MCS 62 */ 123 { 260, 289, 540, 600 }, /* MCS 63 */ 124 { 286, 318, 594, 660 }, /* MCS 64 */ 125 { 195, 217, 405, 450 }, /* MCS 65 */ 126 { 234, 260, 486, 540 }, /* MCS 66 */ 127 { 273, 303, 567, 630 }, /* MCS 67 */ 128 { 234, 260, 486, 540 }, /* MCS 68 */ 129 { 273, 303, 567, 630 }, /* MCS 69 */ 130 { 312, 347, 648, 720 }, /* MCS 70 */ 131 { 351, 390, 729, 810 }, /* MCS 71 */ 132 { 312, 347, 648, 720 }, /* MCS 72 */ 133 { 351, 390, 729, 810 }, /* MCS 73 */ 134 { 390, 433, 810, 900 }, /* MCS 74 */ 135 { 390, 433, 810, 900 }, /* MCS 75 */ 136 { 429, 477, 891, 990 }, /* MCS 76 */ 137 }; 138 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 144 static int ieee80211_recv_bar_ena = 1; 145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 146 0, "BAR frame processing (ena/dis)"); 147 148 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 ieee80211_ampdu_age = msecs_to_ticks(500); 180 ieee80211_addba_timeout = msecs_to_ticks(250); 181 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 182 ieee80211_bar_timeout = msecs_to_ticks(250); 183 /* 184 * Register action frame handlers. 185 */ 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 193 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 196 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 204 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 205 } 206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 207 208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 209 struct ieee80211_tx_ampdu *tap); 210 static int ieee80211_addba_request(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap, 212 int dialogtoken, int baparamset, int batimeout); 213 static int ieee80211_addba_response(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int code, int baparamset, int batimeout); 216 static void ieee80211_addba_stop(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap); 218 static void null_addba_response_timeout(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 221 static void ieee80211_bar_response(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap, int status); 223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 226 int baparamset, int batimeout, int baseqctl); 227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 228 229 void 230 ieee80211_ht_attach(struct ieee80211com *ic) 231 { 232 /* setup default aggregation policy */ 233 ic->ic_recv_action = ieee80211_recv_action; 234 ic->ic_send_action = ieee80211_send_action; 235 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 236 ic->ic_addba_request = ieee80211_addba_request; 237 ic->ic_addba_response = ieee80211_addba_response; 238 ic->ic_addba_response_timeout = null_addba_response_timeout; 239 ic->ic_addba_stop = ieee80211_addba_stop; 240 ic->ic_bar_response = ieee80211_bar_response; 241 ic->ic_ampdu_rx_start = ampdu_rx_start; 242 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 243 244 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 245 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 246 } 247 248 void 249 ieee80211_ht_detach(struct ieee80211com *ic) 250 { 251 } 252 253 void 254 ieee80211_ht_vattach(struct ieee80211vap *vap) 255 { 256 257 /* driver can override defaults */ 258 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 259 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 260 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 261 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 262 /* tx aggregation traffic thresholds */ 263 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 264 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 265 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 266 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 267 268 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 269 /* 270 * Device is HT capable; enable all HT-related 271 * facilities by default. 272 * XXX these choices may be too aggressive. 273 */ 274 vap->iv_flags_ht |= IEEE80211_FHT_HT 275 | IEEE80211_FHT_HTCOMPAT 276 ; 277 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 278 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 279 /* XXX infer from channel list? */ 280 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 281 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 282 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 283 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 284 } 285 /* enable RIFS if capable */ 286 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 287 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 288 289 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 290 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 291 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 292 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 293 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 296 297 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 298 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 299 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 300 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 301 } 302 /* NB: disable default legacy WDS, too many issues right now */ 303 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 304 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 305 } 306 307 void 308 ieee80211_ht_vdetach(struct ieee80211vap *vap) 309 { 310 } 311 312 static int 313 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 314 int ratetype) 315 { 316 int mword, rate; 317 318 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 319 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 320 return (0); 321 switch (ratetype) { 322 case 0: 323 rate = ieee80211_htrates[index].ht20_rate_800ns; 324 break; 325 case 1: 326 rate = ieee80211_htrates[index].ht20_rate_400ns; 327 break; 328 case 2: 329 rate = ieee80211_htrates[index].ht40_rate_800ns; 330 break; 331 default: 332 rate = ieee80211_htrates[index].ht40_rate_400ns; 333 break; 334 } 335 return (rate); 336 } 337 338 static struct printranges { 339 int minmcs; 340 int maxmcs; 341 int txstream; 342 int ratetype; 343 int htcapflags; 344 } ranges[] = { 345 { 0, 7, 1, 0, 0 }, 346 { 8, 15, 2, 0, 0 }, 347 { 16, 23, 3, 0, 0 }, 348 { 24, 31, 4, 0, 0 }, 349 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 350 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 351 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 352 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 353 { 0, 0, 0, 0, 0 }, 354 }; 355 356 static void 357 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 358 { 359 int minrate, maxrate; 360 struct printranges *range; 361 362 for (range = ranges; range->txstream != 0; range++) { 363 if (ic->ic_txstream < range->txstream) 364 continue; 365 if (range->htcapflags && 366 (ic->ic_htcaps & range->htcapflags) == 0) 367 continue; 368 if (ratetype < range->ratetype) 369 continue; 370 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 371 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 372 if (range->maxmcs) { 373 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 374 range->minmcs, range->maxmcs, 375 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 376 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 377 } else { 378 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 379 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 380 } 381 } 382 } 383 384 static void 385 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 386 { 387 const char *modestr = ieee80211_phymode_name[mode]; 388 389 ic_printf(ic, "%s MCS 20MHz\n", modestr); 390 ht_rateprint(ic, mode, 0); 391 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 392 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 393 ht_rateprint(ic, mode, 1); 394 } 395 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 396 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 397 ht_rateprint(ic, mode, 2); 398 } 399 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 400 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 401 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 402 ht_rateprint(ic, mode, 3); 403 } 404 } 405 406 void 407 ieee80211_ht_announce(struct ieee80211com *ic) 408 { 409 410 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 411 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 412 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 413 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 414 ht_announce(ic, IEEE80211_MODE_11NA); 415 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 416 ht_announce(ic, IEEE80211_MODE_11NG); 417 } 418 419 static struct ieee80211_htrateset htrateset; 420 421 const struct ieee80211_htrateset * 422 ieee80211_get_suphtrates(struct ieee80211com *ic, 423 const struct ieee80211_channel *c) 424 { 425 #define ADDRATE(x) do { \ 426 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 427 htrateset.rs_nrates++; \ 428 } while (0) 429 int i; 430 431 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 432 for (i = 0; i < ic->ic_txstream * 8; i++) 433 ADDRATE(i); 434 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 435 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 436 ADDRATE(32); 437 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 438 if (ic->ic_txstream >= 2) { 439 for (i = 33; i <= 38; i++) 440 ADDRATE(i); 441 } 442 if (ic->ic_txstream >= 3) { 443 for (i = 39; i <= 52; i++) 444 ADDRATE(i); 445 } 446 if (ic->ic_txstream == 4) { 447 for (i = 53; i <= 76; i++) 448 ADDRATE(i); 449 } 450 } 451 return &htrateset; 452 #undef ADDRATE 453 } 454 455 /* 456 * Receive processing. 457 */ 458 459 /* 460 * Decap the encapsulated A-MSDU frames and dispatch all but 461 * the last for delivery. The last frame is returned for 462 * delivery via the normal path. 463 */ 464 struct mbuf * 465 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 466 { 467 struct ieee80211vap *vap = ni->ni_vap; 468 int framelen; 469 struct mbuf *n; 470 471 /* discard 802.3 header inserted by ieee80211_decap */ 472 m_adj(m, sizeof(struct ether_header)); 473 474 vap->iv_stats.is_amsdu_decap++; 475 476 for (;;) { 477 /* 478 * Decap the first frame, bust it apart from the 479 * remainder and deliver. We leave the last frame 480 * delivery to the caller (for consistency with other 481 * code paths, could also do it here). 482 */ 483 m = ieee80211_decap1(m, &framelen); 484 if (m == NULL) { 485 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 486 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 487 vap->iv_stats.is_amsdu_tooshort++; 488 return NULL; 489 } 490 if (m->m_pkthdr.len == framelen) 491 break; 492 n = m_split(m, framelen, M_NOWAIT); 493 if (n == NULL) { 494 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 495 ni->ni_macaddr, "a-msdu", 496 "%s", "unable to split encapsulated frames"); 497 vap->iv_stats.is_amsdu_split++; 498 m_freem(m); /* NB: must reclaim */ 499 return NULL; 500 } 501 vap->iv_deliver_data(vap, ni, m); 502 503 /* 504 * Remove frame contents; each intermediate frame 505 * is required to be aligned to a 4-byte boundary. 506 */ 507 m = n; 508 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 509 } 510 return m; /* last delivered by caller */ 511 } 512 513 /* 514 * Purge all frames in the A-MPDU re-order queue. 515 */ 516 static void 517 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 518 { 519 struct mbuf *m; 520 int i; 521 522 for (i = 0; i < rap->rxa_wnd; i++) { 523 m = rap->rxa_m[i]; 524 if (m != NULL) { 525 rap->rxa_m[i] = NULL; 526 rap->rxa_qbytes -= m->m_pkthdr.len; 527 m_freem(m); 528 if (--rap->rxa_qframes == 0) 529 break; 530 } 531 } 532 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 533 ("lost %u data, %u frames on ampdu rx q", 534 rap->rxa_qbytes, rap->rxa_qframes)); 535 } 536 537 /* 538 * Start A-MPDU rx/re-order processing for the specified TID. 539 */ 540 static int 541 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 542 int baparamset, int batimeout, int baseqctl) 543 { 544 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 545 546 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 547 /* 548 * AMPDU previously setup and not terminated with a DELBA, 549 * flush the reorder q's in case anything remains. 550 */ 551 ampdu_rx_purge(rap); 552 } 553 memset(rap, 0, sizeof(*rap)); 554 rap->rxa_wnd = (bufsiz == 0) ? 555 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 556 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 557 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 558 559 return 0; 560 } 561 562 /* 563 * Public function; manually setup the RX ampdu state. 564 */ 565 int 566 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 567 { 568 struct ieee80211_rx_ampdu *rap; 569 570 /* XXX TODO: sanity check tid, seq, baw */ 571 572 rap = &ni->ni_rx_ampdu[tid]; 573 574 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 575 /* 576 * AMPDU previously setup and not terminated with a DELBA, 577 * flush the reorder q's in case anything remains. 578 */ 579 ampdu_rx_purge(rap); 580 } 581 582 memset(rap, 0, sizeof(*rap)); 583 rap->rxa_wnd = (baw== 0) ? 584 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 585 if (seq == -1) { 586 /* Wait for the first RX frame, use that as BAW */ 587 rap->rxa_start = 0; 588 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 589 } else { 590 rap->rxa_start = seq; 591 } 592 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 593 594 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 595 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 596 __func__, 597 tid, 598 seq, 599 rap->rxa_wnd, 600 rap->rxa_flags); 601 602 return 0; 603 } 604 605 /* 606 * Public function; manually stop the RX AMPDU state. 607 */ 608 void 609 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 610 { 611 struct ieee80211_rx_ampdu *rap; 612 613 /* XXX TODO: sanity check tid, seq, baw */ 614 rap = &ni->ni_rx_ampdu[tid]; 615 ampdu_rx_stop(ni, rap); 616 } 617 618 /* 619 * Stop A-MPDU rx processing for the specified TID. 620 */ 621 static void 622 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 623 { 624 625 ampdu_rx_purge(rap); 626 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 627 | IEEE80211_AGGR_XCHGPEND 628 | IEEE80211_AGGR_WAITRX); 629 } 630 631 /* 632 * Dispatch a frame from the A-MPDU reorder queue. The 633 * frame is fed back into ieee80211_input marked with an 634 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 635 * permits ieee80211_input to optimize re-processing). 636 */ 637 static __inline void 638 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 639 { 640 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 641 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 642 (void) ieee80211_input(ni, m, 0, 0); 643 } 644 645 /* 646 * Dispatch as many frames as possible from the re-order queue. 647 * Frames will always be "at the front"; we process all frames 648 * up to the first empty slot in the window. On completion we 649 * cleanup state if there are still pending frames in the current 650 * BA window. We assume the frame at slot 0 is already handled 651 * by the caller; we always start at slot 1. 652 */ 653 static void 654 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 655 { 656 struct ieee80211vap *vap = ni->ni_vap; 657 struct mbuf *m; 658 int i; 659 660 /* flush run of frames */ 661 for (i = 1; i < rap->rxa_wnd; i++) { 662 m = rap->rxa_m[i]; 663 if (m == NULL) 664 break; 665 rap->rxa_m[i] = NULL; 666 rap->rxa_qbytes -= m->m_pkthdr.len; 667 rap->rxa_qframes--; 668 669 ampdu_dispatch(ni, m); 670 } 671 /* 672 * If frames remain, copy the mbuf pointers down so 673 * they correspond to the offsets in the new window. 674 */ 675 if (rap->rxa_qframes != 0) { 676 int n = rap->rxa_qframes, j; 677 for (j = i+1; j < rap->rxa_wnd; j++) { 678 if (rap->rxa_m[j] != NULL) { 679 rap->rxa_m[j-i] = rap->rxa_m[j]; 680 rap->rxa_m[j] = NULL; 681 if (--n == 0) 682 break; 683 } 684 } 685 KASSERT(n == 0, ("lost %d frames", n)); 686 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 687 } 688 /* 689 * Adjust the start of the BA window to 690 * reflect the frames just dispatched. 691 */ 692 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 693 vap->iv_stats.is_ampdu_rx_oor += i; 694 } 695 696 /* 697 * Dispatch all frames in the A-MPDU re-order queue. 698 */ 699 static void 700 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 701 { 702 struct ieee80211vap *vap = ni->ni_vap; 703 struct mbuf *m; 704 int i; 705 706 for (i = 0; i < rap->rxa_wnd; i++) { 707 m = rap->rxa_m[i]; 708 if (m == NULL) 709 continue; 710 rap->rxa_m[i] = NULL; 711 rap->rxa_qbytes -= m->m_pkthdr.len; 712 rap->rxa_qframes--; 713 vap->iv_stats.is_ampdu_rx_oor++; 714 715 ampdu_dispatch(ni, m); 716 if (rap->rxa_qframes == 0) 717 break; 718 } 719 } 720 721 /* 722 * Dispatch all frames in the A-MPDU re-order queue 723 * preceding the specified sequence number. This logic 724 * handles window moves due to a received MSDU or BAR. 725 */ 726 static void 727 ampdu_rx_flush_upto(struct ieee80211_node *ni, 728 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 729 { 730 struct ieee80211vap *vap = ni->ni_vap; 731 struct mbuf *m; 732 ieee80211_seq seqno; 733 int i; 734 735 /* 736 * Flush any complete MSDU's with a sequence number lower 737 * than winstart. Gaps may exist. Note that we may actually 738 * dispatch frames past winstart if a run continues; this is 739 * an optimization that avoids having to do a separate pass 740 * to dispatch frames after moving the BA window start. 741 */ 742 seqno = rap->rxa_start; 743 for (i = 0; i < rap->rxa_wnd; i++) { 744 m = rap->rxa_m[i]; 745 if (m != NULL) { 746 rap->rxa_m[i] = NULL; 747 rap->rxa_qbytes -= m->m_pkthdr.len; 748 rap->rxa_qframes--; 749 vap->iv_stats.is_ampdu_rx_oor++; 750 751 ampdu_dispatch(ni, m); 752 } else { 753 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 754 break; 755 } 756 seqno = IEEE80211_SEQ_INC(seqno); 757 } 758 /* 759 * If frames remain, copy the mbuf pointers down so 760 * they correspond to the offsets in the new window. 761 */ 762 if (rap->rxa_qframes != 0) { 763 int n = rap->rxa_qframes, j; 764 765 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 766 KASSERT(rap->rxa_m[0] == NULL, 767 ("%s: BA window slot 0 occupied", __func__)); 768 for (j = i+1; j < rap->rxa_wnd; j++) { 769 if (rap->rxa_m[j] != NULL) { 770 rap->rxa_m[j-i] = rap->rxa_m[j]; 771 rap->rxa_m[j] = NULL; 772 if (--n == 0) 773 break; 774 } 775 } 776 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 777 "BA win <%d:%d> winstart %d", 778 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 779 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 780 winstart)); 781 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 782 } 783 /* 784 * Move the start of the BA window; we use the 785 * sequence number of the last MSDU that was 786 * passed up the stack+1 or winstart if stopped on 787 * a gap in the reorder buffer. 788 */ 789 rap->rxa_start = seqno; 790 } 791 792 /* 793 * Process a received QoS data frame for an HT station. Handle 794 * A-MPDU reordering: if this frame is received out of order 795 * and falls within the BA window hold onto it. Otherwise if 796 * this frame completes a run, flush any pending frames. We 797 * return 1 if the frame is consumed. A 0 is returned if 798 * the frame should be processed normally by the caller. 799 */ 800 int 801 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 802 { 803 #define PROCESS 0 /* caller should process frame */ 804 #define CONSUMED 1 /* frame consumed, caller does nothing */ 805 struct ieee80211vap *vap = ni->ni_vap; 806 struct ieee80211_qosframe *wh; 807 struct ieee80211_rx_ampdu *rap; 808 ieee80211_seq rxseq; 809 uint8_t tid; 810 int off; 811 812 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 813 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 814 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 815 816 /* NB: m_len known to be sufficient */ 817 wh = mtod(m, struct ieee80211_qosframe *); 818 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 819 /* 820 * Not QoS data, shouldn't get here but just 821 * return it to the caller for processing. 822 */ 823 return PROCESS; 824 } 825 if (IEEE80211_IS_DSTODS(wh)) 826 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 827 else 828 tid = wh->i_qos[0]; 829 tid &= IEEE80211_QOS_TID; 830 rap = &ni->ni_rx_ampdu[tid]; 831 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 832 /* 833 * No ADDBA request yet, don't touch. 834 */ 835 return PROCESS; 836 } 837 rxseq = le16toh(*(uint16_t *)wh->i_seq); 838 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 839 /* 840 * Fragments are not allowed; toss. 841 */ 842 IEEE80211_DISCARD_MAC(vap, 843 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 844 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 845 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 846 vap->iv_stats.is_ampdu_rx_drop++; 847 IEEE80211_NODE_STAT(ni, rx_drop); 848 m_freem(m); 849 return CONSUMED; 850 } 851 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 852 rap->rxa_nframes++; 853 854 /* 855 * Handle waiting for the first frame to define the BAW. 856 * Some firmware doesn't provide the RX of the starting point 857 * of the BAW and we have to cope. 858 */ 859 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 860 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 861 rap->rxa_start = rxseq; 862 } 863 again: 864 if (rxseq == rap->rxa_start) { 865 /* 866 * First frame in window. 867 */ 868 if (rap->rxa_qframes != 0) { 869 /* 870 * Dispatch as many packets as we can. 871 */ 872 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 873 ampdu_dispatch(ni, m); 874 ampdu_rx_dispatch(rap, ni); 875 return CONSUMED; 876 } else { 877 /* 878 * In order; advance window and notify 879 * caller to dispatch directly. 880 */ 881 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 882 return PROCESS; 883 } 884 } 885 /* 886 * Frame is out of order; store if in the BA window. 887 */ 888 /* calculate offset in BA window */ 889 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 890 if (off < rap->rxa_wnd) { 891 /* 892 * Common case (hopefully): in the BA window. 893 * Sec 9.10.7.6.2 a) (p.137) 894 */ 895 896 /* 897 * Check for frames sitting too long in the reorder queue. 898 * This should only ever happen if frames are not delivered 899 * without the sender otherwise notifying us (e.g. with a 900 * BAR to move the window). Typically this happens because 901 * of vendor bugs that cause the sequence number to jump. 902 * When this happens we get a gap in the reorder queue that 903 * leaves frame sitting on the queue until they get pushed 904 * out due to window moves. When the vendor does not send 905 * BAR this move only happens due to explicit packet sends 906 * 907 * NB: we only track the time of the oldest frame in the 908 * reorder q; this means that if we flush we might push 909 * frames that still "new"; if this happens then subsequent 910 * frames will result in BA window moves which cost something 911 * but is still better than a big throughput dip. 912 */ 913 if (rap->rxa_qframes != 0) { 914 /* XXX honor batimeout? */ 915 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 916 /* 917 * Too long since we received the first 918 * frame; flush the reorder buffer. 919 */ 920 if (rap->rxa_qframes != 0) { 921 vap->iv_stats.is_ampdu_rx_age += 922 rap->rxa_qframes; 923 ampdu_rx_flush(ni, rap); 924 } 925 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 926 return PROCESS; 927 } 928 } else { 929 /* 930 * First frame, start aging timer. 931 */ 932 rap->rxa_age = ticks; 933 } 934 935 /* save packet */ 936 if (rap->rxa_m[off] == NULL) { 937 rap->rxa_m[off] = m; 938 rap->rxa_qframes++; 939 rap->rxa_qbytes += m->m_pkthdr.len; 940 vap->iv_stats.is_ampdu_rx_reorder++; 941 } else { 942 IEEE80211_DISCARD_MAC(vap, 943 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 944 ni->ni_macaddr, "a-mpdu duplicate", 945 "seqno %u tid %u BA win <%u:%u>", 946 rxseq, tid, rap->rxa_start, 947 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 948 vap->iv_stats.is_rx_dup++; 949 IEEE80211_NODE_STAT(ni, rx_dup); 950 m_freem(m); 951 } 952 return CONSUMED; 953 } 954 if (off < IEEE80211_SEQ_BA_RANGE) { 955 /* 956 * Outside the BA window, but within range; 957 * flush the reorder q and move the window. 958 * Sec 9.10.7.6.2 b) (p.138) 959 */ 960 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 961 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 962 rap->rxa_start, 963 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 964 rap->rxa_qframes, rxseq, tid); 965 vap->iv_stats.is_ampdu_rx_move++; 966 967 /* 968 * The spec says to flush frames up to but not including: 969 * WinStart_B = rxseq - rap->rxa_wnd + 1 970 * Then insert the frame or notify the caller to process 971 * it immediately. We can safely do this by just starting 972 * over again because we know the frame will now be within 973 * the BA window. 974 */ 975 /* NB: rxa_wnd known to be >0 */ 976 ampdu_rx_flush_upto(ni, rap, 977 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 978 goto again; 979 } else { 980 /* 981 * Outside the BA window and out of range; toss. 982 * Sec 9.10.7.6.2 c) (p.138) 983 */ 984 IEEE80211_DISCARD_MAC(vap, 985 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 986 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 987 rap->rxa_start, 988 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 989 rap->rxa_qframes, rxseq, tid, 990 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 991 vap->iv_stats.is_ampdu_rx_drop++; 992 IEEE80211_NODE_STAT(ni, rx_drop); 993 m_freem(m); 994 return CONSUMED; 995 } 996 #undef CONSUMED 997 #undef PROCESS 998 } 999 1000 /* 1001 * Process a BAR ctl frame. Dispatch all frames up to 1002 * the sequence number of the frame. If this frame is 1003 * out of range it's discarded. 1004 */ 1005 void 1006 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1007 { 1008 struct ieee80211vap *vap = ni->ni_vap; 1009 struct ieee80211_frame_bar *wh; 1010 struct ieee80211_rx_ampdu *rap; 1011 ieee80211_seq rxseq; 1012 int tid, off; 1013 1014 if (!ieee80211_recv_bar_ena) { 1015 #if 0 1016 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1017 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1018 #endif 1019 vap->iv_stats.is_ampdu_bar_bad++; 1020 return; 1021 } 1022 wh = mtod(m0, struct ieee80211_frame_bar *); 1023 /* XXX check basic BAR */ 1024 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1025 rap = &ni->ni_rx_ampdu[tid]; 1026 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1027 /* 1028 * No ADDBA request yet, don't touch. 1029 */ 1030 IEEE80211_DISCARD_MAC(vap, 1031 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1032 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1033 vap->iv_stats.is_ampdu_bar_bad++; 1034 return; 1035 } 1036 vap->iv_stats.is_ampdu_bar_rx++; 1037 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1038 if (rxseq == rap->rxa_start) 1039 return; 1040 /* calculate offset in BA window */ 1041 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1042 if (off < IEEE80211_SEQ_BA_RANGE) { 1043 /* 1044 * Flush the reorder q up to rxseq and move the window. 1045 * Sec 9.10.7.6.3 a) (p.138) 1046 */ 1047 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1048 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1049 rap->rxa_start, 1050 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1051 rap->rxa_qframes, rxseq, tid); 1052 vap->iv_stats.is_ampdu_bar_move++; 1053 1054 ampdu_rx_flush_upto(ni, rap, rxseq); 1055 if (off >= rap->rxa_wnd) { 1056 /* 1057 * BAR specifies a window start to the right of BA 1058 * window; we must move it explicitly since 1059 * ampdu_rx_flush_upto will not. 1060 */ 1061 rap->rxa_start = rxseq; 1062 } 1063 } else { 1064 /* 1065 * Out of range; toss. 1066 * Sec 9.10.7.6.3 b) (p.138) 1067 */ 1068 IEEE80211_DISCARD_MAC(vap, 1069 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1070 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1071 rap->rxa_start, 1072 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1073 rap->rxa_qframes, rxseq, tid, 1074 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1075 vap->iv_stats.is_ampdu_bar_oow++; 1076 IEEE80211_NODE_STAT(ni, rx_drop); 1077 } 1078 } 1079 1080 /* 1081 * Setup HT-specific state in a node. Called only 1082 * when HT use is negotiated so we don't do extra 1083 * work for temporary and/or legacy sta's. 1084 */ 1085 void 1086 ieee80211_ht_node_init(struct ieee80211_node *ni) 1087 { 1088 struct ieee80211_tx_ampdu *tap; 1089 int tid; 1090 1091 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1092 ni, 1093 "%s: called (%p)", 1094 __func__, 1095 ni); 1096 1097 if (ni->ni_flags & IEEE80211_NODE_HT) { 1098 /* 1099 * Clean AMPDU state on re-associate. This handles the case 1100 * where a station leaves w/o notifying us and then returns 1101 * before node is reaped for inactivity. 1102 */ 1103 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1104 ni, 1105 "%s: calling cleanup (%p)", 1106 __func__, ni); 1107 ieee80211_ht_node_cleanup(ni); 1108 } 1109 for (tid = 0; tid < WME_NUM_TID; tid++) { 1110 tap = &ni->ni_tx_ampdu[tid]; 1111 tap->txa_tid = tid; 1112 tap->txa_ni = ni; 1113 ieee80211_txampdu_init_pps(tap); 1114 /* NB: further initialization deferred */ 1115 } 1116 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1117 } 1118 1119 /* 1120 * Cleanup HT-specific state in a node. Called only 1121 * when HT use has been marked. 1122 */ 1123 void 1124 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1125 { 1126 struct ieee80211com *ic = ni->ni_ic; 1127 int i; 1128 1129 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1130 ni, 1131 "%s: called (%p)", 1132 __func__, ni); 1133 1134 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1135 1136 /* XXX optimize this */ 1137 for (i = 0; i < WME_NUM_TID; i++) { 1138 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1139 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1140 ampdu_tx_stop(tap); 1141 } 1142 for (i = 0; i < WME_NUM_TID; i++) 1143 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1144 1145 ni->ni_htcap = 0; 1146 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1147 } 1148 1149 /* 1150 * Age out HT resources for a station. 1151 */ 1152 void 1153 ieee80211_ht_node_age(struct ieee80211_node *ni) 1154 { 1155 struct ieee80211vap *vap = ni->ni_vap; 1156 uint8_t tid; 1157 1158 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1159 1160 for (tid = 0; tid < WME_NUM_TID; tid++) { 1161 struct ieee80211_rx_ampdu *rap; 1162 1163 rap = &ni->ni_rx_ampdu[tid]; 1164 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1165 continue; 1166 if (rap->rxa_qframes == 0) 1167 continue; 1168 /* 1169 * Check for frames sitting too long in the reorder queue. 1170 * See above for more details on what's happening here. 1171 */ 1172 /* XXX honor batimeout? */ 1173 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1174 /* 1175 * Too long since we received the first 1176 * frame; flush the reorder buffer. 1177 */ 1178 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1179 ampdu_rx_flush(ni, rap); 1180 } 1181 } 1182 } 1183 1184 static struct ieee80211_channel * 1185 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1186 { 1187 return ieee80211_find_channel(ic, c->ic_freq, 1188 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1189 } 1190 1191 /* 1192 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1193 */ 1194 struct ieee80211_channel * 1195 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1196 struct ieee80211_channel *chan, int flags) 1197 { 1198 struct ieee80211_channel *c; 1199 1200 if (flags & IEEE80211_FHT_HT) { 1201 /* promote to HT if possible */ 1202 if (flags & IEEE80211_FHT_USEHT40) { 1203 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1204 /* NB: arbitrarily pick ht40+ over ht40- */ 1205 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1206 if (c == NULL) 1207 c = findhtchan(ic, chan, 1208 IEEE80211_CHAN_HT40D); 1209 if (c == NULL) 1210 c = findhtchan(ic, chan, 1211 IEEE80211_CHAN_HT20); 1212 if (c != NULL) 1213 chan = c; 1214 } 1215 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1216 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1217 if (c != NULL) 1218 chan = c; 1219 } 1220 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1221 /* demote to legacy, HT use is disabled */ 1222 c = ieee80211_find_channel(ic, chan->ic_freq, 1223 chan->ic_flags &~ IEEE80211_CHAN_HT); 1224 if (c != NULL) 1225 chan = c; 1226 } 1227 return chan; 1228 } 1229 1230 /* 1231 * Setup HT-specific state for a legacy WDS peer. 1232 */ 1233 void 1234 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1235 { 1236 struct ieee80211vap *vap = ni->ni_vap; 1237 struct ieee80211_tx_ampdu *tap; 1238 int tid; 1239 1240 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1241 1242 /* XXX check scan cache in case peer has an ap and we have info */ 1243 /* 1244 * If setup with a legacy channel; locate an HT channel. 1245 * Otherwise if the inherited channel (from a companion 1246 * AP) is suitable use it so we use the same location 1247 * for the extension channel). 1248 */ 1249 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1250 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1251 1252 ni->ni_htcap = 0; 1253 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1254 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1255 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1256 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1257 ni->ni_chw = 40; 1258 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1259 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1260 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1261 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1262 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1263 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1264 } else { 1265 ni->ni_chw = 20; 1266 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1267 } 1268 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1269 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1270 ni->ni_flags |= IEEE80211_NODE_RIFS; 1271 /* XXX does it make sense to enable SMPS? */ 1272 1273 ni->ni_htopmode = 0; /* XXX need protection state */ 1274 ni->ni_htstbc = 0; /* XXX need info */ 1275 1276 for (tid = 0; tid < WME_NUM_TID; tid++) { 1277 tap = &ni->ni_tx_ampdu[tid]; 1278 tap->txa_tid = tid; 1279 ieee80211_txampdu_init_pps(tap); 1280 } 1281 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1282 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1283 } 1284 1285 /* 1286 * Notify hostap vaps of a change in the HTINFO ie. 1287 */ 1288 static void 1289 htinfo_notify(struct ieee80211com *ic) 1290 { 1291 struct ieee80211vap *vap; 1292 int first = 1; 1293 1294 IEEE80211_LOCK_ASSERT(ic); 1295 1296 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1297 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1298 continue; 1299 if (vap->iv_state != IEEE80211_S_RUN || 1300 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1301 continue; 1302 if (first) { 1303 IEEE80211_NOTE(vap, 1304 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1305 vap->iv_bss, 1306 "HT bss occupancy change: %d sta, %d ht, " 1307 "%d ht40%s, HT protmode now 0x%x" 1308 , ic->ic_sta_assoc 1309 , ic->ic_ht_sta_assoc 1310 , ic->ic_ht40_sta_assoc 1311 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1312 ", non-HT sta present" : "" 1313 , ic->ic_curhtprotmode); 1314 first = 0; 1315 } 1316 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1317 } 1318 } 1319 1320 /* 1321 * Calculate HT protection mode from current 1322 * state and handle updates. 1323 */ 1324 static void 1325 htinfo_update(struct ieee80211com *ic) 1326 { 1327 uint8_t protmode; 1328 1329 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1330 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1331 | IEEE80211_HTINFO_NONHT_PRESENT; 1332 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1333 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1334 | IEEE80211_HTINFO_NONHT_PRESENT; 1335 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1336 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1337 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1338 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1339 } else { 1340 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1341 } 1342 if (protmode != ic->ic_curhtprotmode) { 1343 ic->ic_curhtprotmode = protmode; 1344 htinfo_notify(ic); 1345 } 1346 } 1347 1348 /* 1349 * Handle an HT station joining a BSS. 1350 */ 1351 void 1352 ieee80211_ht_node_join(struct ieee80211_node *ni) 1353 { 1354 struct ieee80211com *ic = ni->ni_ic; 1355 1356 IEEE80211_LOCK_ASSERT(ic); 1357 1358 if (ni->ni_flags & IEEE80211_NODE_HT) { 1359 ic->ic_ht_sta_assoc++; 1360 if (ni->ni_chw == 40) 1361 ic->ic_ht40_sta_assoc++; 1362 } 1363 htinfo_update(ic); 1364 } 1365 1366 /* 1367 * Handle an HT station leaving a BSS. 1368 */ 1369 void 1370 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1371 { 1372 struct ieee80211com *ic = ni->ni_ic; 1373 1374 IEEE80211_LOCK_ASSERT(ic); 1375 1376 if (ni->ni_flags & IEEE80211_NODE_HT) { 1377 ic->ic_ht_sta_assoc--; 1378 if (ni->ni_chw == 40) 1379 ic->ic_ht40_sta_assoc--; 1380 } 1381 htinfo_update(ic); 1382 } 1383 1384 /* 1385 * Public version of htinfo_update; used for processing 1386 * beacon frames from overlapping bss. 1387 * 1388 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1389 * (on receipt of a beacon that advertises MIXED) or 1390 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1391 * from an overlapping legacy bss). We treat MIXED with 1392 * a higher precedence than PROTOPT (i.e. we will not change 1393 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1394 * corresponds to how we handle things in htinfo_update. 1395 */ 1396 void 1397 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1398 { 1399 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1400 IEEE80211_LOCK(ic); 1401 1402 /* track non-HT station presence */ 1403 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1404 ("protmode 0x%x", protmode)); 1405 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1406 ic->ic_lastnonht = ticks; 1407 1408 if (protmode != ic->ic_curhtprotmode && 1409 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1410 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1411 /* push beacon update */ 1412 ic->ic_curhtprotmode = protmode; 1413 htinfo_notify(ic); 1414 } 1415 IEEE80211_UNLOCK(ic); 1416 #undef OPMODE 1417 } 1418 1419 /* 1420 * Time out presence of an overlapping bss with non-HT 1421 * stations. When operating in hostap mode we listen for 1422 * beacons from other stations and if we identify a non-HT 1423 * station is present we update the opmode field of the 1424 * HTINFO ie. To identify when all non-HT stations are 1425 * gone we time out this condition. 1426 */ 1427 void 1428 ieee80211_ht_timeout(struct ieee80211com *ic) 1429 { 1430 IEEE80211_LOCK_ASSERT(ic); 1431 1432 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1433 ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1434 #if 0 1435 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1436 "%s", "time out non-HT STA present on channel"); 1437 #endif 1438 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1439 htinfo_update(ic); 1440 } 1441 } 1442 1443 /* 1444 * Process an 802.11n HT capabilities ie. 1445 */ 1446 void 1447 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1448 { 1449 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1450 /* 1451 * Station used Vendor OUI ie to associate; 1452 * mark the node so when we respond we'll use 1453 * the Vendor OUI's and not the standard ie's. 1454 */ 1455 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1456 ie += 4; 1457 } else 1458 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1459 1460 ni->ni_htcap = le16dec(ie + 1461 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1462 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1463 } 1464 1465 static void 1466 htinfo_parse(struct ieee80211_node *ni, 1467 const struct ieee80211_ie_htinfo *htinfo) 1468 { 1469 uint16_t w; 1470 1471 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1472 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1473 w = le16dec(&htinfo->hi_byte2); 1474 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1475 w = le16dec(&htinfo->hi_byte45); 1476 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1477 } 1478 1479 /* 1480 * Parse an 802.11n HT info ie and save useful information 1481 * to the node state. Note this does not effect any state 1482 * changes such as for channel width change. 1483 */ 1484 void 1485 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1486 { 1487 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1488 ie += 4; 1489 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1490 } 1491 1492 /* 1493 * Handle 11n/11ac channel switch. 1494 * 1495 * Use the received HT/VHT ie's to identify the right channel to use. 1496 * If we cannot locate it in the channel table then fallback to 1497 * legacy operation. 1498 * 1499 * Note that we use this information to identify the node's 1500 * channel only; the caller is responsible for insuring any 1501 * required channel change is done (e.g. in sta mode when 1502 * parsing the contents of a beacon frame). 1503 */ 1504 static int 1505 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1506 { 1507 struct ieee80211com *ic = ni->ni_ic; 1508 struct ieee80211_channel *c; 1509 int chanflags; 1510 int ret = 0; 1511 1512 /* 1513 * First step - do HT/VHT only channel lookup based on operating mode 1514 * flags. This involves masking out the VHT flags as well. 1515 * Otherwise we end up doing the full channel walk each time 1516 * we trigger this, which is expensive. 1517 */ 1518 chanflags = (ni->ni_chan->ic_flags &~ 1519 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1520 1521 if (chanflags == ni->ni_chan->ic_flags) 1522 goto done; 1523 1524 /* 1525 * If HT /or/ VHT flags have changed then check both. 1526 * We need to start by picking a HT channel anyway. 1527 */ 1528 1529 c = NULL; 1530 chanflags = (ni->ni_chan->ic_flags &~ 1531 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1532 /* XXX not right for ht40- */ 1533 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1534 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1535 /* 1536 * No HT40 channel entry in our table; fall back 1537 * to HT20 operation. This should not happen. 1538 */ 1539 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1540 #if 0 1541 IEEE80211_NOTE(ni->ni_vap, 1542 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1543 "no HT40 channel (freq %u), falling back to HT20", 1544 ni->ni_chan->ic_freq); 1545 #endif 1546 /* XXX stat */ 1547 } 1548 1549 /* Nothing found - leave it alone; move onto VHT */ 1550 if (c == NULL) 1551 c = ni->ni_chan; 1552 1553 /* 1554 * If it's non-HT, then bail out now. 1555 */ 1556 if (! IEEE80211_IS_CHAN_HT(c)) { 1557 IEEE80211_NOTE(ni->ni_vap, 1558 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1559 "not HT; skipping VHT check (%u/0x%x)", 1560 c->ic_freq, c->ic_flags); 1561 goto done; 1562 } 1563 1564 /* 1565 * Next step - look at the current VHT flags and determine 1566 * if we need to upgrade. Mask out the VHT and HT flags since 1567 * the vhtflags field will already have the correct HT 1568 * flags to use. 1569 */ 1570 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1571 chanflags = (c->ic_flags 1572 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1573 | vhtflags; 1574 IEEE80211_NOTE(ni->ni_vap, 1575 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1576 ni, 1577 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1578 __func__, ni->ni_vht_chanwidth, vhtflags); 1579 1580 IEEE80211_NOTE(ni->ni_vap, 1581 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1582 ni, 1583 "%s: VHT; trying lookup for %d/0x%08x", 1584 __func__, c->ic_freq, chanflags); 1585 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1586 } 1587 1588 /* Finally, if it's changed */ 1589 if (c != NULL && c != ni->ni_chan) { 1590 IEEE80211_NOTE(ni->ni_vap, 1591 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1592 "switch station to %s%d channel %u/0x%x", 1593 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1594 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1595 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1596 c->ic_freq, c->ic_flags); 1597 ni->ni_chan = c; 1598 ret = 1; 1599 } 1600 /* NB: caller responsible for forcing any channel change */ 1601 1602 done: 1603 /* update node's (11n) tx channel width */ 1604 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1605 return (ret); 1606 } 1607 1608 /* 1609 * Update 11n MIMO PS state according to received htcap. 1610 */ 1611 static __inline int 1612 htcap_update_mimo_ps(struct ieee80211_node *ni) 1613 { 1614 uint16_t oflags = ni->ni_flags; 1615 1616 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1617 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1618 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1619 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1620 break; 1621 case IEEE80211_HTCAP_SMPS_ENA: 1622 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1623 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1624 break; 1625 case IEEE80211_HTCAP_SMPS_OFF: 1626 default: /* disable on rx of reserved value */ 1627 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1628 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1629 break; 1630 } 1631 return (oflags ^ ni->ni_flags); 1632 } 1633 1634 /* 1635 * Update short GI state according to received htcap 1636 * and local settings. 1637 */ 1638 static __inline void 1639 htcap_update_shortgi(struct ieee80211_node *ni) 1640 { 1641 struct ieee80211vap *vap = ni->ni_vap; 1642 1643 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1644 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1645 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1646 ni->ni_flags |= IEEE80211_NODE_SGI20; 1647 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1648 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1649 ni->ni_flags |= IEEE80211_NODE_SGI40; 1650 } 1651 1652 /* 1653 * Parse and update HT-related state extracted from 1654 * the HT cap and info ie's. 1655 * 1656 * This is called from the STA management path and 1657 * the ieee80211_node_join() path. It will take into 1658 * account the IEs discovered during scanning and 1659 * adjust things accordingly. 1660 */ 1661 void 1662 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1663 const uint8_t *htcapie, const uint8_t *htinfoie) 1664 { 1665 struct ieee80211vap *vap = ni->ni_vap; 1666 const struct ieee80211_ie_htinfo *htinfo; 1667 1668 ieee80211_parse_htcap(ni, htcapie); 1669 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1670 htcap_update_mimo_ps(ni); 1671 htcap_update_shortgi(ni); 1672 1673 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1674 htinfoie += 4; 1675 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1676 htinfo_parse(ni, htinfo); 1677 1678 /* 1679 * Defer the node channel change; we need to now 1680 * update VHT parameters before we do it. 1681 */ 1682 1683 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1684 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1685 ni->ni_flags |= IEEE80211_NODE_RIFS; 1686 else 1687 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1688 } 1689 1690 static uint32_t 1691 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1692 { 1693 struct ieee80211vap *vap = ni->ni_vap; 1694 uint32_t vhtflags = 0; 1695 1696 vhtflags = 0; 1697 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 1698 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1699 /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ 1700 (MS(vap->iv_vhtcaps, 1701 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && 1702 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) { 1703 vhtflags = IEEE80211_CHAN_VHT160; 1704 /* Mirror the HT40 flags */ 1705 if (htflags == IEEE80211_CHAN_HT40U) { 1706 vhtflags |= IEEE80211_CHAN_HT40U; 1707 } else if (htflags == IEEE80211_CHAN_HT40D) { 1708 vhtflags |= IEEE80211_CHAN_HT40D; 1709 } 1710 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1711 /* XXX 2 means "160MHz and 80+80MHz" */ 1712 (MS(vap->iv_vhtcaps, 1713 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && 1714 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) { 1715 vhtflags = IEEE80211_CHAN_VHT80_80; 1716 /* Mirror the HT40 flags */ 1717 if (htflags == IEEE80211_CHAN_HT40U) { 1718 vhtflags |= IEEE80211_CHAN_HT40U; 1719 } else if (htflags == IEEE80211_CHAN_HT40D) { 1720 vhtflags |= IEEE80211_CHAN_HT40D; 1721 } 1722 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1723 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) { 1724 vhtflags = IEEE80211_CHAN_VHT80; 1725 /* Mirror the HT40 flags */ 1726 if (htflags == IEEE80211_CHAN_HT40U) { 1727 vhtflags |= IEEE80211_CHAN_HT40U; 1728 } else if (htflags == IEEE80211_CHAN_HT40D) { 1729 vhtflags |= IEEE80211_CHAN_HT40D; 1730 } 1731 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1732 /* Mirror the HT40 flags */ 1733 /* 1734 * XXX TODO: if ht40 is disabled, but vht40 isn't 1735 * disabled then this logic will get very, very sad. 1736 * It's quite possible the only sane thing to do is 1737 * to not have vht40 as an option, and just obey 1738 * 'ht40' as that flag. 1739 */ 1740 if ((htflags == IEEE80211_CHAN_HT40U) && 1741 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1742 vhtflags = IEEE80211_CHAN_VHT40U 1743 | IEEE80211_CHAN_HT40U; 1744 } else if (htflags == IEEE80211_CHAN_HT40D && 1745 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1746 vhtflags = IEEE80211_CHAN_VHT40D 1747 | IEEE80211_CHAN_HT40D; 1748 } else if (htflags == IEEE80211_CHAN_HT20) { 1749 vhtflags = IEEE80211_CHAN_VHT20 1750 | IEEE80211_CHAN_HT20; 1751 } 1752 } else { 1753 vhtflags = IEEE80211_CHAN_VHT20; 1754 } 1755 } 1756 return (vhtflags); 1757 } 1758 1759 /* 1760 * Final part of updating the HT parameters. 1761 * 1762 * This is called from the STA management path and 1763 * the ieee80211_node_join() path. It will take into 1764 * account the IEs discovered during scanning and 1765 * adjust things accordingly. 1766 * 1767 * This is done after a call to ieee80211_ht_updateparams() 1768 * because it (and the upcoming VHT version of updateparams) 1769 * needs to ensure everything is parsed before htinfo_update_chw() 1770 * is called - which will change the channel config for the 1771 * node for us. 1772 */ 1773 int 1774 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 1775 const uint8_t *htcapie, const uint8_t *htinfoie) 1776 { 1777 struct ieee80211vap *vap = ni->ni_vap; 1778 const struct ieee80211_ie_htinfo *htinfo; 1779 int htflags, vhtflags; 1780 int ret = 0; 1781 1782 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1783 1784 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1785 IEEE80211_CHAN_HT20 : 0; 1786 1787 /* NB: honor operating mode constraint */ 1788 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1789 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1790 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1791 htflags = IEEE80211_CHAN_HT40U; 1792 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1793 htflags = IEEE80211_CHAN_HT40D; 1794 } 1795 1796 /* 1797 * VHT flags - do much the same; check whether VHT is available 1798 * and if so, what our ideal channel use would be based on our 1799 * capabilities and the (pre-parsed) VHT info IE. 1800 */ 1801 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 1802 1803 if (htinfo_update_chw(ni, htflags, vhtflags)) 1804 ret = 1; 1805 1806 return (ret); 1807 } 1808 1809 /* 1810 * Parse and update HT-related state extracted from the HT cap ie 1811 * for a station joining an HT BSS. 1812 * 1813 * This is called from the hostap path for each station. 1814 */ 1815 void 1816 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1817 { 1818 struct ieee80211vap *vap = ni->ni_vap; 1819 1820 ieee80211_parse_htcap(ni, htcapie); 1821 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1822 htcap_update_mimo_ps(ni); 1823 htcap_update_shortgi(ni); 1824 } 1825 1826 /* 1827 * Called once HT and VHT capabilities are parsed in hostap mode - 1828 * this will adjust the channel configuration of the given node 1829 * based on the configuration and capabilities. 1830 */ 1831 void 1832 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 1833 { 1834 struct ieee80211vap *vap = ni->ni_vap; 1835 int htflags; 1836 int vhtflags; 1837 1838 /* NB: honor operating mode constraint */ 1839 /* XXX 40 MHz intolerant */ 1840 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1841 IEEE80211_CHAN_HT20 : 0; 1842 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1843 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1844 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1845 htflags = IEEE80211_CHAN_HT40U; 1846 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1847 htflags = IEEE80211_CHAN_HT40D; 1848 } 1849 /* 1850 * VHT flags - do much the same; check whether VHT is available 1851 * and if so, what our ideal channel use would be based on our 1852 * capabilities and the (pre-parsed) VHT info IE. 1853 */ 1854 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 1855 1856 (void) htinfo_update_chw(ni, htflags, vhtflags); 1857 } 1858 1859 /* 1860 * Install received HT rate set by parsing the HT cap ie. 1861 */ 1862 int 1863 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1864 { 1865 struct ieee80211com *ic = ni->ni_ic; 1866 struct ieee80211vap *vap = ni->ni_vap; 1867 const struct ieee80211_ie_htcap *htcap; 1868 struct ieee80211_htrateset *rs; 1869 int i, maxequalmcs, maxunequalmcs; 1870 1871 maxequalmcs = ic->ic_txstream * 8 - 1; 1872 maxunequalmcs = 0; 1873 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1874 if (ic->ic_txstream >= 2) 1875 maxunequalmcs = 38; 1876 if (ic->ic_txstream >= 3) 1877 maxunequalmcs = 52; 1878 if (ic->ic_txstream >= 4) 1879 maxunequalmcs = 76; 1880 } 1881 1882 rs = &ni->ni_htrates; 1883 memset(rs, 0, sizeof(*rs)); 1884 if (ie != NULL) { 1885 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1886 ie += 4; 1887 htcap = (const struct ieee80211_ie_htcap *) ie; 1888 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1889 if (isclr(htcap->hc_mcsset, i)) 1890 continue; 1891 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1892 IEEE80211_NOTE(vap, 1893 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1894 "WARNING, HT rate set too large; only " 1895 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1896 vap->iv_stats.is_rx_rstoobig++; 1897 break; 1898 } 1899 if (i <= 31 && i > maxequalmcs) 1900 continue; 1901 if (i == 32 && 1902 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1903 continue; 1904 if (i > 32 && i > maxunequalmcs) 1905 continue; 1906 rs->rs_rates[rs->rs_nrates++] = i; 1907 } 1908 } 1909 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1910 } 1911 1912 /* 1913 * Mark rates in a node's HT rate set as basic according 1914 * to the information in the supplied HT info ie. 1915 */ 1916 void 1917 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1918 { 1919 const struct ieee80211_ie_htinfo *htinfo; 1920 struct ieee80211_htrateset *rs; 1921 int i, j; 1922 1923 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1924 ie += 4; 1925 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1926 rs = &ni->ni_htrates; 1927 if (rs->rs_nrates == 0) { 1928 IEEE80211_NOTE(ni->ni_vap, 1929 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1930 "%s", "WARNING, empty HT rate set"); 1931 return; 1932 } 1933 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1934 if (isclr(htinfo->hi_basicmcsset, i)) 1935 continue; 1936 for (j = 0; j < rs->rs_nrates; j++) 1937 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1938 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1939 } 1940 } 1941 1942 static void 1943 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1944 { 1945 callout_init(&tap->txa_timer, 1); 1946 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1947 tap->txa_lastsample = ticks; 1948 } 1949 1950 static void 1951 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1952 { 1953 struct ieee80211_node *ni = tap->txa_ni; 1954 struct ieee80211com *ic = ni->ni_ic; 1955 1956 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1957 tap->txa_ni, 1958 "%s: called", 1959 __func__); 1960 1961 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1962 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1963 TID_TO_WME_AC(tap->txa_tid))); 1964 1965 /* 1966 * Stop BA stream if setup so driver has a chance 1967 * to reclaim any resources it might have allocated. 1968 */ 1969 ic->ic_addba_stop(ni, tap); 1970 /* 1971 * Stop any pending BAR transmit. 1972 */ 1973 bar_stop_timer(tap); 1974 1975 /* 1976 * Reset packet estimate. 1977 */ 1978 ieee80211_txampdu_init_pps(tap); 1979 1980 /* NB: clearing NAK means we may re-send ADDBA */ 1981 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1982 } 1983 1984 /* 1985 * ADDBA response timeout. 1986 * 1987 * If software aggregation and per-TID queue management was done here, 1988 * that queue would be unpaused after the ADDBA timeout occurs. 1989 */ 1990 static void 1991 addba_timeout(void *arg) 1992 { 1993 struct ieee80211_tx_ampdu *tap = arg; 1994 struct ieee80211_node *ni = tap->txa_ni; 1995 struct ieee80211com *ic = ni->ni_ic; 1996 1997 /* XXX ? */ 1998 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1999 tap->txa_attempts++; 2000 ic->ic_addba_response_timeout(ni, tap); 2001 } 2002 2003 static void 2004 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2005 { 2006 /* XXX use CALLOUT_PENDING instead? */ 2007 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2008 addba_timeout, tap); 2009 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2010 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2011 } 2012 2013 static void 2014 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2015 { 2016 /* XXX use CALLOUT_PENDING instead? */ 2017 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2018 callout_stop(&tap->txa_timer); 2019 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2020 } 2021 } 2022 2023 static void 2024 null_addba_response_timeout(struct ieee80211_node *ni, 2025 struct ieee80211_tx_ampdu *tap) 2026 { 2027 } 2028 2029 /* 2030 * Default method for requesting A-MPDU tx aggregation. 2031 * We setup the specified state block and start a timer 2032 * to wait for an ADDBA response frame. 2033 */ 2034 static int 2035 ieee80211_addba_request(struct ieee80211_node *ni, 2036 struct ieee80211_tx_ampdu *tap, 2037 int dialogtoken, int baparamset, int batimeout) 2038 { 2039 int bufsiz; 2040 2041 /* XXX locking */ 2042 tap->txa_token = dialogtoken; 2043 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2044 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2045 tap->txa_wnd = (bufsiz == 0) ? 2046 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2047 addba_start_timeout(tap); 2048 return 1; 2049 } 2050 2051 /* 2052 * Called by drivers that wish to request an ADDBA session be 2053 * setup. This brings it up and starts the request timer. 2054 */ 2055 int 2056 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2057 { 2058 struct ieee80211_tx_ampdu *tap; 2059 2060 if (tid < 0 || tid > 15) 2061 return (0); 2062 tap = &ni->ni_tx_ampdu[tid]; 2063 2064 /* XXX locking */ 2065 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2066 /* do deferred setup of state */ 2067 ampdu_tx_setup(tap); 2068 } 2069 /* XXX hack for not doing proper locking */ 2070 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2071 addba_start_timeout(tap); 2072 return (1); 2073 } 2074 2075 /* 2076 * Called by drivers that have marked a session as active. 2077 */ 2078 int 2079 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2080 int status) 2081 { 2082 struct ieee80211_tx_ampdu *tap; 2083 2084 if (tid < 0 || tid > 15) 2085 return (0); 2086 tap = &ni->ni_tx_ampdu[tid]; 2087 2088 /* XXX locking */ 2089 addba_stop_timeout(tap); 2090 if (status == 1) { 2091 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2092 tap->txa_attempts = 0; 2093 } else { 2094 /* mark tid so we don't try again */ 2095 tap->txa_flags |= IEEE80211_AGGR_NAK; 2096 } 2097 return (1); 2098 } 2099 2100 /* 2101 * Default method for processing an A-MPDU tx aggregation 2102 * response. We shutdown any pending timer and update the 2103 * state block according to the reply. 2104 */ 2105 static int 2106 ieee80211_addba_response(struct ieee80211_node *ni, 2107 struct ieee80211_tx_ampdu *tap, 2108 int status, int baparamset, int batimeout) 2109 { 2110 int bufsiz, tid; 2111 2112 /* XXX locking */ 2113 addba_stop_timeout(tap); 2114 if (status == IEEE80211_STATUS_SUCCESS) { 2115 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2116 /* XXX override our request? */ 2117 tap->txa_wnd = (bufsiz == 0) ? 2118 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2119 /* XXX AC/TID */ 2120 tid = MS(baparamset, IEEE80211_BAPS_TID); 2121 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2122 tap->txa_attempts = 0; 2123 } else { 2124 /* mark tid so we don't try again */ 2125 tap->txa_flags |= IEEE80211_AGGR_NAK; 2126 } 2127 return 1; 2128 } 2129 2130 /* 2131 * Default method for stopping A-MPDU tx aggregation. 2132 * Any timer is cleared and we drain any pending frames. 2133 */ 2134 static void 2135 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2136 { 2137 /* XXX locking */ 2138 addba_stop_timeout(tap); 2139 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2140 /* XXX clear aggregation queue */ 2141 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 2142 } 2143 tap->txa_attempts = 0; 2144 } 2145 2146 /* 2147 * Process a received action frame using the default aggregation 2148 * policy. We intercept ADDBA-related frames and use them to 2149 * update our aggregation state. All other frames are passed up 2150 * for processing by ieee80211_recv_action. 2151 */ 2152 static int 2153 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2154 const struct ieee80211_frame *wh, 2155 const uint8_t *frm, const uint8_t *efrm) 2156 { 2157 struct ieee80211com *ic = ni->ni_ic; 2158 struct ieee80211vap *vap = ni->ni_vap; 2159 struct ieee80211_rx_ampdu *rap; 2160 uint8_t dialogtoken; 2161 uint16_t baparamset, batimeout, baseqctl; 2162 uint16_t args[5]; 2163 int tid; 2164 2165 dialogtoken = frm[2]; 2166 baparamset = le16dec(frm+3); 2167 batimeout = le16dec(frm+5); 2168 baseqctl = le16dec(frm+7); 2169 2170 tid = MS(baparamset, IEEE80211_BAPS_TID); 2171 2172 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2173 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2174 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 2175 dialogtoken, baparamset, 2176 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 2177 batimeout, 2178 MS(baseqctl, IEEE80211_BASEQ_START), 2179 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 2180 2181 rap = &ni->ni_rx_ampdu[tid]; 2182 2183 /* Send ADDBA response */ 2184 args[0] = dialogtoken; 2185 /* 2186 * NB: We ack only if the sta associated with HT and 2187 * the ap is configured to do AMPDU rx (the latter 2188 * violates the 11n spec and is mostly for testing). 2189 */ 2190 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2191 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2192 /* XXX handle ampdu_rx_start failure */ 2193 ic->ic_ampdu_rx_start(ni, rap, 2194 baparamset, batimeout, baseqctl); 2195 2196 args[1] = IEEE80211_STATUS_SUCCESS; 2197 } else { 2198 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2199 ni, "reject ADDBA request: %s", 2200 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2201 "administratively disabled" : 2202 "not negotiated for station"); 2203 vap->iv_stats.is_addba_reject++; 2204 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2205 } 2206 /* XXX honor rap flags? */ 2207 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2208 | SM(tid, IEEE80211_BAPS_TID) 2209 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2210 ; 2211 args[3] = 0; 2212 args[4] = 0; 2213 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2214 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2215 return 0; 2216 } 2217 2218 static int 2219 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2220 const struct ieee80211_frame *wh, 2221 const uint8_t *frm, const uint8_t *efrm) 2222 { 2223 struct ieee80211com *ic = ni->ni_ic; 2224 struct ieee80211vap *vap = ni->ni_vap; 2225 struct ieee80211_tx_ampdu *tap; 2226 uint8_t dialogtoken, policy; 2227 uint16_t baparamset, batimeout, code; 2228 int tid, bufsiz; 2229 2230 dialogtoken = frm[2]; 2231 code = le16dec(frm+3); 2232 baparamset = le16dec(frm+5); 2233 tid = MS(baparamset, IEEE80211_BAPS_TID); 2234 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2235 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2236 batimeout = le16dec(frm+7); 2237 2238 tap = &ni->ni_tx_ampdu[tid]; 2239 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2240 IEEE80211_DISCARD_MAC(vap, 2241 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2242 ni->ni_macaddr, "ADDBA response", 2243 "no pending ADDBA, tid %d dialogtoken %u " 2244 "code %d", tid, dialogtoken, code); 2245 vap->iv_stats.is_addba_norequest++; 2246 return 0; 2247 } 2248 if (dialogtoken != tap->txa_token) { 2249 IEEE80211_DISCARD_MAC(vap, 2250 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2251 ni->ni_macaddr, "ADDBA response", 2252 "dialogtoken mismatch: waiting for %d, " 2253 "received %d, tid %d code %d", 2254 tap->txa_token, dialogtoken, tid, code); 2255 vap->iv_stats.is_addba_badtoken++; 2256 return 0; 2257 } 2258 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2259 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2260 IEEE80211_DISCARD_MAC(vap, 2261 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2262 ni->ni_macaddr, "ADDBA response", 2263 "policy mismatch: expecting %s, " 2264 "received %s, tid %d code %d", 2265 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2266 policy, tid, code); 2267 vap->iv_stats.is_addba_badpolicy++; 2268 return 0; 2269 } 2270 #if 0 2271 /* XXX we take MIN in ieee80211_addba_response */ 2272 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2273 IEEE80211_DISCARD_MAC(vap, 2274 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2275 ni->ni_macaddr, "ADDBA response", 2276 "BA window too large: max %d, " 2277 "received %d, tid %d code %d", 2278 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2279 vap->iv_stats.is_addba_badbawinsize++; 2280 return 0; 2281 } 2282 #endif 2283 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2284 "recv ADDBA response: dialogtoken %u code %d " 2285 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 2286 dialogtoken, code, baparamset, tid, bufsiz, 2287 batimeout); 2288 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2289 return 0; 2290 } 2291 2292 static int 2293 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2294 const struct ieee80211_frame *wh, 2295 const uint8_t *frm, const uint8_t *efrm) 2296 { 2297 struct ieee80211com *ic = ni->ni_ic; 2298 struct ieee80211_rx_ampdu *rap; 2299 struct ieee80211_tx_ampdu *tap; 2300 uint16_t baparamset, code; 2301 int tid; 2302 2303 baparamset = le16dec(frm+2); 2304 code = le16dec(frm+4); 2305 2306 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2307 2308 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2309 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2310 "code %d", baparamset, tid, 2311 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2312 2313 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2314 tap = &ni->ni_tx_ampdu[tid]; 2315 ic->ic_addba_stop(ni, tap); 2316 } else { 2317 rap = &ni->ni_rx_ampdu[tid]; 2318 ic->ic_ampdu_rx_stop(ni, rap); 2319 } 2320 return 0; 2321 } 2322 2323 static int 2324 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2325 const struct ieee80211_frame *wh, 2326 const uint8_t *frm, const uint8_t *efrm) 2327 { 2328 int chw; 2329 2330 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2331 2332 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2333 "%s: HT txchwidth, width %d%s", 2334 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2335 if (chw != ni->ni_chw) { 2336 /* XXX does this need to change the ht40 station count? */ 2337 ni->ni_chw = chw; 2338 /* XXX notify on change */ 2339 } 2340 return 0; 2341 } 2342 2343 static int 2344 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2345 const struct ieee80211_frame *wh, 2346 const uint8_t *frm, const uint8_t *efrm) 2347 { 2348 const struct ieee80211_action_ht_mimopowersave *mps = 2349 (const struct ieee80211_action_ht_mimopowersave *) frm; 2350 2351 /* XXX check iv_htcaps */ 2352 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2353 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2354 else 2355 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2356 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2357 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2358 else 2359 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2360 /* XXX notify on change */ 2361 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2362 "%s: HT MIMO PS (%s%s)", __func__, 2363 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2364 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2365 ); 2366 return 0; 2367 } 2368 2369 /* 2370 * Transmit processing. 2371 */ 2372 2373 /* 2374 * Check if A-MPDU should be requested/enabled for a stream. 2375 * We require a traffic rate above a per-AC threshold and we 2376 * also handle backoff from previous failed attempts. 2377 * 2378 * Drivers may override this method to bring in information 2379 * such as link state conditions in making the decision. 2380 */ 2381 static int 2382 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2383 struct ieee80211_tx_ampdu *tap) 2384 { 2385 struct ieee80211vap *vap = ni->ni_vap; 2386 2387 if (tap->txa_avgpps < 2388 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2389 return 0; 2390 /* XXX check rssi? */ 2391 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2392 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2393 /* 2394 * Don't retry too often; txa_nextrequest is set 2395 * to the minimum interval we'll retry after 2396 * ieee80211_addba_maxtries failed attempts are made. 2397 */ 2398 return 0; 2399 } 2400 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2401 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2402 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2403 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2404 return 1; 2405 } 2406 2407 /* 2408 * Request A-MPDU tx aggregation. Setup local state and 2409 * issue an ADDBA request. BA use will only happen after 2410 * the other end replies with ADDBA response. 2411 */ 2412 int 2413 ieee80211_ampdu_request(struct ieee80211_node *ni, 2414 struct ieee80211_tx_ampdu *tap) 2415 { 2416 struct ieee80211com *ic = ni->ni_ic; 2417 uint16_t args[5]; 2418 int tid, dialogtoken; 2419 static int tokens = 0; /* XXX */ 2420 2421 /* XXX locking */ 2422 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2423 /* do deferred setup of state */ 2424 ampdu_tx_setup(tap); 2425 } 2426 /* XXX hack for not doing proper locking */ 2427 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2428 2429 dialogtoken = (tokens+1) % 63; /* XXX */ 2430 tid = tap->txa_tid; 2431 2432 /* 2433 * XXX TODO: This is racy with any other parallel TX going on. :( 2434 */ 2435 tap->txa_start = ni->ni_txseqs[tid]; 2436 2437 args[0] = dialogtoken; 2438 args[1] = 0; /* NB: status code not used */ 2439 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2440 | SM(tid, IEEE80211_BAPS_TID) 2441 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2442 ; 2443 args[3] = 0; /* batimeout */ 2444 /* NB: do first so there's no race against reply */ 2445 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2446 /* unable to setup state, don't make request */ 2447 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2448 ni, "%s: could not setup BA stream for TID %d AC %d", 2449 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2450 /* defer next try so we don't slam the driver with requests */ 2451 tap->txa_attempts = ieee80211_addba_maxtries; 2452 /* NB: check in case driver wants to override */ 2453 if (tap->txa_nextrequest <= ticks) 2454 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2455 return 0; 2456 } 2457 tokens = dialogtoken; /* allocate token */ 2458 /* NB: after calling ic_addba_request so driver can set txa_start */ 2459 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2460 | SM(0, IEEE80211_BASEQ_FRAG) 2461 ; 2462 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2463 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2464 } 2465 2466 /* 2467 * Terminate an AMPDU tx stream. State is reclaimed 2468 * and the peer notified with a DelBA Action frame. 2469 */ 2470 void 2471 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2472 int reason) 2473 { 2474 struct ieee80211com *ic = ni->ni_ic; 2475 struct ieee80211vap *vap = ni->ni_vap; 2476 uint16_t args[4]; 2477 2478 /* XXX locking */ 2479 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2480 if (IEEE80211_AMPDU_RUNNING(tap)) { 2481 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2482 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2483 __func__, tap->txa_tid, reason, 2484 ieee80211_reason_to_string(reason)); 2485 vap->iv_stats.is_ampdu_stop++; 2486 2487 ic->ic_addba_stop(ni, tap); 2488 args[0] = tap->txa_tid; 2489 args[1] = IEEE80211_DELBAPS_INIT; 2490 args[2] = reason; /* XXX reason code */ 2491 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2492 IEEE80211_ACTION_BA_DELBA, args); 2493 } else { 2494 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2495 ni, "%s: BA stream for TID %d not running " 2496 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2497 ieee80211_reason_to_string(reason)); 2498 vap->iv_stats.is_ampdu_stop_failed++; 2499 } 2500 } 2501 2502 /* XXX */ 2503 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2504 2505 static void 2506 bar_timeout(void *arg) 2507 { 2508 struct ieee80211_tx_ampdu *tap = arg; 2509 struct ieee80211_node *ni = tap->txa_ni; 2510 2511 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2512 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2513 2514 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2515 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2516 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2517 2518 /* guard against race with bar_tx_complete */ 2519 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2520 return; 2521 /* XXX ? */ 2522 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2523 struct ieee80211com *ic = ni->ni_ic; 2524 2525 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2526 /* 2527 * If (at least) the last BAR TX timeout was due to 2528 * an ieee80211_send_bar() failures, then we need 2529 * to make sure we notify the driver that a BAR 2530 * TX did occur and fail. This gives the driver 2531 * a chance to undo any queue pause that may 2532 * have occurred. 2533 */ 2534 ic->ic_bar_response(ni, tap, 1); 2535 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2536 } else { 2537 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2538 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2539 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2540 ni, "%s: failed to TX, starting timer\n", 2541 __func__); 2542 /* 2543 * If ieee80211_send_bar() fails here, the 2544 * timer may have stopped and/or the pending 2545 * flag may be clear. Because of this, 2546 * fake the BARPEND and reset the timer. 2547 * A retransmission attempt will then occur 2548 * during the next timeout. 2549 */ 2550 /* XXX locking */ 2551 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2552 bar_start_timer(tap); 2553 } 2554 } 2555 } 2556 2557 static void 2558 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2559 { 2560 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2561 tap->txa_ni, 2562 "%s: called", 2563 __func__); 2564 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2565 } 2566 2567 static void 2568 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2569 { 2570 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2571 tap->txa_ni, 2572 "%s: called", 2573 __func__); 2574 callout_stop(&tap->txa_timer); 2575 } 2576 2577 static void 2578 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2579 { 2580 struct ieee80211_tx_ampdu *tap = arg; 2581 2582 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2583 ni, "%s: tid %u flags 0x%x pending %d status %d", 2584 __func__, tap->txa_tid, tap->txa_flags, 2585 callout_pending(&tap->txa_timer), status); 2586 2587 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2588 /* XXX locking */ 2589 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2590 callout_pending(&tap->txa_timer)) { 2591 struct ieee80211com *ic = ni->ni_ic; 2592 2593 if (status == 0) /* ACK'd */ 2594 bar_stop_timer(tap); 2595 ic->ic_bar_response(ni, tap, status); 2596 /* NB: just let timer expire so we pace requests */ 2597 } 2598 } 2599 2600 static void 2601 ieee80211_bar_response(struct ieee80211_node *ni, 2602 struct ieee80211_tx_ampdu *tap, int status) 2603 { 2604 2605 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2606 tap->txa_ni, 2607 "%s: called", 2608 __func__); 2609 if (status == 0) { /* got ACK */ 2610 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2611 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2612 tap->txa_start, 2613 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2614 tap->txa_qframes, tap->txa_seqpending, 2615 tap->txa_tid); 2616 2617 /* NB: timer already stopped in bar_tx_complete */ 2618 tap->txa_start = tap->txa_seqpending; 2619 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2620 } 2621 } 2622 2623 /* 2624 * Transmit a BAR frame to the specified node. The 2625 * BAR contents are drawn from the supplied aggregation 2626 * state associated with the node. 2627 * 2628 * NB: we only handle immediate ACK w/ compressed bitmap. 2629 */ 2630 int 2631 ieee80211_send_bar(struct ieee80211_node *ni, 2632 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2633 { 2634 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2635 struct ieee80211vap *vap = ni->ni_vap; 2636 struct ieee80211com *ic = ni->ni_ic; 2637 struct ieee80211_frame_bar *bar; 2638 struct mbuf *m; 2639 uint16_t barctl, barseqctl; 2640 uint8_t *frm; 2641 int tid, ret; 2642 2643 2644 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2645 tap->txa_ni, 2646 "%s: called", 2647 __func__); 2648 2649 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2650 /* no ADDBA response, should not happen */ 2651 /* XXX stat+msg */ 2652 return EINVAL; 2653 } 2654 /* XXX locking */ 2655 bar_stop_timer(tap); 2656 2657 ieee80211_ref_node(ni); 2658 2659 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2660 if (m == NULL) 2661 senderr(ENOMEM, is_tx_nobuf); 2662 2663 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2664 m_freem(m); 2665 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2666 /* NOTREACHED */ 2667 } 2668 2669 bar = mtod(m, struct ieee80211_frame_bar *); 2670 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2671 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2672 bar->i_fc[1] = 0; 2673 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2674 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2675 2676 tid = tap->txa_tid; 2677 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2678 0 : IEEE80211_BAR_NOACK) 2679 | IEEE80211_BAR_COMP 2680 | SM(tid, IEEE80211_BAR_TID) 2681 ; 2682 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2683 /* NB: known to have proper alignment */ 2684 bar->i_ctl = htole16(barctl); 2685 bar->i_seq = htole16(barseqctl); 2686 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2687 2688 M_WME_SETAC(m, WME_AC_VO); 2689 2690 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2691 2692 /* XXX locking */ 2693 /* init/bump attempts counter */ 2694 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2695 tap->txa_attempts = 1; 2696 else 2697 tap->txa_attempts++; 2698 tap->txa_seqpending = seq; 2699 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2700 2701 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2702 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2703 tid, barctl, seq, tap->txa_attempts); 2704 2705 /* 2706 * ic_raw_xmit will free the node reference 2707 * regardless of queue/TX success or failure. 2708 */ 2709 IEEE80211_TX_LOCK(ic); 2710 ret = ieee80211_raw_output(vap, ni, m, NULL); 2711 IEEE80211_TX_UNLOCK(ic); 2712 if (ret != 0) { 2713 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2714 ni, "send BAR: failed: (ret = %d)\n", 2715 ret); 2716 /* xmit failed, clear state flag */ 2717 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2718 vap->iv_stats.is_ampdu_bar_tx_fail++; 2719 return ret; 2720 } 2721 /* XXX hack against tx complete happening before timer is started */ 2722 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2723 bar_start_timer(tap); 2724 return 0; 2725 bad: 2726 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2727 tap->txa_ni, 2728 "%s: bad! ret=%d", 2729 __func__, ret); 2730 vap->iv_stats.is_ampdu_bar_tx_fail++; 2731 ieee80211_free_node(ni); 2732 return ret; 2733 #undef senderr 2734 } 2735 2736 static int 2737 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2738 { 2739 struct ieee80211_bpf_params params; 2740 2741 memset(¶ms, 0, sizeof(params)); 2742 params.ibp_pri = WME_AC_VO; 2743 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2744 /* NB: we know all frames are unicast */ 2745 params.ibp_try0 = ni->ni_txparms->maxretry; 2746 params.ibp_power = ni->ni_txpower; 2747 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2748 ¶ms); 2749 } 2750 2751 #define ADDSHORT(frm, v) do { \ 2752 frm[0] = (v) & 0xff; \ 2753 frm[1] = (v) >> 8; \ 2754 frm += 2; \ 2755 } while (0) 2756 2757 /* 2758 * Send an action management frame. The arguments are stuff 2759 * into a frame without inspection; the caller is assumed to 2760 * prepare them carefully (e.g. based on the aggregation state). 2761 */ 2762 static int 2763 ht_send_action_ba_addba(struct ieee80211_node *ni, 2764 int category, int action, void *arg0) 2765 { 2766 struct ieee80211vap *vap = ni->ni_vap; 2767 struct ieee80211com *ic = ni->ni_ic; 2768 uint16_t *args = arg0; 2769 struct mbuf *m; 2770 uint8_t *frm; 2771 2772 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2773 "send ADDBA %s: dialogtoken %d status %d " 2774 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2775 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2776 "request" : "response", 2777 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2778 args[3], args[4]); 2779 2780 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2781 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2782 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2783 ieee80211_ref_node(ni); 2784 2785 m = ieee80211_getmgtframe(&frm, 2786 ic->ic_headroom + sizeof(struct ieee80211_frame), 2787 sizeof(uint16_t) /* action+category */ 2788 /* XXX may action payload */ 2789 + sizeof(struct ieee80211_action_ba_addbaresponse) 2790 ); 2791 if (m != NULL) { 2792 *frm++ = category; 2793 *frm++ = action; 2794 *frm++ = args[0]; /* dialog token */ 2795 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2796 ADDSHORT(frm, args[1]); /* status code */ 2797 ADDSHORT(frm, args[2]); /* baparamset */ 2798 ADDSHORT(frm, args[3]); /* batimeout */ 2799 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2800 ADDSHORT(frm, args[4]); /* baseqctl */ 2801 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2802 return ht_action_output(ni, m); 2803 } else { 2804 vap->iv_stats.is_tx_nobuf++; 2805 ieee80211_free_node(ni); 2806 return ENOMEM; 2807 } 2808 } 2809 2810 static int 2811 ht_send_action_ba_delba(struct ieee80211_node *ni, 2812 int category, int action, void *arg0) 2813 { 2814 struct ieee80211vap *vap = ni->ni_vap; 2815 struct ieee80211com *ic = ni->ni_ic; 2816 uint16_t *args = arg0; 2817 struct mbuf *m; 2818 uint16_t baparamset; 2819 uint8_t *frm; 2820 2821 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2822 | args[1] 2823 ; 2824 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2825 "send DELBA action: tid %d, initiator %d reason %d (%s)", 2826 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 2827 2828 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2829 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2830 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2831 ieee80211_ref_node(ni); 2832 2833 m = ieee80211_getmgtframe(&frm, 2834 ic->ic_headroom + sizeof(struct ieee80211_frame), 2835 sizeof(uint16_t) /* action+category */ 2836 /* XXX may action payload */ 2837 + sizeof(struct ieee80211_action_ba_addbaresponse) 2838 ); 2839 if (m != NULL) { 2840 *frm++ = category; 2841 *frm++ = action; 2842 ADDSHORT(frm, baparamset); 2843 ADDSHORT(frm, args[2]); /* reason code */ 2844 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2845 return ht_action_output(ni, m); 2846 } else { 2847 vap->iv_stats.is_tx_nobuf++; 2848 ieee80211_free_node(ni); 2849 return ENOMEM; 2850 } 2851 } 2852 2853 static int 2854 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2855 int category, int action, void *arg0) 2856 { 2857 struct ieee80211vap *vap = ni->ni_vap; 2858 struct ieee80211com *ic = ni->ni_ic; 2859 struct mbuf *m; 2860 uint8_t *frm; 2861 2862 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2863 "send HT txchwidth: width %d", 2864 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2865 2866 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2867 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2868 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2869 ieee80211_ref_node(ni); 2870 2871 m = ieee80211_getmgtframe(&frm, 2872 ic->ic_headroom + sizeof(struct ieee80211_frame), 2873 sizeof(uint16_t) /* action+category */ 2874 /* XXX may action payload */ 2875 + sizeof(struct ieee80211_action_ba_addbaresponse) 2876 ); 2877 if (m != NULL) { 2878 *frm++ = category; 2879 *frm++ = action; 2880 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2881 IEEE80211_A_HT_TXCHWIDTH_2040 : 2882 IEEE80211_A_HT_TXCHWIDTH_20; 2883 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2884 return ht_action_output(ni, m); 2885 } else { 2886 vap->iv_stats.is_tx_nobuf++; 2887 ieee80211_free_node(ni); 2888 return ENOMEM; 2889 } 2890 } 2891 #undef ADDSHORT 2892 2893 /* 2894 * Construct the MCS bit mask for inclusion in an HT capabilities 2895 * information element. 2896 */ 2897 static void 2898 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2899 { 2900 int i; 2901 uint8_t txparams; 2902 2903 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2904 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2905 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2906 ("ic_txstream %d out of range", ic->ic_txstream)); 2907 2908 for (i = 0; i < ic->ic_rxstream * 8; i++) 2909 setbit(frm, i); 2910 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2911 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2912 setbit(frm, 32); 2913 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2914 if (ic->ic_rxstream >= 2) { 2915 for (i = 33; i <= 38; i++) 2916 setbit(frm, i); 2917 } 2918 if (ic->ic_rxstream >= 3) { 2919 for (i = 39; i <= 52; i++) 2920 setbit(frm, i); 2921 } 2922 if (ic->ic_txstream >= 4) { 2923 for (i = 53; i <= 76; i++) 2924 setbit(frm, i); 2925 } 2926 } 2927 2928 if (ic->ic_rxstream != ic->ic_txstream) { 2929 txparams = 0x1; /* TX MCS set defined */ 2930 txparams |= 0x2; /* TX RX MCS not equal */ 2931 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2932 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2933 txparams |= 0x16; /* TX unequal modulation sup */ 2934 } else 2935 txparams = 0; 2936 frm[12] = txparams; 2937 } 2938 2939 /* 2940 * Add body of an HTCAP information element. 2941 */ 2942 static uint8_t * 2943 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2944 { 2945 #define ADDSHORT(frm, v) do { \ 2946 frm[0] = (v) & 0xff; \ 2947 frm[1] = (v) >> 8; \ 2948 frm += 2; \ 2949 } while (0) 2950 struct ieee80211com *ic = ni->ni_ic; 2951 struct ieee80211vap *vap = ni->ni_vap; 2952 uint16_t caps, extcaps; 2953 int rxmax, density; 2954 2955 /* HT capabilities */ 2956 caps = vap->iv_htcaps & 0xffff; 2957 /* 2958 * Note channel width depends on whether we are operating as 2959 * a sta or not. When operating as a sta we are generating 2960 * a request based on our desired configuration. Otherwise 2961 * we are operational and the channel attributes identify 2962 * how we've been setup (which might be different if a fixed 2963 * channel is specified). 2964 */ 2965 if (vap->iv_opmode == IEEE80211_M_STA) { 2966 /* override 20/40 use based on config */ 2967 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2968 caps |= IEEE80211_HTCAP_CHWIDTH40; 2969 else 2970 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2971 2972 /* Start by using the advertised settings */ 2973 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2974 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2975 2976 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 2977 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 2978 __func__, 2979 rxmax, 2980 density, 2981 vap->iv_ampdu_rxmax, 2982 vap->iv_ampdu_density); 2983 2984 /* Cap at VAP rxmax */ 2985 if (rxmax > vap->iv_ampdu_rxmax) 2986 rxmax = vap->iv_ampdu_rxmax; 2987 2988 /* 2989 * If the VAP ampdu density value greater, use that. 2990 * 2991 * (Larger density value == larger minimum gap between A-MPDU 2992 * subframes.) 2993 */ 2994 if (vap->iv_ampdu_density > density) 2995 density = vap->iv_ampdu_density; 2996 2997 /* 2998 * NB: Hardware might support HT40 on some but not all 2999 * channels. We can't determine this earlier because only 3000 * after association the channel is upgraded to HT based 3001 * on the negotiated capabilities. 3002 */ 3003 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3004 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3005 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3006 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3007 } else { 3008 /* override 20/40 use based on current channel */ 3009 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3010 caps |= IEEE80211_HTCAP_CHWIDTH40; 3011 else 3012 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3013 3014 /* XXX TODO should it start by using advertised settings? */ 3015 rxmax = vap->iv_ampdu_rxmax; 3016 density = vap->iv_ampdu_density; 3017 } 3018 3019 /* adjust short GI based on channel and config */ 3020 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3021 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3022 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3023 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3024 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3025 3026 /* adjust STBC based on receive capabilities */ 3027 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3028 caps &= ~IEEE80211_HTCAP_RXSTBC; 3029 3030 /* XXX TODO: adjust LDPC based on receive capabilities */ 3031 3032 ADDSHORT(frm, caps); 3033 3034 /* HT parameters */ 3035 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3036 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3037 ; 3038 frm++; 3039 3040 /* pre-zero remainder of ie */ 3041 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3042 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3043 3044 /* supported MCS set */ 3045 /* 3046 * XXX: For sta mode the rate set should be restricted based 3047 * on the AP's capabilities, but ni_htrates isn't setup when 3048 * we're called to form an AssocReq frame so for now we're 3049 * restricted to the device capabilities. 3050 */ 3051 ieee80211_set_mcsset(ni->ni_ic, frm); 3052 3053 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3054 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3055 3056 /* HT extended capabilities */ 3057 extcaps = vap->iv_htextcaps & 0xffff; 3058 3059 ADDSHORT(frm, extcaps); 3060 3061 frm += sizeof(struct ieee80211_ie_htcap) - 3062 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3063 3064 return frm; 3065 #undef ADDSHORT 3066 } 3067 3068 /* 3069 * Add 802.11n HT capabilities information element 3070 */ 3071 uint8_t * 3072 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3073 { 3074 frm[0] = IEEE80211_ELEMID_HTCAP; 3075 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3076 return ieee80211_add_htcap_body(frm + 2, ni); 3077 } 3078 3079 /* 3080 * Non-associated probe request - add HT capabilities based on 3081 * the current channel configuration. 3082 */ 3083 static uint8_t * 3084 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3085 struct ieee80211_channel *c) 3086 { 3087 #define ADDSHORT(frm, v) do { \ 3088 frm[0] = (v) & 0xff; \ 3089 frm[1] = (v) >> 8; \ 3090 frm += 2; \ 3091 } while (0) 3092 struct ieee80211com *ic = vap->iv_ic; 3093 uint16_t caps, extcaps; 3094 int rxmax, density; 3095 3096 /* HT capabilities */ 3097 caps = vap->iv_htcaps & 0xffff; 3098 3099 /* 3100 * We don't use this in STA mode; only in IBSS mode. 3101 * So in IBSS mode we base our HTCAP flags on the 3102 * given channel. 3103 */ 3104 3105 /* override 20/40 use based on current channel */ 3106 if (IEEE80211_IS_CHAN_HT40(c)) 3107 caps |= IEEE80211_HTCAP_CHWIDTH40; 3108 else 3109 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3110 3111 /* Use the currently configured values */ 3112 rxmax = vap->iv_ampdu_rxmax; 3113 density = vap->iv_ampdu_density; 3114 3115 /* adjust short GI based on channel and config */ 3116 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3117 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3118 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3119 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3120 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3121 ADDSHORT(frm, caps); 3122 3123 /* HT parameters */ 3124 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3125 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3126 ; 3127 frm++; 3128 3129 /* pre-zero remainder of ie */ 3130 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3131 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3132 3133 /* supported MCS set */ 3134 /* 3135 * XXX: For sta mode the rate set should be restricted based 3136 * on the AP's capabilities, but ni_htrates isn't setup when 3137 * we're called to form an AssocReq frame so for now we're 3138 * restricted to the device capabilities. 3139 */ 3140 ieee80211_set_mcsset(ic, frm); 3141 3142 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3143 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3144 3145 /* HT extended capabilities */ 3146 extcaps = vap->iv_htextcaps & 0xffff; 3147 3148 ADDSHORT(frm, extcaps); 3149 3150 frm += sizeof(struct ieee80211_ie_htcap) - 3151 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3152 3153 return frm; 3154 #undef ADDSHORT 3155 } 3156 3157 /* 3158 * Add 802.11n HT capabilities information element 3159 */ 3160 uint8_t * 3161 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3162 struct ieee80211_channel *c) 3163 { 3164 frm[0] = IEEE80211_ELEMID_HTCAP; 3165 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3166 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3167 } 3168 3169 /* 3170 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3171 * used for compatibility w/ pre-draft implementations. 3172 */ 3173 uint8_t * 3174 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3175 { 3176 frm[0] = IEEE80211_ELEMID_VENDOR; 3177 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3178 frm[2] = (BCM_OUI >> 0) & 0xff; 3179 frm[3] = (BCM_OUI >> 8) & 0xff; 3180 frm[4] = (BCM_OUI >> 16) & 0xff; 3181 frm[5] = BCM_OUI_HTCAP; 3182 return ieee80211_add_htcap_body(frm + 6, ni); 3183 } 3184 3185 /* 3186 * Construct the MCS bit mask of basic rates 3187 * for inclusion in an HT information element. 3188 */ 3189 static void 3190 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3191 { 3192 int i; 3193 3194 for (i = 0; i < rs->rs_nrates; i++) { 3195 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3196 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3197 r < IEEE80211_HTRATE_MAXSIZE) { 3198 /* NB: this assumes a particular implementation */ 3199 setbit(frm, r); 3200 } 3201 } 3202 } 3203 3204 /* 3205 * Update the HTINFO ie for a beacon frame. 3206 */ 3207 void 3208 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3209 struct ieee80211_beacon_offsets *bo) 3210 { 3211 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3212 struct ieee80211_node *ni; 3213 const struct ieee80211_channel *bsschan; 3214 struct ieee80211com *ic = vap->iv_ic; 3215 struct ieee80211_ie_htinfo *ht = 3216 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3217 3218 ni = ieee80211_ref_node(vap->iv_bss); 3219 bsschan = ni->ni_chan; 3220 3221 /* XXX only update on channel change */ 3222 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3223 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3224 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3225 else 3226 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3227 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3228 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3229 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3230 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3231 else 3232 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3233 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3234 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3235 3236 /* protection mode */ 3237 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3238 3239 ieee80211_free_node(ni); 3240 3241 /* XXX propagate to vendor ie's */ 3242 #undef PROTMODE 3243 } 3244 3245 /* 3246 * Add body of an HTINFO information element. 3247 * 3248 * NB: We don't use struct ieee80211_ie_htinfo because we can 3249 * be called to fillin both a standard ie and a compat ie that 3250 * has a vendor OUI at the front. 3251 */ 3252 static uint8_t * 3253 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3254 { 3255 struct ieee80211vap *vap = ni->ni_vap; 3256 struct ieee80211com *ic = ni->ni_ic; 3257 3258 /* pre-zero remainder of ie */ 3259 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3260 3261 /* primary/control channel center */ 3262 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3263 3264 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3265 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3266 else 3267 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3268 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3269 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3270 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3271 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3272 else 3273 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3274 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3275 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3276 3277 frm[1] = ic->ic_curhtprotmode; 3278 3279 frm += 5; 3280 3281 /* basic MCS set */ 3282 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3283 frm += sizeof(struct ieee80211_ie_htinfo) - 3284 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3285 return frm; 3286 } 3287 3288 /* 3289 * Add 802.11n HT information information element. 3290 */ 3291 uint8_t * 3292 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3293 { 3294 frm[0] = IEEE80211_ELEMID_HTINFO; 3295 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3296 return ieee80211_add_htinfo_body(frm + 2, ni); 3297 } 3298 3299 /* 3300 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3301 * used for compatibility w/ pre-draft implementations. 3302 */ 3303 uint8_t * 3304 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3305 { 3306 frm[0] = IEEE80211_ELEMID_VENDOR; 3307 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3308 frm[2] = (BCM_OUI >> 0) & 0xff; 3309 frm[3] = (BCM_OUI >> 8) & 0xff; 3310 frm[4] = (BCM_OUI >> 16) & 0xff; 3311 frm[5] = BCM_OUI_HTINFO; 3312 return ieee80211_add_htinfo_body(frm + 6, ni); 3313 } 3314