1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/systm.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_action.h> 53 #include <net80211/ieee80211_input.h> 54 55 /* define here, used throughout file */ 56 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 57 #define SM(_v, _f) (((_v) << _f##_S) & _f) 58 59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 60 { 13, 14, 27, 30 }, /* MCS 0 */ 61 { 26, 29, 54, 60 }, /* MCS 1 */ 62 { 39, 43, 81, 90 }, /* MCS 2 */ 63 { 52, 58, 108, 120 }, /* MCS 3 */ 64 { 78, 87, 162, 180 }, /* MCS 4 */ 65 { 104, 116, 216, 240 }, /* MCS 5 */ 66 { 117, 130, 243, 270 }, /* MCS 6 */ 67 { 130, 144, 270, 300 }, /* MCS 7 */ 68 { 26, 29, 54, 60 }, /* MCS 8 */ 69 { 52, 58, 108, 120 }, /* MCS 9 */ 70 { 78, 87, 162, 180 }, /* MCS 10 */ 71 { 104, 116, 216, 240 }, /* MCS 11 */ 72 { 156, 173, 324, 360 }, /* MCS 12 */ 73 { 208, 231, 432, 480 }, /* MCS 13 */ 74 { 234, 260, 486, 540 }, /* MCS 14 */ 75 { 260, 289, 540, 600 }, /* MCS 15 */ 76 { 39, 43, 81, 90 }, /* MCS 16 */ 77 { 78, 87, 162, 180 }, /* MCS 17 */ 78 { 117, 130, 243, 270 }, /* MCS 18 */ 79 { 156, 173, 324, 360 }, /* MCS 19 */ 80 { 234, 260, 486, 540 }, /* MCS 20 */ 81 { 312, 347, 648, 720 }, /* MCS 21 */ 82 { 351, 390, 729, 810 }, /* MCS 22 */ 83 { 390, 433, 810, 900 }, /* MCS 23 */ 84 { 52, 58, 108, 120 }, /* MCS 24 */ 85 { 104, 116, 216, 240 }, /* MCS 25 */ 86 { 156, 173, 324, 360 }, /* MCS 26 */ 87 { 208, 231, 432, 480 }, /* MCS 27 */ 88 { 312, 347, 648, 720 }, /* MCS 28 */ 89 { 416, 462, 864, 960 }, /* MCS 29 */ 90 { 468, 520, 972, 1080 }, /* MCS 30 */ 91 { 520, 578, 1080, 1200 }, /* MCS 31 */ 92 { 0, 0, 12, 13 }, /* MCS 32 */ 93 { 78, 87, 162, 180 }, /* MCS 33 */ 94 { 104, 116, 216, 240 }, /* MCS 34 */ 95 { 130, 144, 270, 300 }, /* MCS 35 */ 96 { 117, 130, 243, 270 }, /* MCS 36 */ 97 { 156, 173, 324, 360 }, /* MCS 37 */ 98 { 195, 217, 405, 450 }, /* MCS 38 */ 99 { 104, 116, 216, 240 }, /* MCS 39 */ 100 { 130, 144, 270, 300 }, /* MCS 40 */ 101 { 130, 144, 270, 300 }, /* MCS 41 */ 102 { 156, 173, 324, 360 }, /* MCS 42 */ 103 { 182, 202, 378, 420 }, /* MCS 43 */ 104 { 182, 202, 378, 420 }, /* MCS 44 */ 105 { 208, 231, 432, 480 }, /* MCS 45 */ 106 { 156, 173, 324, 360 }, /* MCS 46 */ 107 { 195, 217, 405, 450 }, /* MCS 47 */ 108 { 195, 217, 405, 450 }, /* MCS 48 */ 109 { 234, 260, 486, 540 }, /* MCS 49 */ 110 { 273, 303, 567, 630 }, /* MCS 50 */ 111 { 273, 303, 567, 630 }, /* MCS 51 */ 112 { 312, 347, 648, 720 }, /* MCS 52 */ 113 { 130, 144, 270, 300 }, /* MCS 53 */ 114 { 156, 173, 324, 360 }, /* MCS 54 */ 115 { 182, 202, 378, 420 }, /* MCS 55 */ 116 { 156, 173, 324, 360 }, /* MCS 56 */ 117 { 182, 202, 378, 420 }, /* MCS 57 */ 118 { 208, 231, 432, 480 }, /* MCS 58 */ 119 { 234, 260, 486, 540 }, /* MCS 59 */ 120 { 208, 231, 432, 480 }, /* MCS 60 */ 121 { 234, 260, 486, 540 }, /* MCS 61 */ 122 { 260, 289, 540, 600 }, /* MCS 62 */ 123 { 260, 289, 540, 600 }, /* MCS 63 */ 124 { 286, 318, 594, 660 }, /* MCS 64 */ 125 { 195, 217, 405, 450 }, /* MCS 65 */ 126 { 234, 260, 486, 540 }, /* MCS 66 */ 127 { 273, 303, 567, 630 }, /* MCS 67 */ 128 { 234, 260, 486, 540 }, /* MCS 68 */ 129 { 273, 303, 567, 630 }, /* MCS 69 */ 130 { 312, 347, 648, 720 }, /* MCS 70 */ 131 { 351, 390, 729, 810 }, /* MCS 71 */ 132 { 312, 347, 648, 720 }, /* MCS 72 */ 133 { 351, 390, 729, 810 }, /* MCS 73 */ 134 { 390, 433, 810, 900 }, /* MCS 74 */ 135 { 390, 433, 810, 900 }, /* MCS 75 */ 136 { 429, 477, 891, 990 }, /* MCS 76 */ 137 }; 138 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 144 static int ieee80211_recv_bar_ena = 1; 145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 146 0, "BAR frame processing (ena/dis)"); 147 148 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 ieee80211_ampdu_age = msecs_to_ticks(500); 180 ieee80211_addba_timeout = msecs_to_ticks(250); 181 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 182 ieee80211_bar_timeout = msecs_to_ticks(250); 183 /* 184 * Register action frame handlers. 185 */ 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 193 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 196 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 204 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 205 } 206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 207 208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 209 struct ieee80211_tx_ampdu *tap); 210 static int ieee80211_addba_request(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap, 212 int dialogtoken, int baparamset, int batimeout); 213 static int ieee80211_addba_response(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int code, int baparamset, int batimeout); 216 static void ieee80211_addba_stop(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap); 218 static void null_addba_response_timeout(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 221 static void ieee80211_bar_response(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap, int status); 223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 226 int baparamset, int batimeout, int baseqctl); 227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 228 229 void 230 ieee80211_ht_attach(struct ieee80211com *ic) 231 { 232 /* setup default aggregation policy */ 233 ic->ic_recv_action = ieee80211_recv_action; 234 ic->ic_send_action = ieee80211_send_action; 235 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 236 ic->ic_addba_request = ieee80211_addba_request; 237 ic->ic_addba_response = ieee80211_addba_response; 238 ic->ic_addba_response_timeout = null_addba_response_timeout; 239 ic->ic_addba_stop = ieee80211_addba_stop; 240 ic->ic_bar_response = ieee80211_bar_response; 241 ic->ic_ampdu_rx_start = ampdu_rx_start; 242 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 243 244 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 245 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 246 } 247 248 void 249 ieee80211_ht_detach(struct ieee80211com *ic) 250 { 251 } 252 253 void 254 ieee80211_ht_vattach(struct ieee80211vap *vap) 255 { 256 257 /* driver can override defaults */ 258 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 259 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 260 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 261 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 262 /* tx aggregation traffic thresholds */ 263 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 264 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 265 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 266 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 267 268 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 269 /* 270 * Device is HT capable; enable all HT-related 271 * facilities by default. 272 * XXX these choices may be too aggressive. 273 */ 274 vap->iv_flags_ht |= IEEE80211_FHT_HT 275 | IEEE80211_FHT_HTCOMPAT 276 ; 277 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 278 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 279 /* XXX infer from channel list? */ 280 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 281 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 282 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 283 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 284 } 285 /* enable RIFS if capable */ 286 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 287 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 288 289 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 290 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 291 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 292 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 293 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 296 297 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 298 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 299 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 300 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 301 302 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) 303 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; 304 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) 305 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; 306 } 307 /* NB: disable default legacy WDS, too many issues right now */ 308 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 309 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 310 } 311 312 void 313 ieee80211_ht_vdetach(struct ieee80211vap *vap) 314 { 315 } 316 317 static int 318 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 319 int ratetype) 320 { 321 int mword, rate; 322 323 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 324 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 325 return (0); 326 switch (ratetype) { 327 case 0: 328 rate = ieee80211_htrates[index].ht20_rate_800ns; 329 break; 330 case 1: 331 rate = ieee80211_htrates[index].ht20_rate_400ns; 332 break; 333 case 2: 334 rate = ieee80211_htrates[index].ht40_rate_800ns; 335 break; 336 default: 337 rate = ieee80211_htrates[index].ht40_rate_400ns; 338 break; 339 } 340 return (rate); 341 } 342 343 static struct printranges { 344 int minmcs; 345 int maxmcs; 346 int txstream; 347 int ratetype; 348 int htcapflags; 349 } ranges[] = { 350 { 0, 7, 1, 0, 0 }, 351 { 8, 15, 2, 0, 0 }, 352 { 16, 23, 3, 0, 0 }, 353 { 24, 31, 4, 0, 0 }, 354 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 355 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 356 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 357 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 358 { 0, 0, 0, 0, 0 }, 359 }; 360 361 static void 362 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 363 { 364 int minrate, maxrate; 365 struct printranges *range; 366 367 for (range = ranges; range->txstream != 0; range++) { 368 if (ic->ic_txstream < range->txstream) 369 continue; 370 if (range->htcapflags && 371 (ic->ic_htcaps & range->htcapflags) == 0) 372 continue; 373 if (ratetype < range->ratetype) 374 continue; 375 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 376 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 377 if (range->maxmcs) { 378 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 379 range->minmcs, range->maxmcs, 380 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 381 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 382 } else { 383 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 384 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 385 } 386 } 387 } 388 389 static void 390 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 391 { 392 const char *modestr = ieee80211_phymode_name[mode]; 393 394 ic_printf(ic, "%s MCS 20MHz\n", modestr); 395 ht_rateprint(ic, mode, 0); 396 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 397 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 398 ht_rateprint(ic, mode, 1); 399 } 400 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 401 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 402 ht_rateprint(ic, mode, 2); 403 } 404 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 405 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 406 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 407 ht_rateprint(ic, mode, 3); 408 } 409 } 410 411 void 412 ieee80211_ht_announce(struct ieee80211com *ic) 413 { 414 415 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 416 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 417 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 418 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 419 ht_announce(ic, IEEE80211_MODE_11NA); 420 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 421 ht_announce(ic, IEEE80211_MODE_11NG); 422 } 423 424 void 425 ieee80211_init_suphtrates(struct ieee80211com *ic) 426 { 427 #define ADDRATE(x) do { \ 428 htrateset->rs_rates[htrateset->rs_nrates] = x; \ 429 htrateset->rs_nrates++; \ 430 } while (0) 431 struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; 432 int i; 433 434 memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); 435 for (i = 0; i < ic->ic_txstream * 8; i++) 436 ADDRATE(i); 437 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 438 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 439 ADDRATE(32); 440 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 441 if (ic->ic_txstream >= 2) { 442 for (i = 33; i <= 38; i++) 443 ADDRATE(i); 444 } 445 if (ic->ic_txstream >= 3) { 446 for (i = 39; i <= 52; i++) 447 ADDRATE(i); 448 } 449 if (ic->ic_txstream == 4) { 450 for (i = 53; i <= 76; i++) 451 ADDRATE(i); 452 } 453 } 454 #undef ADDRATE 455 } 456 457 /* 458 * Receive processing. 459 */ 460 461 /* 462 * Decap the encapsulated A-MSDU frames and dispatch all but 463 * the last for delivery. The last frame is returned for 464 * delivery via the normal path. 465 */ 466 struct mbuf * 467 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 468 { 469 struct ieee80211vap *vap = ni->ni_vap; 470 int framelen; 471 struct mbuf *n; 472 473 /* discard 802.3 header inserted by ieee80211_decap */ 474 m_adj(m, sizeof(struct ether_header)); 475 476 vap->iv_stats.is_amsdu_decap++; 477 478 for (;;) { 479 /* 480 * Decap the first frame, bust it apart from the 481 * remainder and deliver. We leave the last frame 482 * delivery to the caller (for consistency with other 483 * code paths, could also do it here). 484 */ 485 m = ieee80211_decap1(m, &framelen); 486 if (m == NULL) { 487 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 488 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 489 vap->iv_stats.is_amsdu_tooshort++; 490 return NULL; 491 } 492 if (m->m_pkthdr.len == framelen) 493 break; 494 n = m_split(m, framelen, M_NOWAIT); 495 if (n == NULL) { 496 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 497 ni->ni_macaddr, "a-msdu", 498 "%s", "unable to split encapsulated frames"); 499 vap->iv_stats.is_amsdu_split++; 500 m_freem(m); /* NB: must reclaim */ 501 return NULL; 502 } 503 vap->iv_deliver_data(vap, ni, m); 504 505 /* 506 * Remove frame contents; each intermediate frame 507 * is required to be aligned to a 4-byte boundary. 508 */ 509 m = n; 510 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 511 } 512 return m; /* last delivered by caller */ 513 } 514 515 /* 516 * Purge all frames in the A-MPDU re-order queue. 517 */ 518 static void 519 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 520 { 521 struct mbuf *m; 522 int i; 523 524 for (i = 0; i < rap->rxa_wnd; i++) { 525 m = rap->rxa_m[i]; 526 if (m != NULL) { 527 rap->rxa_m[i] = NULL; 528 rap->rxa_qbytes -= m->m_pkthdr.len; 529 m_freem(m); 530 if (--rap->rxa_qframes == 0) 531 break; 532 } 533 } 534 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 535 ("lost %u data, %u frames on ampdu rx q", 536 rap->rxa_qbytes, rap->rxa_qframes)); 537 } 538 539 /* 540 * Start A-MPDU rx/re-order processing for the specified TID. 541 */ 542 static int 543 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 544 int baparamset, int batimeout, int baseqctl) 545 { 546 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 547 548 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 549 /* 550 * AMPDU previously setup and not terminated with a DELBA, 551 * flush the reorder q's in case anything remains. 552 */ 553 ampdu_rx_purge(rap); 554 } 555 memset(rap, 0, sizeof(*rap)); 556 rap->rxa_wnd = (bufsiz == 0) ? 557 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 558 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 559 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 560 561 return 0; 562 } 563 564 /* 565 * Public function; manually setup the RX ampdu state. 566 */ 567 int 568 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 569 { 570 struct ieee80211_rx_ampdu *rap; 571 572 /* XXX TODO: sanity check tid, seq, baw */ 573 574 rap = &ni->ni_rx_ampdu[tid]; 575 576 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 577 /* 578 * AMPDU previously setup and not terminated with a DELBA, 579 * flush the reorder q's in case anything remains. 580 */ 581 ampdu_rx_purge(rap); 582 } 583 584 memset(rap, 0, sizeof(*rap)); 585 rap->rxa_wnd = (baw== 0) ? 586 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 587 if (seq == -1) { 588 /* Wait for the first RX frame, use that as BAW */ 589 rap->rxa_start = 0; 590 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 591 } else { 592 rap->rxa_start = seq; 593 } 594 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 595 596 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 597 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 598 __func__, 599 tid, 600 seq, 601 rap->rxa_wnd, 602 rap->rxa_flags); 603 604 return 0; 605 } 606 607 /* 608 * Public function; manually stop the RX AMPDU state. 609 */ 610 void 611 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 612 { 613 struct ieee80211_rx_ampdu *rap; 614 615 /* XXX TODO: sanity check tid, seq, baw */ 616 rap = &ni->ni_rx_ampdu[tid]; 617 ampdu_rx_stop(ni, rap); 618 } 619 620 /* 621 * Stop A-MPDU rx processing for the specified TID. 622 */ 623 static void 624 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 625 { 626 627 ampdu_rx_purge(rap); 628 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 629 | IEEE80211_AGGR_XCHGPEND 630 | IEEE80211_AGGR_WAITRX); 631 } 632 633 /* 634 * Dispatch a frame from the A-MPDU reorder queue. The 635 * frame is fed back into ieee80211_input marked with an 636 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 637 * permits ieee80211_input to optimize re-processing). 638 */ 639 static __inline void 640 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 641 { 642 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 643 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 644 (void) ieee80211_input(ni, m, 0, 0); 645 } 646 647 /* 648 * Dispatch as many frames as possible from the re-order queue. 649 * Frames will always be "at the front"; we process all frames 650 * up to the first empty slot in the window. On completion we 651 * cleanup state if there are still pending frames in the current 652 * BA window. We assume the frame at slot 0 is already handled 653 * by the caller; we always start at slot 1. 654 */ 655 static void 656 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 657 { 658 struct ieee80211vap *vap = ni->ni_vap; 659 struct mbuf *m; 660 int i; 661 662 /* flush run of frames */ 663 for (i = 1; i < rap->rxa_wnd; i++) { 664 m = rap->rxa_m[i]; 665 if (m == NULL) 666 break; 667 rap->rxa_m[i] = NULL; 668 rap->rxa_qbytes -= m->m_pkthdr.len; 669 rap->rxa_qframes--; 670 671 ampdu_dispatch(ni, m); 672 } 673 /* 674 * If frames remain, copy the mbuf pointers down so 675 * they correspond to the offsets in the new window. 676 */ 677 if (rap->rxa_qframes != 0) { 678 int n = rap->rxa_qframes, j; 679 for (j = i+1; j < rap->rxa_wnd; j++) { 680 if (rap->rxa_m[j] != NULL) { 681 rap->rxa_m[j-i] = rap->rxa_m[j]; 682 rap->rxa_m[j] = NULL; 683 if (--n == 0) 684 break; 685 } 686 } 687 KASSERT(n == 0, ("lost %d frames", n)); 688 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 689 } 690 /* 691 * Adjust the start of the BA window to 692 * reflect the frames just dispatched. 693 */ 694 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 695 vap->iv_stats.is_ampdu_rx_oor += i; 696 } 697 698 /* 699 * Dispatch all frames in the A-MPDU re-order queue. 700 */ 701 static void 702 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 703 { 704 struct ieee80211vap *vap = ni->ni_vap; 705 struct mbuf *m; 706 int i; 707 708 for (i = 0; i < rap->rxa_wnd; i++) { 709 m = rap->rxa_m[i]; 710 if (m == NULL) 711 continue; 712 rap->rxa_m[i] = NULL; 713 rap->rxa_qbytes -= m->m_pkthdr.len; 714 rap->rxa_qframes--; 715 vap->iv_stats.is_ampdu_rx_oor++; 716 717 ampdu_dispatch(ni, m); 718 if (rap->rxa_qframes == 0) 719 break; 720 } 721 } 722 723 /* 724 * Dispatch all frames in the A-MPDU re-order queue 725 * preceding the specified sequence number. This logic 726 * handles window moves due to a received MSDU or BAR. 727 */ 728 static void 729 ampdu_rx_flush_upto(struct ieee80211_node *ni, 730 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 731 { 732 struct ieee80211vap *vap = ni->ni_vap; 733 struct mbuf *m; 734 ieee80211_seq seqno; 735 int i; 736 737 /* 738 * Flush any complete MSDU's with a sequence number lower 739 * than winstart. Gaps may exist. Note that we may actually 740 * dispatch frames past winstart if a run continues; this is 741 * an optimization that avoids having to do a separate pass 742 * to dispatch frames after moving the BA window start. 743 */ 744 seqno = rap->rxa_start; 745 for (i = 0; i < rap->rxa_wnd; i++) { 746 m = rap->rxa_m[i]; 747 if (m != NULL) { 748 rap->rxa_m[i] = NULL; 749 rap->rxa_qbytes -= m->m_pkthdr.len; 750 rap->rxa_qframes--; 751 vap->iv_stats.is_ampdu_rx_oor++; 752 753 ampdu_dispatch(ni, m); 754 } else { 755 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 756 break; 757 } 758 seqno = IEEE80211_SEQ_INC(seqno); 759 } 760 /* 761 * If frames remain, copy the mbuf pointers down so 762 * they correspond to the offsets in the new window. 763 */ 764 if (rap->rxa_qframes != 0) { 765 int n = rap->rxa_qframes, j; 766 767 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 768 KASSERT(rap->rxa_m[0] == NULL, 769 ("%s: BA window slot 0 occupied", __func__)); 770 for (j = i+1; j < rap->rxa_wnd; j++) { 771 if (rap->rxa_m[j] != NULL) { 772 rap->rxa_m[j-i] = rap->rxa_m[j]; 773 rap->rxa_m[j] = NULL; 774 if (--n == 0) 775 break; 776 } 777 } 778 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 779 "BA win <%d:%d> winstart %d", 780 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 781 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 782 winstart)); 783 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 784 } 785 /* 786 * Move the start of the BA window; we use the 787 * sequence number of the last MSDU that was 788 * passed up the stack+1 or winstart if stopped on 789 * a gap in the reorder buffer. 790 */ 791 rap->rxa_start = seqno; 792 } 793 794 /* 795 * Process a received QoS data frame for an HT station. Handle 796 * A-MPDU reordering: if this frame is received out of order 797 * and falls within the BA window hold onto it. Otherwise if 798 * this frame completes a run, flush any pending frames. We 799 * return 1 if the frame is consumed. A 0 is returned if 800 * the frame should be processed normally by the caller. 801 */ 802 int 803 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 804 { 805 #define PROCESS 0 /* caller should process frame */ 806 #define CONSUMED 1 /* frame consumed, caller does nothing */ 807 struct ieee80211vap *vap = ni->ni_vap; 808 struct ieee80211_qosframe *wh; 809 struct ieee80211_rx_ampdu *rap; 810 ieee80211_seq rxseq; 811 uint8_t tid; 812 int off; 813 814 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 815 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 816 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 817 818 /* NB: m_len known to be sufficient */ 819 wh = mtod(m, struct ieee80211_qosframe *); 820 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 821 /* 822 * Not QoS data, shouldn't get here but just 823 * return it to the caller for processing. 824 */ 825 return PROCESS; 826 } 827 828 /* 829 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. 830 * 831 * Multicast QoS data frames are checked against a different 832 * counter, not the per-TID counter. 833 */ 834 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 835 return PROCESS; 836 837 if (IEEE80211_IS_DSTODS(wh)) 838 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 839 else 840 tid = wh->i_qos[0]; 841 tid &= IEEE80211_QOS_TID; 842 rap = &ni->ni_rx_ampdu[tid]; 843 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 844 /* 845 * No ADDBA request yet, don't touch. 846 */ 847 return PROCESS; 848 } 849 rxseq = le16toh(*(uint16_t *)wh->i_seq); 850 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 851 /* 852 * Fragments are not allowed; toss. 853 */ 854 IEEE80211_DISCARD_MAC(vap, 855 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 856 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 857 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 858 vap->iv_stats.is_ampdu_rx_drop++; 859 IEEE80211_NODE_STAT(ni, rx_drop); 860 m_freem(m); 861 return CONSUMED; 862 } 863 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 864 rap->rxa_nframes++; 865 866 /* 867 * Handle waiting for the first frame to define the BAW. 868 * Some firmware doesn't provide the RX of the starting point 869 * of the BAW and we have to cope. 870 */ 871 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 872 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 873 rap->rxa_start = rxseq; 874 } 875 again: 876 if (rxseq == rap->rxa_start) { 877 /* 878 * First frame in window. 879 */ 880 if (rap->rxa_qframes != 0) { 881 /* 882 * Dispatch as many packets as we can. 883 */ 884 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 885 ampdu_dispatch(ni, m); 886 ampdu_rx_dispatch(rap, ni); 887 return CONSUMED; 888 } else { 889 /* 890 * In order; advance window and notify 891 * caller to dispatch directly. 892 */ 893 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 894 return PROCESS; 895 } 896 } 897 /* 898 * Frame is out of order; store if in the BA window. 899 */ 900 /* calculate offset in BA window */ 901 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 902 if (off < rap->rxa_wnd) { 903 /* 904 * Common case (hopefully): in the BA window. 905 * Sec 9.10.7.6.2 a) (p.137) 906 */ 907 908 /* 909 * Check for frames sitting too long in the reorder queue. 910 * This should only ever happen if frames are not delivered 911 * without the sender otherwise notifying us (e.g. with a 912 * BAR to move the window). Typically this happens because 913 * of vendor bugs that cause the sequence number to jump. 914 * When this happens we get a gap in the reorder queue that 915 * leaves frame sitting on the queue until they get pushed 916 * out due to window moves. When the vendor does not send 917 * BAR this move only happens due to explicit packet sends 918 * 919 * NB: we only track the time of the oldest frame in the 920 * reorder q; this means that if we flush we might push 921 * frames that still "new"; if this happens then subsequent 922 * frames will result in BA window moves which cost something 923 * but is still better than a big throughput dip. 924 */ 925 if (rap->rxa_qframes != 0) { 926 /* XXX honor batimeout? */ 927 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 928 /* 929 * Too long since we received the first 930 * frame; flush the reorder buffer. 931 */ 932 if (rap->rxa_qframes != 0) { 933 vap->iv_stats.is_ampdu_rx_age += 934 rap->rxa_qframes; 935 ampdu_rx_flush(ni, rap); 936 } 937 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 938 return PROCESS; 939 } 940 } else { 941 /* 942 * First frame, start aging timer. 943 */ 944 rap->rxa_age = ticks; 945 } 946 947 /* save packet */ 948 if (rap->rxa_m[off] == NULL) { 949 rap->rxa_m[off] = m; 950 rap->rxa_qframes++; 951 rap->rxa_qbytes += m->m_pkthdr.len; 952 vap->iv_stats.is_ampdu_rx_reorder++; 953 } else { 954 IEEE80211_DISCARD_MAC(vap, 955 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 956 ni->ni_macaddr, "a-mpdu duplicate", 957 "seqno %u tid %u BA win <%u:%u>", 958 rxseq, tid, rap->rxa_start, 959 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 960 vap->iv_stats.is_rx_dup++; 961 IEEE80211_NODE_STAT(ni, rx_dup); 962 m_freem(m); 963 } 964 return CONSUMED; 965 } 966 if (off < IEEE80211_SEQ_BA_RANGE) { 967 /* 968 * Outside the BA window, but within range; 969 * flush the reorder q and move the window. 970 * Sec 9.10.7.6.2 b) (p.138) 971 */ 972 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 973 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 974 rap->rxa_start, 975 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 976 rap->rxa_qframes, rxseq, tid); 977 vap->iv_stats.is_ampdu_rx_move++; 978 979 /* 980 * The spec says to flush frames up to but not including: 981 * WinStart_B = rxseq - rap->rxa_wnd + 1 982 * Then insert the frame or notify the caller to process 983 * it immediately. We can safely do this by just starting 984 * over again because we know the frame will now be within 985 * the BA window. 986 */ 987 /* NB: rxa_wnd known to be >0 */ 988 ampdu_rx_flush_upto(ni, rap, 989 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 990 goto again; 991 } else { 992 /* 993 * Outside the BA window and out of range; toss. 994 * Sec 9.10.7.6.2 c) (p.138) 995 */ 996 IEEE80211_DISCARD_MAC(vap, 997 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 998 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 999 rap->rxa_start, 1000 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1001 rap->rxa_qframes, rxseq, tid, 1002 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1003 vap->iv_stats.is_ampdu_rx_drop++; 1004 IEEE80211_NODE_STAT(ni, rx_drop); 1005 m_freem(m); 1006 return CONSUMED; 1007 } 1008 #undef CONSUMED 1009 #undef PROCESS 1010 } 1011 1012 /* 1013 * Process a BAR ctl frame. Dispatch all frames up to 1014 * the sequence number of the frame. If this frame is 1015 * out of range it's discarded. 1016 */ 1017 void 1018 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1019 { 1020 struct ieee80211vap *vap = ni->ni_vap; 1021 struct ieee80211_frame_bar *wh; 1022 struct ieee80211_rx_ampdu *rap; 1023 ieee80211_seq rxseq; 1024 int tid, off; 1025 1026 if (!ieee80211_recv_bar_ena) { 1027 #if 0 1028 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1029 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1030 #endif 1031 vap->iv_stats.is_ampdu_bar_bad++; 1032 return; 1033 } 1034 wh = mtod(m0, struct ieee80211_frame_bar *); 1035 /* XXX check basic BAR */ 1036 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1037 rap = &ni->ni_rx_ampdu[tid]; 1038 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1039 /* 1040 * No ADDBA request yet, don't touch. 1041 */ 1042 IEEE80211_DISCARD_MAC(vap, 1043 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1044 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1045 vap->iv_stats.is_ampdu_bar_bad++; 1046 return; 1047 } 1048 vap->iv_stats.is_ampdu_bar_rx++; 1049 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1050 if (rxseq == rap->rxa_start) 1051 return; 1052 /* calculate offset in BA window */ 1053 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1054 if (off < IEEE80211_SEQ_BA_RANGE) { 1055 /* 1056 * Flush the reorder q up to rxseq and move the window. 1057 * Sec 9.10.7.6.3 a) (p.138) 1058 */ 1059 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1060 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1061 rap->rxa_start, 1062 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1063 rap->rxa_qframes, rxseq, tid); 1064 vap->iv_stats.is_ampdu_bar_move++; 1065 1066 ampdu_rx_flush_upto(ni, rap, rxseq); 1067 if (off >= rap->rxa_wnd) { 1068 /* 1069 * BAR specifies a window start to the right of BA 1070 * window; we must move it explicitly since 1071 * ampdu_rx_flush_upto will not. 1072 */ 1073 rap->rxa_start = rxseq; 1074 } 1075 } else { 1076 /* 1077 * Out of range; toss. 1078 * Sec 9.10.7.6.3 b) (p.138) 1079 */ 1080 IEEE80211_DISCARD_MAC(vap, 1081 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1082 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1083 rap->rxa_start, 1084 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1085 rap->rxa_qframes, rxseq, tid, 1086 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1087 vap->iv_stats.is_ampdu_bar_oow++; 1088 IEEE80211_NODE_STAT(ni, rx_drop); 1089 } 1090 } 1091 1092 /* 1093 * Setup HT-specific state in a node. Called only 1094 * when HT use is negotiated so we don't do extra 1095 * work for temporary and/or legacy sta's. 1096 */ 1097 void 1098 ieee80211_ht_node_init(struct ieee80211_node *ni) 1099 { 1100 struct ieee80211_tx_ampdu *tap; 1101 int tid; 1102 1103 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1104 ni, 1105 "%s: called (%p)", 1106 __func__, 1107 ni); 1108 1109 if (ni->ni_flags & IEEE80211_NODE_HT) { 1110 /* 1111 * Clean AMPDU state on re-associate. This handles the case 1112 * where a station leaves w/o notifying us and then returns 1113 * before node is reaped for inactivity. 1114 */ 1115 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1116 ni, 1117 "%s: calling cleanup (%p)", 1118 __func__, ni); 1119 ieee80211_ht_node_cleanup(ni); 1120 } 1121 for (tid = 0; tid < WME_NUM_TID; tid++) { 1122 tap = &ni->ni_tx_ampdu[tid]; 1123 tap->txa_tid = tid; 1124 tap->txa_ni = ni; 1125 ieee80211_txampdu_init_pps(tap); 1126 /* NB: further initialization deferred */ 1127 } 1128 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1129 } 1130 1131 /* 1132 * Cleanup HT-specific state in a node. Called only 1133 * when HT use has been marked. 1134 */ 1135 void 1136 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1137 { 1138 struct ieee80211com *ic = ni->ni_ic; 1139 int i; 1140 1141 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1142 ni, 1143 "%s: called (%p)", 1144 __func__, ni); 1145 1146 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1147 1148 /* XXX optimize this */ 1149 for (i = 0; i < WME_NUM_TID; i++) { 1150 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1151 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1152 ampdu_tx_stop(tap); 1153 } 1154 for (i = 0; i < WME_NUM_TID; i++) 1155 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1156 1157 ni->ni_htcap = 0; 1158 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1159 } 1160 1161 /* 1162 * Age out HT resources for a station. 1163 */ 1164 void 1165 ieee80211_ht_node_age(struct ieee80211_node *ni) 1166 { 1167 struct ieee80211vap *vap = ni->ni_vap; 1168 uint8_t tid; 1169 1170 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1171 1172 for (tid = 0; tid < WME_NUM_TID; tid++) { 1173 struct ieee80211_rx_ampdu *rap; 1174 1175 rap = &ni->ni_rx_ampdu[tid]; 1176 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1177 continue; 1178 if (rap->rxa_qframes == 0) 1179 continue; 1180 /* 1181 * Check for frames sitting too long in the reorder queue. 1182 * See above for more details on what's happening here. 1183 */ 1184 /* XXX honor batimeout? */ 1185 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1186 /* 1187 * Too long since we received the first 1188 * frame; flush the reorder buffer. 1189 */ 1190 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1191 ampdu_rx_flush(ni, rap); 1192 } 1193 } 1194 } 1195 1196 static struct ieee80211_channel * 1197 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1198 { 1199 return ieee80211_find_channel(ic, c->ic_freq, 1200 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1201 } 1202 1203 /* 1204 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1205 */ 1206 struct ieee80211_channel * 1207 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1208 struct ieee80211_channel *chan, int flags) 1209 { 1210 struct ieee80211_channel *c; 1211 1212 if (flags & IEEE80211_FHT_HT) { 1213 /* promote to HT if possible */ 1214 if (flags & IEEE80211_FHT_USEHT40) { 1215 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1216 /* NB: arbitrarily pick ht40+ over ht40- */ 1217 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1218 if (c == NULL) 1219 c = findhtchan(ic, chan, 1220 IEEE80211_CHAN_HT40D); 1221 if (c == NULL) 1222 c = findhtchan(ic, chan, 1223 IEEE80211_CHAN_HT20); 1224 if (c != NULL) 1225 chan = c; 1226 } 1227 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1228 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1229 if (c != NULL) 1230 chan = c; 1231 } 1232 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1233 /* demote to legacy, HT use is disabled */ 1234 c = ieee80211_find_channel(ic, chan->ic_freq, 1235 chan->ic_flags &~ IEEE80211_CHAN_HT); 1236 if (c != NULL) 1237 chan = c; 1238 } 1239 return chan; 1240 } 1241 1242 /* 1243 * Setup HT-specific state for a legacy WDS peer. 1244 */ 1245 void 1246 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1247 { 1248 struct ieee80211vap *vap = ni->ni_vap; 1249 struct ieee80211_tx_ampdu *tap; 1250 int tid; 1251 1252 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1253 1254 /* XXX check scan cache in case peer has an ap and we have info */ 1255 /* 1256 * If setup with a legacy channel; locate an HT channel. 1257 * Otherwise if the inherited channel (from a companion 1258 * AP) is suitable use it so we use the same location 1259 * for the extension channel). 1260 */ 1261 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1262 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1263 1264 ni->ni_htcap = 0; 1265 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1266 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1267 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1268 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1269 ni->ni_chw = 40; 1270 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1271 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1272 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1273 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1274 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1275 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1276 } else { 1277 ni->ni_chw = 20; 1278 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1279 } 1280 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1281 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1282 ni->ni_flags |= IEEE80211_NODE_RIFS; 1283 /* XXX does it make sense to enable SMPS? */ 1284 1285 ni->ni_htopmode = 0; /* XXX need protection state */ 1286 ni->ni_htstbc = 0; /* XXX need info */ 1287 1288 for (tid = 0; tid < WME_NUM_TID; tid++) { 1289 tap = &ni->ni_tx_ampdu[tid]; 1290 tap->txa_tid = tid; 1291 ieee80211_txampdu_init_pps(tap); 1292 } 1293 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1294 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1295 } 1296 1297 /* 1298 * Notify hostap vaps of a change in the HTINFO ie. 1299 */ 1300 static void 1301 htinfo_notify(struct ieee80211com *ic) 1302 { 1303 struct ieee80211vap *vap; 1304 int first = 1; 1305 1306 IEEE80211_LOCK_ASSERT(ic); 1307 1308 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1309 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1310 continue; 1311 if (vap->iv_state != IEEE80211_S_RUN || 1312 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1313 continue; 1314 if (first) { 1315 IEEE80211_NOTE(vap, 1316 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1317 vap->iv_bss, 1318 "HT bss occupancy change: %d sta, %d ht, " 1319 "%d ht40%s, HT protmode now 0x%x" 1320 , ic->ic_sta_assoc 1321 , ic->ic_ht_sta_assoc 1322 , ic->ic_ht40_sta_assoc 1323 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1324 ", non-HT sta present" : "" 1325 , ic->ic_curhtprotmode); 1326 first = 0; 1327 } 1328 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1329 } 1330 } 1331 1332 /* 1333 * Calculate HT protection mode from current 1334 * state and handle updates. 1335 */ 1336 static void 1337 htinfo_update(struct ieee80211com *ic) 1338 { 1339 uint8_t protmode; 1340 1341 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1342 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1343 | IEEE80211_HTINFO_NONHT_PRESENT; 1344 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1345 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1346 | IEEE80211_HTINFO_NONHT_PRESENT; 1347 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1348 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1349 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1350 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1351 } else { 1352 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1353 } 1354 if (protmode != ic->ic_curhtprotmode) { 1355 ic->ic_curhtprotmode = protmode; 1356 htinfo_notify(ic); 1357 } 1358 } 1359 1360 /* 1361 * Handle an HT station joining a BSS. 1362 */ 1363 void 1364 ieee80211_ht_node_join(struct ieee80211_node *ni) 1365 { 1366 struct ieee80211com *ic = ni->ni_ic; 1367 1368 IEEE80211_LOCK_ASSERT(ic); 1369 1370 if (ni->ni_flags & IEEE80211_NODE_HT) { 1371 ic->ic_ht_sta_assoc++; 1372 if (ni->ni_chw == 40) 1373 ic->ic_ht40_sta_assoc++; 1374 } 1375 htinfo_update(ic); 1376 } 1377 1378 /* 1379 * Handle an HT station leaving a BSS. 1380 */ 1381 void 1382 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1383 { 1384 struct ieee80211com *ic = ni->ni_ic; 1385 1386 IEEE80211_LOCK_ASSERT(ic); 1387 1388 if (ni->ni_flags & IEEE80211_NODE_HT) { 1389 ic->ic_ht_sta_assoc--; 1390 if (ni->ni_chw == 40) 1391 ic->ic_ht40_sta_assoc--; 1392 } 1393 htinfo_update(ic); 1394 } 1395 1396 /* 1397 * Public version of htinfo_update; used for processing 1398 * beacon frames from overlapping bss. 1399 * 1400 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1401 * (on receipt of a beacon that advertises MIXED) or 1402 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1403 * from an overlapping legacy bss). We treat MIXED with 1404 * a higher precedence than PROTOPT (i.e. we will not change 1405 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1406 * corresponds to how we handle things in htinfo_update. 1407 */ 1408 void 1409 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1410 { 1411 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1412 IEEE80211_LOCK(ic); 1413 1414 /* track non-HT station presence */ 1415 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1416 ("protmode 0x%x", protmode)); 1417 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1418 ic->ic_lastnonht = ticks; 1419 1420 if (protmode != ic->ic_curhtprotmode && 1421 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1422 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1423 /* push beacon update */ 1424 ic->ic_curhtprotmode = protmode; 1425 htinfo_notify(ic); 1426 } 1427 IEEE80211_UNLOCK(ic); 1428 #undef OPMODE 1429 } 1430 1431 /* 1432 * Time out presence of an overlapping bss with non-HT 1433 * stations. When operating in hostap mode we listen for 1434 * beacons from other stations and if we identify a non-HT 1435 * station is present we update the opmode field of the 1436 * HTINFO ie. To identify when all non-HT stations are 1437 * gone we time out this condition. 1438 */ 1439 void 1440 ieee80211_ht_timeout(struct ieee80211com *ic) 1441 { 1442 IEEE80211_LOCK_ASSERT(ic); 1443 1444 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1445 ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1446 #if 0 1447 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1448 "%s", "time out non-HT STA present on channel"); 1449 #endif 1450 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1451 htinfo_update(ic); 1452 } 1453 } 1454 1455 /* 1456 * Process an 802.11n HT capabilities ie. 1457 */ 1458 void 1459 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1460 { 1461 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1462 /* 1463 * Station used Vendor OUI ie to associate; 1464 * mark the node so when we respond we'll use 1465 * the Vendor OUI's and not the standard ie's. 1466 */ 1467 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1468 ie += 4; 1469 } else 1470 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1471 1472 ni->ni_htcap = le16dec(ie + 1473 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1474 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1475 } 1476 1477 static void 1478 htinfo_parse(struct ieee80211_node *ni, 1479 const struct ieee80211_ie_htinfo *htinfo) 1480 { 1481 uint16_t w; 1482 1483 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1484 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1485 w = le16dec(&htinfo->hi_byte2); 1486 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1487 w = le16dec(&htinfo->hi_byte45); 1488 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1489 } 1490 1491 /* 1492 * Parse an 802.11n HT info ie and save useful information 1493 * to the node state. Note this does not effect any state 1494 * changes such as for channel width change. 1495 */ 1496 void 1497 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1498 { 1499 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1500 ie += 4; 1501 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1502 } 1503 1504 /* 1505 * Handle 11n/11ac channel switch. 1506 * 1507 * Use the received HT/VHT ie's to identify the right channel to use. 1508 * If we cannot locate it in the channel table then fallback to 1509 * legacy operation. 1510 * 1511 * Note that we use this information to identify the node's 1512 * channel only; the caller is responsible for insuring any 1513 * required channel change is done (e.g. in sta mode when 1514 * parsing the contents of a beacon frame). 1515 */ 1516 static int 1517 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1518 { 1519 struct ieee80211com *ic = ni->ni_ic; 1520 struct ieee80211_channel *c; 1521 int chanflags; 1522 int ret = 0; 1523 1524 /* 1525 * First step - do HT/VHT only channel lookup based on operating mode 1526 * flags. This involves masking out the VHT flags as well. 1527 * Otherwise we end up doing the full channel walk each time 1528 * we trigger this, which is expensive. 1529 */ 1530 chanflags = (ni->ni_chan->ic_flags &~ 1531 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1532 1533 if (chanflags == ni->ni_chan->ic_flags) 1534 goto done; 1535 1536 /* 1537 * If HT /or/ VHT flags have changed then check both. 1538 * We need to start by picking a HT channel anyway. 1539 */ 1540 1541 c = NULL; 1542 chanflags = (ni->ni_chan->ic_flags &~ 1543 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1544 /* XXX not right for ht40- */ 1545 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1546 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1547 /* 1548 * No HT40 channel entry in our table; fall back 1549 * to HT20 operation. This should not happen. 1550 */ 1551 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1552 #if 0 1553 IEEE80211_NOTE(ni->ni_vap, 1554 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1555 "no HT40 channel (freq %u), falling back to HT20", 1556 ni->ni_chan->ic_freq); 1557 #endif 1558 /* XXX stat */ 1559 } 1560 1561 /* Nothing found - leave it alone; move onto VHT */ 1562 if (c == NULL) 1563 c = ni->ni_chan; 1564 1565 /* 1566 * If it's non-HT, then bail out now. 1567 */ 1568 if (! IEEE80211_IS_CHAN_HT(c)) { 1569 IEEE80211_NOTE(ni->ni_vap, 1570 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1571 "not HT; skipping VHT check (%u/0x%x)", 1572 c->ic_freq, c->ic_flags); 1573 goto done; 1574 } 1575 1576 /* 1577 * Next step - look at the current VHT flags and determine 1578 * if we need to upgrade. Mask out the VHT and HT flags since 1579 * the vhtflags field will already have the correct HT 1580 * flags to use. 1581 */ 1582 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1583 chanflags = (c->ic_flags 1584 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1585 | vhtflags; 1586 IEEE80211_NOTE(ni->ni_vap, 1587 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1588 ni, 1589 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1590 __func__, ni->ni_vht_chanwidth, vhtflags); 1591 1592 IEEE80211_NOTE(ni->ni_vap, 1593 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1594 ni, 1595 "%s: VHT; trying lookup for %d/0x%08x", 1596 __func__, c->ic_freq, chanflags); 1597 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1598 } 1599 1600 /* Finally, if it's changed */ 1601 if (c != NULL && c != ni->ni_chan) { 1602 IEEE80211_NOTE(ni->ni_vap, 1603 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1604 "switch station to %s%d channel %u/0x%x", 1605 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1606 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1607 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1608 c->ic_freq, c->ic_flags); 1609 ni->ni_chan = c; 1610 ret = 1; 1611 } 1612 /* NB: caller responsible for forcing any channel change */ 1613 1614 done: 1615 /* update node's (11n) tx channel width */ 1616 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1617 return (ret); 1618 } 1619 1620 /* 1621 * Update 11n MIMO PS state according to received htcap. 1622 */ 1623 static __inline int 1624 htcap_update_mimo_ps(struct ieee80211_node *ni) 1625 { 1626 uint16_t oflags = ni->ni_flags; 1627 1628 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1629 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1630 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1631 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1632 break; 1633 case IEEE80211_HTCAP_SMPS_ENA: 1634 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1635 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1636 break; 1637 case IEEE80211_HTCAP_SMPS_OFF: 1638 default: /* disable on rx of reserved value */ 1639 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1640 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1641 break; 1642 } 1643 return (oflags ^ ni->ni_flags); 1644 } 1645 1646 /* 1647 * Update short GI state according to received htcap 1648 * and local settings. 1649 */ 1650 static __inline void 1651 htcap_update_shortgi(struct ieee80211_node *ni) 1652 { 1653 struct ieee80211vap *vap = ni->ni_vap; 1654 1655 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1656 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1657 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1658 ni->ni_flags |= IEEE80211_NODE_SGI20; 1659 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1660 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1661 ni->ni_flags |= IEEE80211_NODE_SGI40; 1662 } 1663 1664 /* 1665 * Update LDPC state according to received htcap 1666 * and local settings. 1667 */ 1668 static __inline void 1669 htcap_update_ldpc(struct ieee80211_node *ni) 1670 { 1671 struct ieee80211vap *vap = ni->ni_vap; 1672 1673 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && 1674 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) 1675 ni->ni_flags |= IEEE80211_NODE_LDPC; 1676 } 1677 1678 /* 1679 * Parse and update HT-related state extracted from 1680 * the HT cap and info ie's. 1681 * 1682 * This is called from the STA management path and 1683 * the ieee80211_node_join() path. It will take into 1684 * account the IEs discovered during scanning and 1685 * adjust things accordingly. 1686 */ 1687 void 1688 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1689 const uint8_t *htcapie, const uint8_t *htinfoie) 1690 { 1691 struct ieee80211vap *vap = ni->ni_vap; 1692 const struct ieee80211_ie_htinfo *htinfo; 1693 1694 ieee80211_parse_htcap(ni, htcapie); 1695 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1696 htcap_update_mimo_ps(ni); 1697 htcap_update_shortgi(ni); 1698 htcap_update_ldpc(ni); 1699 1700 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1701 htinfoie += 4; 1702 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1703 htinfo_parse(ni, htinfo); 1704 1705 /* 1706 * Defer the node channel change; we need to now 1707 * update VHT parameters before we do it. 1708 */ 1709 1710 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1711 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1712 ni->ni_flags |= IEEE80211_NODE_RIFS; 1713 else 1714 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1715 } 1716 1717 static uint32_t 1718 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1719 { 1720 struct ieee80211vap *vap = ni->ni_vap; 1721 uint32_t vhtflags = 0; 1722 1723 vhtflags = 0; 1724 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 1725 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1726 /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ 1727 (MS(vap->iv_vhtcaps, 1728 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && 1729 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) { 1730 vhtflags = IEEE80211_CHAN_VHT160; 1731 /* Mirror the HT40 flags */ 1732 if (htflags == IEEE80211_CHAN_HT40U) { 1733 vhtflags |= IEEE80211_CHAN_HT40U; 1734 } else if (htflags == IEEE80211_CHAN_HT40D) { 1735 vhtflags |= IEEE80211_CHAN_HT40D; 1736 } 1737 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1738 /* XXX 2 means "160MHz and 80+80MHz" */ 1739 (MS(vap->iv_vhtcaps, 1740 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && 1741 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) { 1742 vhtflags = IEEE80211_CHAN_VHT80_80; 1743 /* Mirror the HT40 flags */ 1744 if (htflags == IEEE80211_CHAN_HT40U) { 1745 vhtflags |= IEEE80211_CHAN_HT40U; 1746 } else if (htflags == IEEE80211_CHAN_HT40D) { 1747 vhtflags |= IEEE80211_CHAN_HT40D; 1748 } 1749 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1750 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) { 1751 vhtflags = IEEE80211_CHAN_VHT80; 1752 /* Mirror the HT40 flags */ 1753 if (htflags == IEEE80211_CHAN_HT40U) { 1754 vhtflags |= IEEE80211_CHAN_HT40U; 1755 } else if (htflags == IEEE80211_CHAN_HT40D) { 1756 vhtflags |= IEEE80211_CHAN_HT40D; 1757 } 1758 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1759 /* Mirror the HT40 flags */ 1760 /* 1761 * XXX TODO: if ht40 is disabled, but vht40 isn't 1762 * disabled then this logic will get very, very sad. 1763 * It's quite possible the only sane thing to do is 1764 * to not have vht40 as an option, and just obey 1765 * 'ht40' as that flag. 1766 */ 1767 if ((htflags == IEEE80211_CHAN_HT40U) && 1768 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1769 vhtflags = IEEE80211_CHAN_VHT40U 1770 | IEEE80211_CHAN_HT40U; 1771 } else if (htflags == IEEE80211_CHAN_HT40D && 1772 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1773 vhtflags = IEEE80211_CHAN_VHT40D 1774 | IEEE80211_CHAN_HT40D; 1775 } else if (htflags == IEEE80211_CHAN_HT20) { 1776 vhtflags = IEEE80211_CHAN_VHT20 1777 | IEEE80211_CHAN_HT20; 1778 } 1779 } else { 1780 vhtflags = IEEE80211_CHAN_VHT20; 1781 } 1782 } 1783 return (vhtflags); 1784 } 1785 1786 /* 1787 * Final part of updating the HT parameters. 1788 * 1789 * This is called from the STA management path and 1790 * the ieee80211_node_join() path. It will take into 1791 * account the IEs discovered during scanning and 1792 * adjust things accordingly. 1793 * 1794 * This is done after a call to ieee80211_ht_updateparams() 1795 * because it (and the upcoming VHT version of updateparams) 1796 * needs to ensure everything is parsed before htinfo_update_chw() 1797 * is called - which will change the channel config for the 1798 * node for us. 1799 */ 1800 int 1801 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 1802 const uint8_t *htcapie, const uint8_t *htinfoie) 1803 { 1804 struct ieee80211vap *vap = ni->ni_vap; 1805 const struct ieee80211_ie_htinfo *htinfo; 1806 int htflags, vhtflags; 1807 int ret = 0; 1808 1809 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1810 1811 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1812 IEEE80211_CHAN_HT20 : 0; 1813 1814 /* NB: honor operating mode constraint */ 1815 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1816 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1817 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1818 htflags = IEEE80211_CHAN_HT40U; 1819 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1820 htflags = IEEE80211_CHAN_HT40D; 1821 } 1822 1823 /* 1824 * VHT flags - do much the same; check whether VHT is available 1825 * and if so, what our ideal channel use would be based on our 1826 * capabilities and the (pre-parsed) VHT info IE. 1827 */ 1828 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 1829 1830 if (htinfo_update_chw(ni, htflags, vhtflags)) 1831 ret = 1; 1832 1833 return (ret); 1834 } 1835 1836 /* 1837 * Parse and update HT-related state extracted from the HT cap ie 1838 * for a station joining an HT BSS. 1839 * 1840 * This is called from the hostap path for each station. 1841 */ 1842 void 1843 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1844 { 1845 struct ieee80211vap *vap = ni->ni_vap; 1846 1847 ieee80211_parse_htcap(ni, htcapie); 1848 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1849 htcap_update_mimo_ps(ni); 1850 htcap_update_shortgi(ni); 1851 htcap_update_ldpc(ni); 1852 } 1853 1854 /* 1855 * Called once HT and VHT capabilities are parsed in hostap mode - 1856 * this will adjust the channel configuration of the given node 1857 * based on the configuration and capabilities. 1858 */ 1859 void 1860 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 1861 { 1862 struct ieee80211vap *vap = ni->ni_vap; 1863 int htflags; 1864 int vhtflags; 1865 1866 /* NB: honor operating mode constraint */ 1867 /* XXX 40 MHz intolerant */ 1868 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1869 IEEE80211_CHAN_HT20 : 0; 1870 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1871 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1872 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1873 htflags = IEEE80211_CHAN_HT40U; 1874 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1875 htflags = IEEE80211_CHAN_HT40D; 1876 } 1877 /* 1878 * VHT flags - do much the same; check whether VHT is available 1879 * and if so, what our ideal channel use would be based on our 1880 * capabilities and the (pre-parsed) VHT info IE. 1881 */ 1882 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 1883 1884 (void) htinfo_update_chw(ni, htflags, vhtflags); 1885 } 1886 1887 /* 1888 * Install received HT rate set by parsing the HT cap ie. 1889 */ 1890 int 1891 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1892 { 1893 struct ieee80211com *ic = ni->ni_ic; 1894 struct ieee80211vap *vap = ni->ni_vap; 1895 const struct ieee80211_ie_htcap *htcap; 1896 struct ieee80211_htrateset *rs; 1897 int i, maxequalmcs, maxunequalmcs; 1898 1899 maxequalmcs = ic->ic_txstream * 8 - 1; 1900 maxunequalmcs = 0; 1901 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1902 if (ic->ic_txstream >= 2) 1903 maxunequalmcs = 38; 1904 if (ic->ic_txstream >= 3) 1905 maxunequalmcs = 52; 1906 if (ic->ic_txstream >= 4) 1907 maxunequalmcs = 76; 1908 } 1909 1910 rs = &ni->ni_htrates; 1911 memset(rs, 0, sizeof(*rs)); 1912 if (ie != NULL) { 1913 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1914 ie += 4; 1915 htcap = (const struct ieee80211_ie_htcap *) ie; 1916 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1917 if (isclr(htcap->hc_mcsset, i)) 1918 continue; 1919 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1920 IEEE80211_NOTE(vap, 1921 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1922 "WARNING, HT rate set too large; only " 1923 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1924 vap->iv_stats.is_rx_rstoobig++; 1925 break; 1926 } 1927 if (i <= 31 && i > maxequalmcs) 1928 continue; 1929 if (i == 32 && 1930 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1931 continue; 1932 if (i > 32 && i > maxunequalmcs) 1933 continue; 1934 rs->rs_rates[rs->rs_nrates++] = i; 1935 } 1936 } 1937 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1938 } 1939 1940 /* 1941 * Mark rates in a node's HT rate set as basic according 1942 * to the information in the supplied HT info ie. 1943 */ 1944 void 1945 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1946 { 1947 const struct ieee80211_ie_htinfo *htinfo; 1948 struct ieee80211_htrateset *rs; 1949 int i, j; 1950 1951 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1952 ie += 4; 1953 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1954 rs = &ni->ni_htrates; 1955 if (rs->rs_nrates == 0) { 1956 IEEE80211_NOTE(ni->ni_vap, 1957 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1958 "%s", "WARNING, empty HT rate set"); 1959 return; 1960 } 1961 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1962 if (isclr(htinfo->hi_basicmcsset, i)) 1963 continue; 1964 for (j = 0; j < rs->rs_nrates; j++) 1965 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1966 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1967 } 1968 } 1969 1970 static void 1971 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1972 { 1973 callout_init(&tap->txa_timer, 1); 1974 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1975 tap->txa_lastsample = ticks; 1976 } 1977 1978 static void 1979 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1980 { 1981 struct ieee80211_node *ni = tap->txa_ni; 1982 struct ieee80211com *ic = ni->ni_ic; 1983 1984 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1985 tap->txa_ni, 1986 "%s: called", 1987 __func__); 1988 1989 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1990 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1991 TID_TO_WME_AC(tap->txa_tid))); 1992 1993 /* 1994 * Stop BA stream if setup so driver has a chance 1995 * to reclaim any resources it might have allocated. 1996 */ 1997 ic->ic_addba_stop(ni, tap); 1998 /* 1999 * Stop any pending BAR transmit. 2000 */ 2001 bar_stop_timer(tap); 2002 2003 /* 2004 * Reset packet estimate. 2005 */ 2006 ieee80211_txampdu_init_pps(tap); 2007 2008 /* NB: clearing NAK means we may re-send ADDBA */ 2009 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 2010 } 2011 2012 /* 2013 * ADDBA response timeout. 2014 * 2015 * If software aggregation and per-TID queue management was done here, 2016 * that queue would be unpaused after the ADDBA timeout occurs. 2017 */ 2018 static void 2019 addba_timeout(void *arg) 2020 { 2021 struct ieee80211_tx_ampdu *tap = arg; 2022 struct ieee80211_node *ni = tap->txa_ni; 2023 struct ieee80211com *ic = ni->ni_ic; 2024 2025 /* XXX ? */ 2026 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2027 tap->txa_attempts++; 2028 ic->ic_addba_response_timeout(ni, tap); 2029 } 2030 2031 static void 2032 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2033 { 2034 /* XXX use CALLOUT_PENDING instead? */ 2035 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2036 addba_timeout, tap); 2037 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2038 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2039 } 2040 2041 static void 2042 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2043 { 2044 /* XXX use CALLOUT_PENDING instead? */ 2045 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2046 callout_stop(&tap->txa_timer); 2047 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2048 } 2049 } 2050 2051 static void 2052 null_addba_response_timeout(struct ieee80211_node *ni, 2053 struct ieee80211_tx_ampdu *tap) 2054 { 2055 } 2056 2057 /* 2058 * Default method for requesting A-MPDU tx aggregation. 2059 * We setup the specified state block and start a timer 2060 * to wait for an ADDBA response frame. 2061 */ 2062 static int 2063 ieee80211_addba_request(struct ieee80211_node *ni, 2064 struct ieee80211_tx_ampdu *tap, 2065 int dialogtoken, int baparamset, int batimeout) 2066 { 2067 int bufsiz; 2068 2069 /* XXX locking */ 2070 tap->txa_token = dialogtoken; 2071 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2072 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2073 tap->txa_wnd = (bufsiz == 0) ? 2074 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2075 addba_start_timeout(tap); 2076 return 1; 2077 } 2078 2079 /* 2080 * Called by drivers that wish to request an ADDBA session be 2081 * setup. This brings it up and starts the request timer. 2082 */ 2083 int 2084 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2085 { 2086 struct ieee80211_tx_ampdu *tap; 2087 2088 if (tid < 0 || tid > 15) 2089 return (0); 2090 tap = &ni->ni_tx_ampdu[tid]; 2091 2092 /* XXX locking */ 2093 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2094 /* do deferred setup of state */ 2095 ampdu_tx_setup(tap); 2096 } 2097 /* XXX hack for not doing proper locking */ 2098 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2099 addba_start_timeout(tap); 2100 return (1); 2101 } 2102 2103 /* 2104 * Called by drivers that have marked a session as active. 2105 */ 2106 int 2107 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2108 int status) 2109 { 2110 struct ieee80211_tx_ampdu *tap; 2111 2112 if (tid < 0 || tid > 15) 2113 return (0); 2114 tap = &ni->ni_tx_ampdu[tid]; 2115 2116 /* XXX locking */ 2117 addba_stop_timeout(tap); 2118 if (status == 1) { 2119 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2120 tap->txa_attempts = 0; 2121 } else { 2122 /* mark tid so we don't try again */ 2123 tap->txa_flags |= IEEE80211_AGGR_NAK; 2124 } 2125 return (1); 2126 } 2127 2128 /* 2129 * Default method for processing an A-MPDU tx aggregation 2130 * response. We shutdown any pending timer and update the 2131 * state block according to the reply. 2132 */ 2133 static int 2134 ieee80211_addba_response(struct ieee80211_node *ni, 2135 struct ieee80211_tx_ampdu *tap, 2136 int status, int baparamset, int batimeout) 2137 { 2138 int bufsiz, tid; 2139 2140 /* XXX locking */ 2141 addba_stop_timeout(tap); 2142 if (status == IEEE80211_STATUS_SUCCESS) { 2143 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2144 /* XXX override our request? */ 2145 tap->txa_wnd = (bufsiz == 0) ? 2146 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2147 /* XXX AC/TID */ 2148 tid = MS(baparamset, IEEE80211_BAPS_TID); 2149 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2150 tap->txa_attempts = 0; 2151 } else { 2152 /* mark tid so we don't try again */ 2153 tap->txa_flags |= IEEE80211_AGGR_NAK; 2154 } 2155 return 1; 2156 } 2157 2158 /* 2159 * Default method for stopping A-MPDU tx aggregation. 2160 * Any timer is cleared and we drain any pending frames. 2161 */ 2162 static void 2163 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2164 { 2165 /* XXX locking */ 2166 addba_stop_timeout(tap); 2167 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2168 /* XXX clear aggregation queue */ 2169 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 2170 } 2171 tap->txa_attempts = 0; 2172 } 2173 2174 /* 2175 * Process a received action frame using the default aggregation 2176 * policy. We intercept ADDBA-related frames and use them to 2177 * update our aggregation state. All other frames are passed up 2178 * for processing by ieee80211_recv_action. 2179 */ 2180 static int 2181 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2182 const struct ieee80211_frame *wh, 2183 const uint8_t *frm, const uint8_t *efrm) 2184 { 2185 struct ieee80211com *ic = ni->ni_ic; 2186 struct ieee80211vap *vap = ni->ni_vap; 2187 struct ieee80211_rx_ampdu *rap; 2188 uint8_t dialogtoken; 2189 uint16_t baparamset, batimeout, baseqctl; 2190 uint16_t args[5]; 2191 int tid; 2192 2193 dialogtoken = frm[2]; 2194 baparamset = le16dec(frm+3); 2195 batimeout = le16dec(frm+5); 2196 baseqctl = le16dec(frm+7); 2197 2198 tid = MS(baparamset, IEEE80211_BAPS_TID); 2199 2200 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2201 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2202 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 2203 dialogtoken, baparamset, 2204 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 2205 batimeout, 2206 MS(baseqctl, IEEE80211_BASEQ_START), 2207 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 2208 2209 rap = &ni->ni_rx_ampdu[tid]; 2210 2211 /* Send ADDBA response */ 2212 args[0] = dialogtoken; 2213 /* 2214 * NB: We ack only if the sta associated with HT and 2215 * the ap is configured to do AMPDU rx (the latter 2216 * violates the 11n spec and is mostly for testing). 2217 */ 2218 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2219 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2220 /* XXX handle ampdu_rx_start failure */ 2221 ic->ic_ampdu_rx_start(ni, rap, 2222 baparamset, batimeout, baseqctl); 2223 2224 args[1] = IEEE80211_STATUS_SUCCESS; 2225 } else { 2226 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2227 ni, "reject ADDBA request: %s", 2228 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2229 "administratively disabled" : 2230 "not negotiated for station"); 2231 vap->iv_stats.is_addba_reject++; 2232 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2233 } 2234 /* XXX honor rap flags? */ 2235 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2236 | SM(tid, IEEE80211_BAPS_TID) 2237 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2238 ; 2239 args[3] = 0; 2240 args[4] = 0; 2241 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2242 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2243 return 0; 2244 } 2245 2246 static int 2247 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2248 const struct ieee80211_frame *wh, 2249 const uint8_t *frm, const uint8_t *efrm) 2250 { 2251 struct ieee80211com *ic = ni->ni_ic; 2252 struct ieee80211vap *vap = ni->ni_vap; 2253 struct ieee80211_tx_ampdu *tap; 2254 uint8_t dialogtoken, policy; 2255 uint16_t baparamset, batimeout, code; 2256 int tid, bufsiz; 2257 2258 dialogtoken = frm[2]; 2259 code = le16dec(frm+3); 2260 baparamset = le16dec(frm+5); 2261 tid = MS(baparamset, IEEE80211_BAPS_TID); 2262 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2263 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2264 batimeout = le16dec(frm+7); 2265 2266 tap = &ni->ni_tx_ampdu[tid]; 2267 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2268 IEEE80211_DISCARD_MAC(vap, 2269 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2270 ni->ni_macaddr, "ADDBA response", 2271 "no pending ADDBA, tid %d dialogtoken %u " 2272 "code %d", tid, dialogtoken, code); 2273 vap->iv_stats.is_addba_norequest++; 2274 return 0; 2275 } 2276 if (dialogtoken != tap->txa_token) { 2277 IEEE80211_DISCARD_MAC(vap, 2278 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2279 ni->ni_macaddr, "ADDBA response", 2280 "dialogtoken mismatch: waiting for %d, " 2281 "received %d, tid %d code %d", 2282 tap->txa_token, dialogtoken, tid, code); 2283 vap->iv_stats.is_addba_badtoken++; 2284 return 0; 2285 } 2286 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2287 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2288 IEEE80211_DISCARD_MAC(vap, 2289 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2290 ni->ni_macaddr, "ADDBA response", 2291 "policy mismatch: expecting %s, " 2292 "received %s, tid %d code %d", 2293 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2294 policy, tid, code); 2295 vap->iv_stats.is_addba_badpolicy++; 2296 return 0; 2297 } 2298 #if 0 2299 /* XXX we take MIN in ieee80211_addba_response */ 2300 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2301 IEEE80211_DISCARD_MAC(vap, 2302 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2303 ni->ni_macaddr, "ADDBA response", 2304 "BA window too large: max %d, " 2305 "received %d, tid %d code %d", 2306 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2307 vap->iv_stats.is_addba_badbawinsize++; 2308 return 0; 2309 } 2310 #endif 2311 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2312 "recv ADDBA response: dialogtoken %u code %d " 2313 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 2314 dialogtoken, code, baparamset, tid, bufsiz, 2315 batimeout); 2316 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2317 return 0; 2318 } 2319 2320 static int 2321 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2322 const struct ieee80211_frame *wh, 2323 const uint8_t *frm, const uint8_t *efrm) 2324 { 2325 struct ieee80211com *ic = ni->ni_ic; 2326 struct ieee80211_rx_ampdu *rap; 2327 struct ieee80211_tx_ampdu *tap; 2328 uint16_t baparamset, code; 2329 int tid; 2330 2331 baparamset = le16dec(frm+2); 2332 code = le16dec(frm+4); 2333 2334 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2335 2336 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2337 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2338 "code %d", baparamset, tid, 2339 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2340 2341 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2342 tap = &ni->ni_tx_ampdu[tid]; 2343 ic->ic_addba_stop(ni, tap); 2344 } else { 2345 rap = &ni->ni_rx_ampdu[tid]; 2346 ic->ic_ampdu_rx_stop(ni, rap); 2347 } 2348 return 0; 2349 } 2350 2351 static int 2352 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2353 const struct ieee80211_frame *wh, 2354 const uint8_t *frm, const uint8_t *efrm) 2355 { 2356 int chw; 2357 2358 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2359 2360 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2361 "%s: HT txchwidth, width %d%s", 2362 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2363 if (chw != ni->ni_chw) { 2364 /* XXX does this need to change the ht40 station count? */ 2365 ni->ni_chw = chw; 2366 /* XXX notify on change */ 2367 } 2368 return 0; 2369 } 2370 2371 static int 2372 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2373 const struct ieee80211_frame *wh, 2374 const uint8_t *frm, const uint8_t *efrm) 2375 { 2376 const struct ieee80211_action_ht_mimopowersave *mps = 2377 (const struct ieee80211_action_ht_mimopowersave *) frm; 2378 2379 /* XXX check iv_htcaps */ 2380 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2381 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2382 else 2383 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2384 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2385 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2386 else 2387 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2388 /* XXX notify on change */ 2389 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2390 "%s: HT MIMO PS (%s%s)", __func__, 2391 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2392 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2393 ); 2394 return 0; 2395 } 2396 2397 /* 2398 * Transmit processing. 2399 */ 2400 2401 /* 2402 * Check if A-MPDU should be requested/enabled for a stream. 2403 * We require a traffic rate above a per-AC threshold and we 2404 * also handle backoff from previous failed attempts. 2405 * 2406 * Drivers may override this method to bring in information 2407 * such as link state conditions in making the decision. 2408 */ 2409 static int 2410 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2411 struct ieee80211_tx_ampdu *tap) 2412 { 2413 struct ieee80211vap *vap = ni->ni_vap; 2414 2415 if (tap->txa_avgpps < 2416 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2417 return 0; 2418 /* XXX check rssi? */ 2419 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2420 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2421 /* 2422 * Don't retry too often; txa_nextrequest is set 2423 * to the minimum interval we'll retry after 2424 * ieee80211_addba_maxtries failed attempts are made. 2425 */ 2426 return 0; 2427 } 2428 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2429 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2430 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2431 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2432 return 1; 2433 } 2434 2435 /* 2436 * Request A-MPDU tx aggregation. Setup local state and 2437 * issue an ADDBA request. BA use will only happen after 2438 * the other end replies with ADDBA response. 2439 */ 2440 int 2441 ieee80211_ampdu_request(struct ieee80211_node *ni, 2442 struct ieee80211_tx_ampdu *tap) 2443 { 2444 struct ieee80211com *ic = ni->ni_ic; 2445 uint16_t args[5]; 2446 int tid, dialogtoken; 2447 static int tokens = 0; /* XXX */ 2448 2449 /* XXX locking */ 2450 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2451 /* do deferred setup of state */ 2452 ampdu_tx_setup(tap); 2453 } 2454 /* XXX hack for not doing proper locking */ 2455 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2456 2457 dialogtoken = (tokens+1) % 63; /* XXX */ 2458 tid = tap->txa_tid; 2459 2460 /* 2461 * XXX TODO: This is racy with any other parallel TX going on. :( 2462 */ 2463 tap->txa_start = ni->ni_txseqs[tid]; 2464 2465 args[0] = dialogtoken; 2466 args[1] = 0; /* NB: status code not used */ 2467 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2468 | SM(tid, IEEE80211_BAPS_TID) 2469 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2470 ; 2471 args[3] = 0; /* batimeout */ 2472 /* NB: do first so there's no race against reply */ 2473 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2474 /* unable to setup state, don't make request */ 2475 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2476 ni, "%s: could not setup BA stream for TID %d AC %d", 2477 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2478 /* defer next try so we don't slam the driver with requests */ 2479 tap->txa_attempts = ieee80211_addba_maxtries; 2480 /* NB: check in case driver wants to override */ 2481 if (tap->txa_nextrequest <= ticks) 2482 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2483 return 0; 2484 } 2485 tokens = dialogtoken; /* allocate token */ 2486 /* NB: after calling ic_addba_request so driver can set txa_start */ 2487 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2488 | SM(0, IEEE80211_BASEQ_FRAG) 2489 ; 2490 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2491 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2492 } 2493 2494 /* 2495 * Terminate an AMPDU tx stream. State is reclaimed 2496 * and the peer notified with a DelBA Action frame. 2497 */ 2498 void 2499 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2500 int reason) 2501 { 2502 struct ieee80211com *ic = ni->ni_ic; 2503 struct ieee80211vap *vap = ni->ni_vap; 2504 uint16_t args[4]; 2505 2506 /* XXX locking */ 2507 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2508 if (IEEE80211_AMPDU_RUNNING(tap)) { 2509 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2510 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2511 __func__, tap->txa_tid, reason, 2512 ieee80211_reason_to_string(reason)); 2513 vap->iv_stats.is_ampdu_stop++; 2514 2515 ic->ic_addba_stop(ni, tap); 2516 args[0] = tap->txa_tid; 2517 args[1] = IEEE80211_DELBAPS_INIT; 2518 args[2] = reason; /* XXX reason code */ 2519 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2520 IEEE80211_ACTION_BA_DELBA, args); 2521 } else { 2522 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2523 ni, "%s: BA stream for TID %d not running " 2524 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2525 ieee80211_reason_to_string(reason)); 2526 vap->iv_stats.is_ampdu_stop_failed++; 2527 } 2528 } 2529 2530 /* XXX */ 2531 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2532 2533 static void 2534 bar_timeout(void *arg) 2535 { 2536 struct ieee80211_tx_ampdu *tap = arg; 2537 struct ieee80211_node *ni = tap->txa_ni; 2538 2539 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2540 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2541 2542 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2543 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2544 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2545 2546 /* guard against race with bar_tx_complete */ 2547 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2548 return; 2549 /* XXX ? */ 2550 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2551 struct ieee80211com *ic = ni->ni_ic; 2552 2553 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2554 /* 2555 * If (at least) the last BAR TX timeout was due to 2556 * an ieee80211_send_bar() failures, then we need 2557 * to make sure we notify the driver that a BAR 2558 * TX did occur and fail. This gives the driver 2559 * a chance to undo any queue pause that may 2560 * have occurred. 2561 */ 2562 ic->ic_bar_response(ni, tap, 1); 2563 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2564 } else { 2565 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2566 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2567 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2568 ni, "%s: failed to TX, starting timer\n", 2569 __func__); 2570 /* 2571 * If ieee80211_send_bar() fails here, the 2572 * timer may have stopped and/or the pending 2573 * flag may be clear. Because of this, 2574 * fake the BARPEND and reset the timer. 2575 * A retransmission attempt will then occur 2576 * during the next timeout. 2577 */ 2578 /* XXX locking */ 2579 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2580 bar_start_timer(tap); 2581 } 2582 } 2583 } 2584 2585 static void 2586 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2587 { 2588 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2589 tap->txa_ni, 2590 "%s: called", 2591 __func__); 2592 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2593 } 2594 2595 static void 2596 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2597 { 2598 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2599 tap->txa_ni, 2600 "%s: called", 2601 __func__); 2602 callout_stop(&tap->txa_timer); 2603 } 2604 2605 static void 2606 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2607 { 2608 struct ieee80211_tx_ampdu *tap = arg; 2609 2610 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2611 ni, "%s: tid %u flags 0x%x pending %d status %d", 2612 __func__, tap->txa_tid, tap->txa_flags, 2613 callout_pending(&tap->txa_timer), status); 2614 2615 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2616 /* XXX locking */ 2617 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2618 callout_pending(&tap->txa_timer)) { 2619 struct ieee80211com *ic = ni->ni_ic; 2620 2621 if (status == 0) /* ACK'd */ 2622 bar_stop_timer(tap); 2623 ic->ic_bar_response(ni, tap, status); 2624 /* NB: just let timer expire so we pace requests */ 2625 } 2626 } 2627 2628 static void 2629 ieee80211_bar_response(struct ieee80211_node *ni, 2630 struct ieee80211_tx_ampdu *tap, int status) 2631 { 2632 2633 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2634 tap->txa_ni, 2635 "%s: called", 2636 __func__); 2637 if (status == 0) { /* got ACK */ 2638 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2639 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2640 tap->txa_start, 2641 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2642 tap->txa_qframes, tap->txa_seqpending, 2643 tap->txa_tid); 2644 2645 /* NB: timer already stopped in bar_tx_complete */ 2646 tap->txa_start = tap->txa_seqpending; 2647 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2648 } 2649 } 2650 2651 /* 2652 * Transmit a BAR frame to the specified node. The 2653 * BAR contents are drawn from the supplied aggregation 2654 * state associated with the node. 2655 * 2656 * NB: we only handle immediate ACK w/ compressed bitmap. 2657 */ 2658 int 2659 ieee80211_send_bar(struct ieee80211_node *ni, 2660 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2661 { 2662 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2663 struct ieee80211vap *vap = ni->ni_vap; 2664 struct ieee80211com *ic = ni->ni_ic; 2665 struct ieee80211_frame_bar *bar; 2666 struct mbuf *m; 2667 uint16_t barctl, barseqctl; 2668 uint8_t *frm; 2669 int tid, ret; 2670 2671 2672 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2673 tap->txa_ni, 2674 "%s: called", 2675 __func__); 2676 2677 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2678 /* no ADDBA response, should not happen */ 2679 /* XXX stat+msg */ 2680 return EINVAL; 2681 } 2682 /* XXX locking */ 2683 bar_stop_timer(tap); 2684 2685 ieee80211_ref_node(ni); 2686 2687 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2688 if (m == NULL) 2689 senderr(ENOMEM, is_tx_nobuf); 2690 2691 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2692 m_freem(m); 2693 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2694 /* NOTREACHED */ 2695 } 2696 2697 bar = mtod(m, struct ieee80211_frame_bar *); 2698 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2699 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2700 bar->i_fc[1] = 0; 2701 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2702 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2703 2704 tid = tap->txa_tid; 2705 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2706 0 : IEEE80211_BAR_NOACK) 2707 | IEEE80211_BAR_COMP 2708 | SM(tid, IEEE80211_BAR_TID) 2709 ; 2710 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2711 /* NB: known to have proper alignment */ 2712 bar->i_ctl = htole16(barctl); 2713 bar->i_seq = htole16(barseqctl); 2714 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2715 2716 M_WME_SETAC(m, WME_AC_VO); 2717 2718 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2719 2720 /* XXX locking */ 2721 /* init/bump attempts counter */ 2722 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2723 tap->txa_attempts = 1; 2724 else 2725 tap->txa_attempts++; 2726 tap->txa_seqpending = seq; 2727 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2728 2729 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2730 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2731 tid, barctl, seq, tap->txa_attempts); 2732 2733 /* 2734 * ic_raw_xmit will free the node reference 2735 * regardless of queue/TX success or failure. 2736 */ 2737 IEEE80211_TX_LOCK(ic); 2738 ret = ieee80211_raw_output(vap, ni, m, NULL); 2739 IEEE80211_TX_UNLOCK(ic); 2740 if (ret != 0) { 2741 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2742 ni, "send BAR: failed: (ret = %d)\n", 2743 ret); 2744 /* xmit failed, clear state flag */ 2745 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2746 vap->iv_stats.is_ampdu_bar_tx_fail++; 2747 return ret; 2748 } 2749 /* XXX hack against tx complete happening before timer is started */ 2750 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2751 bar_start_timer(tap); 2752 return 0; 2753 bad: 2754 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2755 tap->txa_ni, 2756 "%s: bad! ret=%d", 2757 __func__, ret); 2758 vap->iv_stats.is_ampdu_bar_tx_fail++; 2759 ieee80211_free_node(ni); 2760 return ret; 2761 #undef senderr 2762 } 2763 2764 static int 2765 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2766 { 2767 struct ieee80211_bpf_params params; 2768 2769 memset(¶ms, 0, sizeof(params)); 2770 params.ibp_pri = WME_AC_VO; 2771 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2772 /* NB: we know all frames are unicast */ 2773 params.ibp_try0 = ni->ni_txparms->maxretry; 2774 params.ibp_power = ni->ni_txpower; 2775 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2776 ¶ms); 2777 } 2778 2779 #define ADDSHORT(frm, v) do { \ 2780 frm[0] = (v) & 0xff; \ 2781 frm[1] = (v) >> 8; \ 2782 frm += 2; \ 2783 } while (0) 2784 2785 /* 2786 * Send an action management frame. The arguments are stuff 2787 * into a frame without inspection; the caller is assumed to 2788 * prepare them carefully (e.g. based on the aggregation state). 2789 */ 2790 static int 2791 ht_send_action_ba_addba(struct ieee80211_node *ni, 2792 int category, int action, void *arg0) 2793 { 2794 struct ieee80211vap *vap = ni->ni_vap; 2795 struct ieee80211com *ic = ni->ni_ic; 2796 uint16_t *args = arg0; 2797 struct mbuf *m; 2798 uint8_t *frm; 2799 2800 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2801 "send ADDBA %s: dialogtoken %d status %d " 2802 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2803 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2804 "request" : "response", 2805 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2806 args[3], args[4]); 2807 2808 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2809 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2810 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2811 ieee80211_ref_node(ni); 2812 2813 m = ieee80211_getmgtframe(&frm, 2814 ic->ic_headroom + sizeof(struct ieee80211_frame), 2815 sizeof(uint16_t) /* action+category */ 2816 /* XXX may action payload */ 2817 + sizeof(struct ieee80211_action_ba_addbaresponse) 2818 ); 2819 if (m != NULL) { 2820 *frm++ = category; 2821 *frm++ = action; 2822 *frm++ = args[0]; /* dialog token */ 2823 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2824 ADDSHORT(frm, args[1]); /* status code */ 2825 ADDSHORT(frm, args[2]); /* baparamset */ 2826 ADDSHORT(frm, args[3]); /* batimeout */ 2827 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2828 ADDSHORT(frm, args[4]); /* baseqctl */ 2829 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2830 return ht_action_output(ni, m); 2831 } else { 2832 vap->iv_stats.is_tx_nobuf++; 2833 ieee80211_free_node(ni); 2834 return ENOMEM; 2835 } 2836 } 2837 2838 static int 2839 ht_send_action_ba_delba(struct ieee80211_node *ni, 2840 int category, int action, void *arg0) 2841 { 2842 struct ieee80211vap *vap = ni->ni_vap; 2843 struct ieee80211com *ic = ni->ni_ic; 2844 uint16_t *args = arg0; 2845 struct mbuf *m; 2846 uint16_t baparamset; 2847 uint8_t *frm; 2848 2849 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2850 | args[1] 2851 ; 2852 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2853 "send DELBA action: tid %d, initiator %d reason %d (%s)", 2854 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 2855 2856 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2857 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2858 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2859 ieee80211_ref_node(ni); 2860 2861 m = ieee80211_getmgtframe(&frm, 2862 ic->ic_headroom + sizeof(struct ieee80211_frame), 2863 sizeof(uint16_t) /* action+category */ 2864 /* XXX may action payload */ 2865 + sizeof(struct ieee80211_action_ba_addbaresponse) 2866 ); 2867 if (m != NULL) { 2868 *frm++ = category; 2869 *frm++ = action; 2870 ADDSHORT(frm, baparamset); 2871 ADDSHORT(frm, args[2]); /* reason code */ 2872 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2873 return ht_action_output(ni, m); 2874 } else { 2875 vap->iv_stats.is_tx_nobuf++; 2876 ieee80211_free_node(ni); 2877 return ENOMEM; 2878 } 2879 } 2880 2881 static int 2882 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2883 int category, int action, void *arg0) 2884 { 2885 struct ieee80211vap *vap = ni->ni_vap; 2886 struct ieee80211com *ic = ni->ni_ic; 2887 struct mbuf *m; 2888 uint8_t *frm; 2889 2890 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2891 "send HT txchwidth: width %d", 2892 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2893 2894 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2895 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2896 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2897 ieee80211_ref_node(ni); 2898 2899 m = ieee80211_getmgtframe(&frm, 2900 ic->ic_headroom + sizeof(struct ieee80211_frame), 2901 sizeof(uint16_t) /* action+category */ 2902 /* XXX may action payload */ 2903 + sizeof(struct ieee80211_action_ba_addbaresponse) 2904 ); 2905 if (m != NULL) { 2906 *frm++ = category; 2907 *frm++ = action; 2908 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2909 IEEE80211_A_HT_TXCHWIDTH_2040 : 2910 IEEE80211_A_HT_TXCHWIDTH_20; 2911 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2912 return ht_action_output(ni, m); 2913 } else { 2914 vap->iv_stats.is_tx_nobuf++; 2915 ieee80211_free_node(ni); 2916 return ENOMEM; 2917 } 2918 } 2919 #undef ADDSHORT 2920 2921 /* 2922 * Construct the MCS bit mask for inclusion in an HT capabilities 2923 * information element. 2924 */ 2925 static void 2926 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2927 { 2928 int i; 2929 uint8_t txparams; 2930 2931 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2932 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2933 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2934 ("ic_txstream %d out of range", ic->ic_txstream)); 2935 2936 for (i = 0; i < ic->ic_rxstream * 8; i++) 2937 setbit(frm, i); 2938 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2939 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2940 setbit(frm, 32); 2941 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2942 if (ic->ic_rxstream >= 2) { 2943 for (i = 33; i <= 38; i++) 2944 setbit(frm, i); 2945 } 2946 if (ic->ic_rxstream >= 3) { 2947 for (i = 39; i <= 52; i++) 2948 setbit(frm, i); 2949 } 2950 if (ic->ic_txstream >= 4) { 2951 for (i = 53; i <= 76; i++) 2952 setbit(frm, i); 2953 } 2954 } 2955 2956 if (ic->ic_rxstream != ic->ic_txstream) { 2957 txparams = 0x1; /* TX MCS set defined */ 2958 txparams |= 0x2; /* TX RX MCS not equal */ 2959 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2960 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2961 txparams |= 0x16; /* TX unequal modulation sup */ 2962 } else 2963 txparams = 0; 2964 frm[12] = txparams; 2965 } 2966 2967 /* 2968 * Add body of an HTCAP information element. 2969 */ 2970 static uint8_t * 2971 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2972 { 2973 #define ADDSHORT(frm, v) do { \ 2974 frm[0] = (v) & 0xff; \ 2975 frm[1] = (v) >> 8; \ 2976 frm += 2; \ 2977 } while (0) 2978 struct ieee80211com *ic = ni->ni_ic; 2979 struct ieee80211vap *vap = ni->ni_vap; 2980 uint16_t caps, extcaps; 2981 int rxmax, density; 2982 2983 /* HT capabilities */ 2984 caps = vap->iv_htcaps & 0xffff; 2985 /* 2986 * Note channel width depends on whether we are operating as 2987 * a sta or not. When operating as a sta we are generating 2988 * a request based on our desired configuration. Otherwise 2989 * we are operational and the channel attributes identify 2990 * how we've been setup (which might be different if a fixed 2991 * channel is specified). 2992 */ 2993 if (vap->iv_opmode == IEEE80211_M_STA) { 2994 /* override 20/40 use based on config */ 2995 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2996 caps |= IEEE80211_HTCAP_CHWIDTH40; 2997 else 2998 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2999 3000 /* Start by using the advertised settings */ 3001 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 3002 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 3003 3004 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 3005 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 3006 __func__, 3007 rxmax, 3008 density, 3009 vap->iv_ampdu_rxmax, 3010 vap->iv_ampdu_density); 3011 3012 /* Cap at VAP rxmax */ 3013 if (rxmax > vap->iv_ampdu_rxmax) 3014 rxmax = vap->iv_ampdu_rxmax; 3015 3016 /* 3017 * If the VAP ampdu density value greater, use that. 3018 * 3019 * (Larger density value == larger minimum gap between A-MPDU 3020 * subframes.) 3021 */ 3022 if (vap->iv_ampdu_density > density) 3023 density = vap->iv_ampdu_density; 3024 3025 /* 3026 * NB: Hardware might support HT40 on some but not all 3027 * channels. We can't determine this earlier because only 3028 * after association the channel is upgraded to HT based 3029 * on the negotiated capabilities. 3030 */ 3031 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3032 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3033 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3034 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3035 } else { 3036 /* override 20/40 use based on current channel */ 3037 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3038 caps |= IEEE80211_HTCAP_CHWIDTH40; 3039 else 3040 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3041 3042 /* XXX TODO should it start by using advertised settings? */ 3043 rxmax = vap->iv_ampdu_rxmax; 3044 density = vap->iv_ampdu_density; 3045 } 3046 3047 /* adjust short GI based on channel and config */ 3048 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3049 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3050 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3051 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3052 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3053 3054 /* adjust STBC based on receive capabilities */ 3055 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3056 caps &= ~IEEE80211_HTCAP_RXSTBC; 3057 3058 /* adjust LDPC based on receive capabilites */ 3059 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) 3060 caps &= ~IEEE80211_HTCAP_LDPC; 3061 3062 ADDSHORT(frm, caps); 3063 3064 /* HT parameters */ 3065 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3066 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3067 ; 3068 frm++; 3069 3070 /* pre-zero remainder of ie */ 3071 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3072 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3073 3074 /* supported MCS set */ 3075 /* 3076 * XXX: For sta mode the rate set should be restricted based 3077 * on the AP's capabilities, but ni_htrates isn't setup when 3078 * we're called to form an AssocReq frame so for now we're 3079 * restricted to the device capabilities. 3080 */ 3081 ieee80211_set_mcsset(ni->ni_ic, frm); 3082 3083 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3084 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3085 3086 /* HT extended capabilities */ 3087 extcaps = vap->iv_htextcaps & 0xffff; 3088 3089 ADDSHORT(frm, extcaps); 3090 3091 frm += sizeof(struct ieee80211_ie_htcap) - 3092 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3093 3094 return frm; 3095 #undef ADDSHORT 3096 } 3097 3098 /* 3099 * Add 802.11n HT capabilities information element 3100 */ 3101 uint8_t * 3102 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3103 { 3104 frm[0] = IEEE80211_ELEMID_HTCAP; 3105 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3106 return ieee80211_add_htcap_body(frm + 2, ni); 3107 } 3108 3109 /* 3110 * Non-associated probe request - add HT capabilities based on 3111 * the current channel configuration. 3112 */ 3113 static uint8_t * 3114 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3115 struct ieee80211_channel *c) 3116 { 3117 #define ADDSHORT(frm, v) do { \ 3118 frm[0] = (v) & 0xff; \ 3119 frm[1] = (v) >> 8; \ 3120 frm += 2; \ 3121 } while (0) 3122 struct ieee80211com *ic = vap->iv_ic; 3123 uint16_t caps, extcaps; 3124 int rxmax, density; 3125 3126 /* HT capabilities */ 3127 caps = vap->iv_htcaps & 0xffff; 3128 3129 /* 3130 * We don't use this in STA mode; only in IBSS mode. 3131 * So in IBSS mode we base our HTCAP flags on the 3132 * given channel. 3133 */ 3134 3135 /* override 20/40 use based on current channel */ 3136 if (IEEE80211_IS_CHAN_HT40(c)) 3137 caps |= IEEE80211_HTCAP_CHWIDTH40; 3138 else 3139 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3140 3141 /* Use the currently configured values */ 3142 rxmax = vap->iv_ampdu_rxmax; 3143 density = vap->iv_ampdu_density; 3144 3145 /* adjust short GI based on channel and config */ 3146 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3147 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3148 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3149 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3150 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3151 ADDSHORT(frm, caps); 3152 3153 /* HT parameters */ 3154 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3155 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3156 ; 3157 frm++; 3158 3159 /* pre-zero remainder of ie */ 3160 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3161 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3162 3163 /* supported MCS set */ 3164 /* 3165 * XXX: For sta mode the rate set should be restricted based 3166 * on the AP's capabilities, but ni_htrates isn't setup when 3167 * we're called to form an AssocReq frame so for now we're 3168 * restricted to the device capabilities. 3169 */ 3170 ieee80211_set_mcsset(ic, frm); 3171 3172 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3173 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3174 3175 /* HT extended capabilities */ 3176 extcaps = vap->iv_htextcaps & 0xffff; 3177 3178 ADDSHORT(frm, extcaps); 3179 3180 frm += sizeof(struct ieee80211_ie_htcap) - 3181 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3182 3183 return frm; 3184 #undef ADDSHORT 3185 } 3186 3187 /* 3188 * Add 802.11n HT capabilities information element 3189 */ 3190 uint8_t * 3191 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3192 struct ieee80211_channel *c) 3193 { 3194 frm[0] = IEEE80211_ELEMID_HTCAP; 3195 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3196 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3197 } 3198 3199 /* 3200 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3201 * used for compatibility w/ pre-draft implementations. 3202 */ 3203 uint8_t * 3204 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3205 { 3206 frm[0] = IEEE80211_ELEMID_VENDOR; 3207 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3208 frm[2] = (BCM_OUI >> 0) & 0xff; 3209 frm[3] = (BCM_OUI >> 8) & 0xff; 3210 frm[4] = (BCM_OUI >> 16) & 0xff; 3211 frm[5] = BCM_OUI_HTCAP; 3212 return ieee80211_add_htcap_body(frm + 6, ni); 3213 } 3214 3215 /* 3216 * Construct the MCS bit mask of basic rates 3217 * for inclusion in an HT information element. 3218 */ 3219 static void 3220 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3221 { 3222 int i; 3223 3224 for (i = 0; i < rs->rs_nrates; i++) { 3225 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3226 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3227 r < IEEE80211_HTRATE_MAXSIZE) { 3228 /* NB: this assumes a particular implementation */ 3229 setbit(frm, r); 3230 } 3231 } 3232 } 3233 3234 /* 3235 * Update the HTINFO ie for a beacon frame. 3236 */ 3237 void 3238 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3239 struct ieee80211_beacon_offsets *bo) 3240 { 3241 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3242 struct ieee80211_node *ni; 3243 const struct ieee80211_channel *bsschan; 3244 struct ieee80211com *ic = vap->iv_ic; 3245 struct ieee80211_ie_htinfo *ht = 3246 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3247 3248 ni = ieee80211_ref_node(vap->iv_bss); 3249 bsschan = ni->ni_chan; 3250 3251 /* XXX only update on channel change */ 3252 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3253 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3254 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3255 else 3256 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3257 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3258 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3259 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3260 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3261 else 3262 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3263 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3264 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3265 3266 /* protection mode */ 3267 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3268 3269 ieee80211_free_node(ni); 3270 3271 /* XXX propagate to vendor ie's */ 3272 #undef PROTMODE 3273 } 3274 3275 /* 3276 * Add body of an HTINFO information element. 3277 * 3278 * NB: We don't use struct ieee80211_ie_htinfo because we can 3279 * be called to fillin both a standard ie and a compat ie that 3280 * has a vendor OUI at the front. 3281 */ 3282 static uint8_t * 3283 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3284 { 3285 struct ieee80211vap *vap = ni->ni_vap; 3286 struct ieee80211com *ic = ni->ni_ic; 3287 3288 /* pre-zero remainder of ie */ 3289 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3290 3291 /* primary/control channel center */ 3292 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3293 3294 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3295 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3296 else 3297 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3298 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3299 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3300 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3301 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3302 else 3303 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3304 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3305 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3306 3307 frm[1] = ic->ic_curhtprotmode; 3308 3309 frm += 5; 3310 3311 /* basic MCS set */ 3312 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3313 frm += sizeof(struct ieee80211_ie_htinfo) - 3314 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3315 return frm; 3316 } 3317 3318 /* 3319 * Add 802.11n HT information information element. 3320 */ 3321 uint8_t * 3322 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3323 { 3324 frm[0] = IEEE80211_ELEMID_HTINFO; 3325 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3326 return ieee80211_add_htinfo_body(frm + 2, ni); 3327 } 3328 3329 /* 3330 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3331 * used for compatibility w/ pre-draft implementations. 3332 */ 3333 uint8_t * 3334 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3335 { 3336 frm[0] = IEEE80211_ELEMID_VENDOR; 3337 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3338 frm[2] = (BCM_OUI >> 0) & 0xff; 3339 frm[3] = (BCM_OUI >> 8) & 0xff; 3340 frm[4] = (BCM_OUI >> 16) & 0xff; 3341 frm[5] = BCM_OUI_HTINFO; 3342 return ieee80211_add_htinfo_body(frm + 6, ni); 3343 } 3344