xref: /freebsd/sys/net80211/ieee80211_ht.c (revision 5e386598a6d77973b93c073080f0cc574edda9e2)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 #ifdef __FreeBSD__
28 __FBSDID("$FreeBSD$");
29 #endif
30 
31 /*
32  * IEEE 802.11n protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/systm.h>
42 #include <sys/endian.h>
43 
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_action.h>
53 #include <net80211/ieee80211_input.h>
54 
55 /* define here, used throughout file */
56 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
57 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
58 
59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
60 	{  13,  14,   27,   30 },	/* MCS 0 */
61 	{  26,  29,   54,   60 },	/* MCS 1 */
62 	{  39,  43,   81,   90 },	/* MCS 2 */
63 	{  52,  58,  108,  120 },	/* MCS 3 */
64 	{  78,  87,  162,  180 },	/* MCS 4 */
65 	{ 104, 116,  216,  240 },	/* MCS 5 */
66 	{ 117, 130,  243,  270 },	/* MCS 6 */
67 	{ 130, 144,  270,  300 },	/* MCS 7 */
68 	{  26,  29,   54,   60 },	/* MCS 8 */
69 	{  52,  58,  108,  120 },	/* MCS 9 */
70 	{  78,  87,  162,  180 },	/* MCS 10 */
71 	{ 104, 116,  216,  240 },	/* MCS 11 */
72 	{ 156, 173,  324,  360 },	/* MCS 12 */
73 	{ 208, 231,  432,  480 },	/* MCS 13 */
74 	{ 234, 260,  486,  540 },	/* MCS 14 */
75 	{ 260, 289,  540,  600 },	/* MCS 15 */
76 	{  39,  43,   81,   90 },	/* MCS 16 */
77 	{  78,  87,  162,  180 },	/* MCS 17 */
78 	{ 117, 130,  243,  270 },	/* MCS 18 */
79 	{ 156, 173,  324,  360 },	/* MCS 19 */
80 	{ 234, 260,  486,  540 },	/* MCS 20 */
81 	{ 312, 347,  648,  720 },	/* MCS 21 */
82 	{ 351, 390,  729,  810 },	/* MCS 22 */
83 	{ 390, 433,  810,  900 },	/* MCS 23 */
84 	{  52,  58,  108,  120 },	/* MCS 24 */
85 	{ 104, 116,  216,  240 },	/* MCS 25 */
86 	{ 156, 173,  324,  360 },	/* MCS 26 */
87 	{ 208, 231,  432,  480 },	/* MCS 27 */
88 	{ 312, 347,  648,  720 },	/* MCS 28 */
89 	{ 416, 462,  864,  960 },	/* MCS 29 */
90 	{ 468, 520,  972, 1080 },	/* MCS 30 */
91 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
92 	{   0,   0,   12,   13 },	/* MCS 32 */
93 	{  78,  87,  162,  180 },	/* MCS 33 */
94 	{ 104, 116,  216,  240 },	/* MCS 34 */
95 	{ 130, 144,  270,  300 },	/* MCS 35 */
96 	{ 117, 130,  243,  270 },	/* MCS 36 */
97 	{ 156, 173,  324,  360 },	/* MCS 37 */
98 	{ 195, 217,  405,  450 },	/* MCS 38 */
99 	{ 104, 116,  216,  240 },	/* MCS 39 */
100 	{ 130, 144,  270,  300 },	/* MCS 40 */
101 	{ 130, 144,  270,  300 },	/* MCS 41 */
102 	{ 156, 173,  324,  360 },	/* MCS 42 */
103 	{ 182, 202,  378,  420 },	/* MCS 43 */
104 	{ 182, 202,  378,  420 },	/* MCS 44 */
105 	{ 208, 231,  432,  480 },	/* MCS 45 */
106 	{ 156, 173,  324,  360 },	/* MCS 46 */
107 	{ 195, 217,  405,  450 },	/* MCS 47 */
108 	{ 195, 217,  405,  450 },	/* MCS 48 */
109 	{ 234, 260,  486,  540 },	/* MCS 49 */
110 	{ 273, 303,  567,  630 },	/* MCS 50 */
111 	{ 273, 303,  567,  630 },	/* MCS 51 */
112 	{ 312, 347,  648,  720 },	/* MCS 52 */
113 	{ 130, 144,  270,  300 },	/* MCS 53 */
114 	{ 156, 173,  324,  360 },	/* MCS 54 */
115 	{ 182, 202,  378,  420 },	/* MCS 55 */
116 	{ 156, 173,  324,  360 },	/* MCS 56 */
117 	{ 182, 202,  378,  420 },	/* MCS 57 */
118 	{ 208, 231,  432,  480 },	/* MCS 58 */
119 	{ 234, 260,  486,  540 },	/* MCS 59 */
120 	{ 208, 231,  432,  480 },	/* MCS 60 */
121 	{ 234, 260,  486,  540 },	/* MCS 61 */
122 	{ 260, 289,  540,  600 },	/* MCS 62 */
123 	{ 260, 289,  540,  600 },	/* MCS 63 */
124 	{ 286, 318,  594,  660 },	/* MCS 64 */
125 	{ 195, 217,  405,  450 },	/* MCS 65 */
126 	{ 234, 260,  486,  540 },	/* MCS 66 */
127 	{ 273, 303,  567,  630 },	/* MCS 67 */
128 	{ 234, 260,  486,  540 },	/* MCS 68 */
129 	{ 273, 303,  567,  630 },	/* MCS 69 */
130 	{ 312, 347,  648,  720 },	/* MCS 70 */
131 	{ 351, 390,  729,  810 },	/* MCS 71 */
132 	{ 312, 347,  648,  720 },	/* MCS 72 */
133 	{ 351, 390,  729,  810 },	/* MCS 73 */
134 	{ 390, 433,  810,  900 },	/* MCS 74 */
135 	{ 390, 433,  810,  900 },	/* MCS 75 */
136 	{ 429, 477,  891,  990 },	/* MCS 76 */
137 };
138 
139 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW,
141 	&ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
142 	"AMPDU max reorder age (ms)");
143 
144 static	int ieee80211_recv_bar_ena = 1;
145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
146 	    0, "BAR frame processing (ena/dis)");
147 
148 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW,
150 	&ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
151 	"ADDBA request timeout (ms)");
152 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW,
154 	&ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
155 	"ADDBA request backoff (ms)");
156 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
158 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
159 
160 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
161 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
162 
163 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
164 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
165 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
166 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
167 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
168 
169 static	ieee80211_send_action_func ht_send_action_ba_addba;
170 static	ieee80211_send_action_func ht_send_action_ba_delba;
171 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
172 
173 static void
174 ieee80211_ht_init(void)
175 {
176 	/*
177 	 * Setup HT parameters that depends on the clock frequency.
178 	 */
179 	ieee80211_ampdu_age = msecs_to_ticks(500);
180 	ieee80211_addba_timeout = msecs_to_ticks(250);
181 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
182 	ieee80211_bar_timeout = msecs_to_ticks(250);
183 	/*
184 	 * Register action frame handlers.
185 	 */
186 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
187 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
188 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
189 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
190 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
191 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
192 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
193 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
194 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
195 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
196 
197 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
198 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
199 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
200 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
201 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
202 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
203 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
204 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
205 }
206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
207 
208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
209 	struct ieee80211_tx_ampdu *tap);
210 static int ieee80211_addba_request(struct ieee80211_node *ni,
211 	struct ieee80211_tx_ampdu *tap,
212 	int dialogtoken, int baparamset, int batimeout);
213 static int ieee80211_addba_response(struct ieee80211_node *ni,
214 	struct ieee80211_tx_ampdu *tap,
215 	int code, int baparamset, int batimeout);
216 static void ieee80211_addba_stop(struct ieee80211_node *ni,
217 	struct ieee80211_tx_ampdu *tap);
218 static void null_addba_response_timeout(struct ieee80211_node *ni,
219 	struct ieee80211_tx_ampdu *tap);
220 
221 static void ieee80211_bar_response(struct ieee80211_node *ni,
222 	struct ieee80211_tx_ampdu *tap, int status);
223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
226 	int baparamset, int batimeout, int baseqctl);
227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
228 
229 void
230 ieee80211_ht_attach(struct ieee80211com *ic)
231 {
232 	/* setup default aggregation policy */
233 	ic->ic_recv_action = ieee80211_recv_action;
234 	ic->ic_send_action = ieee80211_send_action;
235 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
236 	ic->ic_addba_request = ieee80211_addba_request;
237 	ic->ic_addba_response = ieee80211_addba_response;
238 	ic->ic_addba_response_timeout = null_addba_response_timeout;
239 	ic->ic_addba_stop = ieee80211_addba_stop;
240 	ic->ic_bar_response = ieee80211_bar_response;
241 	ic->ic_ampdu_rx_start = ampdu_rx_start;
242 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
243 
244 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
245 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
246 }
247 
248 void
249 ieee80211_ht_detach(struct ieee80211com *ic)
250 {
251 }
252 
253 void
254 ieee80211_ht_vattach(struct ieee80211vap *vap)
255 {
256 
257 	/* driver can override defaults */
258 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
259 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
260 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
261 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
262 	/* tx aggregation traffic thresholds */
263 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
264 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
265 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
266 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
267 
268 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
269 		/*
270 		 * Device is HT capable; enable all HT-related
271 		 * facilities by default.
272 		 * XXX these choices may be too aggressive.
273 		 */
274 		vap->iv_flags_ht |= IEEE80211_FHT_HT
275 				 |  IEEE80211_FHT_HTCOMPAT
276 				 ;
277 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
278 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
279 		/* XXX infer from channel list? */
280 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
281 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
282 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
283 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
284 		}
285 		/* enable RIFS if capable */
286 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
287 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
288 
289 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
290 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
291 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
292 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
293 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
294 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
295 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
296 
297 		if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC)
298 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX;
299 		if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC)
300 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX;
301 
302 		if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC)
303 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX;
304 		if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC)
305 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX;
306 	}
307 	/* NB: disable default legacy WDS, too many issues right now */
308 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
309 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
310 }
311 
312 void
313 ieee80211_ht_vdetach(struct ieee80211vap *vap)
314 {
315 }
316 
317 static int
318 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
319     int ratetype)
320 {
321 	int mword, rate;
322 
323 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
324 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
325 		return (0);
326 	switch (ratetype) {
327 	case 0:
328 		rate = ieee80211_htrates[index].ht20_rate_800ns;
329 		break;
330 	case 1:
331 		rate = ieee80211_htrates[index].ht20_rate_400ns;
332 		break;
333 	case 2:
334 		rate = ieee80211_htrates[index].ht40_rate_800ns;
335 		break;
336 	default:
337 		rate = ieee80211_htrates[index].ht40_rate_400ns;
338 		break;
339 	}
340 	return (rate);
341 }
342 
343 static struct printranges {
344 	int	minmcs;
345 	int	maxmcs;
346 	int	txstream;
347 	int	ratetype;
348 	int	htcapflags;
349 } ranges[] = {
350 	{  0,  7, 1, 0, 0 },
351 	{  8, 15, 2, 0, 0 },
352 	{ 16, 23, 3, 0, 0 },
353 	{ 24, 31, 4, 0, 0 },
354 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
355 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
356 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
357 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
358 	{  0,  0, 0, 0, 0 },
359 };
360 
361 static void
362 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
363 {
364 	int minrate, maxrate;
365 	struct printranges *range;
366 
367 	for (range = ranges; range->txstream != 0; range++) {
368 		if (ic->ic_txstream < range->txstream)
369 			continue;
370 		if (range->htcapflags &&
371 		    (ic->ic_htcaps & range->htcapflags) == 0)
372 			continue;
373 		if (ratetype < range->ratetype)
374 			continue;
375 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
376 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
377 		if (range->maxmcs) {
378 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
379 			    range->minmcs, range->maxmcs,
380 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
381 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
382 		} else {
383 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
384 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
385 		}
386 	}
387 }
388 
389 static void
390 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
391 {
392 	const char *modestr = ieee80211_phymode_name[mode];
393 
394 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
395 	ht_rateprint(ic, mode, 0);
396 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
397 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
398 		ht_rateprint(ic, mode, 1);
399 	}
400 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
401 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
402 		ht_rateprint(ic, mode, 2);
403 	}
404 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
405 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
406 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
407 		ht_rateprint(ic, mode, 3);
408 	}
409 }
410 
411 void
412 ieee80211_ht_announce(struct ieee80211com *ic)
413 {
414 
415 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
416 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
417 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
418 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
419 		ht_announce(ic, IEEE80211_MODE_11NA);
420 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
421 		ht_announce(ic, IEEE80211_MODE_11NG);
422 }
423 
424 void
425 ieee80211_init_suphtrates(struct ieee80211com *ic)
426 {
427 #define	ADDRATE(x)	do {						\
428 	htrateset->rs_rates[htrateset->rs_nrates] = x;			\
429 	htrateset->rs_nrates++;						\
430 } while (0)
431 	struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates;
432 	int i;
433 
434 	memset(htrateset, 0, sizeof(struct ieee80211_htrateset));
435 	for (i = 0; i < ic->ic_txstream * 8; i++)
436 		ADDRATE(i);
437 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
438 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
439 		ADDRATE(32);
440 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
441 		if (ic->ic_txstream >= 2) {
442 			 for (i = 33; i <= 38; i++)
443 				ADDRATE(i);
444 		}
445 		if (ic->ic_txstream >= 3) {
446 			for (i = 39; i <= 52; i++)
447 				ADDRATE(i);
448 		}
449 		if (ic->ic_txstream == 4) {
450 			for (i = 53; i <= 76; i++)
451 				ADDRATE(i);
452 		}
453 	}
454 #undef	ADDRATE
455 }
456 
457 /*
458  * Receive processing.
459  */
460 
461 /*
462  * Decap the encapsulated A-MSDU frames and dispatch all but
463  * the last for delivery.  The last frame is returned for
464  * delivery via the normal path.
465  */
466 struct mbuf *
467 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
468 {
469 	struct ieee80211vap *vap = ni->ni_vap;
470 	int framelen;
471 	struct mbuf *n;
472 
473 	/* discard 802.3 header inserted by ieee80211_decap */
474 	m_adj(m, sizeof(struct ether_header));
475 
476 	vap->iv_stats.is_amsdu_decap++;
477 
478 	for (;;) {
479 		/*
480 		 * Decap the first frame, bust it apart from the
481 		 * remainder and deliver.  We leave the last frame
482 		 * delivery to the caller (for consistency with other
483 		 * code paths, could also do it here).
484 		 */
485 		m = ieee80211_decap1(m, &framelen);
486 		if (m == NULL) {
487 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
488 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
489 			vap->iv_stats.is_amsdu_tooshort++;
490 			return NULL;
491 		}
492 		if (m->m_pkthdr.len == framelen)
493 			break;
494 		n = m_split(m, framelen, M_NOWAIT);
495 		if (n == NULL) {
496 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
497 			    ni->ni_macaddr, "a-msdu",
498 			    "%s", "unable to split encapsulated frames");
499 			vap->iv_stats.is_amsdu_split++;
500 			m_freem(m);			/* NB: must reclaim */
501 			return NULL;
502 		}
503 		vap->iv_deliver_data(vap, ni, m);
504 
505 		/*
506 		 * Remove frame contents; each intermediate frame
507 		 * is required to be aligned to a 4-byte boundary.
508 		 */
509 		m = n;
510 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
511 	}
512 	return m;				/* last delivered by caller */
513 }
514 
515 /*
516  * Purge all frames in the A-MPDU re-order queue.
517  */
518 static void
519 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
520 {
521 	struct mbuf *m;
522 	int i;
523 
524 	for (i = 0; i < rap->rxa_wnd; i++) {
525 		m = rap->rxa_m[i];
526 		if (m != NULL) {
527 			rap->rxa_m[i] = NULL;
528 			rap->rxa_qbytes -= m->m_pkthdr.len;
529 			m_freem(m);
530 			if (--rap->rxa_qframes == 0)
531 				break;
532 		}
533 	}
534 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
535 	    ("lost %u data, %u frames on ampdu rx q",
536 	    rap->rxa_qbytes, rap->rxa_qframes));
537 }
538 
539 /*
540  * Start A-MPDU rx/re-order processing for the specified TID.
541  */
542 static int
543 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
544 	int baparamset, int batimeout, int baseqctl)
545 {
546 	int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
547 
548 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
549 		/*
550 		 * AMPDU previously setup and not terminated with a DELBA,
551 		 * flush the reorder q's in case anything remains.
552 		 */
553 		ampdu_rx_purge(rap);
554 	}
555 	memset(rap, 0, sizeof(*rap));
556 	rap->rxa_wnd = (bufsiz == 0) ?
557 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
558 	rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START);
559 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
560 
561 	return 0;
562 }
563 
564 /*
565  * Public function; manually setup the RX ampdu state.
566  */
567 int
568 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
569 {
570 	struct ieee80211_rx_ampdu *rap;
571 
572 	/* XXX TODO: sanity check tid, seq, baw */
573 
574 	rap = &ni->ni_rx_ampdu[tid];
575 
576 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
577 		/*
578 		 * AMPDU previously setup and not terminated with a DELBA,
579 		 * flush the reorder q's in case anything remains.
580 		 */
581 		ampdu_rx_purge(rap);
582 	}
583 
584 	memset(rap, 0, sizeof(*rap));
585 	rap->rxa_wnd = (baw== 0) ?
586 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
587 	if (seq == -1) {
588 		/* Wait for the first RX frame, use that as BAW */
589 		rap->rxa_start = 0;
590 		rap->rxa_flags |= IEEE80211_AGGR_WAITRX;
591 	} else {
592 		rap->rxa_start = seq;
593 	}
594 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
595 
596 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
597 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x",
598 	    __func__,
599 	    tid,
600 	    seq,
601 	    rap->rxa_wnd,
602 	    rap->rxa_flags);
603 
604 	return 0;
605 }
606 
607 /*
608  * Public function; manually stop the RX AMPDU state.
609  */
610 void
611 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid)
612 {
613 	struct ieee80211_rx_ampdu *rap;
614 
615 	/* XXX TODO: sanity check tid, seq, baw */
616 	rap = &ni->ni_rx_ampdu[tid];
617 	ampdu_rx_stop(ni, rap);
618 }
619 
620 /*
621  * Stop A-MPDU rx processing for the specified TID.
622  */
623 static void
624 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
625 {
626 
627 	ampdu_rx_purge(rap);
628 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING
629 	    | IEEE80211_AGGR_XCHGPEND
630 	    | IEEE80211_AGGR_WAITRX);
631 }
632 
633 /*
634  * Dispatch a frame from the A-MPDU reorder queue.  The
635  * frame is fed back into ieee80211_input marked with an
636  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
637  * permits ieee80211_input to optimize re-processing).
638  */
639 static __inline void
640 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
641 {
642 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
643 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
644 	(void) ieee80211_input(ni, m, 0, 0);
645 }
646 
647 /*
648  * Dispatch as many frames as possible from the re-order queue.
649  * Frames will always be "at the front"; we process all frames
650  * up to the first empty slot in the window.  On completion we
651  * cleanup state if there are still pending frames in the current
652  * BA window.  We assume the frame at slot 0 is already handled
653  * by the caller; we always start at slot 1.
654  */
655 static void
656 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
657 {
658 	struct ieee80211vap *vap = ni->ni_vap;
659 	struct mbuf *m;
660 	int i;
661 
662 	/* flush run of frames */
663 	for (i = 1; i < rap->rxa_wnd; i++) {
664 		m = rap->rxa_m[i];
665 		if (m == NULL)
666 			break;
667 		rap->rxa_m[i] = NULL;
668 		rap->rxa_qbytes -= m->m_pkthdr.len;
669 		rap->rxa_qframes--;
670 
671 		ampdu_dispatch(ni, m);
672 	}
673 	/*
674 	 * If frames remain, copy the mbuf pointers down so
675 	 * they correspond to the offsets in the new window.
676 	 */
677 	if (rap->rxa_qframes != 0) {
678 		int n = rap->rxa_qframes, j;
679 		for (j = i+1; j < rap->rxa_wnd; j++) {
680 			if (rap->rxa_m[j] != NULL) {
681 				rap->rxa_m[j-i] = rap->rxa_m[j];
682 				rap->rxa_m[j] = NULL;
683 				if (--n == 0)
684 					break;
685 			}
686 		}
687 		KASSERT(n == 0, ("lost %d frames", n));
688 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
689 	}
690 	/*
691 	 * Adjust the start of the BA window to
692 	 * reflect the frames just dispatched.
693 	 */
694 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
695 	vap->iv_stats.is_ampdu_rx_oor += i;
696 }
697 
698 /*
699  * Dispatch all frames in the A-MPDU re-order queue.
700  */
701 static void
702 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
703 {
704 	struct ieee80211vap *vap = ni->ni_vap;
705 	struct mbuf *m;
706 	int i;
707 
708 	for (i = 0; i < rap->rxa_wnd; i++) {
709 		m = rap->rxa_m[i];
710 		if (m == NULL)
711 			continue;
712 		rap->rxa_m[i] = NULL;
713 		rap->rxa_qbytes -= m->m_pkthdr.len;
714 		rap->rxa_qframes--;
715 		vap->iv_stats.is_ampdu_rx_oor++;
716 
717 		ampdu_dispatch(ni, m);
718 		if (rap->rxa_qframes == 0)
719 			break;
720 	}
721 }
722 
723 /*
724  * Dispatch all frames in the A-MPDU re-order queue
725  * preceding the specified sequence number.  This logic
726  * handles window moves due to a received MSDU or BAR.
727  */
728 static void
729 ampdu_rx_flush_upto(struct ieee80211_node *ni,
730 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
731 {
732 	struct ieee80211vap *vap = ni->ni_vap;
733 	struct mbuf *m;
734 	ieee80211_seq seqno;
735 	int i;
736 
737 	/*
738 	 * Flush any complete MSDU's with a sequence number lower
739 	 * than winstart.  Gaps may exist.  Note that we may actually
740 	 * dispatch frames past winstart if a run continues; this is
741 	 * an optimization that avoids having to do a separate pass
742 	 * to dispatch frames after moving the BA window start.
743 	 */
744 	seqno = rap->rxa_start;
745 	for (i = 0; i < rap->rxa_wnd; i++) {
746 		m = rap->rxa_m[i];
747 		if (m != NULL) {
748 			rap->rxa_m[i] = NULL;
749 			rap->rxa_qbytes -= m->m_pkthdr.len;
750 			rap->rxa_qframes--;
751 			vap->iv_stats.is_ampdu_rx_oor++;
752 
753 			ampdu_dispatch(ni, m);
754 		} else {
755 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
756 				break;
757 		}
758 		seqno = IEEE80211_SEQ_INC(seqno);
759 	}
760 	/*
761 	 * If frames remain, copy the mbuf pointers down so
762 	 * they correspond to the offsets in the new window.
763 	 */
764 	if (rap->rxa_qframes != 0) {
765 		int n = rap->rxa_qframes, j;
766 
767 		/* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */
768 		KASSERT(rap->rxa_m[0] == NULL,
769 		    ("%s: BA window slot 0 occupied", __func__));
770 		for (j = i+1; j < rap->rxa_wnd; j++) {
771 			if (rap->rxa_m[j] != NULL) {
772 				rap->rxa_m[j-i] = rap->rxa_m[j];
773 				rap->rxa_m[j] = NULL;
774 				if (--n == 0)
775 					break;
776 			}
777 		}
778 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
779 		    "BA win <%d:%d> winstart %d",
780 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
781 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
782 		    winstart));
783 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
784 	}
785 	/*
786 	 * Move the start of the BA window; we use the
787 	 * sequence number of the last MSDU that was
788 	 * passed up the stack+1 or winstart if stopped on
789 	 * a gap in the reorder buffer.
790 	 */
791 	rap->rxa_start = seqno;
792 }
793 
794 /*
795  * Process a received QoS data frame for an HT station.  Handle
796  * A-MPDU reordering: if this frame is received out of order
797  * and falls within the BA window hold onto it.  Otherwise if
798  * this frame completes a run, flush any pending frames.  We
799  * return 1 if the frame is consumed.  A 0 is returned if
800  * the frame should be processed normally by the caller.
801  */
802 int
803 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m)
804 {
805 #define	PROCESS		0	/* caller should process frame */
806 #define	CONSUMED	1	/* frame consumed, caller does nothing */
807 	struct ieee80211vap *vap = ni->ni_vap;
808 	struct ieee80211_qosframe *wh;
809 	struct ieee80211_rx_ampdu *rap;
810 	ieee80211_seq rxseq;
811 	uint8_t tid;
812 	int off;
813 
814 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
815 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
816 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
817 
818 	/* NB: m_len known to be sufficient */
819 	wh = mtod(m, struct ieee80211_qosframe *);
820 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
821 		/*
822 		 * Not QoS data, shouldn't get here but just
823 		 * return it to the caller for processing.
824 		 */
825 		return PROCESS;
826 	}
827 
828 	/*
829 	 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery.
830 	 *
831 	 * Multicast QoS data frames are checked against a different
832 	 * counter, not the per-TID counter.
833 	 */
834 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
835 		return PROCESS;
836 
837 	if (IEEE80211_IS_DSTODS(wh))
838 		tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0];
839 	else
840 		tid = wh->i_qos[0];
841 	tid &= IEEE80211_QOS_TID;
842 	rap = &ni->ni_rx_ampdu[tid];
843 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
844 		/*
845 		 * No ADDBA request yet, don't touch.
846 		 */
847 		return PROCESS;
848 	}
849 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
850 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
851 		/*
852 		 * Fragments are not allowed; toss.
853 		 */
854 		IEEE80211_DISCARD_MAC(vap,
855 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
856 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
857 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
858 		vap->iv_stats.is_ampdu_rx_drop++;
859 		IEEE80211_NODE_STAT(ni, rx_drop);
860 		m_freem(m);
861 		return CONSUMED;
862 	}
863 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
864 	rap->rxa_nframes++;
865 
866 	/*
867 	 * Handle waiting for the first frame to define the BAW.
868 	 * Some firmware doesn't provide the RX of the starting point
869 	 * of the BAW and we have to cope.
870 	 */
871 	if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) {
872 		rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX;
873 		rap->rxa_start = rxseq;
874 	}
875 again:
876 	if (rxseq == rap->rxa_start) {
877 		/*
878 		 * First frame in window.
879 		 */
880 		if (rap->rxa_qframes != 0) {
881 			/*
882 			 * Dispatch as many packets as we can.
883 			 */
884 			KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup"));
885 			ampdu_dispatch(ni, m);
886 			ampdu_rx_dispatch(rap, ni);
887 			return CONSUMED;
888 		} else {
889 			/*
890 			 * In order; advance window and notify
891 			 * caller to dispatch directly.
892 			 */
893 			rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
894 			return PROCESS;
895 		}
896 	}
897 	/*
898 	 * Frame is out of order; store if in the BA window.
899 	 */
900 	/* calculate offset in BA window */
901 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
902 	if (off < rap->rxa_wnd) {
903 		/*
904 		 * Common case (hopefully): in the BA window.
905 		 * Sec 9.10.7.6.2 a) (p.137)
906 		 */
907 
908 		/*
909 		 * Check for frames sitting too long in the reorder queue.
910 		 * This should only ever happen if frames are not delivered
911 		 * without the sender otherwise notifying us (e.g. with a
912 		 * BAR to move the window).  Typically this happens because
913 		 * of vendor bugs that cause the sequence number to jump.
914 		 * When this happens we get a gap in the reorder queue that
915 		 * leaves frame sitting on the queue until they get pushed
916 		 * out due to window moves.  When the vendor does not send
917 		 * BAR this move only happens due to explicit packet sends
918 		 *
919 		 * NB: we only track the time of the oldest frame in the
920 		 * reorder q; this means that if we flush we might push
921 		 * frames that still "new"; if this happens then subsequent
922 		 * frames will result in BA window moves which cost something
923 		 * but is still better than a big throughput dip.
924 		 */
925 		if (rap->rxa_qframes != 0) {
926 			/* XXX honor batimeout? */
927 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
928 				/*
929 				 * Too long since we received the first
930 				 * frame; flush the reorder buffer.
931 				 */
932 				if (rap->rxa_qframes != 0) {
933 					vap->iv_stats.is_ampdu_rx_age +=
934 					    rap->rxa_qframes;
935 					ampdu_rx_flush(ni, rap);
936 				}
937 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
938 				return PROCESS;
939 			}
940 		} else {
941 			/*
942 			 * First frame, start aging timer.
943 			 */
944 			rap->rxa_age = ticks;
945 		}
946 
947 		/* save packet */
948 		if (rap->rxa_m[off] == NULL) {
949 			rap->rxa_m[off] = m;
950 			rap->rxa_qframes++;
951 			rap->rxa_qbytes += m->m_pkthdr.len;
952 			vap->iv_stats.is_ampdu_rx_reorder++;
953 		} else {
954 			IEEE80211_DISCARD_MAC(vap,
955 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
956 			    ni->ni_macaddr, "a-mpdu duplicate",
957 			    "seqno %u tid %u BA win <%u:%u>",
958 			    rxseq, tid, rap->rxa_start,
959 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
960 			vap->iv_stats.is_rx_dup++;
961 			IEEE80211_NODE_STAT(ni, rx_dup);
962 			m_freem(m);
963 		}
964 		return CONSUMED;
965 	}
966 	if (off < IEEE80211_SEQ_BA_RANGE) {
967 		/*
968 		 * Outside the BA window, but within range;
969 		 * flush the reorder q and move the window.
970 		 * Sec 9.10.7.6.2 b) (p.138)
971 		 */
972 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
973 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
974 		    rap->rxa_start,
975 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
976 		    rap->rxa_qframes, rxseq, tid);
977 		vap->iv_stats.is_ampdu_rx_move++;
978 
979 		/*
980 		 * The spec says to flush frames up to but not including:
981 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
982 		 * Then insert the frame or notify the caller to process
983 		 * it immediately.  We can safely do this by just starting
984 		 * over again because we know the frame will now be within
985 		 * the BA window.
986 		 */
987 		/* NB: rxa_wnd known to be >0 */
988 		ampdu_rx_flush_upto(ni, rap,
989 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
990 		goto again;
991 	} else {
992 		/*
993 		 * Outside the BA window and out of range; toss.
994 		 * Sec 9.10.7.6.2 c) (p.138)
995 		 */
996 		IEEE80211_DISCARD_MAC(vap,
997 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
998 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
999 		    rap->rxa_start,
1000 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1001 		    rap->rxa_qframes, rxseq, tid,
1002 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1003 		vap->iv_stats.is_ampdu_rx_drop++;
1004 		IEEE80211_NODE_STAT(ni, rx_drop);
1005 		m_freem(m);
1006 		return CONSUMED;
1007 	}
1008 #undef CONSUMED
1009 #undef PROCESS
1010 }
1011 
1012 /*
1013  * Process a BAR ctl frame.  Dispatch all frames up to
1014  * the sequence number of the frame.  If this frame is
1015  * out of range it's discarded.
1016  */
1017 void
1018 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
1019 {
1020 	struct ieee80211vap *vap = ni->ni_vap;
1021 	struct ieee80211_frame_bar *wh;
1022 	struct ieee80211_rx_ampdu *rap;
1023 	ieee80211_seq rxseq;
1024 	int tid, off;
1025 
1026 	if (!ieee80211_recv_bar_ena) {
1027 #if 0
1028 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
1029 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
1030 #endif
1031 		vap->iv_stats.is_ampdu_bar_bad++;
1032 		return;
1033 	}
1034 	wh = mtod(m0, struct ieee80211_frame_bar *);
1035 	/* XXX check basic BAR */
1036 	tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
1037 	rap = &ni->ni_rx_ampdu[tid];
1038 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1039 		/*
1040 		 * No ADDBA request yet, don't touch.
1041 		 */
1042 		IEEE80211_DISCARD_MAC(vap,
1043 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1044 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1045 		vap->iv_stats.is_ampdu_bar_bad++;
1046 		return;
1047 	}
1048 	vap->iv_stats.is_ampdu_bar_rx++;
1049 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1050 	if (rxseq == rap->rxa_start)
1051 		return;
1052 	/* calculate offset in BA window */
1053 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1054 	if (off < IEEE80211_SEQ_BA_RANGE) {
1055 		/*
1056 		 * Flush the reorder q up to rxseq and move the window.
1057 		 * Sec 9.10.7.6.3 a) (p.138)
1058 		 */
1059 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1060 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1061 		    rap->rxa_start,
1062 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1063 		    rap->rxa_qframes, rxseq, tid);
1064 		vap->iv_stats.is_ampdu_bar_move++;
1065 
1066 		ampdu_rx_flush_upto(ni, rap, rxseq);
1067 		if (off >= rap->rxa_wnd) {
1068 			/*
1069 			 * BAR specifies a window start to the right of BA
1070 			 * window; we must move it explicitly since
1071 			 * ampdu_rx_flush_upto will not.
1072 			 */
1073 			rap->rxa_start = rxseq;
1074 		}
1075 	} else {
1076 		/*
1077 		 * Out of range; toss.
1078 		 * Sec 9.10.7.6.3 b) (p.138)
1079 		 */
1080 		IEEE80211_DISCARD_MAC(vap,
1081 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1082 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1083 		    rap->rxa_start,
1084 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1085 		    rap->rxa_qframes, rxseq, tid,
1086 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1087 		vap->iv_stats.is_ampdu_bar_oow++;
1088 		IEEE80211_NODE_STAT(ni, rx_drop);
1089 	}
1090 }
1091 
1092 /*
1093  * Setup HT-specific state in a node.  Called only
1094  * when HT use is negotiated so we don't do extra
1095  * work for temporary and/or legacy sta's.
1096  */
1097 void
1098 ieee80211_ht_node_init(struct ieee80211_node *ni)
1099 {
1100 	struct ieee80211_tx_ampdu *tap;
1101 	int tid;
1102 
1103 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1104 	    ni,
1105 	    "%s: called (%p)",
1106 	    __func__,
1107 	    ni);
1108 
1109 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1110 		/*
1111 		 * Clean AMPDU state on re-associate.  This handles the case
1112 		 * where a station leaves w/o notifying us and then returns
1113 		 * before node is reaped for inactivity.
1114 		 */
1115 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1116 		    ni,
1117 		    "%s: calling cleanup (%p)",
1118 		    __func__, ni);
1119 		ieee80211_ht_node_cleanup(ni);
1120 	}
1121 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1122 		tap = &ni->ni_tx_ampdu[tid];
1123 		tap->txa_tid = tid;
1124 		tap->txa_ni = ni;
1125 		ieee80211_txampdu_init_pps(tap);
1126 		/* NB: further initialization deferred */
1127 	}
1128 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1129 }
1130 
1131 /*
1132  * Cleanup HT-specific state in a node.  Called only
1133  * when HT use has been marked.
1134  */
1135 void
1136 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1137 {
1138 	struct ieee80211com *ic = ni->ni_ic;
1139 	int i;
1140 
1141 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1142 	    ni,
1143 	    "%s: called (%p)",
1144 	    __func__, ni);
1145 
1146 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1147 
1148 	/* XXX optimize this */
1149 	for (i = 0; i < WME_NUM_TID; i++) {
1150 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1151 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1152 			ampdu_tx_stop(tap);
1153 	}
1154 	for (i = 0; i < WME_NUM_TID; i++)
1155 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1156 
1157 	ni->ni_htcap = 0;
1158 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1159 }
1160 
1161 /*
1162  * Age out HT resources for a station.
1163  */
1164 void
1165 ieee80211_ht_node_age(struct ieee80211_node *ni)
1166 {
1167 	struct ieee80211vap *vap = ni->ni_vap;
1168 	uint8_t tid;
1169 
1170 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1171 
1172 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1173 		struct ieee80211_rx_ampdu *rap;
1174 
1175 		rap = &ni->ni_rx_ampdu[tid];
1176 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1177 			continue;
1178 		if (rap->rxa_qframes == 0)
1179 			continue;
1180 		/*
1181 		 * Check for frames sitting too long in the reorder queue.
1182 		 * See above for more details on what's happening here.
1183 		 */
1184 		/* XXX honor batimeout? */
1185 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1186 			/*
1187 			 * Too long since we received the first
1188 			 * frame; flush the reorder buffer.
1189 			 */
1190 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1191 			ampdu_rx_flush(ni, rap);
1192 		}
1193 	}
1194 }
1195 
1196 static struct ieee80211_channel *
1197 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1198 {
1199 	return ieee80211_find_channel(ic, c->ic_freq,
1200 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1201 }
1202 
1203 /*
1204  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1205  */
1206 struct ieee80211_channel *
1207 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1208 	struct ieee80211_channel *chan, int flags)
1209 {
1210 	struct ieee80211_channel *c;
1211 
1212 	if (flags & IEEE80211_FHT_HT) {
1213 		/* promote to HT if possible */
1214 		if (flags & IEEE80211_FHT_USEHT40) {
1215 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1216 				/* NB: arbitrarily pick ht40+ over ht40- */
1217 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1218 				if (c == NULL)
1219 					c = findhtchan(ic, chan,
1220 						IEEE80211_CHAN_HT40D);
1221 				if (c == NULL)
1222 					c = findhtchan(ic, chan,
1223 						IEEE80211_CHAN_HT20);
1224 				if (c != NULL)
1225 					chan = c;
1226 			}
1227 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1228 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1229 			if (c != NULL)
1230 				chan = c;
1231 		}
1232 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1233 		/* demote to legacy, HT use is disabled */
1234 		c = ieee80211_find_channel(ic, chan->ic_freq,
1235 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1236 		if (c != NULL)
1237 			chan = c;
1238 	}
1239 	return chan;
1240 }
1241 
1242 /*
1243  * Setup HT-specific state for a legacy WDS peer.
1244  */
1245 void
1246 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1247 {
1248 	struct ieee80211vap *vap = ni->ni_vap;
1249 	struct ieee80211_tx_ampdu *tap;
1250 	int tid;
1251 
1252 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1253 
1254 	/* XXX check scan cache in case peer has an ap and we have info */
1255 	/*
1256 	 * If setup with a legacy channel; locate an HT channel.
1257 	 * Otherwise if the inherited channel (from a companion
1258 	 * AP) is suitable use it so we use the same location
1259 	 * for the extension channel).
1260 	 */
1261 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1262 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1263 
1264 	ni->ni_htcap = 0;
1265 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1266 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1267 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1268 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1269 		ni->ni_chw = 40;
1270 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1271 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1272 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1273 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1274 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1275 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1276 	} else {
1277 		ni->ni_chw = 20;
1278 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1279 	}
1280 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1281 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1282 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1283 	/* XXX does it make sense to enable SMPS? */
1284 
1285 	ni->ni_htopmode = 0;		/* XXX need protection state */
1286 	ni->ni_htstbc = 0;		/* XXX need info */
1287 
1288 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1289 		tap = &ni->ni_tx_ampdu[tid];
1290 		tap->txa_tid = tid;
1291 		ieee80211_txampdu_init_pps(tap);
1292 	}
1293 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1294 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1295 }
1296 
1297 /*
1298  * Notify hostap vaps of a change in the HTINFO ie.
1299  */
1300 static void
1301 htinfo_notify(struct ieee80211com *ic)
1302 {
1303 	struct ieee80211vap *vap;
1304 	int first = 1;
1305 
1306 	IEEE80211_LOCK_ASSERT(ic);
1307 
1308 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1309 		if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1310 			continue;
1311 		if (vap->iv_state != IEEE80211_S_RUN ||
1312 		    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1313 			continue;
1314 		if (first) {
1315 			IEEE80211_NOTE(vap,
1316 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1317 			    vap->iv_bss,
1318 			    "HT bss occupancy change: %d sta, %d ht, "
1319 			    "%d ht40%s, HT protmode now 0x%x"
1320 			    , ic->ic_sta_assoc
1321 			    , ic->ic_ht_sta_assoc
1322 			    , ic->ic_ht40_sta_assoc
1323 			    , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1324 				 ", non-HT sta present" : ""
1325 			    , ic->ic_curhtprotmode);
1326 			first = 0;
1327 		}
1328 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1329 	}
1330 }
1331 
1332 /*
1333  * Calculate HT protection mode from current
1334  * state and handle updates.
1335  */
1336 static void
1337 htinfo_update(struct ieee80211com *ic)
1338 {
1339 	uint8_t protmode;
1340 
1341 	if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) {
1342 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1343 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1344 	} else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) {
1345 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1346 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1347 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1348 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1349 	    ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) {
1350 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1351 	} else {
1352 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1353 	}
1354 	if (protmode != ic->ic_curhtprotmode) {
1355 		ic->ic_curhtprotmode = protmode;
1356 		htinfo_notify(ic);
1357 	}
1358 }
1359 
1360 /*
1361  * Handle an HT station joining a BSS.
1362  */
1363 void
1364 ieee80211_ht_node_join(struct ieee80211_node *ni)
1365 {
1366 	struct ieee80211com *ic = ni->ni_ic;
1367 
1368 	IEEE80211_LOCK_ASSERT(ic);
1369 
1370 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1371 		ic->ic_ht_sta_assoc++;
1372 		if (ni->ni_chw == 40)
1373 			ic->ic_ht40_sta_assoc++;
1374 	}
1375 	htinfo_update(ic);
1376 }
1377 
1378 /*
1379  * Handle an HT station leaving a BSS.
1380  */
1381 void
1382 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1383 {
1384 	struct ieee80211com *ic = ni->ni_ic;
1385 
1386 	IEEE80211_LOCK_ASSERT(ic);
1387 
1388 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1389 		ic->ic_ht_sta_assoc--;
1390 		if (ni->ni_chw == 40)
1391 			ic->ic_ht40_sta_assoc--;
1392 	}
1393 	htinfo_update(ic);
1394 }
1395 
1396 /*
1397  * Public version of htinfo_update; used for processing
1398  * beacon frames from overlapping bss.
1399  *
1400  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1401  * (on receipt of a beacon that advertises MIXED) or
1402  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1403  * from an overlapping legacy bss).  We treat MIXED with
1404  * a higher precedence than PROTOPT (i.e. we will not change
1405  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1406  * corresponds to how we handle things in htinfo_update.
1407  */
1408 void
1409 ieee80211_htprot_update(struct ieee80211com *ic, int protmode)
1410 {
1411 #define	OPMODE(x)	SM(x, IEEE80211_HTINFO_OPMODE)
1412 	IEEE80211_LOCK(ic);
1413 
1414 	/* track non-HT station presence */
1415 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1416 	    ("protmode 0x%x", protmode));
1417 	ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1418 	ic->ic_lastnonht = ticks;
1419 
1420 	if (protmode != ic->ic_curhtprotmode &&
1421 	    (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1422 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1423 		/* push beacon update */
1424 		ic->ic_curhtprotmode = protmode;
1425 		htinfo_notify(ic);
1426 	}
1427 	IEEE80211_UNLOCK(ic);
1428 #undef OPMODE
1429 }
1430 
1431 /*
1432  * Time out presence of an overlapping bss with non-HT
1433  * stations.  When operating in hostap mode we listen for
1434  * beacons from other stations and if we identify a non-HT
1435  * station is present we update the opmode field of the
1436  * HTINFO ie.  To identify when all non-HT stations are
1437  * gone we time out this condition.
1438  */
1439 void
1440 ieee80211_ht_timeout(struct ieee80211com *ic)
1441 {
1442 	IEEE80211_LOCK_ASSERT(ic);
1443 
1444 	if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1445 	    ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1446 #if 0
1447 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1448 		    "%s", "time out non-HT STA present on channel");
1449 #endif
1450 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1451 		htinfo_update(ic);
1452 	}
1453 }
1454 
1455 /*
1456  * Process an 802.11n HT capabilities ie.
1457  */
1458 void
1459 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1460 {
1461 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1462 		/*
1463 		 * Station used Vendor OUI ie to associate;
1464 		 * mark the node so when we respond we'll use
1465 		 * the Vendor OUI's and not the standard ie's.
1466 		 */
1467 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1468 		ie += 4;
1469 	} else
1470 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1471 
1472 	ni->ni_htcap = le16dec(ie +
1473 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1474 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1475 }
1476 
1477 static void
1478 htinfo_parse(struct ieee80211_node *ni,
1479 	const struct ieee80211_ie_htinfo *htinfo)
1480 {
1481 	uint16_t w;
1482 
1483 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1484 	ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN);
1485 	w = le16dec(&htinfo->hi_byte2);
1486 	ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE);
1487 	w = le16dec(&htinfo->hi_byte45);
1488 	ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1489 }
1490 
1491 /*
1492  * Parse an 802.11n HT info ie and save useful information
1493  * to the node state.  Note this does not effect any state
1494  * changes such as for channel width change.
1495  */
1496 void
1497 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1498 {
1499 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1500 		ie += 4;
1501 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1502 }
1503 
1504 /*
1505  * Handle 11n/11ac channel switch.
1506  *
1507  * Use the received HT/VHT ie's to identify the right channel to use.
1508  * If we cannot locate it in the channel table then fallback to
1509  * legacy operation.
1510  *
1511  * Note that we use this information to identify the node's
1512  * channel only; the caller is responsible for insuring any
1513  * required channel change is done (e.g. in sta mode when
1514  * parsing the contents of a beacon frame).
1515  */
1516 static int
1517 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags)
1518 {
1519 	struct ieee80211com *ic = ni->ni_ic;
1520 	struct ieee80211_channel *c;
1521 	int chanflags;
1522 	int ret = 0;
1523 
1524 	/*
1525 	 * First step - do HT/VHT only channel lookup based on operating mode
1526 	 * flags.  This involves masking out the VHT flags as well.
1527 	 * Otherwise we end up doing the full channel walk each time
1528 	 * we trigger this, which is expensive.
1529 	 */
1530 	chanflags = (ni->ni_chan->ic_flags &~
1531 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags;
1532 
1533 	if (chanflags == ni->ni_chan->ic_flags)
1534 		goto done;
1535 
1536 	/*
1537 	 * If HT /or/ VHT flags have changed then check both.
1538 	 * We need to start by picking a HT channel anyway.
1539 	 */
1540 
1541 	c = NULL;
1542 	chanflags = (ni->ni_chan->ic_flags &~
1543 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags;
1544 	/* XXX not right for ht40- */
1545 	c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1546 	if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1547 		/*
1548 		 * No HT40 channel entry in our table; fall back
1549 		 * to HT20 operation.  This should not happen.
1550 		 */
1551 		c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1552 #if 0
1553 		IEEE80211_NOTE(ni->ni_vap,
1554 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1555 		    "no HT40 channel (freq %u), falling back to HT20",
1556 		    ni->ni_chan->ic_freq);
1557 #endif
1558 		/* XXX stat */
1559 	}
1560 
1561 	/* Nothing found - leave it alone; move onto VHT */
1562 	if (c == NULL)
1563 		c = ni->ni_chan;
1564 
1565 	/*
1566 	 * If it's non-HT, then bail out now.
1567 	 */
1568 	if (! IEEE80211_IS_CHAN_HT(c)) {
1569 		IEEE80211_NOTE(ni->ni_vap,
1570 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1571 		    "not HT; skipping VHT check (%u/0x%x)",
1572 		    c->ic_freq, c->ic_flags);
1573 		goto done;
1574 	}
1575 
1576 	/*
1577 	 * Next step - look at the current VHT flags and determine
1578 	 * if we need to upgrade.  Mask out the VHT and HT flags since
1579 	 * the vhtflags field will already have the correct HT
1580 	 * flags to use.
1581 	 */
1582 	if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) {
1583 		chanflags = (c->ic_flags
1584 		    &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT))
1585 		    | vhtflags;
1586 		IEEE80211_NOTE(ni->ni_vap,
1587 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1588 		    ni,
1589 		    "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x",
1590 		    __func__, ni->ni_vht_chanwidth, vhtflags);
1591 
1592 		IEEE80211_NOTE(ni->ni_vap,
1593 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1594 		    ni,
1595 		    "%s: VHT; trying lookup for %d/0x%08x",
1596 		    __func__, c->ic_freq, chanflags);
1597 		c = ieee80211_find_channel(ic, c->ic_freq, chanflags);
1598 	}
1599 
1600 	/* Finally, if it's changed */
1601 	if (c != NULL && c != ni->ni_chan) {
1602 		IEEE80211_NOTE(ni->ni_vap,
1603 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1604 		    "switch station to %s%d channel %u/0x%x",
1605 		    IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT",
1606 		    IEEE80211_IS_CHAN_VHT80(c) ? 80 :
1607 		      (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20),
1608 		    c->ic_freq, c->ic_flags);
1609 		ni->ni_chan = c;
1610 		ret = 1;
1611 	}
1612 	/* NB: caller responsible for forcing any channel change */
1613 
1614 done:
1615 	/* update node's (11n) tx channel width */
1616 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1617 	return (ret);
1618 }
1619 
1620 /*
1621  * Update 11n MIMO PS state according to received htcap.
1622  */
1623 static __inline int
1624 htcap_update_mimo_ps(struct ieee80211_node *ni)
1625 {
1626 	uint16_t oflags = ni->ni_flags;
1627 
1628 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1629 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1630 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1631 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1632 		break;
1633 	case IEEE80211_HTCAP_SMPS_ENA:
1634 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1635 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1636 		break;
1637 	case IEEE80211_HTCAP_SMPS_OFF:
1638 	default:		/* disable on rx of reserved value */
1639 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1640 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1641 		break;
1642 	}
1643 	return (oflags ^ ni->ni_flags);
1644 }
1645 
1646 /*
1647  * Update short GI state according to received htcap
1648  * and local settings.
1649  */
1650 static __inline void
1651 htcap_update_shortgi(struct ieee80211_node *ni)
1652 {
1653 	struct ieee80211vap *vap = ni->ni_vap;
1654 
1655 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1656 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1657 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1658 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1659 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1660 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1661 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1662 }
1663 
1664 /*
1665  * Update LDPC state according to received htcap
1666  * and local settings.
1667  */
1668 static __inline void
1669 htcap_update_ldpc(struct ieee80211_node *ni)
1670 {
1671 	struct ieee80211vap *vap = ni->ni_vap;
1672 
1673 	if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) &&
1674 	    (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX))
1675 		ni->ni_flags |= IEEE80211_NODE_LDPC;
1676 }
1677 
1678 /*
1679  * Parse and update HT-related state extracted from
1680  * the HT cap and info ie's.
1681  *
1682  * This is called from the STA management path and
1683  * the ieee80211_node_join() path.  It will take into
1684  * account the IEs discovered during scanning and
1685  * adjust things accordingly.
1686  */
1687 void
1688 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1689 	const uint8_t *htcapie, const uint8_t *htinfoie)
1690 {
1691 	struct ieee80211vap *vap = ni->ni_vap;
1692 	const struct ieee80211_ie_htinfo *htinfo;
1693 
1694 	ieee80211_parse_htcap(ni, htcapie);
1695 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1696 		htcap_update_mimo_ps(ni);
1697 	htcap_update_shortgi(ni);
1698 	htcap_update_ldpc(ni);
1699 
1700 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1701 		htinfoie += 4;
1702 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1703 	htinfo_parse(ni, htinfo);
1704 
1705 	/*
1706 	 * Defer the node channel change; we need to now
1707 	 * update VHT parameters before we do it.
1708 	 */
1709 
1710 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1711 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1712 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1713 	else
1714 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1715 }
1716 
1717 static uint32_t
1718 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags)
1719 {
1720 	struct ieee80211vap *vap = ni->ni_vap;
1721 	uint32_t vhtflags = 0;
1722 
1723 	vhtflags = 0;
1724 	if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
1725 		if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) &&
1726 		    /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */
1727 		    (MS(vap->iv_vhtcaps,
1728 		     IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) &&
1729 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) {
1730 			vhtflags = IEEE80211_CHAN_VHT160;
1731 			/* Mirror the HT40 flags */
1732 			if (htflags == IEEE80211_CHAN_HT40U) {
1733 				vhtflags |= IEEE80211_CHAN_HT40U;
1734 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1735 				vhtflags |= IEEE80211_CHAN_HT40D;
1736 			}
1737 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) &&
1738 		    /* XXX 2 means "160MHz and 80+80MHz" */
1739 		    (MS(vap->iv_vhtcaps,
1740 		     IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) &&
1741 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) {
1742 			vhtflags = IEEE80211_CHAN_VHT80_80;
1743 			/* Mirror the HT40 flags */
1744 			if (htflags == IEEE80211_CHAN_HT40U) {
1745 				vhtflags |= IEEE80211_CHAN_HT40U;
1746 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1747 				vhtflags |= IEEE80211_CHAN_HT40D;
1748 			}
1749 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) &&
1750 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) {
1751 			vhtflags = IEEE80211_CHAN_VHT80;
1752 			/* Mirror the HT40 flags */
1753 			if (htflags == IEEE80211_CHAN_HT40U) {
1754 				vhtflags |= IEEE80211_CHAN_HT40U;
1755 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1756 				vhtflags |= IEEE80211_CHAN_HT40D;
1757 			}
1758 		} else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) {
1759 			/* Mirror the HT40 flags */
1760 			/*
1761 			 * XXX TODO: if ht40 is disabled, but vht40 isn't
1762 			 * disabled then this logic will get very, very sad.
1763 			 * It's quite possible the only sane thing to do is
1764 			 * to not have vht40 as an option, and just obey
1765 			 * 'ht40' as that flag.
1766 			 */
1767 			if ((htflags == IEEE80211_CHAN_HT40U) &&
1768 			    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) {
1769 				vhtflags = IEEE80211_CHAN_VHT40U
1770 				    | IEEE80211_CHAN_HT40U;
1771 			} else if (htflags == IEEE80211_CHAN_HT40D &&
1772 			    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) {
1773 				vhtflags = IEEE80211_CHAN_VHT40D
1774 				    | IEEE80211_CHAN_HT40D;
1775 			} else if (htflags == IEEE80211_CHAN_HT20) {
1776 				vhtflags = IEEE80211_CHAN_VHT20
1777 				    | IEEE80211_CHAN_HT20;
1778 			}
1779 		} else {
1780 			vhtflags = IEEE80211_CHAN_VHT20;
1781 		}
1782 	}
1783 	return (vhtflags);
1784 }
1785 
1786 /*
1787  * Final part of updating the HT parameters.
1788  *
1789  * This is called from the STA management path and
1790  * the ieee80211_node_join() path.  It will take into
1791  * account the IEs discovered during scanning and
1792  * adjust things accordingly.
1793  *
1794  * This is done after a call to ieee80211_ht_updateparams()
1795  * because it (and the upcoming VHT version of updateparams)
1796  * needs to ensure everything is parsed before htinfo_update_chw()
1797  * is called - which will change the channel config for the
1798  * node for us.
1799  */
1800 int
1801 ieee80211_ht_updateparams_final(struct ieee80211_node *ni,
1802 	const uint8_t *htcapie, const uint8_t *htinfoie)
1803 {
1804 	struct ieee80211vap *vap = ni->ni_vap;
1805 	const struct ieee80211_ie_htinfo *htinfo;
1806 	int htflags, vhtflags;
1807 	int ret = 0;
1808 
1809 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1810 
1811 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1812 	    IEEE80211_CHAN_HT20 : 0;
1813 
1814 	/* NB: honor operating mode constraint */
1815 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
1816 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1817 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
1818 			htflags = IEEE80211_CHAN_HT40U;
1819 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
1820 			htflags = IEEE80211_CHAN_HT40D;
1821 	}
1822 
1823 	/*
1824 	 * VHT flags - do much the same; check whether VHT is available
1825 	 * and if so, what our ideal channel use would be based on our
1826 	 * capabilities and the (pre-parsed) VHT info IE.
1827 	 */
1828 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
1829 
1830 	if (htinfo_update_chw(ni, htflags, vhtflags))
1831 		ret = 1;
1832 
1833 	return (ret);
1834 }
1835 
1836 /*
1837  * Parse and update HT-related state extracted from the HT cap ie
1838  * for a station joining an HT BSS.
1839  *
1840  * This is called from the hostap path for each station.
1841  */
1842 void
1843 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
1844 {
1845 	struct ieee80211vap *vap = ni->ni_vap;
1846 
1847 	ieee80211_parse_htcap(ni, htcapie);
1848 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1849 		htcap_update_mimo_ps(ni);
1850 	htcap_update_shortgi(ni);
1851 	htcap_update_ldpc(ni);
1852 }
1853 
1854 /*
1855  * Called once HT and VHT capabilities are parsed in hostap mode -
1856  * this will adjust the channel configuration of the given node
1857  * based on the configuration and capabilities.
1858  */
1859 void
1860 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni)
1861 {
1862 	struct ieee80211vap *vap = ni->ni_vap;
1863 	int htflags;
1864 	int vhtflags;
1865 
1866 	/* NB: honor operating mode constraint */
1867 	/* XXX 40 MHz intolerant */
1868 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1869 	    IEEE80211_CHAN_HT20 : 0;
1870 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
1871 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1872 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
1873 			htflags = IEEE80211_CHAN_HT40U;
1874 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
1875 			htflags = IEEE80211_CHAN_HT40D;
1876 	}
1877 	/*
1878 	 * VHT flags - do much the same; check whether VHT is available
1879 	 * and if so, what our ideal channel use would be based on our
1880 	 * capabilities and the (pre-parsed) VHT info IE.
1881 	 */
1882 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
1883 
1884 	(void) htinfo_update_chw(ni, htflags, vhtflags);
1885 }
1886 
1887 /*
1888  * Install received HT rate set by parsing the HT cap ie.
1889  */
1890 int
1891 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
1892 {
1893 	struct ieee80211com *ic = ni->ni_ic;
1894 	struct ieee80211vap *vap = ni->ni_vap;
1895 	const struct ieee80211_ie_htcap *htcap;
1896 	struct ieee80211_htrateset *rs;
1897 	int i, maxequalmcs, maxunequalmcs;
1898 
1899 	maxequalmcs = ic->ic_txstream * 8 - 1;
1900 	maxunequalmcs = 0;
1901 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
1902 		if (ic->ic_txstream >= 2)
1903 			maxunequalmcs = 38;
1904 		if (ic->ic_txstream >= 3)
1905 			maxunequalmcs = 52;
1906 		if (ic->ic_txstream >= 4)
1907 			maxunequalmcs = 76;
1908 	}
1909 
1910 	rs = &ni->ni_htrates;
1911 	memset(rs, 0, sizeof(*rs));
1912 	if (ie != NULL) {
1913 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
1914 			ie += 4;
1915 		htcap = (const struct ieee80211_ie_htcap *) ie;
1916 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1917 			if (isclr(htcap->hc_mcsset, i))
1918 				continue;
1919 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
1920 				IEEE80211_NOTE(vap,
1921 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1922 				    "WARNING, HT rate set too large; only "
1923 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
1924 				vap->iv_stats.is_rx_rstoobig++;
1925 				break;
1926 			}
1927 			if (i <= 31 && i > maxequalmcs)
1928 				continue;
1929 			if (i == 32 &&
1930 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
1931 				continue;
1932 			if (i > 32 && i > maxunequalmcs)
1933 				continue;
1934 			rs->rs_rates[rs->rs_nrates++] = i;
1935 		}
1936 	}
1937 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
1938 }
1939 
1940 /*
1941  * Mark rates in a node's HT rate set as basic according
1942  * to the information in the supplied HT info ie.
1943  */
1944 void
1945 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
1946 {
1947 	const struct ieee80211_ie_htinfo *htinfo;
1948 	struct ieee80211_htrateset *rs;
1949 	int i, j;
1950 
1951 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1952 		ie += 4;
1953 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
1954 	rs = &ni->ni_htrates;
1955 	if (rs->rs_nrates == 0) {
1956 		IEEE80211_NOTE(ni->ni_vap,
1957 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1958 		    "%s", "WARNING, empty HT rate set");
1959 		return;
1960 	}
1961 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1962 		if (isclr(htinfo->hi_basicmcsset, i))
1963 			continue;
1964 		for (j = 0; j < rs->rs_nrates; j++)
1965 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
1966 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
1967 	}
1968 }
1969 
1970 static void
1971 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
1972 {
1973 	callout_init(&tap->txa_timer, 1);
1974 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
1975 	tap->txa_lastsample = ticks;
1976 }
1977 
1978 static void
1979 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
1980 {
1981 	struct ieee80211_node *ni = tap->txa_ni;
1982 	struct ieee80211com *ic = ni->ni_ic;
1983 
1984 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
1985 	    tap->txa_ni,
1986 	    "%s: called",
1987 	    __func__);
1988 
1989 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
1990 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
1991 	    TID_TO_WME_AC(tap->txa_tid)));
1992 
1993 	/*
1994 	 * Stop BA stream if setup so driver has a chance
1995 	 * to reclaim any resources it might have allocated.
1996 	 */
1997 	ic->ic_addba_stop(ni, tap);
1998 	/*
1999 	 * Stop any pending BAR transmit.
2000 	 */
2001 	bar_stop_timer(tap);
2002 
2003 	/*
2004 	 * Reset packet estimate.
2005 	 */
2006 	ieee80211_txampdu_init_pps(tap);
2007 
2008 	/* NB: clearing NAK means we may re-send ADDBA */
2009 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
2010 }
2011 
2012 /*
2013  * ADDBA response timeout.
2014  *
2015  * If software aggregation and per-TID queue management was done here,
2016  * that queue would be unpaused after the ADDBA timeout occurs.
2017  */
2018 static void
2019 addba_timeout(void *arg)
2020 {
2021 	struct ieee80211_tx_ampdu *tap = arg;
2022 	struct ieee80211_node *ni = tap->txa_ni;
2023 	struct ieee80211com *ic = ni->ni_ic;
2024 
2025 	/* XXX ? */
2026 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2027 	tap->txa_attempts++;
2028 	ic->ic_addba_response_timeout(ni, tap);
2029 }
2030 
2031 static void
2032 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
2033 {
2034 	/* XXX use CALLOUT_PENDING instead? */
2035 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
2036 	    addba_timeout, tap);
2037 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
2038 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
2039 }
2040 
2041 static void
2042 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
2043 {
2044 	/* XXX use CALLOUT_PENDING instead? */
2045 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
2046 		callout_stop(&tap->txa_timer);
2047 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2048 	}
2049 }
2050 
2051 static void
2052 null_addba_response_timeout(struct ieee80211_node *ni,
2053     struct ieee80211_tx_ampdu *tap)
2054 {
2055 }
2056 
2057 /*
2058  * Default method for requesting A-MPDU tx aggregation.
2059  * We setup the specified state block and start a timer
2060  * to wait for an ADDBA response frame.
2061  */
2062 static int
2063 ieee80211_addba_request(struct ieee80211_node *ni,
2064 	struct ieee80211_tx_ampdu *tap,
2065 	int dialogtoken, int baparamset, int batimeout)
2066 {
2067 	int bufsiz;
2068 
2069 	/* XXX locking */
2070 	tap->txa_token = dialogtoken;
2071 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
2072 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2073 	tap->txa_wnd = (bufsiz == 0) ?
2074 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2075 	addba_start_timeout(tap);
2076 	return 1;
2077 }
2078 
2079 /*
2080  * Called by drivers that wish to request an ADDBA session be
2081  * setup.  This brings it up and starts the request timer.
2082  */
2083 int
2084 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
2085 {
2086 	struct ieee80211_tx_ampdu *tap;
2087 
2088 	if (tid < 0 || tid > 15)
2089 		return (0);
2090 	tap = &ni->ni_tx_ampdu[tid];
2091 
2092 	/* XXX locking */
2093 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2094 		/* do deferred setup of state */
2095 		ampdu_tx_setup(tap);
2096 	}
2097 	/* XXX hack for not doing proper locking */
2098 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2099 	addba_start_timeout(tap);
2100 	return (1);
2101 }
2102 
2103 /*
2104  * Called by drivers that have marked a session as active.
2105  */
2106 int
2107 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
2108     int status)
2109 {
2110 	struct ieee80211_tx_ampdu *tap;
2111 
2112 	if (tid < 0 || tid > 15)
2113 		return (0);
2114 	tap = &ni->ni_tx_ampdu[tid];
2115 
2116 	/* XXX locking */
2117 	addba_stop_timeout(tap);
2118 	if (status == 1) {
2119 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2120 		tap->txa_attempts = 0;
2121 	} else {
2122 		/* mark tid so we don't try again */
2123 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2124 	}
2125 	return (1);
2126 }
2127 
2128 /*
2129  * Default method for processing an A-MPDU tx aggregation
2130  * response.  We shutdown any pending timer and update the
2131  * state block according to the reply.
2132  */
2133 static int
2134 ieee80211_addba_response(struct ieee80211_node *ni,
2135 	struct ieee80211_tx_ampdu *tap,
2136 	int status, int baparamset, int batimeout)
2137 {
2138 	int bufsiz, tid;
2139 
2140 	/* XXX locking */
2141 	addba_stop_timeout(tap);
2142 	if (status == IEEE80211_STATUS_SUCCESS) {
2143 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2144 		/* XXX override our request? */
2145 		tap->txa_wnd = (bufsiz == 0) ?
2146 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2147 		/* XXX AC/TID */
2148 		tid = MS(baparamset, IEEE80211_BAPS_TID);
2149 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2150 		tap->txa_attempts = 0;
2151 	} else {
2152 		/* mark tid so we don't try again */
2153 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2154 	}
2155 	return 1;
2156 }
2157 
2158 /*
2159  * Default method for stopping A-MPDU tx aggregation.
2160  * Any timer is cleared and we drain any pending frames.
2161  */
2162 static void
2163 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
2164 {
2165 	/* XXX locking */
2166 	addba_stop_timeout(tap);
2167 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
2168 		/* XXX clear aggregation queue */
2169 		tap->txa_flags &= ~IEEE80211_AGGR_RUNNING;
2170 	}
2171 	tap->txa_attempts = 0;
2172 }
2173 
2174 /*
2175  * Process a received action frame using the default aggregation
2176  * policy.  We intercept ADDBA-related frames and use them to
2177  * update our aggregation state.  All other frames are passed up
2178  * for processing by ieee80211_recv_action.
2179  */
2180 static int
2181 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
2182 	const struct ieee80211_frame *wh,
2183 	const uint8_t *frm, const uint8_t *efrm)
2184 {
2185 	struct ieee80211com *ic = ni->ni_ic;
2186 	struct ieee80211vap *vap = ni->ni_vap;
2187 	struct ieee80211_rx_ampdu *rap;
2188 	uint8_t dialogtoken;
2189 	uint16_t baparamset, batimeout, baseqctl;
2190 	uint16_t args[5];
2191 	int tid;
2192 
2193 	dialogtoken = frm[2];
2194 	baparamset = le16dec(frm+3);
2195 	batimeout = le16dec(frm+5);
2196 	baseqctl = le16dec(frm+7);
2197 
2198 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2199 
2200 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2201 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
2202 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d",
2203 	    dialogtoken, baparamset,
2204 	    tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ),
2205 	    batimeout,
2206 	    MS(baseqctl, IEEE80211_BASEQ_START),
2207 	    MS(baseqctl, IEEE80211_BASEQ_FRAG));
2208 
2209 	rap = &ni->ni_rx_ampdu[tid];
2210 
2211 	/* Send ADDBA response */
2212 	args[0] = dialogtoken;
2213 	/*
2214 	 * NB: We ack only if the sta associated with HT and
2215 	 * the ap is configured to do AMPDU rx (the latter
2216 	 * violates the 11n spec and is mostly for testing).
2217 	 */
2218 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
2219 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
2220 		/* XXX handle ampdu_rx_start failure */
2221 		ic->ic_ampdu_rx_start(ni, rap,
2222 		    baparamset, batimeout, baseqctl);
2223 
2224 		args[1] = IEEE80211_STATUS_SUCCESS;
2225 	} else {
2226 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2227 		    ni, "reject ADDBA request: %s",
2228 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
2229 		       "administratively disabled" :
2230 		       "not negotiated for station");
2231 		vap->iv_stats.is_addba_reject++;
2232 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
2233 	}
2234 	/* XXX honor rap flags? */
2235 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
2236 		| SM(tid, IEEE80211_BAPS_TID)
2237 		| SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
2238 		;
2239 	args[3] = 0;
2240 	args[4] = 0;
2241 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2242 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
2243 	return 0;
2244 }
2245 
2246 static int
2247 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
2248 	const struct ieee80211_frame *wh,
2249 	const uint8_t *frm, const uint8_t *efrm)
2250 {
2251 	struct ieee80211com *ic = ni->ni_ic;
2252 	struct ieee80211vap *vap = ni->ni_vap;
2253 	struct ieee80211_tx_ampdu *tap;
2254 	uint8_t dialogtoken, policy;
2255 	uint16_t baparamset, batimeout, code;
2256 	int tid, bufsiz;
2257 
2258 	dialogtoken = frm[2];
2259 	code = le16dec(frm+3);
2260 	baparamset = le16dec(frm+5);
2261 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2262 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2263 	policy = MS(baparamset, IEEE80211_BAPS_POLICY);
2264 	batimeout = le16dec(frm+7);
2265 
2266 	tap = &ni->ni_tx_ampdu[tid];
2267 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2268 		IEEE80211_DISCARD_MAC(vap,
2269 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2270 		    ni->ni_macaddr, "ADDBA response",
2271 		    "no pending ADDBA, tid %d dialogtoken %u "
2272 		    "code %d", tid, dialogtoken, code);
2273 		vap->iv_stats.is_addba_norequest++;
2274 		return 0;
2275 	}
2276 	if (dialogtoken != tap->txa_token) {
2277 		IEEE80211_DISCARD_MAC(vap,
2278 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2279 		    ni->ni_macaddr, "ADDBA response",
2280 		    "dialogtoken mismatch: waiting for %d, "
2281 		    "received %d, tid %d code %d",
2282 		    tap->txa_token, dialogtoken, tid, code);
2283 		vap->iv_stats.is_addba_badtoken++;
2284 		return 0;
2285 	}
2286 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2287 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2288 		IEEE80211_DISCARD_MAC(vap,
2289 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2290 		    ni->ni_macaddr, "ADDBA response",
2291 		    "policy mismatch: expecting %s, "
2292 		    "received %s, tid %d code %d",
2293 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2294 		    policy, tid, code);
2295 		vap->iv_stats.is_addba_badpolicy++;
2296 		return 0;
2297 	}
2298 #if 0
2299 	/* XXX we take MIN in ieee80211_addba_response */
2300 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2301 		IEEE80211_DISCARD_MAC(vap,
2302 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2303 		    ni->ni_macaddr, "ADDBA response",
2304 		    "BA window too large: max %d, "
2305 		    "received %d, tid %d code %d",
2306 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2307 		vap->iv_stats.is_addba_badbawinsize++;
2308 		return 0;
2309 	}
2310 #endif
2311 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2312 	    "recv ADDBA response: dialogtoken %u code %d "
2313 	    "baparamset 0x%x (tid %d bufsiz %d) batimeout %d",
2314 	    dialogtoken, code, baparamset, tid, bufsiz,
2315 	    batimeout);
2316 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2317 	return 0;
2318 }
2319 
2320 static int
2321 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2322 	const struct ieee80211_frame *wh,
2323 	const uint8_t *frm, const uint8_t *efrm)
2324 {
2325 	struct ieee80211com *ic = ni->ni_ic;
2326 	struct ieee80211_rx_ampdu *rap;
2327 	struct ieee80211_tx_ampdu *tap;
2328 	uint16_t baparamset, code;
2329 	int tid;
2330 
2331 	baparamset = le16dec(frm+2);
2332 	code = le16dec(frm+4);
2333 
2334 	tid = MS(baparamset, IEEE80211_DELBAPS_TID);
2335 
2336 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2337 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2338 	    "code %d", baparamset, tid,
2339 	    MS(baparamset, IEEE80211_DELBAPS_INIT), code);
2340 
2341 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2342 		tap = &ni->ni_tx_ampdu[tid];
2343 		ic->ic_addba_stop(ni, tap);
2344 	} else {
2345 		rap = &ni->ni_rx_ampdu[tid];
2346 		ic->ic_ampdu_rx_stop(ni, rap);
2347 	}
2348 	return 0;
2349 }
2350 
2351 static int
2352 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2353 	const struct ieee80211_frame *wh,
2354 	const uint8_t *frm, const uint8_t *efrm)
2355 {
2356 	int chw;
2357 
2358 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2359 
2360 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2361 	    "%s: HT txchwidth, width %d%s",
2362 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2363 	if (chw != ni->ni_chw) {
2364 		/* XXX does this need to change the ht40 station count? */
2365 		ni->ni_chw = chw;
2366 		/* XXX notify on change */
2367 	}
2368 	return 0;
2369 }
2370 
2371 static int
2372 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2373 	const struct ieee80211_frame *wh,
2374 	const uint8_t *frm, const uint8_t *efrm)
2375 {
2376 	const struct ieee80211_action_ht_mimopowersave *mps =
2377 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2378 
2379 	/* XXX check iv_htcaps */
2380 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2381 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2382 	else
2383 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2384 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2385 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2386 	else
2387 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2388 	/* XXX notify on change */
2389 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2390 	    "%s: HT MIMO PS (%s%s)", __func__,
2391 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2392 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2393 	);
2394 	return 0;
2395 }
2396 
2397 /*
2398  * Transmit processing.
2399  */
2400 
2401 /*
2402  * Check if A-MPDU should be requested/enabled for a stream.
2403  * We require a traffic rate above a per-AC threshold and we
2404  * also handle backoff from previous failed attempts.
2405  *
2406  * Drivers may override this method to bring in information
2407  * such as link state conditions in making the decision.
2408  */
2409 static int
2410 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2411 	struct ieee80211_tx_ampdu *tap)
2412 {
2413 	struct ieee80211vap *vap = ni->ni_vap;
2414 
2415 	if (tap->txa_avgpps <
2416 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2417 		return 0;
2418 	/* XXX check rssi? */
2419 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2420 	    ieee80211_time_after(ticks, tap->txa_nextrequest)) {
2421 		/*
2422 		 * Don't retry too often; txa_nextrequest is set
2423 		 * to the minimum interval we'll retry after
2424 		 * ieee80211_addba_maxtries failed attempts are made.
2425 		 */
2426 		return 0;
2427 	}
2428 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2429 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d",
2430 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2431 	    tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts);
2432 	return 1;
2433 }
2434 
2435 /*
2436  * Request A-MPDU tx aggregation.  Setup local state and
2437  * issue an ADDBA request.  BA use will only happen after
2438  * the other end replies with ADDBA response.
2439  */
2440 int
2441 ieee80211_ampdu_request(struct ieee80211_node *ni,
2442 	struct ieee80211_tx_ampdu *tap)
2443 {
2444 	struct ieee80211com *ic = ni->ni_ic;
2445 	uint16_t args[5];
2446 	int tid, dialogtoken;
2447 	static int tokens = 0;	/* XXX */
2448 
2449 	/* XXX locking */
2450 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2451 		/* do deferred setup of state */
2452 		ampdu_tx_setup(tap);
2453 	}
2454 	/* XXX hack for not doing proper locking */
2455 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2456 
2457 	dialogtoken = (tokens+1) % 63;		/* XXX */
2458 	tid = tap->txa_tid;
2459 
2460 	/*
2461 	 * XXX TODO: This is racy with any other parallel TX going on. :(
2462 	 */
2463 	tap->txa_start = ni->ni_txseqs[tid];
2464 
2465 	args[0] = dialogtoken;
2466 	args[1] = 0;	/* NB: status code not used */
2467 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2468 		| SM(tid, IEEE80211_BAPS_TID)
2469 		| SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ)
2470 		;
2471 	args[3] = 0;	/* batimeout */
2472 	/* NB: do first so there's no race against reply */
2473 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2474 		/* unable to setup state, don't make request */
2475 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2476 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2477 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2478 		/* defer next try so we don't slam the driver with requests */
2479 		tap->txa_attempts = ieee80211_addba_maxtries;
2480 		/* NB: check in case driver wants to override */
2481 		if (tap->txa_nextrequest <= ticks)
2482 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2483 		return 0;
2484 	}
2485 	tokens = dialogtoken;			/* allocate token */
2486 	/* NB: after calling ic_addba_request so driver can set txa_start */
2487 	args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START)
2488 		| SM(0, IEEE80211_BASEQ_FRAG)
2489 		;
2490 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2491 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2492 }
2493 
2494 /*
2495  * Terminate an AMPDU tx stream.  State is reclaimed
2496  * and the peer notified with a DelBA Action frame.
2497  */
2498 void
2499 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2500 	int reason)
2501 {
2502 	struct ieee80211com *ic = ni->ni_ic;
2503 	struct ieee80211vap *vap = ni->ni_vap;
2504 	uint16_t args[4];
2505 
2506 	/* XXX locking */
2507 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2508 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2509 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2510 		    ni, "%s: stop BA stream for TID %d (reason: %d (%s))",
2511 		    __func__, tap->txa_tid, reason,
2512 		    ieee80211_reason_to_string(reason));
2513 		vap->iv_stats.is_ampdu_stop++;
2514 
2515 		ic->ic_addba_stop(ni, tap);
2516 		args[0] = tap->txa_tid;
2517 		args[1] = IEEE80211_DELBAPS_INIT;
2518 		args[2] = reason;			/* XXX reason code */
2519 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2520 			IEEE80211_ACTION_BA_DELBA, args);
2521 	} else {
2522 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2523 		    ni, "%s: BA stream for TID %d not running "
2524 		    "(reason: %d (%s))", __func__, tap->txa_tid, reason,
2525 		    ieee80211_reason_to_string(reason));
2526 		vap->iv_stats.is_ampdu_stop_failed++;
2527 	}
2528 }
2529 
2530 /* XXX */
2531 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2532 
2533 static void
2534 bar_timeout(void *arg)
2535 {
2536 	struct ieee80211_tx_ampdu *tap = arg;
2537 	struct ieee80211_node *ni = tap->txa_ni;
2538 
2539 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2540 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2541 
2542 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2543 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2544 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2545 
2546 	/* guard against race with bar_tx_complete */
2547 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2548 		return;
2549 	/* XXX ? */
2550 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2551 		struct ieee80211com *ic = ni->ni_ic;
2552 
2553 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2554 		/*
2555 		 * If (at least) the last BAR TX timeout was due to
2556 		 * an ieee80211_send_bar() failures, then we need
2557 		 * to make sure we notify the driver that a BAR
2558 		 * TX did occur and fail.  This gives the driver
2559 		 * a chance to undo any queue pause that may
2560 		 * have occurred.
2561 		 */
2562 		ic->ic_bar_response(ni, tap, 1);
2563 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2564 	} else {
2565 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2566 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2567 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2568 			    ni, "%s: failed to TX, starting timer\n",
2569 			    __func__);
2570 			/*
2571 			 * If ieee80211_send_bar() fails here, the
2572 			 * timer may have stopped and/or the pending
2573 			 * flag may be clear.  Because of this,
2574 			 * fake the BARPEND and reset the timer.
2575 			 * A retransmission attempt will then occur
2576 			 * during the next timeout.
2577 			 */
2578 			/* XXX locking */
2579 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2580 			bar_start_timer(tap);
2581 		}
2582 	}
2583 }
2584 
2585 static void
2586 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2587 {
2588 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2589 	    tap->txa_ni,
2590 	    "%s: called",
2591 	    __func__);
2592 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2593 }
2594 
2595 static void
2596 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2597 {
2598 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2599 	    tap->txa_ni,
2600 	    "%s: called",
2601 	    __func__);
2602 	callout_stop(&tap->txa_timer);
2603 }
2604 
2605 static void
2606 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2607 {
2608 	struct ieee80211_tx_ampdu *tap = arg;
2609 
2610 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2611 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2612 	    __func__, tap->txa_tid, tap->txa_flags,
2613 	    callout_pending(&tap->txa_timer), status);
2614 
2615 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2616 	/* XXX locking */
2617 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2618 	    callout_pending(&tap->txa_timer)) {
2619 		struct ieee80211com *ic = ni->ni_ic;
2620 
2621 		if (status == 0)		/* ACK'd */
2622 			bar_stop_timer(tap);
2623 		ic->ic_bar_response(ni, tap, status);
2624 		/* NB: just let timer expire so we pace requests */
2625 	}
2626 }
2627 
2628 static void
2629 ieee80211_bar_response(struct ieee80211_node *ni,
2630 	struct ieee80211_tx_ampdu *tap, int status)
2631 {
2632 
2633 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2634 	    tap->txa_ni,
2635 	    "%s: called",
2636 	    __func__);
2637 	if (status == 0) {		/* got ACK */
2638 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2639 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2640 		    tap->txa_start,
2641 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2642 		    tap->txa_qframes, tap->txa_seqpending,
2643 		    tap->txa_tid);
2644 
2645 		/* NB: timer already stopped in bar_tx_complete */
2646 		tap->txa_start = tap->txa_seqpending;
2647 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2648 	}
2649 }
2650 
2651 /*
2652  * Transmit a BAR frame to the specified node.  The
2653  * BAR contents are drawn from the supplied aggregation
2654  * state associated with the node.
2655  *
2656  * NB: we only handle immediate ACK w/ compressed bitmap.
2657  */
2658 int
2659 ieee80211_send_bar(struct ieee80211_node *ni,
2660 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2661 {
2662 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2663 	struct ieee80211vap *vap = ni->ni_vap;
2664 	struct ieee80211com *ic = ni->ni_ic;
2665 	struct ieee80211_frame_bar *bar;
2666 	struct mbuf *m;
2667 	uint16_t barctl, barseqctl;
2668 	uint8_t *frm;
2669 	int tid, ret;
2670 
2671 
2672 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2673 	    tap->txa_ni,
2674 	    "%s: called",
2675 	    __func__);
2676 
2677 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2678 		/* no ADDBA response, should not happen */
2679 		/* XXX stat+msg */
2680 		return EINVAL;
2681 	}
2682 	/* XXX locking */
2683 	bar_stop_timer(tap);
2684 
2685 	ieee80211_ref_node(ni);
2686 
2687 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2688 	if (m == NULL)
2689 		senderr(ENOMEM, is_tx_nobuf);
2690 
2691 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2692 		m_freem(m);
2693 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2694 		/* NOTREACHED */
2695 	}
2696 
2697 	bar = mtod(m, struct ieee80211_frame_bar *);
2698 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2699 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2700 	bar->i_fc[1] = 0;
2701 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2702 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2703 
2704 	tid = tap->txa_tid;
2705 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2706 			0 : IEEE80211_BAR_NOACK)
2707 		| IEEE80211_BAR_COMP
2708 		| SM(tid, IEEE80211_BAR_TID)
2709 		;
2710 	barseqctl = SM(seq, IEEE80211_BAR_SEQ_START);
2711 	/* NB: known to have proper alignment */
2712 	bar->i_ctl = htole16(barctl);
2713 	bar->i_seq = htole16(barseqctl);
2714 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2715 
2716 	M_WME_SETAC(m, WME_AC_VO);
2717 
2718 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2719 
2720 	/* XXX locking */
2721 	/* init/bump attempts counter */
2722 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2723 		tap->txa_attempts = 1;
2724 	else
2725 		tap->txa_attempts++;
2726 	tap->txa_seqpending = seq;
2727 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2728 
2729 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2730 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2731 	    tid, barctl, seq, tap->txa_attempts);
2732 
2733 	/*
2734 	 * ic_raw_xmit will free the node reference
2735 	 * regardless of queue/TX success or failure.
2736 	 */
2737 	IEEE80211_TX_LOCK(ic);
2738 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2739 	IEEE80211_TX_UNLOCK(ic);
2740 	if (ret != 0) {
2741 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2742 		    ni, "send BAR: failed: (ret = %d)\n",
2743 		    ret);
2744 		/* xmit failed, clear state flag */
2745 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2746 		vap->iv_stats.is_ampdu_bar_tx_fail++;
2747 		return ret;
2748 	}
2749 	/* XXX hack against tx complete happening before timer is started */
2750 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
2751 		bar_start_timer(tap);
2752 	return 0;
2753 bad:
2754 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2755 	    tap->txa_ni,
2756 	    "%s: bad! ret=%d",
2757 	    __func__, ret);
2758 	vap->iv_stats.is_ampdu_bar_tx_fail++;
2759 	ieee80211_free_node(ni);
2760 	return ret;
2761 #undef senderr
2762 }
2763 
2764 static int
2765 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
2766 {
2767 	struct ieee80211_bpf_params params;
2768 
2769 	memset(&params, 0, sizeof(params));
2770 	params.ibp_pri = WME_AC_VO;
2771 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
2772 	/* NB: we know all frames are unicast */
2773 	params.ibp_try0 = ni->ni_txparms->maxretry;
2774 	params.ibp_power = ni->ni_txpower;
2775 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
2776 	     &params);
2777 }
2778 
2779 #define	ADDSHORT(frm, v) do {			\
2780 	frm[0] = (v) & 0xff;			\
2781 	frm[1] = (v) >> 8;			\
2782 	frm += 2;				\
2783 } while (0)
2784 
2785 /*
2786  * Send an action management frame.  The arguments are stuff
2787  * into a frame without inspection; the caller is assumed to
2788  * prepare them carefully (e.g. based on the aggregation state).
2789  */
2790 static int
2791 ht_send_action_ba_addba(struct ieee80211_node *ni,
2792 	int category, int action, void *arg0)
2793 {
2794 	struct ieee80211vap *vap = ni->ni_vap;
2795 	struct ieee80211com *ic = ni->ni_ic;
2796 	uint16_t *args = arg0;
2797 	struct mbuf *m;
2798 	uint8_t *frm;
2799 
2800 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2801 	    "send ADDBA %s: dialogtoken %d status %d "
2802 	    "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x",
2803 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
2804 		"request" : "response",
2805 	    args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID),
2806 	    args[3], args[4]);
2807 
2808 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2809 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2810 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2811 	ieee80211_ref_node(ni);
2812 
2813 	m = ieee80211_getmgtframe(&frm,
2814 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2815 	    sizeof(uint16_t)	/* action+category */
2816 	    /* XXX may action payload */
2817 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2818 	);
2819 	if (m != NULL) {
2820 		*frm++ = category;
2821 		*frm++ = action;
2822 		*frm++ = args[0];		/* dialog token */
2823 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
2824 			ADDSHORT(frm, args[1]);	/* status code */
2825 		ADDSHORT(frm, args[2]);		/* baparamset */
2826 		ADDSHORT(frm, args[3]);		/* batimeout */
2827 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
2828 			ADDSHORT(frm, args[4]);	/* baseqctl */
2829 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2830 		return ht_action_output(ni, m);
2831 	} else {
2832 		vap->iv_stats.is_tx_nobuf++;
2833 		ieee80211_free_node(ni);
2834 		return ENOMEM;
2835 	}
2836 }
2837 
2838 static int
2839 ht_send_action_ba_delba(struct ieee80211_node *ni,
2840 	int category, int action, void *arg0)
2841 {
2842 	struct ieee80211vap *vap = ni->ni_vap;
2843 	struct ieee80211com *ic = ni->ni_ic;
2844 	uint16_t *args = arg0;
2845 	struct mbuf *m;
2846 	uint16_t baparamset;
2847 	uint8_t *frm;
2848 
2849 	baparamset = SM(args[0], IEEE80211_DELBAPS_TID)
2850 		   | args[1]
2851 		   ;
2852 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2853 	    "send DELBA action: tid %d, initiator %d reason %d (%s)",
2854 	    args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
2855 
2856 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2857 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2858 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2859 	ieee80211_ref_node(ni);
2860 
2861 	m = ieee80211_getmgtframe(&frm,
2862 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2863 	    sizeof(uint16_t)	/* action+category */
2864 	    /* XXX may action payload */
2865 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2866 	);
2867 	if (m != NULL) {
2868 		*frm++ = category;
2869 		*frm++ = action;
2870 		ADDSHORT(frm, baparamset);
2871 		ADDSHORT(frm, args[2]);		/* reason code */
2872 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2873 		return ht_action_output(ni, m);
2874 	} else {
2875 		vap->iv_stats.is_tx_nobuf++;
2876 		ieee80211_free_node(ni);
2877 		return ENOMEM;
2878 	}
2879 }
2880 
2881 static int
2882 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
2883 	int category, int action, void *arg0)
2884 {
2885 	struct ieee80211vap *vap = ni->ni_vap;
2886 	struct ieee80211com *ic = ni->ni_ic;
2887 	struct mbuf *m;
2888 	uint8_t *frm;
2889 
2890 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2891 	    "send HT txchwidth: width %d",
2892 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
2893 
2894 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2895 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2896 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2897 	ieee80211_ref_node(ni);
2898 
2899 	m = ieee80211_getmgtframe(&frm,
2900 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2901 	    sizeof(uint16_t)	/* action+category */
2902 	    /* XXX may action payload */
2903 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2904 	);
2905 	if (m != NULL) {
2906 		*frm++ = category;
2907 		*frm++ = action;
2908 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
2909 			IEEE80211_A_HT_TXCHWIDTH_2040 :
2910 			IEEE80211_A_HT_TXCHWIDTH_20;
2911 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2912 		return ht_action_output(ni, m);
2913 	} else {
2914 		vap->iv_stats.is_tx_nobuf++;
2915 		ieee80211_free_node(ni);
2916 		return ENOMEM;
2917 	}
2918 }
2919 #undef ADDSHORT
2920 
2921 /*
2922  * Construct the MCS bit mask for inclusion in an HT capabilities
2923  * information element.
2924  */
2925 static void
2926 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
2927 {
2928 	int i;
2929 	uint8_t txparams;
2930 
2931 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
2932 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
2933 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
2934 	    ("ic_txstream %d out of range", ic->ic_txstream));
2935 
2936 	for (i = 0; i < ic->ic_rxstream * 8; i++)
2937 		setbit(frm, i);
2938 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2939 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
2940 		setbit(frm, 32);
2941 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
2942 		if (ic->ic_rxstream >= 2) {
2943 			for (i = 33; i <= 38; i++)
2944 				setbit(frm, i);
2945 		}
2946 		if (ic->ic_rxstream >= 3) {
2947 			for (i = 39; i <= 52; i++)
2948 				setbit(frm, i);
2949 		}
2950 		if (ic->ic_txstream >= 4) {
2951 			for (i = 53; i <= 76; i++)
2952 				setbit(frm, i);
2953 		}
2954 	}
2955 
2956 	if (ic->ic_rxstream != ic->ic_txstream) {
2957 		txparams = 0x1;			/* TX MCS set defined */
2958 		txparams |= 0x2;		/* TX RX MCS not equal */
2959 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
2960 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
2961 			txparams |= 0x16;	/* TX unequal modulation sup */
2962 	} else
2963 		txparams = 0;
2964 	frm[12] = txparams;
2965 }
2966 
2967 /*
2968  * Add body of an HTCAP information element.
2969  */
2970 static uint8_t *
2971 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
2972 {
2973 #define	ADDSHORT(frm, v) do {			\
2974 	frm[0] = (v) & 0xff;			\
2975 	frm[1] = (v) >> 8;			\
2976 	frm += 2;				\
2977 } while (0)
2978 	struct ieee80211com *ic = ni->ni_ic;
2979 	struct ieee80211vap *vap = ni->ni_vap;
2980 	uint16_t caps, extcaps;
2981 	int rxmax, density;
2982 
2983 	/* HT capabilities */
2984 	caps = vap->iv_htcaps & 0xffff;
2985 	/*
2986 	 * Note channel width depends on whether we are operating as
2987 	 * a sta or not.  When operating as a sta we are generating
2988 	 * a request based on our desired configuration.  Otherwise
2989 	 * we are operational and the channel attributes identify
2990 	 * how we've been setup (which might be different if a fixed
2991 	 * channel is specified).
2992 	 */
2993 	if (vap->iv_opmode == IEEE80211_M_STA) {
2994 		/* override 20/40 use based on config */
2995 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
2996 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2997 		else
2998 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2999 
3000 		/* Start by using the advertised settings */
3001 		rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
3002 		density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
3003 
3004 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
3005 		    "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n",
3006 		    __func__,
3007 		    rxmax,
3008 		    density,
3009 		    vap->iv_ampdu_rxmax,
3010 		    vap->iv_ampdu_density);
3011 
3012 		/* Cap at VAP rxmax */
3013 		if (rxmax > vap->iv_ampdu_rxmax)
3014 			rxmax = vap->iv_ampdu_rxmax;
3015 
3016 		/*
3017 		 * If the VAP ampdu density value greater, use that.
3018 		 *
3019 		 * (Larger density value == larger minimum gap between A-MPDU
3020 		 * subframes.)
3021 		 */
3022 		if (vap->iv_ampdu_density > density)
3023 			density = vap->iv_ampdu_density;
3024 
3025 		/*
3026 		 * NB: Hardware might support HT40 on some but not all
3027 		 * channels. We can't determine this earlier because only
3028 		 * after association the channel is upgraded to HT based
3029 		 * on the negotiated capabilities.
3030 		 */
3031 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
3032 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
3033 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
3034 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3035 	} else {
3036 		/* override 20/40 use based on current channel */
3037 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3038 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3039 		else
3040 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3041 
3042 		/* XXX TODO should it start by using advertised settings? */
3043 		rxmax = vap->iv_ampdu_rxmax;
3044 		density = vap->iv_ampdu_density;
3045 	}
3046 
3047 	/* adjust short GI based on channel and config */
3048 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3049 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3050 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3051 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3052 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3053 
3054 	/* adjust STBC based on receive capabilities */
3055 	if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0)
3056 		caps &= ~IEEE80211_HTCAP_RXSTBC;
3057 
3058 	/* adjust LDPC based on receive capabilites */
3059 	if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0)
3060 		caps &= ~IEEE80211_HTCAP_LDPC;
3061 
3062 	ADDSHORT(frm, caps);
3063 
3064 	/* HT parameters */
3065 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3066 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
3067 	     ;
3068 	frm++;
3069 
3070 	/* pre-zero remainder of ie */
3071 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3072 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3073 
3074 	/* supported MCS set */
3075 	/*
3076 	 * XXX: For sta mode the rate set should be restricted based
3077 	 * on the AP's capabilities, but ni_htrates isn't setup when
3078 	 * we're called to form an AssocReq frame so for now we're
3079 	 * restricted to the device capabilities.
3080 	 */
3081 	ieee80211_set_mcsset(ni->ni_ic, frm);
3082 
3083 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3084 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3085 
3086 	/* HT extended capabilities */
3087 	extcaps = vap->iv_htextcaps & 0xffff;
3088 
3089 	ADDSHORT(frm, extcaps);
3090 
3091 	frm += sizeof(struct ieee80211_ie_htcap) -
3092 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3093 
3094 	return frm;
3095 #undef ADDSHORT
3096 }
3097 
3098 /*
3099  * Add 802.11n HT capabilities information element
3100  */
3101 uint8_t *
3102 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
3103 {
3104 	frm[0] = IEEE80211_ELEMID_HTCAP;
3105 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3106 	return ieee80211_add_htcap_body(frm + 2, ni);
3107 }
3108 
3109 /*
3110  * Non-associated probe request - add HT capabilities based on
3111  * the current channel configuration.
3112  */
3113 static uint8_t *
3114 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap,
3115     struct ieee80211_channel *c)
3116 {
3117 #define	ADDSHORT(frm, v) do {			\
3118 	frm[0] = (v) & 0xff;			\
3119 	frm[1] = (v) >> 8;			\
3120 	frm += 2;				\
3121 } while (0)
3122 	struct ieee80211com *ic = vap->iv_ic;
3123 	uint16_t caps, extcaps;
3124 	int rxmax, density;
3125 
3126 	/* HT capabilities */
3127 	caps = vap->iv_htcaps & 0xffff;
3128 
3129 	/*
3130 	 * We don't use this in STA mode; only in IBSS mode.
3131 	 * So in IBSS mode we base our HTCAP flags on the
3132 	 * given channel.
3133 	 */
3134 
3135 	/* override 20/40 use based on current channel */
3136 	if (IEEE80211_IS_CHAN_HT40(c))
3137 		caps |= IEEE80211_HTCAP_CHWIDTH40;
3138 	else
3139 		caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3140 
3141 	/* Use the currently configured values */
3142 	rxmax = vap->iv_ampdu_rxmax;
3143 	density = vap->iv_ampdu_density;
3144 
3145 	/* adjust short GI based on channel and config */
3146 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3147 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3148 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3149 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3150 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3151 	ADDSHORT(frm, caps);
3152 
3153 	/* HT parameters */
3154 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3155 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
3156 	     ;
3157 	frm++;
3158 
3159 	/* pre-zero remainder of ie */
3160 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3161 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3162 
3163 	/* supported MCS set */
3164 	/*
3165 	 * XXX: For sta mode the rate set should be restricted based
3166 	 * on the AP's capabilities, but ni_htrates isn't setup when
3167 	 * we're called to form an AssocReq frame so for now we're
3168 	 * restricted to the device capabilities.
3169 	 */
3170 	ieee80211_set_mcsset(ic, frm);
3171 
3172 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3173 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3174 
3175 	/* HT extended capabilities */
3176 	extcaps = vap->iv_htextcaps & 0xffff;
3177 
3178 	ADDSHORT(frm, extcaps);
3179 
3180 	frm += sizeof(struct ieee80211_ie_htcap) -
3181 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3182 
3183 	return frm;
3184 #undef ADDSHORT
3185 }
3186 
3187 /*
3188  * Add 802.11n HT capabilities information element
3189  */
3190 uint8_t *
3191 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap,
3192     struct ieee80211_channel *c)
3193 {
3194 	frm[0] = IEEE80211_ELEMID_HTCAP;
3195 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3196 	return ieee80211_add_htcap_body_ch(frm + 2, vap, c);
3197 }
3198 
3199 /*
3200  * Add Broadcom OUI wrapped standard HTCAP ie; this is
3201  * used for compatibility w/ pre-draft implementations.
3202  */
3203 uint8_t *
3204 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
3205 {
3206 	frm[0] = IEEE80211_ELEMID_VENDOR;
3207 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
3208 	frm[2] = (BCM_OUI >> 0) & 0xff;
3209 	frm[3] = (BCM_OUI >> 8) & 0xff;
3210 	frm[4] = (BCM_OUI >> 16) & 0xff;
3211 	frm[5] = BCM_OUI_HTCAP;
3212 	return ieee80211_add_htcap_body(frm + 6, ni);
3213 }
3214 
3215 /*
3216  * Construct the MCS bit mask of basic rates
3217  * for inclusion in an HT information element.
3218  */
3219 static void
3220 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
3221 {
3222 	int i;
3223 
3224 	for (i = 0; i < rs->rs_nrates; i++) {
3225 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
3226 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
3227 		    r < IEEE80211_HTRATE_MAXSIZE) {
3228 			/* NB: this assumes a particular implementation */
3229 			setbit(frm, r);
3230 		}
3231 	}
3232 }
3233 
3234 /*
3235  * Update the HTINFO ie for a beacon frame.
3236  */
3237 void
3238 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
3239 	struct ieee80211_beacon_offsets *bo)
3240 {
3241 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
3242 	struct ieee80211_node *ni;
3243 	const struct ieee80211_channel *bsschan;
3244 	struct ieee80211com *ic = vap->iv_ic;
3245 	struct ieee80211_ie_htinfo *ht =
3246 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
3247 
3248 	ni = ieee80211_ref_node(vap->iv_bss);
3249 	bsschan = ni->ni_chan;
3250 
3251 	/* XXX only update on channel change */
3252 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
3253 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3254 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
3255 	else
3256 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
3257 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
3258 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3259 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
3260 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3261 	else
3262 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
3263 	if (IEEE80211_IS_CHAN_HT40(bsschan))
3264 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
3265 
3266 	/* protection mode */
3267 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
3268 
3269 	ieee80211_free_node(ni);
3270 
3271 	/* XXX propagate to vendor ie's */
3272 #undef PROTMODE
3273 }
3274 
3275 /*
3276  * Add body of an HTINFO information element.
3277  *
3278  * NB: We don't use struct ieee80211_ie_htinfo because we can
3279  * be called to fillin both a standard ie and a compat ie that
3280  * has a vendor OUI at the front.
3281  */
3282 static uint8_t *
3283 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
3284 {
3285 	struct ieee80211vap *vap = ni->ni_vap;
3286 	struct ieee80211com *ic = ni->ni_ic;
3287 
3288 	/* pre-zero remainder of ie */
3289 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
3290 
3291 	/* primary/control channel center */
3292 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3293 
3294 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3295 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
3296 	else
3297 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
3298 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3299 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3300 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3301 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3302 	else
3303 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
3304 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3305 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
3306 
3307 	frm[1] = ic->ic_curhtprotmode;
3308 
3309 	frm += 5;
3310 
3311 	/* basic MCS set */
3312 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
3313 	frm += sizeof(struct ieee80211_ie_htinfo) -
3314 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
3315 	return frm;
3316 }
3317 
3318 /*
3319  * Add 802.11n HT information information element.
3320  */
3321 uint8_t *
3322 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
3323 {
3324 	frm[0] = IEEE80211_ELEMID_HTINFO;
3325 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
3326 	return ieee80211_add_htinfo_body(frm + 2, ni);
3327 }
3328 
3329 /*
3330  * Add Broadcom OUI wrapped standard HTINFO ie; this is
3331  * used for compatibility w/ pre-draft implementations.
3332  */
3333 uint8_t *
3334 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
3335 {
3336 	frm[0] = IEEE80211_ELEMID_VENDOR;
3337 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
3338 	frm[2] = (BCM_OUI >> 0) & 0xff;
3339 	frm[3] = (BCM_OUI >> 8) & 0xff;
3340 	frm[4] = (BCM_OUI >> 16) & 0xff;
3341 	frm[5] = BCM_OUI_HTINFO;
3342 	return ieee80211_add_htinfo_body(frm + 6, ni);
3343 }
3344