xref: /freebsd/sys/net80211/ieee80211_ht.c (revision 5dae51da3da0cc94d17bd67b308fad304ebec7e0)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 #ifdef __FreeBSD__
28 __FBSDID("$FreeBSD$");
29 #endif
30 
31 /*
32  * IEEE 802.11n protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/systm.h>
42 #include <sys/endian.h>
43 
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_action.h>
53 #include <net80211/ieee80211_input.h>
54 
55 /* define here, used throughout file */
56 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
57 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
58 
59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
60 	{  13,  14,   27,   30 },	/* MCS 0 */
61 	{  26,  29,   54,   60 },	/* MCS 1 */
62 	{  39,  43,   81,   90 },	/* MCS 2 */
63 	{  52,  58,  108,  120 },	/* MCS 3 */
64 	{  78,  87,  162,  180 },	/* MCS 4 */
65 	{ 104, 116,  216,  240 },	/* MCS 5 */
66 	{ 117, 130,  243,  270 },	/* MCS 6 */
67 	{ 130, 144,  270,  300 },	/* MCS 7 */
68 	{  26,  29,   54,   60 },	/* MCS 8 */
69 	{  52,  58,  108,  120 },	/* MCS 9 */
70 	{  78,  87,  162,  180 },	/* MCS 10 */
71 	{ 104, 116,  216,  240 },	/* MCS 11 */
72 	{ 156, 173,  324,  360 },	/* MCS 12 */
73 	{ 208, 231,  432,  480 },	/* MCS 13 */
74 	{ 234, 260,  486,  540 },	/* MCS 14 */
75 	{ 260, 289,  540,  600 },	/* MCS 15 */
76 	{  39,  43,   81,   90 },	/* MCS 16 */
77 	{  78,  87,  162,  180 },	/* MCS 17 */
78 	{ 117, 130,  243,  270 },	/* MCS 18 */
79 	{ 156, 173,  324,  360 },	/* MCS 19 */
80 	{ 234, 260,  486,  540 },	/* MCS 20 */
81 	{ 312, 347,  648,  720 },	/* MCS 21 */
82 	{ 351, 390,  729,  810 },	/* MCS 22 */
83 	{ 390, 433,  810,  900 },	/* MCS 23 */
84 	{  52,  58,  108,  120 },	/* MCS 24 */
85 	{ 104, 116,  216,  240 },	/* MCS 25 */
86 	{ 156, 173,  324,  360 },	/* MCS 26 */
87 	{ 208, 231,  432,  480 },	/* MCS 27 */
88 	{ 312, 347,  648,  720 },	/* MCS 28 */
89 	{ 416, 462,  864,  960 },	/* MCS 29 */
90 	{ 468, 520,  972, 1080 },	/* MCS 30 */
91 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
92 	{   0,   0,   12,   13 },	/* MCS 32 */
93 	{  78,  87,  162,  180 },	/* MCS 33 */
94 	{ 104, 116,  216,  240 },	/* MCS 34 */
95 	{ 130, 144,  270,  300 },	/* MCS 35 */
96 	{ 117, 130,  243,  270 },	/* MCS 36 */
97 	{ 156, 173,  324,  360 },	/* MCS 37 */
98 	{ 195, 217,  405,  450 },	/* MCS 38 */
99 	{ 104, 116,  216,  240 },	/* MCS 39 */
100 	{ 130, 144,  270,  300 },	/* MCS 40 */
101 	{ 130, 144,  270,  300 },	/* MCS 41 */
102 	{ 156, 173,  324,  360 },	/* MCS 42 */
103 	{ 182, 202,  378,  420 },	/* MCS 43 */
104 	{ 182, 202,  378,  420 },	/* MCS 44 */
105 	{ 208, 231,  432,  480 },	/* MCS 45 */
106 	{ 156, 173,  324,  360 },	/* MCS 46 */
107 	{ 195, 217,  405,  450 },	/* MCS 47 */
108 	{ 195, 217,  405,  450 },	/* MCS 48 */
109 	{ 234, 260,  486,  540 },	/* MCS 49 */
110 	{ 273, 303,  567,  630 },	/* MCS 50 */
111 	{ 273, 303,  567,  630 },	/* MCS 51 */
112 	{ 312, 347,  648,  720 },	/* MCS 52 */
113 	{ 130, 144,  270,  300 },	/* MCS 53 */
114 	{ 156, 173,  324,  360 },	/* MCS 54 */
115 	{ 182, 202,  378,  420 },	/* MCS 55 */
116 	{ 156, 173,  324,  360 },	/* MCS 56 */
117 	{ 182, 202,  378,  420 },	/* MCS 57 */
118 	{ 208, 231,  432,  480 },	/* MCS 58 */
119 	{ 234, 260,  486,  540 },	/* MCS 59 */
120 	{ 208, 231,  432,  480 },	/* MCS 60 */
121 	{ 234, 260,  486,  540 },	/* MCS 61 */
122 	{ 260, 289,  540,  600 },	/* MCS 62 */
123 	{ 260, 289,  540,  600 },	/* MCS 63 */
124 	{ 286, 318,  594,  660 },	/* MCS 64 */
125 	{ 195, 217,  405,  450 },	/* MCS 65 */
126 	{ 234, 260,  486,  540 },	/* MCS 66 */
127 	{ 273, 303,  567,  630 },	/* MCS 67 */
128 	{ 234, 260,  486,  540 },	/* MCS 68 */
129 	{ 273, 303,  567,  630 },	/* MCS 69 */
130 	{ 312, 347,  648,  720 },	/* MCS 70 */
131 	{ 351, 390,  729,  810 },	/* MCS 71 */
132 	{ 312, 347,  648,  720 },	/* MCS 72 */
133 	{ 351, 390,  729,  810 },	/* MCS 73 */
134 	{ 390, 433,  810,  900 },	/* MCS 74 */
135 	{ 390, 433,  810,  900 },	/* MCS 75 */
136 	{ 429, 477,  891,  990 },	/* MCS 76 */
137 };
138 
139 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW,
141 	&ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
142 	"AMPDU max reorder age (ms)");
143 
144 static	int ieee80211_recv_bar_ena = 1;
145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
146 	    0, "BAR frame processing (ena/dis)");
147 
148 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW,
150 	&ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
151 	"ADDBA request timeout (ms)");
152 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW,
154 	&ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
155 	"ADDBA request backoff (ms)");
156 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
158 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
159 
160 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
161 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
162 
163 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
164 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
165 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
166 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
167 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
168 
169 static	ieee80211_send_action_func ht_send_action_ba_addba;
170 static	ieee80211_send_action_func ht_send_action_ba_delba;
171 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
172 
173 static void
174 ieee80211_ht_init(void)
175 {
176 	/*
177 	 * Setup HT parameters that depends on the clock frequency.
178 	 */
179 	ieee80211_ampdu_age = msecs_to_ticks(500);
180 	ieee80211_addba_timeout = msecs_to_ticks(250);
181 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
182 	ieee80211_bar_timeout = msecs_to_ticks(250);
183 	/*
184 	 * Register action frame handlers.
185 	 */
186 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
187 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
188 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
189 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
190 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
191 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
192 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
193 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
194 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
195 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
196 
197 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
198 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
199 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
200 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
201 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
202 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
203 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
204 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
205 }
206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
207 
208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
209 	struct ieee80211_tx_ampdu *tap);
210 static int ieee80211_addba_request(struct ieee80211_node *ni,
211 	struct ieee80211_tx_ampdu *tap,
212 	int dialogtoken, int baparamset, int batimeout);
213 static int ieee80211_addba_response(struct ieee80211_node *ni,
214 	struct ieee80211_tx_ampdu *tap,
215 	int code, int baparamset, int batimeout);
216 static void ieee80211_addba_stop(struct ieee80211_node *ni,
217 	struct ieee80211_tx_ampdu *tap);
218 static void null_addba_response_timeout(struct ieee80211_node *ni,
219 	struct ieee80211_tx_ampdu *tap);
220 
221 static void ieee80211_bar_response(struct ieee80211_node *ni,
222 	struct ieee80211_tx_ampdu *tap, int status);
223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
226 	int baparamset, int batimeout, int baseqctl);
227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
228 
229 void
230 ieee80211_ht_attach(struct ieee80211com *ic)
231 {
232 	/* setup default aggregation policy */
233 	ic->ic_recv_action = ieee80211_recv_action;
234 	ic->ic_send_action = ieee80211_send_action;
235 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
236 	ic->ic_addba_request = ieee80211_addba_request;
237 	ic->ic_addba_response = ieee80211_addba_response;
238 	ic->ic_addba_response_timeout = null_addba_response_timeout;
239 	ic->ic_addba_stop = ieee80211_addba_stop;
240 	ic->ic_bar_response = ieee80211_bar_response;
241 	ic->ic_ampdu_rx_start = ampdu_rx_start;
242 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
243 
244 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
245 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
246 }
247 
248 void
249 ieee80211_ht_detach(struct ieee80211com *ic)
250 {
251 }
252 
253 void
254 ieee80211_ht_vattach(struct ieee80211vap *vap)
255 {
256 
257 	/* driver can override defaults */
258 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
259 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
260 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
261 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
262 	/* tx aggregation traffic thresholds */
263 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
264 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
265 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
266 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
267 
268 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
269 		/*
270 		 * Device is HT capable; enable all HT-related
271 		 * facilities by default.
272 		 * XXX these choices may be too aggressive.
273 		 */
274 		vap->iv_flags_ht |= IEEE80211_FHT_HT
275 				 |  IEEE80211_FHT_HTCOMPAT
276 				 ;
277 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
278 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
279 		/* XXX infer from channel list? */
280 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
281 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
282 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
283 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
284 		}
285 		/* enable RIFS if capable */
286 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
287 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
288 
289 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
290 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
291 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
292 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
293 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
294 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
295 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
296 
297 		if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC)
298 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX;
299 		if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC)
300 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX;
301 	}
302 	/* NB: disable default legacy WDS, too many issues right now */
303 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
304 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
305 }
306 
307 void
308 ieee80211_ht_vdetach(struct ieee80211vap *vap)
309 {
310 }
311 
312 static int
313 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
314     int ratetype)
315 {
316 	int mword, rate;
317 
318 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
319 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
320 		return (0);
321 	switch (ratetype) {
322 	case 0:
323 		rate = ieee80211_htrates[index].ht20_rate_800ns;
324 		break;
325 	case 1:
326 		rate = ieee80211_htrates[index].ht20_rate_400ns;
327 		break;
328 	case 2:
329 		rate = ieee80211_htrates[index].ht40_rate_800ns;
330 		break;
331 	default:
332 		rate = ieee80211_htrates[index].ht40_rate_400ns;
333 		break;
334 	}
335 	return (rate);
336 }
337 
338 static struct printranges {
339 	int	minmcs;
340 	int	maxmcs;
341 	int	txstream;
342 	int	ratetype;
343 	int	htcapflags;
344 } ranges[] = {
345 	{  0,  7, 1, 0, 0 },
346 	{  8, 15, 2, 0, 0 },
347 	{ 16, 23, 3, 0, 0 },
348 	{ 24, 31, 4, 0, 0 },
349 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
350 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
351 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
352 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
353 	{  0,  0, 0, 0, 0 },
354 };
355 
356 static void
357 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
358 {
359 	int minrate, maxrate;
360 	struct printranges *range;
361 
362 	for (range = ranges; range->txstream != 0; range++) {
363 		if (ic->ic_txstream < range->txstream)
364 			continue;
365 		if (range->htcapflags &&
366 		    (ic->ic_htcaps & range->htcapflags) == 0)
367 			continue;
368 		if (ratetype < range->ratetype)
369 			continue;
370 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
371 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
372 		if (range->maxmcs) {
373 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
374 			    range->minmcs, range->maxmcs,
375 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
376 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
377 		} else {
378 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
379 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
380 		}
381 	}
382 }
383 
384 static void
385 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
386 {
387 	const char *modestr = ieee80211_phymode_name[mode];
388 
389 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
390 	ht_rateprint(ic, mode, 0);
391 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
392 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
393 		ht_rateprint(ic, mode, 1);
394 	}
395 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
396 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
397 		ht_rateprint(ic, mode, 2);
398 	}
399 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
400 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
401 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
402 		ht_rateprint(ic, mode, 3);
403 	}
404 }
405 
406 void
407 ieee80211_ht_announce(struct ieee80211com *ic)
408 {
409 
410 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
411 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
412 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
413 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
414 		ht_announce(ic, IEEE80211_MODE_11NA);
415 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
416 		ht_announce(ic, IEEE80211_MODE_11NG);
417 }
418 
419 static struct ieee80211_htrateset htrateset;
420 
421 const struct ieee80211_htrateset *
422 ieee80211_get_suphtrates(struct ieee80211com *ic,
423     const struct ieee80211_channel *c)
424 {
425 #define	ADDRATE(x)	do {						\
426 	htrateset.rs_rates[htrateset.rs_nrates] = x;			\
427 	htrateset.rs_nrates++;						\
428 } while (0)
429 	int i;
430 
431 	memset(&htrateset, 0, sizeof(struct ieee80211_htrateset));
432 	for (i = 0; i < ic->ic_txstream * 8; i++)
433 		ADDRATE(i);
434 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
435 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
436 		ADDRATE(32);
437 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
438 		if (ic->ic_txstream >= 2) {
439 			 for (i = 33; i <= 38; i++)
440 				ADDRATE(i);
441 		}
442 		if (ic->ic_txstream >= 3) {
443 			for (i = 39; i <= 52; i++)
444 				ADDRATE(i);
445 		}
446 		if (ic->ic_txstream == 4) {
447 			for (i = 53; i <= 76; i++)
448 				ADDRATE(i);
449 		}
450 	}
451 	return &htrateset;
452 #undef	ADDRATE
453 }
454 
455 /*
456  * Receive processing.
457  */
458 
459 /*
460  * Decap the encapsulated A-MSDU frames and dispatch all but
461  * the last for delivery.  The last frame is returned for
462  * delivery via the normal path.
463  */
464 struct mbuf *
465 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
466 {
467 	struct ieee80211vap *vap = ni->ni_vap;
468 	int framelen;
469 	struct mbuf *n;
470 
471 	/* discard 802.3 header inserted by ieee80211_decap */
472 	m_adj(m, sizeof(struct ether_header));
473 
474 	vap->iv_stats.is_amsdu_decap++;
475 
476 	for (;;) {
477 		/*
478 		 * Decap the first frame, bust it apart from the
479 		 * remainder and deliver.  We leave the last frame
480 		 * delivery to the caller (for consistency with other
481 		 * code paths, could also do it here).
482 		 */
483 		m = ieee80211_decap1(m, &framelen);
484 		if (m == NULL) {
485 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
486 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
487 			vap->iv_stats.is_amsdu_tooshort++;
488 			return NULL;
489 		}
490 		if (m->m_pkthdr.len == framelen)
491 			break;
492 		n = m_split(m, framelen, M_NOWAIT);
493 		if (n == NULL) {
494 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
495 			    ni->ni_macaddr, "a-msdu",
496 			    "%s", "unable to split encapsulated frames");
497 			vap->iv_stats.is_amsdu_split++;
498 			m_freem(m);			/* NB: must reclaim */
499 			return NULL;
500 		}
501 		vap->iv_deliver_data(vap, ni, m);
502 
503 		/*
504 		 * Remove frame contents; each intermediate frame
505 		 * is required to be aligned to a 4-byte boundary.
506 		 */
507 		m = n;
508 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
509 	}
510 	return m;				/* last delivered by caller */
511 }
512 
513 /*
514  * Purge all frames in the A-MPDU re-order queue.
515  */
516 static void
517 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
518 {
519 	struct mbuf *m;
520 	int i;
521 
522 	for (i = 0; i < rap->rxa_wnd; i++) {
523 		m = rap->rxa_m[i];
524 		if (m != NULL) {
525 			rap->rxa_m[i] = NULL;
526 			rap->rxa_qbytes -= m->m_pkthdr.len;
527 			m_freem(m);
528 			if (--rap->rxa_qframes == 0)
529 				break;
530 		}
531 	}
532 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
533 	    ("lost %u data, %u frames on ampdu rx q",
534 	    rap->rxa_qbytes, rap->rxa_qframes));
535 }
536 
537 /*
538  * Start A-MPDU rx/re-order processing for the specified TID.
539  */
540 static int
541 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
542 	int baparamset, int batimeout, int baseqctl)
543 {
544 	int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
545 
546 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
547 		/*
548 		 * AMPDU previously setup and not terminated with a DELBA,
549 		 * flush the reorder q's in case anything remains.
550 		 */
551 		ampdu_rx_purge(rap);
552 	}
553 	memset(rap, 0, sizeof(*rap));
554 	rap->rxa_wnd = (bufsiz == 0) ?
555 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
556 	rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START);
557 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
558 
559 	return 0;
560 }
561 
562 /*
563  * Public function; manually setup the RX ampdu state.
564  */
565 int
566 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
567 {
568 	struct ieee80211_rx_ampdu *rap;
569 
570 	/* XXX TODO: sanity check tid, seq, baw */
571 
572 	rap = &ni->ni_rx_ampdu[tid];
573 
574 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
575 		/*
576 		 * AMPDU previously setup and not terminated with a DELBA,
577 		 * flush the reorder q's in case anything remains.
578 		 */
579 		ampdu_rx_purge(rap);
580 	}
581 
582 	memset(rap, 0, sizeof(*rap));
583 	rap->rxa_wnd = (baw== 0) ?
584 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
585 	rap->rxa_start = seq;
586 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
587 
588 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
589 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x\n",
590 	    __func__,
591 	    tid,
592 	    seq,
593 	    rap->rxa_wnd,
594 	    rap->rxa_flags);
595 
596 	return 0;
597 }
598 
599 /*
600  * Stop A-MPDU rx processing for the specified TID.
601  */
602 static void
603 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
604 {
605 
606 	ampdu_rx_purge(rap);
607 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND);
608 }
609 
610 /*
611  * Dispatch a frame from the A-MPDU reorder queue.  The
612  * frame is fed back into ieee80211_input marked with an
613  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
614  * permits ieee80211_input to optimize re-processing).
615  */
616 static __inline void
617 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
618 {
619 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
620 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
621 	(void) ieee80211_input(ni, m, 0, 0);
622 }
623 
624 /*
625  * Dispatch as many frames as possible from the re-order queue.
626  * Frames will always be "at the front"; we process all frames
627  * up to the first empty slot in the window.  On completion we
628  * cleanup state if there are still pending frames in the current
629  * BA window.  We assume the frame at slot 0 is already handled
630  * by the caller; we always start at slot 1.
631  */
632 static void
633 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
634 {
635 	struct ieee80211vap *vap = ni->ni_vap;
636 	struct mbuf *m;
637 	int i;
638 
639 	/* flush run of frames */
640 	for (i = 1; i < rap->rxa_wnd; i++) {
641 		m = rap->rxa_m[i];
642 		if (m == NULL)
643 			break;
644 		rap->rxa_m[i] = NULL;
645 		rap->rxa_qbytes -= m->m_pkthdr.len;
646 		rap->rxa_qframes--;
647 
648 		ampdu_dispatch(ni, m);
649 	}
650 	/*
651 	 * If frames remain, copy the mbuf pointers down so
652 	 * they correspond to the offsets in the new window.
653 	 */
654 	if (rap->rxa_qframes != 0) {
655 		int n = rap->rxa_qframes, j;
656 		for (j = i+1; j < rap->rxa_wnd; j++) {
657 			if (rap->rxa_m[j] != NULL) {
658 				rap->rxa_m[j-i] = rap->rxa_m[j];
659 				rap->rxa_m[j] = NULL;
660 				if (--n == 0)
661 					break;
662 			}
663 		}
664 		KASSERT(n == 0, ("lost %d frames", n));
665 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
666 	}
667 	/*
668 	 * Adjust the start of the BA window to
669 	 * reflect the frames just dispatched.
670 	 */
671 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
672 	vap->iv_stats.is_ampdu_rx_oor += i;
673 }
674 
675 /*
676  * Dispatch all frames in the A-MPDU re-order queue.
677  */
678 static void
679 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
680 {
681 	struct ieee80211vap *vap = ni->ni_vap;
682 	struct mbuf *m;
683 	int i;
684 
685 	for (i = 0; i < rap->rxa_wnd; i++) {
686 		m = rap->rxa_m[i];
687 		if (m == NULL)
688 			continue;
689 		rap->rxa_m[i] = NULL;
690 		rap->rxa_qbytes -= m->m_pkthdr.len;
691 		rap->rxa_qframes--;
692 		vap->iv_stats.is_ampdu_rx_oor++;
693 
694 		ampdu_dispatch(ni, m);
695 		if (rap->rxa_qframes == 0)
696 			break;
697 	}
698 }
699 
700 /*
701  * Dispatch all frames in the A-MPDU re-order queue
702  * preceding the specified sequence number.  This logic
703  * handles window moves due to a received MSDU or BAR.
704  */
705 static void
706 ampdu_rx_flush_upto(struct ieee80211_node *ni,
707 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
708 {
709 	struct ieee80211vap *vap = ni->ni_vap;
710 	struct mbuf *m;
711 	ieee80211_seq seqno;
712 	int i;
713 
714 	/*
715 	 * Flush any complete MSDU's with a sequence number lower
716 	 * than winstart.  Gaps may exist.  Note that we may actually
717 	 * dispatch frames past winstart if a run continues; this is
718 	 * an optimization that avoids having to do a separate pass
719 	 * to dispatch frames after moving the BA window start.
720 	 */
721 	seqno = rap->rxa_start;
722 	for (i = 0; i < rap->rxa_wnd; i++) {
723 		m = rap->rxa_m[i];
724 		if (m != NULL) {
725 			rap->rxa_m[i] = NULL;
726 			rap->rxa_qbytes -= m->m_pkthdr.len;
727 			rap->rxa_qframes--;
728 			vap->iv_stats.is_ampdu_rx_oor++;
729 
730 			ampdu_dispatch(ni, m);
731 		} else {
732 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
733 				break;
734 		}
735 		seqno = IEEE80211_SEQ_INC(seqno);
736 	}
737 	/*
738 	 * If frames remain, copy the mbuf pointers down so
739 	 * they correspond to the offsets in the new window.
740 	 */
741 	if (rap->rxa_qframes != 0) {
742 		int n = rap->rxa_qframes, j;
743 
744 		/* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */
745 		KASSERT(rap->rxa_m[0] == NULL,
746 		    ("%s: BA window slot 0 occupied", __func__));
747 		for (j = i+1; j < rap->rxa_wnd; j++) {
748 			if (rap->rxa_m[j] != NULL) {
749 				rap->rxa_m[j-i] = rap->rxa_m[j];
750 				rap->rxa_m[j] = NULL;
751 				if (--n == 0)
752 					break;
753 			}
754 		}
755 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
756 		    "BA win <%d:%d> winstart %d",
757 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
758 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
759 		    winstart));
760 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
761 	}
762 	/*
763 	 * Move the start of the BA window; we use the
764 	 * sequence number of the last MSDU that was
765 	 * passed up the stack+1 or winstart if stopped on
766 	 * a gap in the reorder buffer.
767 	 */
768 	rap->rxa_start = seqno;
769 }
770 
771 /*
772  * Process a received QoS data frame for an HT station.  Handle
773  * A-MPDU reordering: if this frame is received out of order
774  * and falls within the BA window hold onto it.  Otherwise if
775  * this frame completes a run, flush any pending frames.  We
776  * return 1 if the frame is consumed.  A 0 is returned if
777  * the frame should be processed normally by the caller.
778  */
779 int
780 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m)
781 {
782 #define	PROCESS		0	/* caller should process frame */
783 #define	CONSUMED	1	/* frame consumed, caller does nothing */
784 	struct ieee80211vap *vap = ni->ni_vap;
785 	struct ieee80211_qosframe *wh;
786 	struct ieee80211_rx_ampdu *rap;
787 	ieee80211_seq rxseq;
788 	uint8_t tid;
789 	int off;
790 
791 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
792 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
793 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
794 
795 	/* NB: m_len known to be sufficient */
796 	wh = mtod(m, struct ieee80211_qosframe *);
797 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
798 		/*
799 		 * Not QoS data, shouldn't get here but just
800 		 * return it to the caller for processing.
801 		 */
802 		return PROCESS;
803 	}
804 	if (IEEE80211_IS_DSTODS(wh))
805 		tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0];
806 	else
807 		tid = wh->i_qos[0];
808 	tid &= IEEE80211_QOS_TID;
809 	rap = &ni->ni_rx_ampdu[tid];
810 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
811 		/*
812 		 * No ADDBA request yet, don't touch.
813 		 */
814 		return PROCESS;
815 	}
816 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
817 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
818 		/*
819 		 * Fragments are not allowed; toss.
820 		 */
821 		IEEE80211_DISCARD_MAC(vap,
822 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
823 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
824 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
825 		vap->iv_stats.is_ampdu_rx_drop++;
826 		IEEE80211_NODE_STAT(ni, rx_drop);
827 		m_freem(m);
828 		return CONSUMED;
829 	}
830 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
831 	rap->rxa_nframes++;
832 again:
833 	if (rxseq == rap->rxa_start) {
834 		/*
835 		 * First frame in window.
836 		 */
837 		if (rap->rxa_qframes != 0) {
838 			/*
839 			 * Dispatch as many packets as we can.
840 			 */
841 			KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup"));
842 			ampdu_dispatch(ni, m);
843 			ampdu_rx_dispatch(rap, ni);
844 			return CONSUMED;
845 		} else {
846 			/*
847 			 * In order; advance window and notify
848 			 * caller to dispatch directly.
849 			 */
850 			rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
851 			return PROCESS;
852 		}
853 	}
854 	/*
855 	 * Frame is out of order; store if in the BA window.
856 	 */
857 	/* calculate offset in BA window */
858 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
859 	if (off < rap->rxa_wnd) {
860 		/*
861 		 * Common case (hopefully): in the BA window.
862 		 * Sec 9.10.7.6.2 a) (p.137)
863 		 */
864 
865 		/*
866 		 * Check for frames sitting too long in the reorder queue.
867 		 * This should only ever happen if frames are not delivered
868 		 * without the sender otherwise notifying us (e.g. with a
869 		 * BAR to move the window).  Typically this happens because
870 		 * of vendor bugs that cause the sequence number to jump.
871 		 * When this happens we get a gap in the reorder queue that
872 		 * leaves frame sitting on the queue until they get pushed
873 		 * out due to window moves.  When the vendor does not send
874 		 * BAR this move only happens due to explicit packet sends
875 		 *
876 		 * NB: we only track the time of the oldest frame in the
877 		 * reorder q; this means that if we flush we might push
878 		 * frames that still "new"; if this happens then subsequent
879 		 * frames will result in BA window moves which cost something
880 		 * but is still better than a big throughput dip.
881 		 */
882 		if (rap->rxa_qframes != 0) {
883 			/* XXX honor batimeout? */
884 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
885 				/*
886 				 * Too long since we received the first
887 				 * frame; flush the reorder buffer.
888 				 */
889 				if (rap->rxa_qframes != 0) {
890 					vap->iv_stats.is_ampdu_rx_age +=
891 					    rap->rxa_qframes;
892 					ampdu_rx_flush(ni, rap);
893 				}
894 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
895 				return PROCESS;
896 			}
897 		} else {
898 			/*
899 			 * First frame, start aging timer.
900 			 */
901 			rap->rxa_age = ticks;
902 		}
903 
904 		/* save packet */
905 		if (rap->rxa_m[off] == NULL) {
906 			rap->rxa_m[off] = m;
907 			rap->rxa_qframes++;
908 			rap->rxa_qbytes += m->m_pkthdr.len;
909 			vap->iv_stats.is_ampdu_rx_reorder++;
910 		} else {
911 			IEEE80211_DISCARD_MAC(vap,
912 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
913 			    ni->ni_macaddr, "a-mpdu duplicate",
914 			    "seqno %u tid %u BA win <%u:%u>",
915 			    rxseq, tid, rap->rxa_start,
916 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
917 			vap->iv_stats.is_rx_dup++;
918 			IEEE80211_NODE_STAT(ni, rx_dup);
919 			m_freem(m);
920 		}
921 		return CONSUMED;
922 	}
923 	if (off < IEEE80211_SEQ_BA_RANGE) {
924 		/*
925 		 * Outside the BA window, but within range;
926 		 * flush the reorder q and move the window.
927 		 * Sec 9.10.7.6.2 b) (p.138)
928 		 */
929 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
930 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
931 		    rap->rxa_start,
932 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
933 		    rap->rxa_qframes, rxseq, tid);
934 		vap->iv_stats.is_ampdu_rx_move++;
935 
936 		/*
937 		 * The spec says to flush frames up to but not including:
938 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
939 		 * Then insert the frame or notify the caller to process
940 		 * it immediately.  We can safely do this by just starting
941 		 * over again because we know the frame will now be within
942 		 * the BA window.
943 		 */
944 		/* NB: rxa_wnd known to be >0 */
945 		ampdu_rx_flush_upto(ni, rap,
946 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
947 		goto again;
948 	} else {
949 		/*
950 		 * Outside the BA window and out of range; toss.
951 		 * Sec 9.10.7.6.2 c) (p.138)
952 		 */
953 		IEEE80211_DISCARD_MAC(vap,
954 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
955 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
956 		    rap->rxa_start,
957 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
958 		    rap->rxa_qframes, rxseq, tid,
959 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
960 		vap->iv_stats.is_ampdu_rx_drop++;
961 		IEEE80211_NODE_STAT(ni, rx_drop);
962 		m_freem(m);
963 		return CONSUMED;
964 	}
965 #undef CONSUMED
966 #undef PROCESS
967 }
968 
969 /*
970  * Process a BAR ctl frame.  Dispatch all frames up to
971  * the sequence number of the frame.  If this frame is
972  * out of range it's discarded.
973  */
974 void
975 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
976 {
977 	struct ieee80211vap *vap = ni->ni_vap;
978 	struct ieee80211_frame_bar *wh;
979 	struct ieee80211_rx_ampdu *rap;
980 	ieee80211_seq rxseq;
981 	int tid, off;
982 
983 	if (!ieee80211_recv_bar_ena) {
984 #if 0
985 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
986 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
987 #endif
988 		vap->iv_stats.is_ampdu_bar_bad++;
989 		return;
990 	}
991 	wh = mtod(m0, struct ieee80211_frame_bar *);
992 	/* XXX check basic BAR */
993 	tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
994 	rap = &ni->ni_rx_ampdu[tid];
995 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
996 		/*
997 		 * No ADDBA request yet, don't touch.
998 		 */
999 		IEEE80211_DISCARD_MAC(vap,
1000 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1001 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1002 		vap->iv_stats.is_ampdu_bar_bad++;
1003 		return;
1004 	}
1005 	vap->iv_stats.is_ampdu_bar_rx++;
1006 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1007 	if (rxseq == rap->rxa_start)
1008 		return;
1009 	/* calculate offset in BA window */
1010 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1011 	if (off < IEEE80211_SEQ_BA_RANGE) {
1012 		/*
1013 		 * Flush the reorder q up to rxseq and move the window.
1014 		 * Sec 9.10.7.6.3 a) (p.138)
1015 		 */
1016 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1017 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1018 		    rap->rxa_start,
1019 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1020 		    rap->rxa_qframes, rxseq, tid);
1021 		vap->iv_stats.is_ampdu_bar_move++;
1022 
1023 		ampdu_rx_flush_upto(ni, rap, rxseq);
1024 		if (off >= rap->rxa_wnd) {
1025 			/*
1026 			 * BAR specifies a window start to the right of BA
1027 			 * window; we must move it explicitly since
1028 			 * ampdu_rx_flush_upto will not.
1029 			 */
1030 			rap->rxa_start = rxseq;
1031 		}
1032 	} else {
1033 		/*
1034 		 * Out of range; toss.
1035 		 * Sec 9.10.7.6.3 b) (p.138)
1036 		 */
1037 		IEEE80211_DISCARD_MAC(vap,
1038 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1039 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1040 		    rap->rxa_start,
1041 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1042 		    rap->rxa_qframes, rxseq, tid,
1043 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1044 		vap->iv_stats.is_ampdu_bar_oow++;
1045 		IEEE80211_NODE_STAT(ni, rx_drop);
1046 	}
1047 }
1048 
1049 /*
1050  * Setup HT-specific state in a node.  Called only
1051  * when HT use is negotiated so we don't do extra
1052  * work for temporary and/or legacy sta's.
1053  */
1054 void
1055 ieee80211_ht_node_init(struct ieee80211_node *ni)
1056 {
1057 	struct ieee80211_tx_ampdu *tap;
1058 	int tid;
1059 
1060 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1061 	    ni,
1062 	    "%s: called (%p)",
1063 	    __func__,
1064 	    ni);
1065 
1066 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1067 		/*
1068 		 * Clean AMPDU state on re-associate.  This handles the case
1069 		 * where a station leaves w/o notifying us and then returns
1070 		 * before node is reaped for inactivity.
1071 		 */
1072 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1073 		    ni,
1074 		    "%s: calling cleanup (%p)",
1075 		    __func__, ni);
1076 		ieee80211_ht_node_cleanup(ni);
1077 	}
1078 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1079 		tap = &ni->ni_tx_ampdu[tid];
1080 		tap->txa_tid = tid;
1081 		tap->txa_ni = ni;
1082 		ieee80211_txampdu_init_pps(tap);
1083 		/* NB: further initialization deferred */
1084 	}
1085 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1086 }
1087 
1088 /*
1089  * Cleanup HT-specific state in a node.  Called only
1090  * when HT use has been marked.
1091  */
1092 void
1093 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1094 {
1095 	struct ieee80211com *ic = ni->ni_ic;
1096 	int i;
1097 
1098 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1099 	    ni,
1100 	    "%s: called (%p)",
1101 	    __func__, ni);
1102 
1103 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1104 
1105 	/* XXX optimize this */
1106 	for (i = 0; i < WME_NUM_TID; i++) {
1107 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1108 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1109 			ampdu_tx_stop(tap);
1110 	}
1111 	for (i = 0; i < WME_NUM_TID; i++)
1112 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1113 
1114 	ni->ni_htcap = 0;
1115 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1116 }
1117 
1118 /*
1119  * Age out HT resources for a station.
1120  */
1121 void
1122 ieee80211_ht_node_age(struct ieee80211_node *ni)
1123 {
1124 	struct ieee80211vap *vap = ni->ni_vap;
1125 	uint8_t tid;
1126 
1127 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1128 
1129 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1130 		struct ieee80211_rx_ampdu *rap;
1131 
1132 		rap = &ni->ni_rx_ampdu[tid];
1133 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1134 			continue;
1135 		if (rap->rxa_qframes == 0)
1136 			continue;
1137 		/*
1138 		 * Check for frames sitting too long in the reorder queue.
1139 		 * See above for more details on what's happening here.
1140 		 */
1141 		/* XXX honor batimeout? */
1142 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1143 			/*
1144 			 * Too long since we received the first
1145 			 * frame; flush the reorder buffer.
1146 			 */
1147 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1148 			ampdu_rx_flush(ni, rap);
1149 		}
1150 	}
1151 }
1152 
1153 static struct ieee80211_channel *
1154 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1155 {
1156 	return ieee80211_find_channel(ic, c->ic_freq,
1157 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1158 }
1159 
1160 /*
1161  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1162  */
1163 struct ieee80211_channel *
1164 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1165 	struct ieee80211_channel *chan, int flags)
1166 {
1167 	struct ieee80211_channel *c;
1168 
1169 	if (flags & IEEE80211_FHT_HT) {
1170 		/* promote to HT if possible */
1171 		if (flags & IEEE80211_FHT_USEHT40) {
1172 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1173 				/* NB: arbitrarily pick ht40+ over ht40- */
1174 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1175 				if (c == NULL)
1176 					c = findhtchan(ic, chan,
1177 						IEEE80211_CHAN_HT40D);
1178 				if (c == NULL)
1179 					c = findhtchan(ic, chan,
1180 						IEEE80211_CHAN_HT20);
1181 				if (c != NULL)
1182 					chan = c;
1183 			}
1184 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1185 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1186 			if (c != NULL)
1187 				chan = c;
1188 		}
1189 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1190 		/* demote to legacy, HT use is disabled */
1191 		c = ieee80211_find_channel(ic, chan->ic_freq,
1192 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1193 		if (c != NULL)
1194 			chan = c;
1195 	}
1196 	return chan;
1197 }
1198 
1199 /*
1200  * Setup HT-specific state for a legacy WDS peer.
1201  */
1202 void
1203 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1204 {
1205 	struct ieee80211vap *vap = ni->ni_vap;
1206 	struct ieee80211_tx_ampdu *tap;
1207 	int tid;
1208 
1209 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1210 
1211 	/* XXX check scan cache in case peer has an ap and we have info */
1212 	/*
1213 	 * If setup with a legacy channel; locate an HT channel.
1214 	 * Otherwise if the inherited channel (from a companion
1215 	 * AP) is suitable use it so we use the same location
1216 	 * for the extension channel).
1217 	 */
1218 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1219 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1220 
1221 	ni->ni_htcap = 0;
1222 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1223 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1224 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1225 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1226 		ni->ni_chw = 40;
1227 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1228 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1229 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1230 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1231 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1232 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1233 	} else {
1234 		ni->ni_chw = 20;
1235 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1236 	}
1237 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1238 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1239 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1240 	/* XXX does it make sense to enable SMPS? */
1241 
1242 	ni->ni_htopmode = 0;		/* XXX need protection state */
1243 	ni->ni_htstbc = 0;		/* XXX need info */
1244 
1245 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1246 		tap = &ni->ni_tx_ampdu[tid];
1247 		tap->txa_tid = tid;
1248 		ieee80211_txampdu_init_pps(tap);
1249 	}
1250 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1251 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1252 }
1253 
1254 /*
1255  * Notify hostap vaps of a change in the HTINFO ie.
1256  */
1257 static void
1258 htinfo_notify(struct ieee80211com *ic)
1259 {
1260 	struct ieee80211vap *vap;
1261 	int first = 1;
1262 
1263 	IEEE80211_LOCK_ASSERT(ic);
1264 
1265 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1266 		if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1267 			continue;
1268 		if (vap->iv_state != IEEE80211_S_RUN ||
1269 		    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1270 			continue;
1271 		if (first) {
1272 			IEEE80211_NOTE(vap,
1273 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1274 			    vap->iv_bss,
1275 			    "HT bss occupancy change: %d sta, %d ht, "
1276 			    "%d ht40%s, HT protmode now 0x%x"
1277 			    , ic->ic_sta_assoc
1278 			    , ic->ic_ht_sta_assoc
1279 			    , ic->ic_ht40_sta_assoc
1280 			    , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1281 				 ", non-HT sta present" : ""
1282 			    , ic->ic_curhtprotmode);
1283 			first = 0;
1284 		}
1285 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1286 	}
1287 }
1288 
1289 /*
1290  * Calculate HT protection mode from current
1291  * state and handle updates.
1292  */
1293 static void
1294 htinfo_update(struct ieee80211com *ic)
1295 {
1296 	uint8_t protmode;
1297 
1298 	if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) {
1299 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1300 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1301 	} else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) {
1302 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1303 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1304 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1305 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1306 	    ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) {
1307 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1308 	} else {
1309 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1310 	}
1311 	if (protmode != ic->ic_curhtprotmode) {
1312 		ic->ic_curhtprotmode = protmode;
1313 		htinfo_notify(ic);
1314 	}
1315 }
1316 
1317 /*
1318  * Handle an HT station joining a BSS.
1319  */
1320 void
1321 ieee80211_ht_node_join(struct ieee80211_node *ni)
1322 {
1323 	struct ieee80211com *ic = ni->ni_ic;
1324 
1325 	IEEE80211_LOCK_ASSERT(ic);
1326 
1327 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1328 		ic->ic_ht_sta_assoc++;
1329 		if (ni->ni_chw == 40)
1330 			ic->ic_ht40_sta_assoc++;
1331 	}
1332 	htinfo_update(ic);
1333 }
1334 
1335 /*
1336  * Handle an HT station leaving a BSS.
1337  */
1338 void
1339 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1340 {
1341 	struct ieee80211com *ic = ni->ni_ic;
1342 
1343 	IEEE80211_LOCK_ASSERT(ic);
1344 
1345 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1346 		ic->ic_ht_sta_assoc--;
1347 		if (ni->ni_chw == 40)
1348 			ic->ic_ht40_sta_assoc--;
1349 	}
1350 	htinfo_update(ic);
1351 }
1352 
1353 /*
1354  * Public version of htinfo_update; used for processing
1355  * beacon frames from overlapping bss.
1356  *
1357  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1358  * (on receipt of a beacon that advertises MIXED) or
1359  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1360  * from an overlapping legacy bss).  We treat MIXED with
1361  * a higher precedence than PROTOPT (i.e. we will not change
1362  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1363  * corresponds to how we handle things in htinfo_update.
1364  */
1365 void
1366 ieee80211_htprot_update(struct ieee80211com *ic, int protmode)
1367 {
1368 #define	OPMODE(x)	SM(x, IEEE80211_HTINFO_OPMODE)
1369 	IEEE80211_LOCK(ic);
1370 
1371 	/* track non-HT station presence */
1372 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1373 	    ("protmode 0x%x", protmode));
1374 	ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1375 	ic->ic_lastnonht = ticks;
1376 
1377 	if (protmode != ic->ic_curhtprotmode &&
1378 	    (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1379 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1380 		/* push beacon update */
1381 		ic->ic_curhtprotmode = protmode;
1382 		htinfo_notify(ic);
1383 	}
1384 	IEEE80211_UNLOCK(ic);
1385 #undef OPMODE
1386 }
1387 
1388 /*
1389  * Time out presence of an overlapping bss with non-HT
1390  * stations.  When operating in hostap mode we listen for
1391  * beacons from other stations and if we identify a non-HT
1392  * station is present we update the opmode field of the
1393  * HTINFO ie.  To identify when all non-HT stations are
1394  * gone we time out this condition.
1395  */
1396 void
1397 ieee80211_ht_timeout(struct ieee80211com *ic)
1398 {
1399 	IEEE80211_LOCK_ASSERT(ic);
1400 
1401 	if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1402 	    ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1403 #if 0
1404 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1405 		    "%s", "time out non-HT STA present on channel");
1406 #endif
1407 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1408 		htinfo_update(ic);
1409 	}
1410 }
1411 
1412 /*
1413  * Process an 802.11n HT capabilities ie.
1414  */
1415 void
1416 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1417 {
1418 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1419 		/*
1420 		 * Station used Vendor OUI ie to associate;
1421 		 * mark the node so when we respond we'll use
1422 		 * the Vendor OUI's and not the standard ie's.
1423 		 */
1424 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1425 		ie += 4;
1426 	} else
1427 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1428 
1429 	ni->ni_htcap = le16dec(ie +
1430 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1431 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1432 }
1433 
1434 static void
1435 htinfo_parse(struct ieee80211_node *ni,
1436 	const struct ieee80211_ie_htinfo *htinfo)
1437 {
1438 	uint16_t w;
1439 
1440 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1441 	ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN);
1442 	w = le16dec(&htinfo->hi_byte2);
1443 	ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE);
1444 	w = le16dec(&htinfo->hi_byte45);
1445 	ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1446 }
1447 
1448 /*
1449  * Parse an 802.11n HT info ie and save useful information
1450  * to the node state.  Note this does not effect any state
1451  * changes such as for channel width change.
1452  */
1453 void
1454 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1455 {
1456 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1457 		ie += 4;
1458 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1459 }
1460 
1461 /*
1462  * Handle 11n channel switch.  Use the received HT ie's to
1463  * identify the right channel to use.  If we cannot locate it
1464  * in the channel table then fallback to legacy operation.
1465  * Note that we use this information to identify the node's
1466  * channel only; the caller is responsible for insuring any
1467  * required channel change is done (e.g. in sta mode when
1468  * parsing the contents of a beacon frame).
1469  */
1470 static int
1471 htinfo_update_chw(struct ieee80211_node *ni, int htflags)
1472 {
1473 	struct ieee80211com *ic = ni->ni_ic;
1474 	struct ieee80211_channel *c;
1475 	int chanflags;
1476 	int ret = 0;
1477 
1478 	chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags;
1479 	if (chanflags != ni->ni_chan->ic_flags) {
1480 		/* XXX not right for ht40- */
1481 		c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1482 		if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1483 			/*
1484 			 * No HT40 channel entry in our table; fall back
1485 			 * to HT20 operation.  This should not happen.
1486 			 */
1487 			c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1488 #if 0
1489 			IEEE80211_NOTE(ni->ni_vap,
1490 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1491 			    "no HT40 channel (freq %u), falling back to HT20",
1492 			    ni->ni_chan->ic_freq);
1493 #endif
1494 			/* XXX stat */
1495 		}
1496 		if (c != NULL && c != ni->ni_chan) {
1497 			IEEE80211_NOTE(ni->ni_vap,
1498 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1499 			    "switch station to HT%d channel %u/0x%x",
1500 			    IEEE80211_IS_CHAN_HT40(c) ? 40 : 20,
1501 			    c->ic_freq, c->ic_flags);
1502 			ni->ni_chan = c;
1503 			ret = 1;
1504 		}
1505 		/* NB: caller responsible for forcing any channel change */
1506 	}
1507 	/* update node's tx channel width */
1508 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1509 	return (ret);
1510 }
1511 
1512 /*
1513  * Update 11n MIMO PS state according to received htcap.
1514  */
1515 static __inline int
1516 htcap_update_mimo_ps(struct ieee80211_node *ni)
1517 {
1518 	uint16_t oflags = ni->ni_flags;
1519 
1520 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1521 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1522 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1523 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1524 		break;
1525 	case IEEE80211_HTCAP_SMPS_ENA:
1526 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1527 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1528 		break;
1529 	case IEEE80211_HTCAP_SMPS_OFF:
1530 	default:		/* disable on rx of reserved value */
1531 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1532 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1533 		break;
1534 	}
1535 	return (oflags ^ ni->ni_flags);
1536 }
1537 
1538 /*
1539  * Update short GI state according to received htcap
1540  * and local settings.
1541  */
1542 static __inline void
1543 htcap_update_shortgi(struct ieee80211_node *ni)
1544 {
1545 	struct ieee80211vap *vap = ni->ni_vap;
1546 
1547 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1548 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1549 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1550 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1551 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1552 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1553 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1554 }
1555 
1556 /*
1557  * Parse and update HT-related state extracted from
1558  * the HT cap and info ie's.
1559  */
1560 int
1561 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1562 	const uint8_t *htcapie, const uint8_t *htinfoie)
1563 {
1564 	struct ieee80211vap *vap = ni->ni_vap;
1565 	const struct ieee80211_ie_htinfo *htinfo;
1566 	int htflags;
1567 	int ret = 0;
1568 
1569 	ieee80211_parse_htcap(ni, htcapie);
1570 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1571 		htcap_update_mimo_ps(ni);
1572 	htcap_update_shortgi(ni);
1573 
1574 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1575 		htinfoie += 4;
1576 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1577 	htinfo_parse(ni, htinfo);
1578 
1579 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1580 	    IEEE80211_CHAN_HT20 : 0;
1581 	/* NB: honor operating mode constraint */
1582 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
1583 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1584 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
1585 			htflags = IEEE80211_CHAN_HT40U;
1586 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
1587 			htflags = IEEE80211_CHAN_HT40D;
1588 	}
1589 	if (htinfo_update_chw(ni, htflags))
1590 		ret = 1;
1591 
1592 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1593 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1594 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1595 	else
1596 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1597 
1598 	return (ret);
1599 }
1600 
1601 /*
1602  * Parse and update HT-related state extracted from the HT cap ie
1603  * for a station joining an HT BSS.
1604  */
1605 void
1606 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
1607 {
1608 	struct ieee80211vap *vap = ni->ni_vap;
1609 	int htflags;
1610 
1611 	ieee80211_parse_htcap(ni, htcapie);
1612 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1613 		htcap_update_mimo_ps(ni);
1614 	htcap_update_shortgi(ni);
1615 
1616 	/* NB: honor operating mode constraint */
1617 	/* XXX 40 MHz intolerant */
1618 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1619 	    IEEE80211_CHAN_HT20 : 0;
1620 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
1621 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1622 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
1623 			htflags = IEEE80211_CHAN_HT40U;
1624 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
1625 			htflags = IEEE80211_CHAN_HT40D;
1626 	}
1627 	(void) htinfo_update_chw(ni, htflags);
1628 }
1629 
1630 /*
1631  * Install received HT rate set by parsing the HT cap ie.
1632  */
1633 int
1634 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
1635 {
1636 	struct ieee80211com *ic = ni->ni_ic;
1637 	struct ieee80211vap *vap = ni->ni_vap;
1638 	const struct ieee80211_ie_htcap *htcap;
1639 	struct ieee80211_htrateset *rs;
1640 	int i, maxequalmcs, maxunequalmcs;
1641 
1642 	maxequalmcs = ic->ic_txstream * 8 - 1;
1643 	maxunequalmcs = 0;
1644 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
1645 		if (ic->ic_txstream >= 2)
1646 			maxunequalmcs = 38;
1647 		if (ic->ic_txstream >= 3)
1648 			maxunequalmcs = 52;
1649 		if (ic->ic_txstream >= 4)
1650 			maxunequalmcs = 76;
1651 	}
1652 
1653 	rs = &ni->ni_htrates;
1654 	memset(rs, 0, sizeof(*rs));
1655 	if (ie != NULL) {
1656 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
1657 			ie += 4;
1658 		htcap = (const struct ieee80211_ie_htcap *) ie;
1659 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1660 			if (isclr(htcap->hc_mcsset, i))
1661 				continue;
1662 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
1663 				IEEE80211_NOTE(vap,
1664 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1665 				    "WARNING, HT rate set too large; only "
1666 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
1667 				vap->iv_stats.is_rx_rstoobig++;
1668 				break;
1669 			}
1670 			if (i <= 31 && i > maxequalmcs)
1671 				continue;
1672 			if (i == 32 &&
1673 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
1674 				continue;
1675 			if (i > 32 && i > maxunequalmcs)
1676 				continue;
1677 			rs->rs_rates[rs->rs_nrates++] = i;
1678 		}
1679 	}
1680 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
1681 }
1682 
1683 /*
1684  * Mark rates in a node's HT rate set as basic according
1685  * to the information in the supplied HT info ie.
1686  */
1687 void
1688 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
1689 {
1690 	const struct ieee80211_ie_htinfo *htinfo;
1691 	struct ieee80211_htrateset *rs;
1692 	int i, j;
1693 
1694 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1695 		ie += 4;
1696 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
1697 	rs = &ni->ni_htrates;
1698 	if (rs->rs_nrates == 0) {
1699 		IEEE80211_NOTE(ni->ni_vap,
1700 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1701 		    "%s", "WARNING, empty HT rate set");
1702 		return;
1703 	}
1704 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1705 		if (isclr(htinfo->hi_basicmcsset, i))
1706 			continue;
1707 		for (j = 0; j < rs->rs_nrates; j++)
1708 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
1709 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
1710 	}
1711 }
1712 
1713 static void
1714 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
1715 {
1716 	callout_init(&tap->txa_timer, 1);
1717 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
1718 	tap->txa_lastsample = ticks;
1719 }
1720 
1721 static void
1722 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
1723 {
1724 	struct ieee80211_node *ni = tap->txa_ni;
1725 	struct ieee80211com *ic = ni->ni_ic;
1726 
1727 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
1728 	    tap->txa_ni,
1729 	    "%s: called",
1730 	    __func__);
1731 
1732 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
1733 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
1734 	    TID_TO_WME_AC(tap->txa_tid)));
1735 
1736 	/*
1737 	 * Stop BA stream if setup so driver has a chance
1738 	 * to reclaim any resources it might have allocated.
1739 	 */
1740 	ic->ic_addba_stop(ni, tap);
1741 	/*
1742 	 * Stop any pending BAR transmit.
1743 	 */
1744 	bar_stop_timer(tap);
1745 
1746 	/*
1747 	 * Reset packet estimate.
1748 	 */
1749 	ieee80211_txampdu_init_pps(tap);
1750 
1751 	/* NB: clearing NAK means we may re-send ADDBA */
1752 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
1753 }
1754 
1755 /*
1756  * ADDBA response timeout.
1757  *
1758  * If software aggregation and per-TID queue management was done here,
1759  * that queue would be unpaused after the ADDBA timeout occurs.
1760  */
1761 static void
1762 addba_timeout(void *arg)
1763 {
1764 	struct ieee80211_tx_ampdu *tap = arg;
1765 	struct ieee80211_node *ni = tap->txa_ni;
1766 	struct ieee80211com *ic = ni->ni_ic;
1767 
1768 	/* XXX ? */
1769 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1770 	tap->txa_attempts++;
1771 	ic->ic_addba_response_timeout(ni, tap);
1772 }
1773 
1774 static void
1775 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
1776 {
1777 	/* XXX use CALLOUT_PENDING instead? */
1778 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
1779 	    addba_timeout, tap);
1780 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
1781 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
1782 }
1783 
1784 static void
1785 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
1786 {
1787 	/* XXX use CALLOUT_PENDING instead? */
1788 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
1789 		callout_stop(&tap->txa_timer);
1790 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1791 	}
1792 }
1793 
1794 static void
1795 null_addba_response_timeout(struct ieee80211_node *ni,
1796     struct ieee80211_tx_ampdu *tap)
1797 {
1798 }
1799 
1800 /*
1801  * Default method for requesting A-MPDU tx aggregation.
1802  * We setup the specified state block and start a timer
1803  * to wait for an ADDBA response frame.
1804  */
1805 static int
1806 ieee80211_addba_request(struct ieee80211_node *ni,
1807 	struct ieee80211_tx_ampdu *tap,
1808 	int dialogtoken, int baparamset, int batimeout)
1809 {
1810 	int bufsiz;
1811 
1812 	/* XXX locking */
1813 	tap->txa_token = dialogtoken;
1814 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
1815 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1816 	tap->txa_wnd = (bufsiz == 0) ?
1817 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1818 	addba_start_timeout(tap);
1819 	return 1;
1820 }
1821 
1822 /*
1823  * Called by drivers that wish to request an ADDBA session be
1824  * setup.  This brings it up and starts the request timer.
1825  */
1826 int
1827 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
1828 {
1829 	struct ieee80211_tx_ampdu *tap;
1830 
1831 	if (tid < 0 || tid > 15)
1832 		return (0);
1833 	tap = &ni->ni_tx_ampdu[tid];
1834 
1835 	/* XXX locking */
1836 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
1837 		/* do deferred setup of state */
1838 		ampdu_tx_setup(tap);
1839 	}
1840 	/* XXX hack for not doing proper locking */
1841 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
1842 	addba_start_timeout(tap);
1843 	return (1);
1844 }
1845 
1846 /*
1847  * Called by drivers that have marked a session as active.
1848  */
1849 int
1850 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
1851     int status)
1852 {
1853 	struct ieee80211_tx_ampdu *tap;
1854 
1855 	if (tid < 0 || tid > 15)
1856 		return (0);
1857 	tap = &ni->ni_tx_ampdu[tid];
1858 
1859 	/* XXX locking */
1860 	addba_stop_timeout(tap);
1861 	if (status == 1) {
1862 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1863 		tap->txa_attempts = 0;
1864 	} else {
1865 		/* mark tid so we don't try again */
1866 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1867 	}
1868 	return (1);
1869 }
1870 
1871 /*
1872  * Default method for processing an A-MPDU tx aggregation
1873  * response.  We shutdown any pending timer and update the
1874  * state block according to the reply.
1875  */
1876 static int
1877 ieee80211_addba_response(struct ieee80211_node *ni,
1878 	struct ieee80211_tx_ampdu *tap,
1879 	int status, int baparamset, int batimeout)
1880 {
1881 	int bufsiz, tid;
1882 
1883 	/* XXX locking */
1884 	addba_stop_timeout(tap);
1885 	if (status == IEEE80211_STATUS_SUCCESS) {
1886 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1887 		/* XXX override our request? */
1888 		tap->txa_wnd = (bufsiz == 0) ?
1889 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1890 		/* XXX AC/TID */
1891 		tid = MS(baparamset, IEEE80211_BAPS_TID);
1892 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1893 		tap->txa_attempts = 0;
1894 	} else {
1895 		/* mark tid so we don't try again */
1896 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1897 	}
1898 	return 1;
1899 }
1900 
1901 /*
1902  * Default method for stopping A-MPDU tx aggregation.
1903  * Any timer is cleared and we drain any pending frames.
1904  */
1905 static void
1906 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
1907 {
1908 	/* XXX locking */
1909 	addba_stop_timeout(tap);
1910 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
1911 		/* XXX clear aggregation queue */
1912 		tap->txa_flags &= ~IEEE80211_AGGR_RUNNING;
1913 	}
1914 	tap->txa_attempts = 0;
1915 }
1916 
1917 /*
1918  * Process a received action frame using the default aggregation
1919  * policy.  We intercept ADDBA-related frames and use them to
1920  * update our aggregation state.  All other frames are passed up
1921  * for processing by ieee80211_recv_action.
1922  */
1923 static int
1924 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
1925 	const struct ieee80211_frame *wh,
1926 	const uint8_t *frm, const uint8_t *efrm)
1927 {
1928 	struct ieee80211com *ic = ni->ni_ic;
1929 	struct ieee80211vap *vap = ni->ni_vap;
1930 	struct ieee80211_rx_ampdu *rap;
1931 	uint8_t dialogtoken;
1932 	uint16_t baparamset, batimeout, baseqctl;
1933 	uint16_t args[5];
1934 	int tid;
1935 
1936 	dialogtoken = frm[2];
1937 	baparamset = le16dec(frm+3);
1938 	batimeout = le16dec(frm+5);
1939 	baseqctl = le16dec(frm+7);
1940 
1941 	tid = MS(baparamset, IEEE80211_BAPS_TID);
1942 
1943 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1944 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
1945 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d",
1946 	    dialogtoken, baparamset,
1947 	    tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ),
1948 	    batimeout,
1949 	    MS(baseqctl, IEEE80211_BASEQ_START),
1950 	    MS(baseqctl, IEEE80211_BASEQ_FRAG));
1951 
1952 	rap = &ni->ni_rx_ampdu[tid];
1953 
1954 	/* Send ADDBA response */
1955 	args[0] = dialogtoken;
1956 	/*
1957 	 * NB: We ack only if the sta associated with HT and
1958 	 * the ap is configured to do AMPDU rx (the latter
1959 	 * violates the 11n spec and is mostly for testing).
1960 	 */
1961 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
1962 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
1963 		/* XXX handle ampdu_rx_start failure */
1964 		ic->ic_ampdu_rx_start(ni, rap,
1965 		    baparamset, batimeout, baseqctl);
1966 
1967 		args[1] = IEEE80211_STATUS_SUCCESS;
1968 	} else {
1969 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1970 		    ni, "reject ADDBA request: %s",
1971 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
1972 		       "administratively disabled" :
1973 		       "not negotiated for station");
1974 		vap->iv_stats.is_addba_reject++;
1975 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
1976 	}
1977 	/* XXX honor rap flags? */
1978 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
1979 		| SM(tid, IEEE80211_BAPS_TID)
1980 		| SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
1981 		;
1982 	args[3] = 0;
1983 	args[4] = 0;
1984 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
1985 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
1986 	return 0;
1987 }
1988 
1989 static int
1990 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
1991 	const struct ieee80211_frame *wh,
1992 	const uint8_t *frm, const uint8_t *efrm)
1993 {
1994 	struct ieee80211com *ic = ni->ni_ic;
1995 	struct ieee80211vap *vap = ni->ni_vap;
1996 	struct ieee80211_tx_ampdu *tap;
1997 	uint8_t dialogtoken, policy;
1998 	uint16_t baparamset, batimeout, code;
1999 	int tid, bufsiz;
2000 
2001 	dialogtoken = frm[2];
2002 	code = le16dec(frm+3);
2003 	baparamset = le16dec(frm+5);
2004 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2005 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2006 	policy = MS(baparamset, IEEE80211_BAPS_POLICY);
2007 	batimeout = le16dec(frm+7);
2008 
2009 	tap = &ni->ni_tx_ampdu[tid];
2010 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2011 		IEEE80211_DISCARD_MAC(vap,
2012 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2013 		    ni->ni_macaddr, "ADDBA response",
2014 		    "no pending ADDBA, tid %d dialogtoken %u "
2015 		    "code %d", tid, dialogtoken, code);
2016 		vap->iv_stats.is_addba_norequest++;
2017 		return 0;
2018 	}
2019 	if (dialogtoken != tap->txa_token) {
2020 		IEEE80211_DISCARD_MAC(vap,
2021 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2022 		    ni->ni_macaddr, "ADDBA response",
2023 		    "dialogtoken mismatch: waiting for %d, "
2024 		    "received %d, tid %d code %d",
2025 		    tap->txa_token, dialogtoken, tid, code);
2026 		vap->iv_stats.is_addba_badtoken++;
2027 		return 0;
2028 	}
2029 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2030 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2031 		IEEE80211_DISCARD_MAC(vap,
2032 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2033 		    ni->ni_macaddr, "ADDBA response",
2034 		    "policy mismatch: expecting %s, "
2035 		    "received %s, tid %d code %d",
2036 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2037 		    policy, tid, code);
2038 		vap->iv_stats.is_addba_badpolicy++;
2039 		return 0;
2040 	}
2041 #if 0
2042 	/* XXX we take MIN in ieee80211_addba_response */
2043 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2044 		IEEE80211_DISCARD_MAC(vap,
2045 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2046 		    ni->ni_macaddr, "ADDBA response",
2047 		    "BA window too large: max %d, "
2048 		    "received %d, tid %d code %d",
2049 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2050 		vap->iv_stats.is_addba_badbawinsize++;
2051 		return 0;
2052 	}
2053 #endif
2054 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2055 	    "recv ADDBA response: dialogtoken %u code %d "
2056 	    "baparamset 0x%x (tid %d bufsiz %d) batimeout %d",
2057 	    dialogtoken, code, baparamset, tid, bufsiz,
2058 	    batimeout);
2059 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2060 	return 0;
2061 }
2062 
2063 static int
2064 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2065 	const struct ieee80211_frame *wh,
2066 	const uint8_t *frm, const uint8_t *efrm)
2067 {
2068 	struct ieee80211com *ic = ni->ni_ic;
2069 	struct ieee80211_rx_ampdu *rap;
2070 	struct ieee80211_tx_ampdu *tap;
2071 	uint16_t baparamset, code;
2072 	int tid;
2073 
2074 	baparamset = le16dec(frm+2);
2075 	code = le16dec(frm+4);
2076 
2077 	tid = MS(baparamset, IEEE80211_DELBAPS_TID);
2078 
2079 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2080 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2081 	    "code %d", baparamset, tid,
2082 	    MS(baparamset, IEEE80211_DELBAPS_INIT), code);
2083 
2084 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2085 		tap = &ni->ni_tx_ampdu[tid];
2086 		ic->ic_addba_stop(ni, tap);
2087 	} else {
2088 		rap = &ni->ni_rx_ampdu[tid];
2089 		ic->ic_ampdu_rx_stop(ni, rap);
2090 	}
2091 	return 0;
2092 }
2093 
2094 static int
2095 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2096 	const struct ieee80211_frame *wh,
2097 	const uint8_t *frm, const uint8_t *efrm)
2098 {
2099 	int chw;
2100 
2101 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2102 
2103 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2104 	    "%s: HT txchwidth, width %d%s",
2105 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2106 	if (chw != ni->ni_chw) {
2107 		ni->ni_chw = chw;
2108 		/* XXX notify on change */
2109 	}
2110 	return 0;
2111 }
2112 
2113 static int
2114 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2115 	const struct ieee80211_frame *wh,
2116 	const uint8_t *frm, const uint8_t *efrm)
2117 {
2118 	const struct ieee80211_action_ht_mimopowersave *mps =
2119 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2120 
2121 	/* XXX check iv_htcaps */
2122 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2123 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2124 	else
2125 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2126 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2127 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2128 	else
2129 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2130 	/* XXX notify on change */
2131 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2132 	    "%s: HT MIMO PS (%s%s)", __func__,
2133 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2134 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2135 	);
2136 	return 0;
2137 }
2138 
2139 /*
2140  * Transmit processing.
2141  */
2142 
2143 /*
2144  * Check if A-MPDU should be requested/enabled for a stream.
2145  * We require a traffic rate above a per-AC threshold and we
2146  * also handle backoff from previous failed attempts.
2147  *
2148  * Drivers may override this method to bring in information
2149  * such as link state conditions in making the decision.
2150  */
2151 static int
2152 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2153 	struct ieee80211_tx_ampdu *tap)
2154 {
2155 	struct ieee80211vap *vap = ni->ni_vap;
2156 
2157 	if (tap->txa_avgpps <
2158 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2159 		return 0;
2160 	/* XXX check rssi? */
2161 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2162 	    ieee80211_time_after(ticks, tap->txa_nextrequest)) {
2163 		/*
2164 		 * Don't retry too often; txa_nextrequest is set
2165 		 * to the minimum interval we'll retry after
2166 		 * ieee80211_addba_maxtries failed attempts are made.
2167 		 */
2168 		return 0;
2169 	}
2170 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2171 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d",
2172 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2173 	    tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts);
2174 	return 1;
2175 }
2176 
2177 /*
2178  * Request A-MPDU tx aggregation.  Setup local state and
2179  * issue an ADDBA request.  BA use will only happen after
2180  * the other end replies with ADDBA response.
2181  */
2182 int
2183 ieee80211_ampdu_request(struct ieee80211_node *ni,
2184 	struct ieee80211_tx_ampdu *tap)
2185 {
2186 	struct ieee80211com *ic = ni->ni_ic;
2187 	uint16_t args[5];
2188 	int tid, dialogtoken;
2189 	static int tokens = 0;	/* XXX */
2190 
2191 	/* XXX locking */
2192 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2193 		/* do deferred setup of state */
2194 		ampdu_tx_setup(tap);
2195 	}
2196 	/* XXX hack for not doing proper locking */
2197 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2198 
2199 	dialogtoken = (tokens+1) % 63;		/* XXX */
2200 	tid = tap->txa_tid;
2201 	tap->txa_start = ni->ni_txseqs[tid];
2202 
2203 	args[0] = dialogtoken;
2204 	args[1] = 0;	/* NB: status code not used */
2205 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2206 		| SM(tid, IEEE80211_BAPS_TID)
2207 		| SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ)
2208 		;
2209 	args[3] = 0;	/* batimeout */
2210 	/* NB: do first so there's no race against reply */
2211 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2212 		/* unable to setup state, don't make request */
2213 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2214 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2215 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2216 		/* defer next try so we don't slam the driver with requests */
2217 		tap->txa_attempts = ieee80211_addba_maxtries;
2218 		/* NB: check in case driver wants to override */
2219 		if (tap->txa_nextrequest <= ticks)
2220 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2221 		return 0;
2222 	}
2223 	tokens = dialogtoken;			/* allocate token */
2224 	/* NB: after calling ic_addba_request so driver can set txa_start */
2225 	args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START)
2226 		| SM(0, IEEE80211_BASEQ_FRAG)
2227 		;
2228 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2229 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2230 }
2231 
2232 /*
2233  * Terminate an AMPDU tx stream.  State is reclaimed
2234  * and the peer notified with a DelBA Action frame.
2235  */
2236 void
2237 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2238 	int reason)
2239 {
2240 	struct ieee80211com *ic = ni->ni_ic;
2241 	struct ieee80211vap *vap = ni->ni_vap;
2242 	uint16_t args[4];
2243 
2244 	/* XXX locking */
2245 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2246 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2247 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2248 		    ni, "%s: stop BA stream for TID %d (reason: %d (%s))",
2249 		    __func__, tap->txa_tid, reason,
2250 		    ieee80211_reason_to_string(reason));
2251 		vap->iv_stats.is_ampdu_stop++;
2252 
2253 		ic->ic_addba_stop(ni, tap);
2254 		args[0] = tap->txa_tid;
2255 		args[1] = IEEE80211_DELBAPS_INIT;
2256 		args[2] = reason;			/* XXX reason code */
2257 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2258 			IEEE80211_ACTION_BA_DELBA, args);
2259 	} else {
2260 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2261 		    ni, "%s: BA stream for TID %d not running "
2262 		    "(reason: %d (%s))", __func__, tap->txa_tid, reason,
2263 		    ieee80211_reason_to_string(reason));
2264 		vap->iv_stats.is_ampdu_stop_failed++;
2265 	}
2266 }
2267 
2268 /* XXX */
2269 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2270 
2271 static void
2272 bar_timeout(void *arg)
2273 {
2274 	struct ieee80211_tx_ampdu *tap = arg;
2275 	struct ieee80211_node *ni = tap->txa_ni;
2276 
2277 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2278 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2279 
2280 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2281 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2282 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2283 
2284 	/* guard against race with bar_tx_complete */
2285 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2286 		return;
2287 	/* XXX ? */
2288 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2289 		struct ieee80211com *ic = ni->ni_ic;
2290 
2291 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2292 		/*
2293 		 * If (at least) the last BAR TX timeout was due to
2294 		 * an ieee80211_send_bar() failures, then we need
2295 		 * to make sure we notify the driver that a BAR
2296 		 * TX did occur and fail.  This gives the driver
2297 		 * a chance to undo any queue pause that may
2298 		 * have occurred.
2299 		 */
2300 		ic->ic_bar_response(ni, tap, 1);
2301 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2302 	} else {
2303 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2304 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2305 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2306 			    ni, "%s: failed to TX, starting timer\n",
2307 			    __func__);
2308 			/*
2309 			 * If ieee80211_send_bar() fails here, the
2310 			 * timer may have stopped and/or the pending
2311 			 * flag may be clear.  Because of this,
2312 			 * fake the BARPEND and reset the timer.
2313 			 * A retransmission attempt will then occur
2314 			 * during the next timeout.
2315 			 */
2316 			/* XXX locking */
2317 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2318 			bar_start_timer(tap);
2319 		}
2320 	}
2321 }
2322 
2323 static void
2324 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2325 {
2326 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2327 	    tap->txa_ni,
2328 	    "%s: called",
2329 	    __func__);
2330 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2331 }
2332 
2333 static void
2334 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2335 {
2336 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2337 	    tap->txa_ni,
2338 	    "%s: called",
2339 	    __func__);
2340 	callout_stop(&tap->txa_timer);
2341 }
2342 
2343 static void
2344 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2345 {
2346 	struct ieee80211_tx_ampdu *tap = arg;
2347 
2348 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2349 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2350 	    __func__, tap->txa_tid, tap->txa_flags,
2351 	    callout_pending(&tap->txa_timer), status);
2352 
2353 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2354 	/* XXX locking */
2355 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2356 	    callout_pending(&tap->txa_timer)) {
2357 		struct ieee80211com *ic = ni->ni_ic;
2358 
2359 		if (status == 0)		/* ACK'd */
2360 			bar_stop_timer(tap);
2361 		ic->ic_bar_response(ni, tap, status);
2362 		/* NB: just let timer expire so we pace requests */
2363 	}
2364 }
2365 
2366 static void
2367 ieee80211_bar_response(struct ieee80211_node *ni,
2368 	struct ieee80211_tx_ampdu *tap, int status)
2369 {
2370 
2371 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2372 	    tap->txa_ni,
2373 	    "%s: called",
2374 	    __func__);
2375 	if (status == 0) {		/* got ACK */
2376 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2377 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2378 		    tap->txa_start,
2379 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2380 		    tap->txa_qframes, tap->txa_seqpending,
2381 		    tap->txa_tid);
2382 
2383 		/* NB: timer already stopped in bar_tx_complete */
2384 		tap->txa_start = tap->txa_seqpending;
2385 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2386 	}
2387 }
2388 
2389 /*
2390  * Transmit a BAR frame to the specified node.  The
2391  * BAR contents are drawn from the supplied aggregation
2392  * state associated with the node.
2393  *
2394  * NB: we only handle immediate ACK w/ compressed bitmap.
2395  */
2396 int
2397 ieee80211_send_bar(struct ieee80211_node *ni,
2398 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2399 {
2400 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2401 	struct ieee80211vap *vap = ni->ni_vap;
2402 	struct ieee80211com *ic = ni->ni_ic;
2403 	struct ieee80211_frame_bar *bar;
2404 	struct mbuf *m;
2405 	uint16_t barctl, barseqctl;
2406 	uint8_t *frm;
2407 	int tid, ret;
2408 
2409 
2410 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2411 	    tap->txa_ni,
2412 	    "%s: called",
2413 	    __func__);
2414 
2415 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2416 		/* no ADDBA response, should not happen */
2417 		/* XXX stat+msg */
2418 		return EINVAL;
2419 	}
2420 	/* XXX locking */
2421 	bar_stop_timer(tap);
2422 
2423 	ieee80211_ref_node(ni);
2424 
2425 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2426 	if (m == NULL)
2427 		senderr(ENOMEM, is_tx_nobuf);
2428 
2429 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2430 		m_freem(m);
2431 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2432 		/* NOTREACHED */
2433 	}
2434 
2435 	bar = mtod(m, struct ieee80211_frame_bar *);
2436 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2437 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2438 	bar->i_fc[1] = 0;
2439 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2440 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2441 
2442 	tid = tap->txa_tid;
2443 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2444 			0 : IEEE80211_BAR_NOACK)
2445 		| IEEE80211_BAR_COMP
2446 		| SM(tid, IEEE80211_BAR_TID)
2447 		;
2448 	barseqctl = SM(seq, IEEE80211_BAR_SEQ_START);
2449 	/* NB: known to have proper alignment */
2450 	bar->i_ctl = htole16(barctl);
2451 	bar->i_seq = htole16(barseqctl);
2452 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2453 
2454 	M_WME_SETAC(m, WME_AC_VO);
2455 
2456 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2457 
2458 	/* XXX locking */
2459 	/* init/bump attempts counter */
2460 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2461 		tap->txa_attempts = 1;
2462 	else
2463 		tap->txa_attempts++;
2464 	tap->txa_seqpending = seq;
2465 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2466 
2467 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2468 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2469 	    tid, barctl, seq, tap->txa_attempts);
2470 
2471 	/*
2472 	 * ic_raw_xmit will free the node reference
2473 	 * regardless of queue/TX success or failure.
2474 	 */
2475 	IEEE80211_TX_LOCK(ic);
2476 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2477 	IEEE80211_TX_UNLOCK(ic);
2478 	if (ret != 0) {
2479 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2480 		    ni, "send BAR: failed: (ret = %d)\n",
2481 		    ret);
2482 		/* xmit failed, clear state flag */
2483 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2484 		vap->iv_stats.is_ampdu_bar_tx_fail++;
2485 		return ret;
2486 	}
2487 	/* XXX hack against tx complete happening before timer is started */
2488 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
2489 		bar_start_timer(tap);
2490 	return 0;
2491 bad:
2492 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2493 	    tap->txa_ni,
2494 	    "%s: bad! ret=%d",
2495 	    __func__, ret);
2496 	vap->iv_stats.is_ampdu_bar_tx_fail++;
2497 	ieee80211_free_node(ni);
2498 	return ret;
2499 #undef senderr
2500 }
2501 
2502 static int
2503 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
2504 {
2505 	struct ieee80211_bpf_params params;
2506 
2507 	memset(&params, 0, sizeof(params));
2508 	params.ibp_pri = WME_AC_VO;
2509 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
2510 	/* NB: we know all frames are unicast */
2511 	params.ibp_try0 = ni->ni_txparms->maxretry;
2512 	params.ibp_power = ni->ni_txpower;
2513 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
2514 	     &params);
2515 }
2516 
2517 #define	ADDSHORT(frm, v) do {			\
2518 	frm[0] = (v) & 0xff;			\
2519 	frm[1] = (v) >> 8;			\
2520 	frm += 2;				\
2521 } while (0)
2522 
2523 /*
2524  * Send an action management frame.  The arguments are stuff
2525  * into a frame without inspection; the caller is assumed to
2526  * prepare them carefully (e.g. based on the aggregation state).
2527  */
2528 static int
2529 ht_send_action_ba_addba(struct ieee80211_node *ni,
2530 	int category, int action, void *arg0)
2531 {
2532 	struct ieee80211vap *vap = ni->ni_vap;
2533 	struct ieee80211com *ic = ni->ni_ic;
2534 	uint16_t *args = arg0;
2535 	struct mbuf *m;
2536 	uint8_t *frm;
2537 
2538 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2539 	    "send ADDBA %s: dialogtoken %d status %d "
2540 	    "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x",
2541 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
2542 		"request" : "response",
2543 	    args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID),
2544 	    args[3], args[4]);
2545 
2546 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2547 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2548 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2549 	ieee80211_ref_node(ni);
2550 
2551 	m = ieee80211_getmgtframe(&frm,
2552 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2553 	    sizeof(uint16_t)	/* action+category */
2554 	    /* XXX may action payload */
2555 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2556 	);
2557 	if (m != NULL) {
2558 		*frm++ = category;
2559 		*frm++ = action;
2560 		*frm++ = args[0];		/* dialog token */
2561 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
2562 			ADDSHORT(frm, args[1]);	/* status code */
2563 		ADDSHORT(frm, args[2]);		/* baparamset */
2564 		ADDSHORT(frm, args[3]);		/* batimeout */
2565 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
2566 			ADDSHORT(frm, args[4]);	/* baseqctl */
2567 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2568 		return ht_action_output(ni, m);
2569 	} else {
2570 		vap->iv_stats.is_tx_nobuf++;
2571 		ieee80211_free_node(ni);
2572 		return ENOMEM;
2573 	}
2574 }
2575 
2576 static int
2577 ht_send_action_ba_delba(struct ieee80211_node *ni,
2578 	int category, int action, void *arg0)
2579 {
2580 	struct ieee80211vap *vap = ni->ni_vap;
2581 	struct ieee80211com *ic = ni->ni_ic;
2582 	uint16_t *args = arg0;
2583 	struct mbuf *m;
2584 	uint16_t baparamset;
2585 	uint8_t *frm;
2586 
2587 	baparamset = SM(args[0], IEEE80211_DELBAPS_TID)
2588 		   | args[1]
2589 		   ;
2590 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2591 	    "send DELBA action: tid %d, initiator %d reason %d (%s)",
2592 	    args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
2593 
2594 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2595 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2596 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2597 	ieee80211_ref_node(ni);
2598 
2599 	m = ieee80211_getmgtframe(&frm,
2600 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2601 	    sizeof(uint16_t)	/* action+category */
2602 	    /* XXX may action payload */
2603 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2604 	);
2605 	if (m != NULL) {
2606 		*frm++ = category;
2607 		*frm++ = action;
2608 		ADDSHORT(frm, baparamset);
2609 		ADDSHORT(frm, args[2]);		/* reason code */
2610 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2611 		return ht_action_output(ni, m);
2612 	} else {
2613 		vap->iv_stats.is_tx_nobuf++;
2614 		ieee80211_free_node(ni);
2615 		return ENOMEM;
2616 	}
2617 }
2618 
2619 static int
2620 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
2621 	int category, int action, void *arg0)
2622 {
2623 	struct ieee80211vap *vap = ni->ni_vap;
2624 	struct ieee80211com *ic = ni->ni_ic;
2625 	struct mbuf *m;
2626 	uint8_t *frm;
2627 
2628 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2629 	    "send HT txchwidth: width %d",
2630 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
2631 
2632 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2633 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2634 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2635 	ieee80211_ref_node(ni);
2636 
2637 	m = ieee80211_getmgtframe(&frm,
2638 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2639 	    sizeof(uint16_t)	/* action+category */
2640 	    /* XXX may action payload */
2641 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2642 	);
2643 	if (m != NULL) {
2644 		*frm++ = category;
2645 		*frm++ = action;
2646 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
2647 			IEEE80211_A_HT_TXCHWIDTH_2040 :
2648 			IEEE80211_A_HT_TXCHWIDTH_20;
2649 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2650 		return ht_action_output(ni, m);
2651 	} else {
2652 		vap->iv_stats.is_tx_nobuf++;
2653 		ieee80211_free_node(ni);
2654 		return ENOMEM;
2655 	}
2656 }
2657 #undef ADDSHORT
2658 
2659 /*
2660  * Construct the MCS bit mask for inclusion in an HT capabilities
2661  * information element.
2662  */
2663 static void
2664 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
2665 {
2666 	int i;
2667 	uint8_t txparams;
2668 
2669 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
2670 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
2671 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
2672 	    ("ic_txstream %d out of range", ic->ic_txstream));
2673 
2674 	for (i = 0; i < ic->ic_rxstream * 8; i++)
2675 		setbit(frm, i);
2676 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2677 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
2678 		setbit(frm, 32);
2679 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
2680 		if (ic->ic_rxstream >= 2) {
2681 			for (i = 33; i <= 38; i++)
2682 				setbit(frm, i);
2683 		}
2684 		if (ic->ic_rxstream >= 3) {
2685 			for (i = 39; i <= 52; i++)
2686 				setbit(frm, i);
2687 		}
2688 		if (ic->ic_txstream >= 4) {
2689 			for (i = 53; i <= 76; i++)
2690 				setbit(frm, i);
2691 		}
2692 	}
2693 
2694 	if (ic->ic_rxstream != ic->ic_txstream) {
2695 		txparams = 0x1;			/* TX MCS set defined */
2696 		txparams |= 0x2;		/* TX RX MCS not equal */
2697 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
2698 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
2699 			txparams |= 0x16;	/* TX unequal modulation sup */
2700 	} else
2701 		txparams = 0;
2702 	frm[12] = txparams;
2703 }
2704 
2705 /*
2706  * Add body of an HTCAP information element.
2707  */
2708 static uint8_t *
2709 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
2710 {
2711 #define	ADDSHORT(frm, v) do {			\
2712 	frm[0] = (v) & 0xff;			\
2713 	frm[1] = (v) >> 8;			\
2714 	frm += 2;				\
2715 } while (0)
2716 	struct ieee80211com *ic = ni->ni_ic;
2717 	struct ieee80211vap *vap = ni->ni_vap;
2718 	uint16_t caps, extcaps;
2719 	int rxmax, density;
2720 
2721 	/* HT capabilities */
2722 	caps = vap->iv_htcaps & 0xffff;
2723 	/*
2724 	 * Note channel width depends on whether we are operating as
2725 	 * a sta or not.  When operating as a sta we are generating
2726 	 * a request based on our desired configuration.  Otherwise
2727 	 * we are operational and the channel attributes identify
2728 	 * how we've been setup (which might be different if a fixed
2729 	 * channel is specified).
2730 	 */
2731 	if (vap->iv_opmode == IEEE80211_M_STA) {
2732 		/* override 20/40 use based on config */
2733 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
2734 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2735 		else
2736 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2737 
2738 		/* Start by using the advertised settings */
2739 		rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
2740 		density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
2741 
2742 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
2743 		    "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n",
2744 		    __func__,
2745 		    rxmax,
2746 		    density,
2747 		    vap->iv_ampdu_rxmax,
2748 		    vap->iv_ampdu_density);
2749 
2750 		/* Cap at VAP rxmax */
2751 		if (rxmax > vap->iv_ampdu_rxmax)
2752 			rxmax = vap->iv_ampdu_rxmax;
2753 
2754 		/*
2755 		 * If the VAP ampdu density value greater, use that.
2756 		 *
2757 		 * (Larger density value == larger minimum gap between A-MPDU
2758 		 * subframes.)
2759 		 */
2760 		if (vap->iv_ampdu_density > density)
2761 			density = vap->iv_ampdu_density;
2762 
2763 		/*
2764 		 * NB: Hardware might support HT40 on some but not all
2765 		 * channels. We can't determine this earlier because only
2766 		 * after association the channel is upgraded to HT based
2767 		 * on the negotiated capabilities.
2768 		 */
2769 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
2770 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
2771 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
2772 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2773 	} else {
2774 		/* override 20/40 use based on current channel */
2775 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2776 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2777 		else
2778 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2779 
2780 		/* XXX TODO should it start by using advertised settings? */
2781 		rxmax = vap->iv_ampdu_rxmax;
2782 		density = vap->iv_ampdu_density;
2783 	}
2784 
2785 	/* adjust short GI based on channel and config */
2786 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
2787 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
2788 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
2789 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
2790 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
2791 
2792 	/* adjust STBC based on receive capabilities */
2793 	if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0)
2794 		caps &= ~IEEE80211_HTCAP_RXSTBC;
2795 
2796 	/* XXX TODO: adjust LDPC based on receive capabilities */
2797 
2798 	ADDSHORT(frm, caps);
2799 
2800 	/* HT parameters */
2801 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
2802 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
2803 	     ;
2804 	frm++;
2805 
2806 	/* pre-zero remainder of ie */
2807 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
2808 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
2809 
2810 	/* supported MCS set */
2811 	/*
2812 	 * XXX: For sta mode the rate set should be restricted based
2813 	 * on the AP's capabilities, but ni_htrates isn't setup when
2814 	 * we're called to form an AssocReq frame so for now we're
2815 	 * restricted to the device capabilities.
2816 	 */
2817 	ieee80211_set_mcsset(ni->ni_ic, frm);
2818 
2819 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
2820 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
2821 
2822 	/* HT extended capabilities */
2823 	extcaps = vap->iv_htextcaps & 0xffff;
2824 
2825 	ADDSHORT(frm, extcaps);
2826 
2827 	frm += sizeof(struct ieee80211_ie_htcap) -
2828 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
2829 
2830 	return frm;
2831 #undef ADDSHORT
2832 }
2833 
2834 /*
2835  * Add 802.11n HT capabilities information element
2836  */
2837 uint8_t *
2838 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
2839 {
2840 	frm[0] = IEEE80211_ELEMID_HTCAP;
2841 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
2842 	return ieee80211_add_htcap_body(frm + 2, ni);
2843 }
2844 
2845 /*
2846  * Non-associated probe request - add HT capabilities based on
2847  * the current channel configuration.
2848  */
2849 static uint8_t *
2850 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap,
2851     struct ieee80211_channel *c)
2852 {
2853 #define	ADDSHORT(frm, v) do {			\
2854 	frm[0] = (v) & 0xff;			\
2855 	frm[1] = (v) >> 8;			\
2856 	frm += 2;				\
2857 } while (0)
2858 	struct ieee80211com *ic = vap->iv_ic;
2859 	uint16_t caps, extcaps;
2860 	int rxmax, density;
2861 
2862 	/* HT capabilities */
2863 	caps = vap->iv_htcaps & 0xffff;
2864 
2865 	/*
2866 	 * We don't use this in STA mode; only in IBSS mode.
2867 	 * So in IBSS mode we base our HTCAP flags on the
2868 	 * given channel.
2869 	 */
2870 
2871 	/* override 20/40 use based on current channel */
2872 	if (IEEE80211_IS_CHAN_HT40(c))
2873 		caps |= IEEE80211_HTCAP_CHWIDTH40;
2874 	else
2875 		caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2876 
2877 	/* Use the currently configured values */
2878 	rxmax = vap->iv_ampdu_rxmax;
2879 	density = vap->iv_ampdu_density;
2880 
2881 	/* adjust short GI based on channel and config */
2882 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
2883 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
2884 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
2885 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
2886 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
2887 	ADDSHORT(frm, caps);
2888 
2889 	/* HT parameters */
2890 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
2891 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
2892 	     ;
2893 	frm++;
2894 
2895 	/* pre-zero remainder of ie */
2896 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
2897 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
2898 
2899 	/* supported MCS set */
2900 	/*
2901 	 * XXX: For sta mode the rate set should be restricted based
2902 	 * on the AP's capabilities, but ni_htrates isn't setup when
2903 	 * we're called to form an AssocReq frame so for now we're
2904 	 * restricted to the device capabilities.
2905 	 */
2906 	ieee80211_set_mcsset(ic, frm);
2907 
2908 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
2909 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
2910 
2911 	/* HT extended capabilities */
2912 	extcaps = vap->iv_htextcaps & 0xffff;
2913 
2914 	ADDSHORT(frm, extcaps);
2915 
2916 	frm += sizeof(struct ieee80211_ie_htcap) -
2917 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
2918 
2919 	return frm;
2920 #undef ADDSHORT
2921 }
2922 
2923 /*
2924  * Add 802.11n HT capabilities information element
2925  */
2926 uint8_t *
2927 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap,
2928     struct ieee80211_channel *c)
2929 {
2930 	frm[0] = IEEE80211_ELEMID_HTCAP;
2931 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
2932 	return ieee80211_add_htcap_body_ch(frm + 2, vap, c);
2933 }
2934 
2935 /*
2936  * Add Broadcom OUI wrapped standard HTCAP ie; this is
2937  * used for compatibility w/ pre-draft implementations.
2938  */
2939 uint8_t *
2940 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
2941 {
2942 	frm[0] = IEEE80211_ELEMID_VENDOR;
2943 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
2944 	frm[2] = (BCM_OUI >> 0) & 0xff;
2945 	frm[3] = (BCM_OUI >> 8) & 0xff;
2946 	frm[4] = (BCM_OUI >> 16) & 0xff;
2947 	frm[5] = BCM_OUI_HTCAP;
2948 	return ieee80211_add_htcap_body(frm + 6, ni);
2949 }
2950 
2951 /*
2952  * Construct the MCS bit mask of basic rates
2953  * for inclusion in an HT information element.
2954  */
2955 static void
2956 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
2957 {
2958 	int i;
2959 
2960 	for (i = 0; i < rs->rs_nrates; i++) {
2961 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2962 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
2963 		    r < IEEE80211_HTRATE_MAXSIZE) {
2964 			/* NB: this assumes a particular implementation */
2965 			setbit(frm, r);
2966 		}
2967 	}
2968 }
2969 
2970 /*
2971  * Update the HTINFO ie for a beacon frame.
2972  */
2973 void
2974 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
2975 	struct ieee80211_beacon_offsets *bo)
2976 {
2977 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
2978 	struct ieee80211_node *ni;
2979 	const struct ieee80211_channel *bsschan;
2980 	struct ieee80211com *ic = vap->iv_ic;
2981 	struct ieee80211_ie_htinfo *ht =
2982 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
2983 
2984 	ni = ieee80211_ref_node(vap->iv_bss);
2985 	bsschan = ni->ni_chan;
2986 
2987 	/* XXX only update on channel change */
2988 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
2989 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2990 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
2991 	else
2992 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
2993 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
2994 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2995 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
2996 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2997 	else
2998 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
2999 	if (IEEE80211_IS_CHAN_HT40(bsschan))
3000 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
3001 
3002 	/* protection mode */
3003 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
3004 
3005 	ieee80211_free_node(ni);
3006 
3007 	/* XXX propagate to vendor ie's */
3008 #undef PROTMODE
3009 }
3010 
3011 /*
3012  * Add body of an HTINFO information element.
3013  *
3014  * NB: We don't use struct ieee80211_ie_htinfo because we can
3015  * be called to fillin both a standard ie and a compat ie that
3016  * has a vendor OUI at the front.
3017  */
3018 static uint8_t *
3019 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
3020 {
3021 	struct ieee80211vap *vap = ni->ni_vap;
3022 	struct ieee80211com *ic = ni->ni_ic;
3023 
3024 	/* pre-zero remainder of ie */
3025 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
3026 
3027 	/* primary/control channel center */
3028 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3029 
3030 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3031 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
3032 	else
3033 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
3034 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3035 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3036 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3037 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3038 	else
3039 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
3040 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3041 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
3042 
3043 	frm[1] = ic->ic_curhtprotmode;
3044 
3045 	frm += 5;
3046 
3047 	/* basic MCS set */
3048 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
3049 	frm += sizeof(struct ieee80211_ie_htinfo) -
3050 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
3051 	return frm;
3052 }
3053 
3054 /*
3055  * Add 802.11n HT information information element.
3056  */
3057 uint8_t *
3058 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
3059 {
3060 	frm[0] = IEEE80211_ELEMID_HTINFO;
3061 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
3062 	return ieee80211_add_htinfo_body(frm + 2, ni);
3063 }
3064 
3065 /*
3066  * Add Broadcom OUI wrapped standard HTINFO ie; this is
3067  * used for compatibility w/ pre-draft implementations.
3068  */
3069 uint8_t *
3070 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
3071 {
3072 	frm[0] = IEEE80211_ELEMID_VENDOR;
3073 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
3074 	frm[2] = (BCM_OUI >> 0) & 0xff;
3075 	frm[3] = (BCM_OUI >> 8) & 0xff;
3076 	frm[4] = (BCM_OUI >> 16) & 0xff;
3077 	frm[5] = BCM_OUI_HTINFO;
3078 	return ieee80211_add_htinfo_body(frm + 6, ni);
3079 }
3080