1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/systm.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_action.h> 53 #include <net80211/ieee80211_input.h> 54 55 /* define here, used throughout file */ 56 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 57 #define SM(_v, _f) (((_v) << _f##_S) & _f) 58 59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 60 { 13, 14, 27, 30 }, /* MCS 0 */ 61 { 26, 29, 54, 60 }, /* MCS 1 */ 62 { 39, 43, 81, 90 }, /* MCS 2 */ 63 { 52, 58, 108, 120 }, /* MCS 3 */ 64 { 78, 87, 162, 180 }, /* MCS 4 */ 65 { 104, 116, 216, 240 }, /* MCS 5 */ 66 { 117, 130, 243, 270 }, /* MCS 6 */ 67 { 130, 144, 270, 300 }, /* MCS 7 */ 68 { 26, 29, 54, 60 }, /* MCS 8 */ 69 { 52, 58, 108, 120 }, /* MCS 9 */ 70 { 78, 87, 162, 180 }, /* MCS 10 */ 71 { 104, 116, 216, 240 }, /* MCS 11 */ 72 { 156, 173, 324, 360 }, /* MCS 12 */ 73 { 208, 231, 432, 480 }, /* MCS 13 */ 74 { 234, 260, 486, 540 }, /* MCS 14 */ 75 { 260, 289, 540, 600 }, /* MCS 15 */ 76 { 39, 43, 81, 90 }, /* MCS 16 */ 77 { 78, 87, 162, 180 }, /* MCS 17 */ 78 { 117, 130, 243, 270 }, /* MCS 18 */ 79 { 156, 173, 324, 360 }, /* MCS 19 */ 80 { 234, 260, 486, 540 }, /* MCS 20 */ 81 { 312, 347, 648, 720 }, /* MCS 21 */ 82 { 351, 390, 729, 810 }, /* MCS 22 */ 83 { 390, 433, 810, 900 }, /* MCS 23 */ 84 { 52, 58, 108, 120 }, /* MCS 24 */ 85 { 104, 116, 216, 240 }, /* MCS 25 */ 86 { 156, 173, 324, 360 }, /* MCS 26 */ 87 { 208, 231, 432, 480 }, /* MCS 27 */ 88 { 312, 347, 648, 720 }, /* MCS 28 */ 89 { 416, 462, 864, 960 }, /* MCS 29 */ 90 { 468, 520, 972, 1080 }, /* MCS 30 */ 91 { 520, 578, 1080, 1200 }, /* MCS 31 */ 92 { 0, 0, 12, 13 }, /* MCS 32 */ 93 { 78, 87, 162, 180 }, /* MCS 33 */ 94 { 104, 116, 216, 240 }, /* MCS 34 */ 95 { 130, 144, 270, 300 }, /* MCS 35 */ 96 { 117, 130, 243, 270 }, /* MCS 36 */ 97 { 156, 173, 324, 360 }, /* MCS 37 */ 98 { 195, 217, 405, 450 }, /* MCS 38 */ 99 { 104, 116, 216, 240 }, /* MCS 39 */ 100 { 130, 144, 270, 300 }, /* MCS 40 */ 101 { 130, 144, 270, 300 }, /* MCS 41 */ 102 { 156, 173, 324, 360 }, /* MCS 42 */ 103 { 182, 202, 378, 420 }, /* MCS 43 */ 104 { 182, 202, 378, 420 }, /* MCS 44 */ 105 { 208, 231, 432, 480 }, /* MCS 45 */ 106 { 156, 173, 324, 360 }, /* MCS 46 */ 107 { 195, 217, 405, 450 }, /* MCS 47 */ 108 { 195, 217, 405, 450 }, /* MCS 48 */ 109 { 234, 260, 486, 540 }, /* MCS 49 */ 110 { 273, 303, 567, 630 }, /* MCS 50 */ 111 { 273, 303, 567, 630 }, /* MCS 51 */ 112 { 312, 347, 648, 720 }, /* MCS 52 */ 113 { 130, 144, 270, 300 }, /* MCS 53 */ 114 { 156, 173, 324, 360 }, /* MCS 54 */ 115 { 182, 202, 378, 420 }, /* MCS 55 */ 116 { 156, 173, 324, 360 }, /* MCS 56 */ 117 { 182, 202, 378, 420 }, /* MCS 57 */ 118 { 208, 231, 432, 480 }, /* MCS 58 */ 119 { 234, 260, 486, 540 }, /* MCS 59 */ 120 { 208, 231, 432, 480 }, /* MCS 60 */ 121 { 234, 260, 486, 540 }, /* MCS 61 */ 122 { 260, 289, 540, 600 }, /* MCS 62 */ 123 { 260, 289, 540, 600 }, /* MCS 63 */ 124 { 286, 318, 594, 660 }, /* MCS 64 */ 125 { 195, 217, 405, 450 }, /* MCS 65 */ 126 { 234, 260, 486, 540 }, /* MCS 66 */ 127 { 273, 303, 567, 630 }, /* MCS 67 */ 128 { 234, 260, 486, 540 }, /* MCS 68 */ 129 { 273, 303, 567, 630 }, /* MCS 69 */ 130 { 312, 347, 648, 720 }, /* MCS 70 */ 131 { 351, 390, 729, 810 }, /* MCS 71 */ 132 { 312, 347, 648, 720 }, /* MCS 72 */ 133 { 351, 390, 729, 810 }, /* MCS 73 */ 134 { 390, 433, 810, 900 }, /* MCS 74 */ 135 { 390, 433, 810, 900 }, /* MCS 75 */ 136 { 429, 477, 891, 990 }, /* MCS 76 */ 137 }; 138 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 144 static int ieee80211_recv_bar_ena = 1; 145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 146 0, "BAR frame processing (ena/dis)"); 147 148 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 ieee80211_ampdu_age = msecs_to_ticks(500); 180 ieee80211_addba_timeout = msecs_to_ticks(250); 181 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 182 ieee80211_bar_timeout = msecs_to_ticks(250); 183 /* 184 * Register action frame handlers. 185 */ 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 193 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 196 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 204 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 205 } 206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 207 208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 209 struct ieee80211_tx_ampdu *tap); 210 static int ieee80211_addba_request(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap, 212 int dialogtoken, int baparamset, int batimeout); 213 static int ieee80211_addba_response(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int code, int baparamset, int batimeout); 216 static void ieee80211_addba_stop(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap); 218 static void null_addba_response_timeout(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 221 static void ieee80211_bar_response(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap, int status); 223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 226 int baparamset, int batimeout, int baseqctl); 227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 228 229 void 230 ieee80211_ht_attach(struct ieee80211com *ic) 231 { 232 /* setup default aggregation policy */ 233 ic->ic_recv_action = ieee80211_recv_action; 234 ic->ic_send_action = ieee80211_send_action; 235 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 236 ic->ic_addba_request = ieee80211_addba_request; 237 ic->ic_addba_response = ieee80211_addba_response; 238 ic->ic_addba_response_timeout = null_addba_response_timeout; 239 ic->ic_addba_stop = ieee80211_addba_stop; 240 ic->ic_bar_response = ieee80211_bar_response; 241 ic->ic_ampdu_rx_start = ampdu_rx_start; 242 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 243 244 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 245 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 246 } 247 248 void 249 ieee80211_ht_detach(struct ieee80211com *ic) 250 { 251 } 252 253 void 254 ieee80211_ht_vattach(struct ieee80211vap *vap) 255 { 256 257 /* driver can override defaults */ 258 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 259 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 260 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 261 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 262 /* tx aggregation traffic thresholds */ 263 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 264 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 265 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 266 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 267 268 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 269 /* 270 * Device is HT capable; enable all HT-related 271 * facilities by default. 272 * XXX these choices may be too aggressive. 273 */ 274 vap->iv_flags_ht |= IEEE80211_FHT_HT 275 | IEEE80211_FHT_HTCOMPAT 276 ; 277 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 278 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 279 /* XXX infer from channel list? */ 280 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 281 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 282 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 283 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 284 } 285 /* enable RIFS if capable */ 286 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 287 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 288 289 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 290 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 291 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 292 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 293 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 296 297 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 298 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 299 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 300 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 301 } 302 /* NB: disable default legacy WDS, too many issues right now */ 303 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 304 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 305 } 306 307 void 308 ieee80211_ht_vdetach(struct ieee80211vap *vap) 309 { 310 } 311 312 static int 313 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 314 int ratetype) 315 { 316 int mword, rate; 317 318 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 319 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 320 return (0); 321 switch (ratetype) { 322 case 0: 323 rate = ieee80211_htrates[index].ht20_rate_800ns; 324 break; 325 case 1: 326 rate = ieee80211_htrates[index].ht20_rate_400ns; 327 break; 328 case 2: 329 rate = ieee80211_htrates[index].ht40_rate_800ns; 330 break; 331 default: 332 rate = ieee80211_htrates[index].ht40_rate_400ns; 333 break; 334 } 335 return (rate); 336 } 337 338 static struct printranges { 339 int minmcs; 340 int maxmcs; 341 int txstream; 342 int ratetype; 343 int htcapflags; 344 } ranges[] = { 345 { 0, 7, 1, 0, 0 }, 346 { 8, 15, 2, 0, 0 }, 347 { 16, 23, 3, 0, 0 }, 348 { 24, 31, 4, 0, 0 }, 349 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 350 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 351 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 352 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 353 { 0, 0, 0, 0, 0 }, 354 }; 355 356 static void 357 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 358 { 359 int minrate, maxrate; 360 struct printranges *range; 361 362 for (range = ranges; range->txstream != 0; range++) { 363 if (ic->ic_txstream < range->txstream) 364 continue; 365 if (range->htcapflags && 366 (ic->ic_htcaps & range->htcapflags) == 0) 367 continue; 368 if (ratetype < range->ratetype) 369 continue; 370 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 371 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 372 if (range->maxmcs) { 373 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 374 range->minmcs, range->maxmcs, 375 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 376 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 377 } else { 378 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 379 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 380 } 381 } 382 } 383 384 static void 385 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 386 { 387 const char *modestr = ieee80211_phymode_name[mode]; 388 389 ic_printf(ic, "%s MCS 20MHz\n", modestr); 390 ht_rateprint(ic, mode, 0); 391 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 392 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 393 ht_rateprint(ic, mode, 1); 394 } 395 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 396 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 397 ht_rateprint(ic, mode, 2); 398 } 399 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 400 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 401 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 402 ht_rateprint(ic, mode, 3); 403 } 404 } 405 406 void 407 ieee80211_ht_announce(struct ieee80211com *ic) 408 { 409 410 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 411 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 412 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 413 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 414 ht_announce(ic, IEEE80211_MODE_11NA); 415 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 416 ht_announce(ic, IEEE80211_MODE_11NG); 417 } 418 419 static struct ieee80211_htrateset htrateset; 420 421 const struct ieee80211_htrateset * 422 ieee80211_get_suphtrates(struct ieee80211com *ic, 423 const struct ieee80211_channel *c) 424 { 425 #define ADDRATE(x) do { \ 426 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 427 htrateset.rs_nrates++; \ 428 } while (0) 429 int i; 430 431 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 432 for (i = 0; i < ic->ic_txstream * 8; i++) 433 ADDRATE(i); 434 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 435 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 436 ADDRATE(32); 437 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 438 if (ic->ic_txstream >= 2) { 439 for (i = 33; i <= 38; i++) 440 ADDRATE(i); 441 } 442 if (ic->ic_txstream >= 3) { 443 for (i = 39; i <= 52; i++) 444 ADDRATE(i); 445 } 446 if (ic->ic_txstream == 4) { 447 for (i = 53; i <= 76; i++) 448 ADDRATE(i); 449 } 450 } 451 return &htrateset; 452 #undef ADDRATE 453 } 454 455 /* 456 * Receive processing. 457 */ 458 459 /* 460 * Decap the encapsulated A-MSDU frames and dispatch all but 461 * the last for delivery. The last frame is returned for 462 * delivery via the normal path. 463 */ 464 struct mbuf * 465 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 466 { 467 struct ieee80211vap *vap = ni->ni_vap; 468 int framelen; 469 struct mbuf *n; 470 471 /* discard 802.3 header inserted by ieee80211_decap */ 472 m_adj(m, sizeof(struct ether_header)); 473 474 vap->iv_stats.is_amsdu_decap++; 475 476 for (;;) { 477 /* 478 * Decap the first frame, bust it apart from the 479 * remainder and deliver. We leave the last frame 480 * delivery to the caller (for consistency with other 481 * code paths, could also do it here). 482 */ 483 m = ieee80211_decap1(m, &framelen); 484 if (m == NULL) { 485 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 486 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 487 vap->iv_stats.is_amsdu_tooshort++; 488 return NULL; 489 } 490 if (m->m_pkthdr.len == framelen) 491 break; 492 n = m_split(m, framelen, M_NOWAIT); 493 if (n == NULL) { 494 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 495 ni->ni_macaddr, "a-msdu", 496 "%s", "unable to split encapsulated frames"); 497 vap->iv_stats.is_amsdu_split++; 498 m_freem(m); /* NB: must reclaim */ 499 return NULL; 500 } 501 vap->iv_deliver_data(vap, ni, m); 502 503 /* 504 * Remove frame contents; each intermediate frame 505 * is required to be aligned to a 4-byte boundary. 506 */ 507 m = n; 508 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 509 } 510 return m; /* last delivered by caller */ 511 } 512 513 /* 514 * Purge all frames in the A-MPDU re-order queue. 515 */ 516 static void 517 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 518 { 519 struct mbuf *m; 520 int i; 521 522 for (i = 0; i < rap->rxa_wnd; i++) { 523 m = rap->rxa_m[i]; 524 if (m != NULL) { 525 rap->rxa_m[i] = NULL; 526 rap->rxa_qbytes -= m->m_pkthdr.len; 527 m_freem(m); 528 if (--rap->rxa_qframes == 0) 529 break; 530 } 531 } 532 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 533 ("lost %u data, %u frames on ampdu rx q", 534 rap->rxa_qbytes, rap->rxa_qframes)); 535 } 536 537 /* 538 * Start A-MPDU rx/re-order processing for the specified TID. 539 */ 540 static int 541 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 542 int baparamset, int batimeout, int baseqctl) 543 { 544 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 545 546 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 547 /* 548 * AMPDU previously setup and not terminated with a DELBA, 549 * flush the reorder q's in case anything remains. 550 */ 551 ampdu_rx_purge(rap); 552 } 553 memset(rap, 0, sizeof(*rap)); 554 rap->rxa_wnd = (bufsiz == 0) ? 555 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 556 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 557 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 558 559 return 0; 560 } 561 562 /* 563 * Public function; manually setup the RX ampdu state. 564 */ 565 int 566 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 567 { 568 struct ieee80211_rx_ampdu *rap; 569 570 /* XXX TODO: sanity check tid, seq, baw */ 571 572 rap = &ni->ni_rx_ampdu[tid]; 573 574 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 575 /* 576 * AMPDU previously setup and not terminated with a DELBA, 577 * flush the reorder q's in case anything remains. 578 */ 579 ampdu_rx_purge(rap); 580 } 581 582 memset(rap, 0, sizeof(*rap)); 583 rap->rxa_wnd = (baw== 0) ? 584 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 585 rap->rxa_start = seq; 586 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 587 588 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 589 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x\n", 590 __func__, 591 tid, 592 seq, 593 rap->rxa_wnd, 594 rap->rxa_flags); 595 596 return 0; 597 } 598 599 /* 600 * Stop A-MPDU rx processing for the specified TID. 601 */ 602 static void 603 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 604 { 605 606 ampdu_rx_purge(rap); 607 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 608 } 609 610 /* 611 * Dispatch a frame from the A-MPDU reorder queue. The 612 * frame is fed back into ieee80211_input marked with an 613 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 614 * permits ieee80211_input to optimize re-processing). 615 */ 616 static __inline void 617 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 618 { 619 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 620 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 621 (void) ieee80211_input(ni, m, 0, 0); 622 } 623 624 /* 625 * Dispatch as many frames as possible from the re-order queue. 626 * Frames will always be "at the front"; we process all frames 627 * up to the first empty slot in the window. On completion we 628 * cleanup state if there are still pending frames in the current 629 * BA window. We assume the frame at slot 0 is already handled 630 * by the caller; we always start at slot 1. 631 */ 632 static void 633 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 634 { 635 struct ieee80211vap *vap = ni->ni_vap; 636 struct mbuf *m; 637 int i; 638 639 /* flush run of frames */ 640 for (i = 1; i < rap->rxa_wnd; i++) { 641 m = rap->rxa_m[i]; 642 if (m == NULL) 643 break; 644 rap->rxa_m[i] = NULL; 645 rap->rxa_qbytes -= m->m_pkthdr.len; 646 rap->rxa_qframes--; 647 648 ampdu_dispatch(ni, m); 649 } 650 /* 651 * If frames remain, copy the mbuf pointers down so 652 * they correspond to the offsets in the new window. 653 */ 654 if (rap->rxa_qframes != 0) { 655 int n = rap->rxa_qframes, j; 656 for (j = i+1; j < rap->rxa_wnd; j++) { 657 if (rap->rxa_m[j] != NULL) { 658 rap->rxa_m[j-i] = rap->rxa_m[j]; 659 rap->rxa_m[j] = NULL; 660 if (--n == 0) 661 break; 662 } 663 } 664 KASSERT(n == 0, ("lost %d frames", n)); 665 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 666 } 667 /* 668 * Adjust the start of the BA window to 669 * reflect the frames just dispatched. 670 */ 671 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 672 vap->iv_stats.is_ampdu_rx_oor += i; 673 } 674 675 /* 676 * Dispatch all frames in the A-MPDU re-order queue. 677 */ 678 static void 679 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 680 { 681 struct ieee80211vap *vap = ni->ni_vap; 682 struct mbuf *m; 683 int i; 684 685 for (i = 0; i < rap->rxa_wnd; i++) { 686 m = rap->rxa_m[i]; 687 if (m == NULL) 688 continue; 689 rap->rxa_m[i] = NULL; 690 rap->rxa_qbytes -= m->m_pkthdr.len; 691 rap->rxa_qframes--; 692 vap->iv_stats.is_ampdu_rx_oor++; 693 694 ampdu_dispatch(ni, m); 695 if (rap->rxa_qframes == 0) 696 break; 697 } 698 } 699 700 /* 701 * Dispatch all frames in the A-MPDU re-order queue 702 * preceding the specified sequence number. This logic 703 * handles window moves due to a received MSDU or BAR. 704 */ 705 static void 706 ampdu_rx_flush_upto(struct ieee80211_node *ni, 707 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 708 { 709 struct ieee80211vap *vap = ni->ni_vap; 710 struct mbuf *m; 711 ieee80211_seq seqno; 712 int i; 713 714 /* 715 * Flush any complete MSDU's with a sequence number lower 716 * than winstart. Gaps may exist. Note that we may actually 717 * dispatch frames past winstart if a run continues; this is 718 * an optimization that avoids having to do a separate pass 719 * to dispatch frames after moving the BA window start. 720 */ 721 seqno = rap->rxa_start; 722 for (i = 0; i < rap->rxa_wnd; i++) { 723 m = rap->rxa_m[i]; 724 if (m != NULL) { 725 rap->rxa_m[i] = NULL; 726 rap->rxa_qbytes -= m->m_pkthdr.len; 727 rap->rxa_qframes--; 728 vap->iv_stats.is_ampdu_rx_oor++; 729 730 ampdu_dispatch(ni, m); 731 } else { 732 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 733 break; 734 } 735 seqno = IEEE80211_SEQ_INC(seqno); 736 } 737 /* 738 * If frames remain, copy the mbuf pointers down so 739 * they correspond to the offsets in the new window. 740 */ 741 if (rap->rxa_qframes != 0) { 742 int n = rap->rxa_qframes, j; 743 744 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 745 KASSERT(rap->rxa_m[0] == NULL, 746 ("%s: BA window slot 0 occupied", __func__)); 747 for (j = i+1; j < rap->rxa_wnd; j++) { 748 if (rap->rxa_m[j] != NULL) { 749 rap->rxa_m[j-i] = rap->rxa_m[j]; 750 rap->rxa_m[j] = NULL; 751 if (--n == 0) 752 break; 753 } 754 } 755 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 756 "BA win <%d:%d> winstart %d", 757 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 758 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 759 winstart)); 760 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 761 } 762 /* 763 * Move the start of the BA window; we use the 764 * sequence number of the last MSDU that was 765 * passed up the stack+1 or winstart if stopped on 766 * a gap in the reorder buffer. 767 */ 768 rap->rxa_start = seqno; 769 } 770 771 /* 772 * Process a received QoS data frame for an HT station. Handle 773 * A-MPDU reordering: if this frame is received out of order 774 * and falls within the BA window hold onto it. Otherwise if 775 * this frame completes a run, flush any pending frames. We 776 * return 1 if the frame is consumed. A 0 is returned if 777 * the frame should be processed normally by the caller. 778 */ 779 int 780 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 781 { 782 #define PROCESS 0 /* caller should process frame */ 783 #define CONSUMED 1 /* frame consumed, caller does nothing */ 784 struct ieee80211vap *vap = ni->ni_vap; 785 struct ieee80211_qosframe *wh; 786 struct ieee80211_rx_ampdu *rap; 787 ieee80211_seq rxseq; 788 uint8_t tid; 789 int off; 790 791 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 792 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 793 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 794 795 /* NB: m_len known to be sufficient */ 796 wh = mtod(m, struct ieee80211_qosframe *); 797 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 798 /* 799 * Not QoS data, shouldn't get here but just 800 * return it to the caller for processing. 801 */ 802 return PROCESS; 803 } 804 if (IEEE80211_IS_DSTODS(wh)) 805 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 806 else 807 tid = wh->i_qos[0]; 808 tid &= IEEE80211_QOS_TID; 809 rap = &ni->ni_rx_ampdu[tid]; 810 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 811 /* 812 * No ADDBA request yet, don't touch. 813 */ 814 return PROCESS; 815 } 816 rxseq = le16toh(*(uint16_t *)wh->i_seq); 817 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 818 /* 819 * Fragments are not allowed; toss. 820 */ 821 IEEE80211_DISCARD_MAC(vap, 822 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 823 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 824 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 825 vap->iv_stats.is_ampdu_rx_drop++; 826 IEEE80211_NODE_STAT(ni, rx_drop); 827 m_freem(m); 828 return CONSUMED; 829 } 830 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 831 rap->rxa_nframes++; 832 again: 833 if (rxseq == rap->rxa_start) { 834 /* 835 * First frame in window. 836 */ 837 if (rap->rxa_qframes != 0) { 838 /* 839 * Dispatch as many packets as we can. 840 */ 841 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 842 ampdu_dispatch(ni, m); 843 ampdu_rx_dispatch(rap, ni); 844 return CONSUMED; 845 } else { 846 /* 847 * In order; advance window and notify 848 * caller to dispatch directly. 849 */ 850 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 851 return PROCESS; 852 } 853 } 854 /* 855 * Frame is out of order; store if in the BA window. 856 */ 857 /* calculate offset in BA window */ 858 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 859 if (off < rap->rxa_wnd) { 860 /* 861 * Common case (hopefully): in the BA window. 862 * Sec 9.10.7.6.2 a) (p.137) 863 */ 864 865 /* 866 * Check for frames sitting too long in the reorder queue. 867 * This should only ever happen if frames are not delivered 868 * without the sender otherwise notifying us (e.g. with a 869 * BAR to move the window). Typically this happens because 870 * of vendor bugs that cause the sequence number to jump. 871 * When this happens we get a gap in the reorder queue that 872 * leaves frame sitting on the queue until they get pushed 873 * out due to window moves. When the vendor does not send 874 * BAR this move only happens due to explicit packet sends 875 * 876 * NB: we only track the time of the oldest frame in the 877 * reorder q; this means that if we flush we might push 878 * frames that still "new"; if this happens then subsequent 879 * frames will result in BA window moves which cost something 880 * but is still better than a big throughput dip. 881 */ 882 if (rap->rxa_qframes != 0) { 883 /* XXX honor batimeout? */ 884 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 885 /* 886 * Too long since we received the first 887 * frame; flush the reorder buffer. 888 */ 889 if (rap->rxa_qframes != 0) { 890 vap->iv_stats.is_ampdu_rx_age += 891 rap->rxa_qframes; 892 ampdu_rx_flush(ni, rap); 893 } 894 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 895 return PROCESS; 896 } 897 } else { 898 /* 899 * First frame, start aging timer. 900 */ 901 rap->rxa_age = ticks; 902 } 903 904 /* save packet */ 905 if (rap->rxa_m[off] == NULL) { 906 rap->rxa_m[off] = m; 907 rap->rxa_qframes++; 908 rap->rxa_qbytes += m->m_pkthdr.len; 909 vap->iv_stats.is_ampdu_rx_reorder++; 910 } else { 911 IEEE80211_DISCARD_MAC(vap, 912 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 913 ni->ni_macaddr, "a-mpdu duplicate", 914 "seqno %u tid %u BA win <%u:%u>", 915 rxseq, tid, rap->rxa_start, 916 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 917 vap->iv_stats.is_rx_dup++; 918 IEEE80211_NODE_STAT(ni, rx_dup); 919 m_freem(m); 920 } 921 return CONSUMED; 922 } 923 if (off < IEEE80211_SEQ_BA_RANGE) { 924 /* 925 * Outside the BA window, but within range; 926 * flush the reorder q and move the window. 927 * Sec 9.10.7.6.2 b) (p.138) 928 */ 929 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 930 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 931 rap->rxa_start, 932 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 933 rap->rxa_qframes, rxseq, tid); 934 vap->iv_stats.is_ampdu_rx_move++; 935 936 /* 937 * The spec says to flush frames up to but not including: 938 * WinStart_B = rxseq - rap->rxa_wnd + 1 939 * Then insert the frame or notify the caller to process 940 * it immediately. We can safely do this by just starting 941 * over again because we know the frame will now be within 942 * the BA window. 943 */ 944 /* NB: rxa_wnd known to be >0 */ 945 ampdu_rx_flush_upto(ni, rap, 946 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 947 goto again; 948 } else { 949 /* 950 * Outside the BA window and out of range; toss. 951 * Sec 9.10.7.6.2 c) (p.138) 952 */ 953 IEEE80211_DISCARD_MAC(vap, 954 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 955 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 956 rap->rxa_start, 957 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 958 rap->rxa_qframes, rxseq, tid, 959 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 960 vap->iv_stats.is_ampdu_rx_drop++; 961 IEEE80211_NODE_STAT(ni, rx_drop); 962 m_freem(m); 963 return CONSUMED; 964 } 965 #undef CONSUMED 966 #undef PROCESS 967 } 968 969 /* 970 * Process a BAR ctl frame. Dispatch all frames up to 971 * the sequence number of the frame. If this frame is 972 * out of range it's discarded. 973 */ 974 void 975 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 976 { 977 struct ieee80211vap *vap = ni->ni_vap; 978 struct ieee80211_frame_bar *wh; 979 struct ieee80211_rx_ampdu *rap; 980 ieee80211_seq rxseq; 981 int tid, off; 982 983 if (!ieee80211_recv_bar_ena) { 984 #if 0 985 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 986 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 987 #endif 988 vap->iv_stats.is_ampdu_bar_bad++; 989 return; 990 } 991 wh = mtod(m0, struct ieee80211_frame_bar *); 992 /* XXX check basic BAR */ 993 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 994 rap = &ni->ni_rx_ampdu[tid]; 995 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 996 /* 997 * No ADDBA request yet, don't touch. 998 */ 999 IEEE80211_DISCARD_MAC(vap, 1000 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1001 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1002 vap->iv_stats.is_ampdu_bar_bad++; 1003 return; 1004 } 1005 vap->iv_stats.is_ampdu_bar_rx++; 1006 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1007 if (rxseq == rap->rxa_start) 1008 return; 1009 /* calculate offset in BA window */ 1010 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1011 if (off < IEEE80211_SEQ_BA_RANGE) { 1012 /* 1013 * Flush the reorder q up to rxseq and move the window. 1014 * Sec 9.10.7.6.3 a) (p.138) 1015 */ 1016 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1017 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1018 rap->rxa_start, 1019 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1020 rap->rxa_qframes, rxseq, tid); 1021 vap->iv_stats.is_ampdu_bar_move++; 1022 1023 ampdu_rx_flush_upto(ni, rap, rxseq); 1024 if (off >= rap->rxa_wnd) { 1025 /* 1026 * BAR specifies a window start to the right of BA 1027 * window; we must move it explicitly since 1028 * ampdu_rx_flush_upto will not. 1029 */ 1030 rap->rxa_start = rxseq; 1031 } 1032 } else { 1033 /* 1034 * Out of range; toss. 1035 * Sec 9.10.7.6.3 b) (p.138) 1036 */ 1037 IEEE80211_DISCARD_MAC(vap, 1038 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1039 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1040 rap->rxa_start, 1041 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1042 rap->rxa_qframes, rxseq, tid, 1043 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1044 vap->iv_stats.is_ampdu_bar_oow++; 1045 IEEE80211_NODE_STAT(ni, rx_drop); 1046 } 1047 } 1048 1049 /* 1050 * Setup HT-specific state in a node. Called only 1051 * when HT use is negotiated so we don't do extra 1052 * work for temporary and/or legacy sta's. 1053 */ 1054 void 1055 ieee80211_ht_node_init(struct ieee80211_node *ni) 1056 { 1057 struct ieee80211_tx_ampdu *tap; 1058 int tid; 1059 1060 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1061 ni, 1062 "%s: called (%p)", 1063 __func__, 1064 ni); 1065 1066 if (ni->ni_flags & IEEE80211_NODE_HT) { 1067 /* 1068 * Clean AMPDU state on re-associate. This handles the case 1069 * where a station leaves w/o notifying us and then returns 1070 * before node is reaped for inactivity. 1071 */ 1072 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1073 ni, 1074 "%s: calling cleanup (%p)", 1075 __func__, ni); 1076 ieee80211_ht_node_cleanup(ni); 1077 } 1078 for (tid = 0; tid < WME_NUM_TID; tid++) { 1079 tap = &ni->ni_tx_ampdu[tid]; 1080 tap->txa_tid = tid; 1081 tap->txa_ni = ni; 1082 ieee80211_txampdu_init_pps(tap); 1083 /* NB: further initialization deferred */ 1084 } 1085 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1086 } 1087 1088 /* 1089 * Cleanup HT-specific state in a node. Called only 1090 * when HT use has been marked. 1091 */ 1092 void 1093 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1094 { 1095 struct ieee80211com *ic = ni->ni_ic; 1096 int i; 1097 1098 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1099 ni, 1100 "%s: called (%p)", 1101 __func__, ni); 1102 1103 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1104 1105 /* XXX optimize this */ 1106 for (i = 0; i < WME_NUM_TID; i++) { 1107 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1108 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1109 ampdu_tx_stop(tap); 1110 } 1111 for (i = 0; i < WME_NUM_TID; i++) 1112 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1113 1114 ni->ni_htcap = 0; 1115 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1116 } 1117 1118 /* 1119 * Age out HT resources for a station. 1120 */ 1121 void 1122 ieee80211_ht_node_age(struct ieee80211_node *ni) 1123 { 1124 struct ieee80211vap *vap = ni->ni_vap; 1125 uint8_t tid; 1126 1127 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1128 1129 for (tid = 0; tid < WME_NUM_TID; tid++) { 1130 struct ieee80211_rx_ampdu *rap; 1131 1132 rap = &ni->ni_rx_ampdu[tid]; 1133 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1134 continue; 1135 if (rap->rxa_qframes == 0) 1136 continue; 1137 /* 1138 * Check for frames sitting too long in the reorder queue. 1139 * See above for more details on what's happening here. 1140 */ 1141 /* XXX honor batimeout? */ 1142 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1143 /* 1144 * Too long since we received the first 1145 * frame; flush the reorder buffer. 1146 */ 1147 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1148 ampdu_rx_flush(ni, rap); 1149 } 1150 } 1151 } 1152 1153 static struct ieee80211_channel * 1154 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1155 { 1156 return ieee80211_find_channel(ic, c->ic_freq, 1157 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1158 } 1159 1160 /* 1161 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1162 */ 1163 struct ieee80211_channel * 1164 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1165 struct ieee80211_channel *chan, int flags) 1166 { 1167 struct ieee80211_channel *c; 1168 1169 if (flags & IEEE80211_FHT_HT) { 1170 /* promote to HT if possible */ 1171 if (flags & IEEE80211_FHT_USEHT40) { 1172 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1173 /* NB: arbitrarily pick ht40+ over ht40- */ 1174 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1175 if (c == NULL) 1176 c = findhtchan(ic, chan, 1177 IEEE80211_CHAN_HT40D); 1178 if (c == NULL) 1179 c = findhtchan(ic, chan, 1180 IEEE80211_CHAN_HT20); 1181 if (c != NULL) 1182 chan = c; 1183 } 1184 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1185 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1186 if (c != NULL) 1187 chan = c; 1188 } 1189 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1190 /* demote to legacy, HT use is disabled */ 1191 c = ieee80211_find_channel(ic, chan->ic_freq, 1192 chan->ic_flags &~ IEEE80211_CHAN_HT); 1193 if (c != NULL) 1194 chan = c; 1195 } 1196 return chan; 1197 } 1198 1199 /* 1200 * Setup HT-specific state for a legacy WDS peer. 1201 */ 1202 void 1203 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1204 { 1205 struct ieee80211vap *vap = ni->ni_vap; 1206 struct ieee80211_tx_ampdu *tap; 1207 int tid; 1208 1209 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1210 1211 /* XXX check scan cache in case peer has an ap and we have info */ 1212 /* 1213 * If setup with a legacy channel; locate an HT channel. 1214 * Otherwise if the inherited channel (from a companion 1215 * AP) is suitable use it so we use the same location 1216 * for the extension channel). 1217 */ 1218 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1219 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1220 1221 ni->ni_htcap = 0; 1222 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1223 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1224 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1225 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1226 ni->ni_chw = 40; 1227 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1228 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1229 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1230 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1231 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1232 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1233 } else { 1234 ni->ni_chw = 20; 1235 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1236 } 1237 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1238 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1239 ni->ni_flags |= IEEE80211_NODE_RIFS; 1240 /* XXX does it make sense to enable SMPS? */ 1241 1242 ni->ni_htopmode = 0; /* XXX need protection state */ 1243 ni->ni_htstbc = 0; /* XXX need info */ 1244 1245 for (tid = 0; tid < WME_NUM_TID; tid++) { 1246 tap = &ni->ni_tx_ampdu[tid]; 1247 tap->txa_tid = tid; 1248 ieee80211_txampdu_init_pps(tap); 1249 } 1250 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1251 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1252 } 1253 1254 /* 1255 * Notify hostap vaps of a change in the HTINFO ie. 1256 */ 1257 static void 1258 htinfo_notify(struct ieee80211com *ic) 1259 { 1260 struct ieee80211vap *vap; 1261 int first = 1; 1262 1263 IEEE80211_LOCK_ASSERT(ic); 1264 1265 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1266 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1267 continue; 1268 if (vap->iv_state != IEEE80211_S_RUN || 1269 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1270 continue; 1271 if (first) { 1272 IEEE80211_NOTE(vap, 1273 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1274 vap->iv_bss, 1275 "HT bss occupancy change: %d sta, %d ht, " 1276 "%d ht40%s, HT protmode now 0x%x" 1277 , ic->ic_sta_assoc 1278 , ic->ic_ht_sta_assoc 1279 , ic->ic_ht40_sta_assoc 1280 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1281 ", non-HT sta present" : "" 1282 , ic->ic_curhtprotmode); 1283 first = 0; 1284 } 1285 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1286 } 1287 } 1288 1289 /* 1290 * Calculate HT protection mode from current 1291 * state and handle updates. 1292 */ 1293 static void 1294 htinfo_update(struct ieee80211com *ic) 1295 { 1296 uint8_t protmode; 1297 1298 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1299 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1300 | IEEE80211_HTINFO_NONHT_PRESENT; 1301 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1302 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1303 | IEEE80211_HTINFO_NONHT_PRESENT; 1304 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1305 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1306 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1307 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1308 } else { 1309 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1310 } 1311 if (protmode != ic->ic_curhtprotmode) { 1312 ic->ic_curhtprotmode = protmode; 1313 htinfo_notify(ic); 1314 } 1315 } 1316 1317 /* 1318 * Handle an HT station joining a BSS. 1319 */ 1320 void 1321 ieee80211_ht_node_join(struct ieee80211_node *ni) 1322 { 1323 struct ieee80211com *ic = ni->ni_ic; 1324 1325 IEEE80211_LOCK_ASSERT(ic); 1326 1327 if (ni->ni_flags & IEEE80211_NODE_HT) { 1328 ic->ic_ht_sta_assoc++; 1329 if (ni->ni_chw == 40) 1330 ic->ic_ht40_sta_assoc++; 1331 } 1332 htinfo_update(ic); 1333 } 1334 1335 /* 1336 * Handle an HT station leaving a BSS. 1337 */ 1338 void 1339 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1340 { 1341 struct ieee80211com *ic = ni->ni_ic; 1342 1343 IEEE80211_LOCK_ASSERT(ic); 1344 1345 if (ni->ni_flags & IEEE80211_NODE_HT) { 1346 ic->ic_ht_sta_assoc--; 1347 if (ni->ni_chw == 40) 1348 ic->ic_ht40_sta_assoc--; 1349 } 1350 htinfo_update(ic); 1351 } 1352 1353 /* 1354 * Public version of htinfo_update; used for processing 1355 * beacon frames from overlapping bss. 1356 * 1357 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1358 * (on receipt of a beacon that advertises MIXED) or 1359 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1360 * from an overlapping legacy bss). We treat MIXED with 1361 * a higher precedence than PROTOPT (i.e. we will not change 1362 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1363 * corresponds to how we handle things in htinfo_update. 1364 */ 1365 void 1366 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1367 { 1368 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1369 IEEE80211_LOCK(ic); 1370 1371 /* track non-HT station presence */ 1372 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1373 ("protmode 0x%x", protmode)); 1374 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1375 ic->ic_lastnonht = ticks; 1376 1377 if (protmode != ic->ic_curhtprotmode && 1378 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1379 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1380 /* push beacon update */ 1381 ic->ic_curhtprotmode = protmode; 1382 htinfo_notify(ic); 1383 } 1384 IEEE80211_UNLOCK(ic); 1385 #undef OPMODE 1386 } 1387 1388 /* 1389 * Time out presence of an overlapping bss with non-HT 1390 * stations. When operating in hostap mode we listen for 1391 * beacons from other stations and if we identify a non-HT 1392 * station is present we update the opmode field of the 1393 * HTINFO ie. To identify when all non-HT stations are 1394 * gone we time out this condition. 1395 */ 1396 void 1397 ieee80211_ht_timeout(struct ieee80211com *ic) 1398 { 1399 IEEE80211_LOCK_ASSERT(ic); 1400 1401 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1402 ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1403 #if 0 1404 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1405 "%s", "time out non-HT STA present on channel"); 1406 #endif 1407 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1408 htinfo_update(ic); 1409 } 1410 } 1411 1412 /* 1413 * Process an 802.11n HT capabilities ie. 1414 */ 1415 void 1416 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1417 { 1418 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1419 /* 1420 * Station used Vendor OUI ie to associate; 1421 * mark the node so when we respond we'll use 1422 * the Vendor OUI's and not the standard ie's. 1423 */ 1424 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1425 ie += 4; 1426 } else 1427 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1428 1429 ni->ni_htcap = le16dec(ie + 1430 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1431 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1432 } 1433 1434 static void 1435 htinfo_parse(struct ieee80211_node *ni, 1436 const struct ieee80211_ie_htinfo *htinfo) 1437 { 1438 uint16_t w; 1439 1440 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1441 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1442 w = le16dec(&htinfo->hi_byte2); 1443 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1444 w = le16dec(&htinfo->hi_byte45); 1445 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1446 } 1447 1448 /* 1449 * Parse an 802.11n HT info ie and save useful information 1450 * to the node state. Note this does not effect any state 1451 * changes such as for channel width change. 1452 */ 1453 void 1454 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1455 { 1456 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1457 ie += 4; 1458 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1459 } 1460 1461 /* 1462 * Handle 11n channel switch. Use the received HT ie's to 1463 * identify the right channel to use. If we cannot locate it 1464 * in the channel table then fallback to legacy operation. 1465 * Note that we use this information to identify the node's 1466 * channel only; the caller is responsible for insuring any 1467 * required channel change is done (e.g. in sta mode when 1468 * parsing the contents of a beacon frame). 1469 */ 1470 static int 1471 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1472 { 1473 struct ieee80211com *ic = ni->ni_ic; 1474 struct ieee80211_channel *c; 1475 int chanflags; 1476 int ret = 0; 1477 1478 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1479 if (chanflags != ni->ni_chan->ic_flags) { 1480 /* XXX not right for ht40- */ 1481 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1482 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1483 /* 1484 * No HT40 channel entry in our table; fall back 1485 * to HT20 operation. This should not happen. 1486 */ 1487 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1488 #if 0 1489 IEEE80211_NOTE(ni->ni_vap, 1490 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1491 "no HT40 channel (freq %u), falling back to HT20", 1492 ni->ni_chan->ic_freq); 1493 #endif 1494 /* XXX stat */ 1495 } 1496 if (c != NULL && c != ni->ni_chan) { 1497 IEEE80211_NOTE(ni->ni_vap, 1498 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1499 "switch station to HT%d channel %u/0x%x", 1500 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1501 c->ic_freq, c->ic_flags); 1502 ni->ni_chan = c; 1503 ret = 1; 1504 } 1505 /* NB: caller responsible for forcing any channel change */ 1506 } 1507 /* update node's tx channel width */ 1508 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1509 return (ret); 1510 } 1511 1512 /* 1513 * Update 11n MIMO PS state according to received htcap. 1514 */ 1515 static __inline int 1516 htcap_update_mimo_ps(struct ieee80211_node *ni) 1517 { 1518 uint16_t oflags = ni->ni_flags; 1519 1520 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1521 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1522 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1523 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1524 break; 1525 case IEEE80211_HTCAP_SMPS_ENA: 1526 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1527 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1528 break; 1529 case IEEE80211_HTCAP_SMPS_OFF: 1530 default: /* disable on rx of reserved value */ 1531 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1532 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1533 break; 1534 } 1535 return (oflags ^ ni->ni_flags); 1536 } 1537 1538 /* 1539 * Update short GI state according to received htcap 1540 * and local settings. 1541 */ 1542 static __inline void 1543 htcap_update_shortgi(struct ieee80211_node *ni) 1544 { 1545 struct ieee80211vap *vap = ni->ni_vap; 1546 1547 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1548 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1549 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1550 ni->ni_flags |= IEEE80211_NODE_SGI20; 1551 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1552 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1553 ni->ni_flags |= IEEE80211_NODE_SGI40; 1554 } 1555 1556 /* 1557 * Parse and update HT-related state extracted from 1558 * the HT cap and info ie's. 1559 */ 1560 int 1561 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1562 const uint8_t *htcapie, const uint8_t *htinfoie) 1563 { 1564 struct ieee80211vap *vap = ni->ni_vap; 1565 const struct ieee80211_ie_htinfo *htinfo; 1566 int htflags; 1567 int ret = 0; 1568 1569 ieee80211_parse_htcap(ni, htcapie); 1570 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1571 htcap_update_mimo_ps(ni); 1572 htcap_update_shortgi(ni); 1573 1574 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1575 htinfoie += 4; 1576 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1577 htinfo_parse(ni, htinfo); 1578 1579 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1580 IEEE80211_CHAN_HT20 : 0; 1581 /* NB: honor operating mode constraint */ 1582 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1583 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1584 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1585 htflags = IEEE80211_CHAN_HT40U; 1586 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1587 htflags = IEEE80211_CHAN_HT40D; 1588 } 1589 if (htinfo_update_chw(ni, htflags)) 1590 ret = 1; 1591 1592 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1593 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1594 ni->ni_flags |= IEEE80211_NODE_RIFS; 1595 else 1596 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1597 1598 return (ret); 1599 } 1600 1601 /* 1602 * Parse and update HT-related state extracted from the HT cap ie 1603 * for a station joining an HT BSS. 1604 */ 1605 void 1606 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1607 { 1608 struct ieee80211vap *vap = ni->ni_vap; 1609 int htflags; 1610 1611 ieee80211_parse_htcap(ni, htcapie); 1612 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1613 htcap_update_mimo_ps(ni); 1614 htcap_update_shortgi(ni); 1615 1616 /* NB: honor operating mode constraint */ 1617 /* XXX 40 MHz intolerant */ 1618 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1619 IEEE80211_CHAN_HT20 : 0; 1620 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1621 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1622 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1623 htflags = IEEE80211_CHAN_HT40U; 1624 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1625 htflags = IEEE80211_CHAN_HT40D; 1626 } 1627 (void) htinfo_update_chw(ni, htflags); 1628 } 1629 1630 /* 1631 * Install received HT rate set by parsing the HT cap ie. 1632 */ 1633 int 1634 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1635 { 1636 struct ieee80211com *ic = ni->ni_ic; 1637 struct ieee80211vap *vap = ni->ni_vap; 1638 const struct ieee80211_ie_htcap *htcap; 1639 struct ieee80211_htrateset *rs; 1640 int i, maxequalmcs, maxunequalmcs; 1641 1642 maxequalmcs = ic->ic_txstream * 8 - 1; 1643 maxunequalmcs = 0; 1644 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1645 if (ic->ic_txstream >= 2) 1646 maxunequalmcs = 38; 1647 if (ic->ic_txstream >= 3) 1648 maxunequalmcs = 52; 1649 if (ic->ic_txstream >= 4) 1650 maxunequalmcs = 76; 1651 } 1652 1653 rs = &ni->ni_htrates; 1654 memset(rs, 0, sizeof(*rs)); 1655 if (ie != NULL) { 1656 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1657 ie += 4; 1658 htcap = (const struct ieee80211_ie_htcap *) ie; 1659 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1660 if (isclr(htcap->hc_mcsset, i)) 1661 continue; 1662 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1663 IEEE80211_NOTE(vap, 1664 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1665 "WARNING, HT rate set too large; only " 1666 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1667 vap->iv_stats.is_rx_rstoobig++; 1668 break; 1669 } 1670 if (i <= 31 && i > maxequalmcs) 1671 continue; 1672 if (i == 32 && 1673 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1674 continue; 1675 if (i > 32 && i > maxunequalmcs) 1676 continue; 1677 rs->rs_rates[rs->rs_nrates++] = i; 1678 } 1679 } 1680 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1681 } 1682 1683 /* 1684 * Mark rates in a node's HT rate set as basic according 1685 * to the information in the supplied HT info ie. 1686 */ 1687 void 1688 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1689 { 1690 const struct ieee80211_ie_htinfo *htinfo; 1691 struct ieee80211_htrateset *rs; 1692 int i, j; 1693 1694 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1695 ie += 4; 1696 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1697 rs = &ni->ni_htrates; 1698 if (rs->rs_nrates == 0) { 1699 IEEE80211_NOTE(ni->ni_vap, 1700 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1701 "%s", "WARNING, empty HT rate set"); 1702 return; 1703 } 1704 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1705 if (isclr(htinfo->hi_basicmcsset, i)) 1706 continue; 1707 for (j = 0; j < rs->rs_nrates; j++) 1708 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1709 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1710 } 1711 } 1712 1713 static void 1714 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1715 { 1716 callout_init(&tap->txa_timer, 1); 1717 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1718 tap->txa_lastsample = ticks; 1719 } 1720 1721 static void 1722 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1723 { 1724 struct ieee80211_node *ni = tap->txa_ni; 1725 struct ieee80211com *ic = ni->ni_ic; 1726 1727 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1728 tap->txa_ni, 1729 "%s: called", 1730 __func__); 1731 1732 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1733 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1734 TID_TO_WME_AC(tap->txa_tid))); 1735 1736 /* 1737 * Stop BA stream if setup so driver has a chance 1738 * to reclaim any resources it might have allocated. 1739 */ 1740 ic->ic_addba_stop(ni, tap); 1741 /* 1742 * Stop any pending BAR transmit. 1743 */ 1744 bar_stop_timer(tap); 1745 1746 /* 1747 * Reset packet estimate. 1748 */ 1749 ieee80211_txampdu_init_pps(tap); 1750 1751 /* NB: clearing NAK means we may re-send ADDBA */ 1752 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1753 } 1754 1755 /* 1756 * ADDBA response timeout. 1757 * 1758 * If software aggregation and per-TID queue management was done here, 1759 * that queue would be unpaused after the ADDBA timeout occurs. 1760 */ 1761 static void 1762 addba_timeout(void *arg) 1763 { 1764 struct ieee80211_tx_ampdu *tap = arg; 1765 struct ieee80211_node *ni = tap->txa_ni; 1766 struct ieee80211com *ic = ni->ni_ic; 1767 1768 /* XXX ? */ 1769 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1770 tap->txa_attempts++; 1771 ic->ic_addba_response_timeout(ni, tap); 1772 } 1773 1774 static void 1775 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1776 { 1777 /* XXX use CALLOUT_PENDING instead? */ 1778 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1779 addba_timeout, tap); 1780 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1781 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1782 } 1783 1784 static void 1785 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1786 { 1787 /* XXX use CALLOUT_PENDING instead? */ 1788 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1789 callout_stop(&tap->txa_timer); 1790 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1791 } 1792 } 1793 1794 static void 1795 null_addba_response_timeout(struct ieee80211_node *ni, 1796 struct ieee80211_tx_ampdu *tap) 1797 { 1798 } 1799 1800 /* 1801 * Default method for requesting A-MPDU tx aggregation. 1802 * We setup the specified state block and start a timer 1803 * to wait for an ADDBA response frame. 1804 */ 1805 static int 1806 ieee80211_addba_request(struct ieee80211_node *ni, 1807 struct ieee80211_tx_ampdu *tap, 1808 int dialogtoken, int baparamset, int batimeout) 1809 { 1810 int bufsiz; 1811 1812 /* XXX locking */ 1813 tap->txa_token = dialogtoken; 1814 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1815 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1816 tap->txa_wnd = (bufsiz == 0) ? 1817 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1818 addba_start_timeout(tap); 1819 return 1; 1820 } 1821 1822 /* 1823 * Called by drivers that wish to request an ADDBA session be 1824 * setup. This brings it up and starts the request timer. 1825 */ 1826 int 1827 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 1828 { 1829 struct ieee80211_tx_ampdu *tap; 1830 1831 if (tid < 0 || tid > 15) 1832 return (0); 1833 tap = &ni->ni_tx_ampdu[tid]; 1834 1835 /* XXX locking */ 1836 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 1837 /* do deferred setup of state */ 1838 ampdu_tx_setup(tap); 1839 } 1840 /* XXX hack for not doing proper locking */ 1841 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 1842 addba_start_timeout(tap); 1843 return (1); 1844 } 1845 1846 /* 1847 * Called by drivers that have marked a session as active. 1848 */ 1849 int 1850 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 1851 int status) 1852 { 1853 struct ieee80211_tx_ampdu *tap; 1854 1855 if (tid < 0 || tid > 15) 1856 return (0); 1857 tap = &ni->ni_tx_ampdu[tid]; 1858 1859 /* XXX locking */ 1860 addba_stop_timeout(tap); 1861 if (status == 1) { 1862 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1863 tap->txa_attempts = 0; 1864 } else { 1865 /* mark tid so we don't try again */ 1866 tap->txa_flags |= IEEE80211_AGGR_NAK; 1867 } 1868 return (1); 1869 } 1870 1871 /* 1872 * Default method for processing an A-MPDU tx aggregation 1873 * response. We shutdown any pending timer and update the 1874 * state block according to the reply. 1875 */ 1876 static int 1877 ieee80211_addba_response(struct ieee80211_node *ni, 1878 struct ieee80211_tx_ampdu *tap, 1879 int status, int baparamset, int batimeout) 1880 { 1881 int bufsiz, tid; 1882 1883 /* XXX locking */ 1884 addba_stop_timeout(tap); 1885 if (status == IEEE80211_STATUS_SUCCESS) { 1886 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1887 /* XXX override our request? */ 1888 tap->txa_wnd = (bufsiz == 0) ? 1889 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1890 /* XXX AC/TID */ 1891 tid = MS(baparamset, IEEE80211_BAPS_TID); 1892 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1893 tap->txa_attempts = 0; 1894 } else { 1895 /* mark tid so we don't try again */ 1896 tap->txa_flags |= IEEE80211_AGGR_NAK; 1897 } 1898 return 1; 1899 } 1900 1901 /* 1902 * Default method for stopping A-MPDU tx aggregation. 1903 * Any timer is cleared and we drain any pending frames. 1904 */ 1905 static void 1906 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1907 { 1908 /* XXX locking */ 1909 addba_stop_timeout(tap); 1910 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1911 /* XXX clear aggregation queue */ 1912 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1913 } 1914 tap->txa_attempts = 0; 1915 } 1916 1917 /* 1918 * Process a received action frame using the default aggregation 1919 * policy. We intercept ADDBA-related frames and use them to 1920 * update our aggregation state. All other frames are passed up 1921 * for processing by ieee80211_recv_action. 1922 */ 1923 static int 1924 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1925 const struct ieee80211_frame *wh, 1926 const uint8_t *frm, const uint8_t *efrm) 1927 { 1928 struct ieee80211com *ic = ni->ni_ic; 1929 struct ieee80211vap *vap = ni->ni_vap; 1930 struct ieee80211_rx_ampdu *rap; 1931 uint8_t dialogtoken; 1932 uint16_t baparamset, batimeout, baseqctl; 1933 uint16_t args[5]; 1934 int tid; 1935 1936 dialogtoken = frm[2]; 1937 baparamset = le16dec(frm+3); 1938 batimeout = le16dec(frm+5); 1939 baseqctl = le16dec(frm+7); 1940 1941 tid = MS(baparamset, IEEE80211_BAPS_TID); 1942 1943 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1944 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1945 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1946 dialogtoken, baparamset, 1947 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1948 batimeout, 1949 MS(baseqctl, IEEE80211_BASEQ_START), 1950 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1951 1952 rap = &ni->ni_rx_ampdu[tid]; 1953 1954 /* Send ADDBA response */ 1955 args[0] = dialogtoken; 1956 /* 1957 * NB: We ack only if the sta associated with HT and 1958 * the ap is configured to do AMPDU rx (the latter 1959 * violates the 11n spec and is mostly for testing). 1960 */ 1961 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1962 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1963 /* XXX handle ampdu_rx_start failure */ 1964 ic->ic_ampdu_rx_start(ni, rap, 1965 baparamset, batimeout, baseqctl); 1966 1967 args[1] = IEEE80211_STATUS_SUCCESS; 1968 } else { 1969 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1970 ni, "reject ADDBA request: %s", 1971 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1972 "administratively disabled" : 1973 "not negotiated for station"); 1974 vap->iv_stats.is_addba_reject++; 1975 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1976 } 1977 /* XXX honor rap flags? */ 1978 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1979 | SM(tid, IEEE80211_BAPS_TID) 1980 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1981 ; 1982 args[3] = 0; 1983 args[4] = 0; 1984 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1985 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1986 return 0; 1987 } 1988 1989 static int 1990 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 1991 const struct ieee80211_frame *wh, 1992 const uint8_t *frm, const uint8_t *efrm) 1993 { 1994 struct ieee80211com *ic = ni->ni_ic; 1995 struct ieee80211vap *vap = ni->ni_vap; 1996 struct ieee80211_tx_ampdu *tap; 1997 uint8_t dialogtoken, policy; 1998 uint16_t baparamset, batimeout, code; 1999 int tid, bufsiz; 2000 2001 dialogtoken = frm[2]; 2002 code = le16dec(frm+3); 2003 baparamset = le16dec(frm+5); 2004 tid = MS(baparamset, IEEE80211_BAPS_TID); 2005 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2006 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2007 batimeout = le16dec(frm+7); 2008 2009 tap = &ni->ni_tx_ampdu[tid]; 2010 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2011 IEEE80211_DISCARD_MAC(vap, 2012 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2013 ni->ni_macaddr, "ADDBA response", 2014 "no pending ADDBA, tid %d dialogtoken %u " 2015 "code %d", tid, dialogtoken, code); 2016 vap->iv_stats.is_addba_norequest++; 2017 return 0; 2018 } 2019 if (dialogtoken != tap->txa_token) { 2020 IEEE80211_DISCARD_MAC(vap, 2021 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2022 ni->ni_macaddr, "ADDBA response", 2023 "dialogtoken mismatch: waiting for %d, " 2024 "received %d, tid %d code %d", 2025 tap->txa_token, dialogtoken, tid, code); 2026 vap->iv_stats.is_addba_badtoken++; 2027 return 0; 2028 } 2029 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2030 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2031 IEEE80211_DISCARD_MAC(vap, 2032 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2033 ni->ni_macaddr, "ADDBA response", 2034 "policy mismatch: expecting %s, " 2035 "received %s, tid %d code %d", 2036 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2037 policy, tid, code); 2038 vap->iv_stats.is_addba_badpolicy++; 2039 return 0; 2040 } 2041 #if 0 2042 /* XXX we take MIN in ieee80211_addba_response */ 2043 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2044 IEEE80211_DISCARD_MAC(vap, 2045 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2046 ni->ni_macaddr, "ADDBA response", 2047 "BA window too large: max %d, " 2048 "received %d, tid %d code %d", 2049 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2050 vap->iv_stats.is_addba_badbawinsize++; 2051 return 0; 2052 } 2053 #endif 2054 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2055 "recv ADDBA response: dialogtoken %u code %d " 2056 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 2057 dialogtoken, code, baparamset, tid, bufsiz, 2058 batimeout); 2059 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2060 return 0; 2061 } 2062 2063 static int 2064 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2065 const struct ieee80211_frame *wh, 2066 const uint8_t *frm, const uint8_t *efrm) 2067 { 2068 struct ieee80211com *ic = ni->ni_ic; 2069 struct ieee80211_rx_ampdu *rap; 2070 struct ieee80211_tx_ampdu *tap; 2071 uint16_t baparamset, code; 2072 int tid; 2073 2074 baparamset = le16dec(frm+2); 2075 code = le16dec(frm+4); 2076 2077 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2078 2079 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2080 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2081 "code %d", baparamset, tid, 2082 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2083 2084 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2085 tap = &ni->ni_tx_ampdu[tid]; 2086 ic->ic_addba_stop(ni, tap); 2087 } else { 2088 rap = &ni->ni_rx_ampdu[tid]; 2089 ic->ic_ampdu_rx_stop(ni, rap); 2090 } 2091 return 0; 2092 } 2093 2094 static int 2095 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2096 const struct ieee80211_frame *wh, 2097 const uint8_t *frm, const uint8_t *efrm) 2098 { 2099 int chw; 2100 2101 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2102 2103 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2104 "%s: HT txchwidth, width %d%s", 2105 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2106 if (chw != ni->ni_chw) { 2107 ni->ni_chw = chw; 2108 /* XXX notify on change */ 2109 } 2110 return 0; 2111 } 2112 2113 static int 2114 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2115 const struct ieee80211_frame *wh, 2116 const uint8_t *frm, const uint8_t *efrm) 2117 { 2118 const struct ieee80211_action_ht_mimopowersave *mps = 2119 (const struct ieee80211_action_ht_mimopowersave *) frm; 2120 2121 /* XXX check iv_htcaps */ 2122 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2123 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2124 else 2125 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2126 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2127 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2128 else 2129 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2130 /* XXX notify on change */ 2131 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2132 "%s: HT MIMO PS (%s%s)", __func__, 2133 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2134 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2135 ); 2136 return 0; 2137 } 2138 2139 /* 2140 * Transmit processing. 2141 */ 2142 2143 /* 2144 * Check if A-MPDU should be requested/enabled for a stream. 2145 * We require a traffic rate above a per-AC threshold and we 2146 * also handle backoff from previous failed attempts. 2147 * 2148 * Drivers may override this method to bring in information 2149 * such as link state conditions in making the decision. 2150 */ 2151 static int 2152 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2153 struct ieee80211_tx_ampdu *tap) 2154 { 2155 struct ieee80211vap *vap = ni->ni_vap; 2156 2157 if (tap->txa_avgpps < 2158 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2159 return 0; 2160 /* XXX check rssi? */ 2161 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2162 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2163 /* 2164 * Don't retry too often; txa_nextrequest is set 2165 * to the minimum interval we'll retry after 2166 * ieee80211_addba_maxtries failed attempts are made. 2167 */ 2168 return 0; 2169 } 2170 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2171 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2172 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2173 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2174 return 1; 2175 } 2176 2177 /* 2178 * Request A-MPDU tx aggregation. Setup local state and 2179 * issue an ADDBA request. BA use will only happen after 2180 * the other end replies with ADDBA response. 2181 */ 2182 int 2183 ieee80211_ampdu_request(struct ieee80211_node *ni, 2184 struct ieee80211_tx_ampdu *tap) 2185 { 2186 struct ieee80211com *ic = ni->ni_ic; 2187 uint16_t args[5]; 2188 int tid, dialogtoken; 2189 static int tokens = 0; /* XXX */ 2190 2191 /* XXX locking */ 2192 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2193 /* do deferred setup of state */ 2194 ampdu_tx_setup(tap); 2195 } 2196 /* XXX hack for not doing proper locking */ 2197 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2198 2199 dialogtoken = (tokens+1) % 63; /* XXX */ 2200 tid = tap->txa_tid; 2201 tap->txa_start = ni->ni_txseqs[tid]; 2202 2203 args[0] = dialogtoken; 2204 args[1] = 0; /* NB: status code not used */ 2205 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2206 | SM(tid, IEEE80211_BAPS_TID) 2207 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2208 ; 2209 args[3] = 0; /* batimeout */ 2210 /* NB: do first so there's no race against reply */ 2211 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2212 /* unable to setup state, don't make request */ 2213 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2214 ni, "%s: could not setup BA stream for TID %d AC %d", 2215 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2216 /* defer next try so we don't slam the driver with requests */ 2217 tap->txa_attempts = ieee80211_addba_maxtries; 2218 /* NB: check in case driver wants to override */ 2219 if (tap->txa_nextrequest <= ticks) 2220 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2221 return 0; 2222 } 2223 tokens = dialogtoken; /* allocate token */ 2224 /* NB: after calling ic_addba_request so driver can set txa_start */ 2225 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2226 | SM(0, IEEE80211_BASEQ_FRAG) 2227 ; 2228 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2229 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2230 } 2231 2232 /* 2233 * Terminate an AMPDU tx stream. State is reclaimed 2234 * and the peer notified with a DelBA Action frame. 2235 */ 2236 void 2237 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2238 int reason) 2239 { 2240 struct ieee80211com *ic = ni->ni_ic; 2241 struct ieee80211vap *vap = ni->ni_vap; 2242 uint16_t args[4]; 2243 2244 /* XXX locking */ 2245 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2246 if (IEEE80211_AMPDU_RUNNING(tap)) { 2247 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2248 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2249 __func__, tap->txa_tid, reason, 2250 ieee80211_reason_to_string(reason)); 2251 vap->iv_stats.is_ampdu_stop++; 2252 2253 ic->ic_addba_stop(ni, tap); 2254 args[0] = tap->txa_tid; 2255 args[1] = IEEE80211_DELBAPS_INIT; 2256 args[2] = reason; /* XXX reason code */ 2257 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2258 IEEE80211_ACTION_BA_DELBA, args); 2259 } else { 2260 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2261 ni, "%s: BA stream for TID %d not running " 2262 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2263 ieee80211_reason_to_string(reason)); 2264 vap->iv_stats.is_ampdu_stop_failed++; 2265 } 2266 } 2267 2268 /* XXX */ 2269 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2270 2271 static void 2272 bar_timeout(void *arg) 2273 { 2274 struct ieee80211_tx_ampdu *tap = arg; 2275 struct ieee80211_node *ni = tap->txa_ni; 2276 2277 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2278 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2279 2280 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2281 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2282 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2283 2284 /* guard against race with bar_tx_complete */ 2285 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2286 return; 2287 /* XXX ? */ 2288 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2289 struct ieee80211com *ic = ni->ni_ic; 2290 2291 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2292 /* 2293 * If (at least) the last BAR TX timeout was due to 2294 * an ieee80211_send_bar() failures, then we need 2295 * to make sure we notify the driver that a BAR 2296 * TX did occur and fail. This gives the driver 2297 * a chance to undo any queue pause that may 2298 * have occurred. 2299 */ 2300 ic->ic_bar_response(ni, tap, 1); 2301 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2302 } else { 2303 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2304 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2305 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2306 ni, "%s: failed to TX, starting timer\n", 2307 __func__); 2308 /* 2309 * If ieee80211_send_bar() fails here, the 2310 * timer may have stopped and/or the pending 2311 * flag may be clear. Because of this, 2312 * fake the BARPEND and reset the timer. 2313 * A retransmission attempt will then occur 2314 * during the next timeout. 2315 */ 2316 /* XXX locking */ 2317 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2318 bar_start_timer(tap); 2319 } 2320 } 2321 } 2322 2323 static void 2324 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2325 { 2326 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2327 tap->txa_ni, 2328 "%s: called", 2329 __func__); 2330 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2331 } 2332 2333 static void 2334 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2335 { 2336 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2337 tap->txa_ni, 2338 "%s: called", 2339 __func__); 2340 callout_stop(&tap->txa_timer); 2341 } 2342 2343 static void 2344 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2345 { 2346 struct ieee80211_tx_ampdu *tap = arg; 2347 2348 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2349 ni, "%s: tid %u flags 0x%x pending %d status %d", 2350 __func__, tap->txa_tid, tap->txa_flags, 2351 callout_pending(&tap->txa_timer), status); 2352 2353 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2354 /* XXX locking */ 2355 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2356 callout_pending(&tap->txa_timer)) { 2357 struct ieee80211com *ic = ni->ni_ic; 2358 2359 if (status == 0) /* ACK'd */ 2360 bar_stop_timer(tap); 2361 ic->ic_bar_response(ni, tap, status); 2362 /* NB: just let timer expire so we pace requests */ 2363 } 2364 } 2365 2366 static void 2367 ieee80211_bar_response(struct ieee80211_node *ni, 2368 struct ieee80211_tx_ampdu *tap, int status) 2369 { 2370 2371 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2372 tap->txa_ni, 2373 "%s: called", 2374 __func__); 2375 if (status == 0) { /* got ACK */ 2376 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2377 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2378 tap->txa_start, 2379 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2380 tap->txa_qframes, tap->txa_seqpending, 2381 tap->txa_tid); 2382 2383 /* NB: timer already stopped in bar_tx_complete */ 2384 tap->txa_start = tap->txa_seqpending; 2385 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2386 } 2387 } 2388 2389 /* 2390 * Transmit a BAR frame to the specified node. The 2391 * BAR contents are drawn from the supplied aggregation 2392 * state associated with the node. 2393 * 2394 * NB: we only handle immediate ACK w/ compressed bitmap. 2395 */ 2396 int 2397 ieee80211_send_bar(struct ieee80211_node *ni, 2398 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2399 { 2400 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2401 struct ieee80211vap *vap = ni->ni_vap; 2402 struct ieee80211com *ic = ni->ni_ic; 2403 struct ieee80211_frame_bar *bar; 2404 struct mbuf *m; 2405 uint16_t barctl, barseqctl; 2406 uint8_t *frm; 2407 int tid, ret; 2408 2409 2410 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2411 tap->txa_ni, 2412 "%s: called", 2413 __func__); 2414 2415 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2416 /* no ADDBA response, should not happen */ 2417 /* XXX stat+msg */ 2418 return EINVAL; 2419 } 2420 /* XXX locking */ 2421 bar_stop_timer(tap); 2422 2423 ieee80211_ref_node(ni); 2424 2425 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2426 if (m == NULL) 2427 senderr(ENOMEM, is_tx_nobuf); 2428 2429 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2430 m_freem(m); 2431 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2432 /* NOTREACHED */ 2433 } 2434 2435 bar = mtod(m, struct ieee80211_frame_bar *); 2436 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2437 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2438 bar->i_fc[1] = 0; 2439 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2440 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2441 2442 tid = tap->txa_tid; 2443 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2444 0 : IEEE80211_BAR_NOACK) 2445 | IEEE80211_BAR_COMP 2446 | SM(tid, IEEE80211_BAR_TID) 2447 ; 2448 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2449 /* NB: known to have proper alignment */ 2450 bar->i_ctl = htole16(barctl); 2451 bar->i_seq = htole16(barseqctl); 2452 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2453 2454 M_WME_SETAC(m, WME_AC_VO); 2455 2456 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2457 2458 /* XXX locking */ 2459 /* init/bump attempts counter */ 2460 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2461 tap->txa_attempts = 1; 2462 else 2463 tap->txa_attempts++; 2464 tap->txa_seqpending = seq; 2465 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2466 2467 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2468 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2469 tid, barctl, seq, tap->txa_attempts); 2470 2471 /* 2472 * ic_raw_xmit will free the node reference 2473 * regardless of queue/TX success or failure. 2474 */ 2475 IEEE80211_TX_LOCK(ic); 2476 ret = ieee80211_raw_output(vap, ni, m, NULL); 2477 IEEE80211_TX_UNLOCK(ic); 2478 if (ret != 0) { 2479 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2480 ni, "send BAR: failed: (ret = %d)\n", 2481 ret); 2482 /* xmit failed, clear state flag */ 2483 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2484 vap->iv_stats.is_ampdu_bar_tx_fail++; 2485 return ret; 2486 } 2487 /* XXX hack against tx complete happening before timer is started */ 2488 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2489 bar_start_timer(tap); 2490 return 0; 2491 bad: 2492 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2493 tap->txa_ni, 2494 "%s: bad! ret=%d", 2495 __func__, ret); 2496 vap->iv_stats.is_ampdu_bar_tx_fail++; 2497 ieee80211_free_node(ni); 2498 return ret; 2499 #undef senderr 2500 } 2501 2502 static int 2503 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2504 { 2505 struct ieee80211_bpf_params params; 2506 2507 memset(¶ms, 0, sizeof(params)); 2508 params.ibp_pri = WME_AC_VO; 2509 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2510 /* NB: we know all frames are unicast */ 2511 params.ibp_try0 = ni->ni_txparms->maxretry; 2512 params.ibp_power = ni->ni_txpower; 2513 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2514 ¶ms); 2515 } 2516 2517 #define ADDSHORT(frm, v) do { \ 2518 frm[0] = (v) & 0xff; \ 2519 frm[1] = (v) >> 8; \ 2520 frm += 2; \ 2521 } while (0) 2522 2523 /* 2524 * Send an action management frame. The arguments are stuff 2525 * into a frame without inspection; the caller is assumed to 2526 * prepare them carefully (e.g. based on the aggregation state). 2527 */ 2528 static int 2529 ht_send_action_ba_addba(struct ieee80211_node *ni, 2530 int category, int action, void *arg0) 2531 { 2532 struct ieee80211vap *vap = ni->ni_vap; 2533 struct ieee80211com *ic = ni->ni_ic; 2534 uint16_t *args = arg0; 2535 struct mbuf *m; 2536 uint8_t *frm; 2537 2538 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2539 "send ADDBA %s: dialogtoken %d status %d " 2540 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2541 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2542 "request" : "response", 2543 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2544 args[3], args[4]); 2545 2546 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2547 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2548 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2549 ieee80211_ref_node(ni); 2550 2551 m = ieee80211_getmgtframe(&frm, 2552 ic->ic_headroom + sizeof(struct ieee80211_frame), 2553 sizeof(uint16_t) /* action+category */ 2554 /* XXX may action payload */ 2555 + sizeof(struct ieee80211_action_ba_addbaresponse) 2556 ); 2557 if (m != NULL) { 2558 *frm++ = category; 2559 *frm++ = action; 2560 *frm++ = args[0]; /* dialog token */ 2561 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2562 ADDSHORT(frm, args[1]); /* status code */ 2563 ADDSHORT(frm, args[2]); /* baparamset */ 2564 ADDSHORT(frm, args[3]); /* batimeout */ 2565 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2566 ADDSHORT(frm, args[4]); /* baseqctl */ 2567 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2568 return ht_action_output(ni, m); 2569 } else { 2570 vap->iv_stats.is_tx_nobuf++; 2571 ieee80211_free_node(ni); 2572 return ENOMEM; 2573 } 2574 } 2575 2576 static int 2577 ht_send_action_ba_delba(struct ieee80211_node *ni, 2578 int category, int action, void *arg0) 2579 { 2580 struct ieee80211vap *vap = ni->ni_vap; 2581 struct ieee80211com *ic = ni->ni_ic; 2582 uint16_t *args = arg0; 2583 struct mbuf *m; 2584 uint16_t baparamset; 2585 uint8_t *frm; 2586 2587 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2588 | args[1] 2589 ; 2590 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2591 "send DELBA action: tid %d, initiator %d reason %d (%s)", 2592 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 2593 2594 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2595 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2596 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2597 ieee80211_ref_node(ni); 2598 2599 m = ieee80211_getmgtframe(&frm, 2600 ic->ic_headroom + sizeof(struct ieee80211_frame), 2601 sizeof(uint16_t) /* action+category */ 2602 /* XXX may action payload */ 2603 + sizeof(struct ieee80211_action_ba_addbaresponse) 2604 ); 2605 if (m != NULL) { 2606 *frm++ = category; 2607 *frm++ = action; 2608 ADDSHORT(frm, baparamset); 2609 ADDSHORT(frm, args[2]); /* reason code */ 2610 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2611 return ht_action_output(ni, m); 2612 } else { 2613 vap->iv_stats.is_tx_nobuf++; 2614 ieee80211_free_node(ni); 2615 return ENOMEM; 2616 } 2617 } 2618 2619 static int 2620 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2621 int category, int action, void *arg0) 2622 { 2623 struct ieee80211vap *vap = ni->ni_vap; 2624 struct ieee80211com *ic = ni->ni_ic; 2625 struct mbuf *m; 2626 uint8_t *frm; 2627 2628 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2629 "send HT txchwidth: width %d", 2630 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2631 2632 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2633 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2634 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2635 ieee80211_ref_node(ni); 2636 2637 m = ieee80211_getmgtframe(&frm, 2638 ic->ic_headroom + sizeof(struct ieee80211_frame), 2639 sizeof(uint16_t) /* action+category */ 2640 /* XXX may action payload */ 2641 + sizeof(struct ieee80211_action_ba_addbaresponse) 2642 ); 2643 if (m != NULL) { 2644 *frm++ = category; 2645 *frm++ = action; 2646 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2647 IEEE80211_A_HT_TXCHWIDTH_2040 : 2648 IEEE80211_A_HT_TXCHWIDTH_20; 2649 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2650 return ht_action_output(ni, m); 2651 } else { 2652 vap->iv_stats.is_tx_nobuf++; 2653 ieee80211_free_node(ni); 2654 return ENOMEM; 2655 } 2656 } 2657 #undef ADDSHORT 2658 2659 /* 2660 * Construct the MCS bit mask for inclusion in an HT capabilities 2661 * information element. 2662 */ 2663 static void 2664 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2665 { 2666 int i; 2667 uint8_t txparams; 2668 2669 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2670 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2671 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2672 ("ic_txstream %d out of range", ic->ic_txstream)); 2673 2674 for (i = 0; i < ic->ic_rxstream * 8; i++) 2675 setbit(frm, i); 2676 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2677 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2678 setbit(frm, 32); 2679 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2680 if (ic->ic_rxstream >= 2) { 2681 for (i = 33; i <= 38; i++) 2682 setbit(frm, i); 2683 } 2684 if (ic->ic_rxstream >= 3) { 2685 for (i = 39; i <= 52; i++) 2686 setbit(frm, i); 2687 } 2688 if (ic->ic_txstream >= 4) { 2689 for (i = 53; i <= 76; i++) 2690 setbit(frm, i); 2691 } 2692 } 2693 2694 if (ic->ic_rxstream != ic->ic_txstream) { 2695 txparams = 0x1; /* TX MCS set defined */ 2696 txparams |= 0x2; /* TX RX MCS not equal */ 2697 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2698 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2699 txparams |= 0x16; /* TX unequal modulation sup */ 2700 } else 2701 txparams = 0; 2702 frm[12] = txparams; 2703 } 2704 2705 /* 2706 * Add body of an HTCAP information element. 2707 */ 2708 static uint8_t * 2709 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2710 { 2711 #define ADDSHORT(frm, v) do { \ 2712 frm[0] = (v) & 0xff; \ 2713 frm[1] = (v) >> 8; \ 2714 frm += 2; \ 2715 } while (0) 2716 struct ieee80211com *ic = ni->ni_ic; 2717 struct ieee80211vap *vap = ni->ni_vap; 2718 uint16_t caps, extcaps; 2719 int rxmax, density; 2720 2721 /* HT capabilities */ 2722 caps = vap->iv_htcaps & 0xffff; 2723 /* 2724 * Note channel width depends on whether we are operating as 2725 * a sta or not. When operating as a sta we are generating 2726 * a request based on our desired configuration. Otherwise 2727 * we are operational and the channel attributes identify 2728 * how we've been setup (which might be different if a fixed 2729 * channel is specified). 2730 */ 2731 if (vap->iv_opmode == IEEE80211_M_STA) { 2732 /* override 20/40 use based on config */ 2733 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2734 caps |= IEEE80211_HTCAP_CHWIDTH40; 2735 else 2736 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2737 2738 /* Start by using the advertised settings */ 2739 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2740 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2741 2742 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 2743 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 2744 __func__, 2745 rxmax, 2746 density, 2747 vap->iv_ampdu_rxmax, 2748 vap->iv_ampdu_density); 2749 2750 /* Cap at VAP rxmax */ 2751 if (rxmax > vap->iv_ampdu_rxmax) 2752 rxmax = vap->iv_ampdu_rxmax; 2753 2754 /* 2755 * If the VAP ampdu density value greater, use that. 2756 * 2757 * (Larger density value == larger minimum gap between A-MPDU 2758 * subframes.) 2759 */ 2760 if (vap->iv_ampdu_density > density) 2761 density = vap->iv_ampdu_density; 2762 2763 /* 2764 * NB: Hardware might support HT40 on some but not all 2765 * channels. We can't determine this earlier because only 2766 * after association the channel is upgraded to HT based 2767 * on the negotiated capabilities. 2768 */ 2769 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2770 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2771 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2772 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2773 } else { 2774 /* override 20/40 use based on current channel */ 2775 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2776 caps |= IEEE80211_HTCAP_CHWIDTH40; 2777 else 2778 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2779 2780 /* XXX TODO should it start by using advertised settings? */ 2781 rxmax = vap->iv_ampdu_rxmax; 2782 density = vap->iv_ampdu_density; 2783 } 2784 2785 /* adjust short GI based on channel and config */ 2786 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2787 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2788 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2789 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2790 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2791 2792 /* adjust STBC based on receive capabilities */ 2793 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 2794 caps &= ~IEEE80211_HTCAP_RXSTBC; 2795 2796 /* XXX TODO: adjust LDPC based on receive capabilities */ 2797 2798 ADDSHORT(frm, caps); 2799 2800 /* HT parameters */ 2801 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2802 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2803 ; 2804 frm++; 2805 2806 /* pre-zero remainder of ie */ 2807 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2808 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2809 2810 /* supported MCS set */ 2811 /* 2812 * XXX: For sta mode the rate set should be restricted based 2813 * on the AP's capabilities, but ni_htrates isn't setup when 2814 * we're called to form an AssocReq frame so for now we're 2815 * restricted to the device capabilities. 2816 */ 2817 ieee80211_set_mcsset(ni->ni_ic, frm); 2818 2819 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2820 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2821 2822 /* HT extended capabilities */ 2823 extcaps = vap->iv_htextcaps & 0xffff; 2824 2825 ADDSHORT(frm, extcaps); 2826 2827 frm += sizeof(struct ieee80211_ie_htcap) - 2828 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2829 2830 return frm; 2831 #undef ADDSHORT 2832 } 2833 2834 /* 2835 * Add 802.11n HT capabilities information element 2836 */ 2837 uint8_t * 2838 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2839 { 2840 frm[0] = IEEE80211_ELEMID_HTCAP; 2841 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2842 return ieee80211_add_htcap_body(frm + 2, ni); 2843 } 2844 2845 /* 2846 * Non-associated probe request - add HT capabilities based on 2847 * the current channel configuration. 2848 */ 2849 static uint8_t * 2850 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 2851 struct ieee80211_channel *c) 2852 { 2853 #define ADDSHORT(frm, v) do { \ 2854 frm[0] = (v) & 0xff; \ 2855 frm[1] = (v) >> 8; \ 2856 frm += 2; \ 2857 } while (0) 2858 struct ieee80211com *ic = vap->iv_ic; 2859 uint16_t caps, extcaps; 2860 int rxmax, density; 2861 2862 /* HT capabilities */ 2863 caps = vap->iv_htcaps & 0xffff; 2864 2865 /* 2866 * We don't use this in STA mode; only in IBSS mode. 2867 * So in IBSS mode we base our HTCAP flags on the 2868 * given channel. 2869 */ 2870 2871 /* override 20/40 use based on current channel */ 2872 if (IEEE80211_IS_CHAN_HT40(c)) 2873 caps |= IEEE80211_HTCAP_CHWIDTH40; 2874 else 2875 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2876 2877 /* Use the currently configured values */ 2878 rxmax = vap->iv_ampdu_rxmax; 2879 density = vap->iv_ampdu_density; 2880 2881 /* adjust short GI based on channel and config */ 2882 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2883 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2884 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2885 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2886 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2887 ADDSHORT(frm, caps); 2888 2889 /* HT parameters */ 2890 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2891 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2892 ; 2893 frm++; 2894 2895 /* pre-zero remainder of ie */ 2896 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2897 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2898 2899 /* supported MCS set */ 2900 /* 2901 * XXX: For sta mode the rate set should be restricted based 2902 * on the AP's capabilities, but ni_htrates isn't setup when 2903 * we're called to form an AssocReq frame so for now we're 2904 * restricted to the device capabilities. 2905 */ 2906 ieee80211_set_mcsset(ic, frm); 2907 2908 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2909 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2910 2911 /* HT extended capabilities */ 2912 extcaps = vap->iv_htextcaps & 0xffff; 2913 2914 ADDSHORT(frm, extcaps); 2915 2916 frm += sizeof(struct ieee80211_ie_htcap) - 2917 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2918 2919 return frm; 2920 #undef ADDSHORT 2921 } 2922 2923 /* 2924 * Add 802.11n HT capabilities information element 2925 */ 2926 uint8_t * 2927 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 2928 struct ieee80211_channel *c) 2929 { 2930 frm[0] = IEEE80211_ELEMID_HTCAP; 2931 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2932 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 2933 } 2934 2935 /* 2936 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2937 * used for compatibility w/ pre-draft implementations. 2938 */ 2939 uint8_t * 2940 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2941 { 2942 frm[0] = IEEE80211_ELEMID_VENDOR; 2943 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2944 frm[2] = (BCM_OUI >> 0) & 0xff; 2945 frm[3] = (BCM_OUI >> 8) & 0xff; 2946 frm[4] = (BCM_OUI >> 16) & 0xff; 2947 frm[5] = BCM_OUI_HTCAP; 2948 return ieee80211_add_htcap_body(frm + 6, ni); 2949 } 2950 2951 /* 2952 * Construct the MCS bit mask of basic rates 2953 * for inclusion in an HT information element. 2954 */ 2955 static void 2956 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2957 { 2958 int i; 2959 2960 for (i = 0; i < rs->rs_nrates; i++) { 2961 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2962 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2963 r < IEEE80211_HTRATE_MAXSIZE) { 2964 /* NB: this assumes a particular implementation */ 2965 setbit(frm, r); 2966 } 2967 } 2968 } 2969 2970 /* 2971 * Update the HTINFO ie for a beacon frame. 2972 */ 2973 void 2974 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2975 struct ieee80211_beacon_offsets *bo) 2976 { 2977 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2978 struct ieee80211_node *ni; 2979 const struct ieee80211_channel *bsschan; 2980 struct ieee80211com *ic = vap->iv_ic; 2981 struct ieee80211_ie_htinfo *ht = 2982 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2983 2984 ni = ieee80211_ref_node(vap->iv_bss); 2985 bsschan = ni->ni_chan; 2986 2987 /* XXX only update on channel change */ 2988 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 2989 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2990 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 2991 else 2992 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 2993 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 2994 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2995 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 2996 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2997 else 2998 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 2999 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3000 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3001 3002 /* protection mode */ 3003 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3004 3005 ieee80211_free_node(ni); 3006 3007 /* XXX propagate to vendor ie's */ 3008 #undef PROTMODE 3009 } 3010 3011 /* 3012 * Add body of an HTINFO information element. 3013 * 3014 * NB: We don't use struct ieee80211_ie_htinfo because we can 3015 * be called to fillin both a standard ie and a compat ie that 3016 * has a vendor OUI at the front. 3017 */ 3018 static uint8_t * 3019 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3020 { 3021 struct ieee80211vap *vap = ni->ni_vap; 3022 struct ieee80211com *ic = ni->ni_ic; 3023 3024 /* pre-zero remainder of ie */ 3025 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3026 3027 /* primary/control channel center */ 3028 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3029 3030 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3031 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3032 else 3033 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3034 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3035 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3036 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3037 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3038 else 3039 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3040 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3041 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3042 3043 frm[1] = ic->ic_curhtprotmode; 3044 3045 frm += 5; 3046 3047 /* basic MCS set */ 3048 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3049 frm += sizeof(struct ieee80211_ie_htinfo) - 3050 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3051 return frm; 3052 } 3053 3054 /* 3055 * Add 802.11n HT information information element. 3056 */ 3057 uint8_t * 3058 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3059 { 3060 frm[0] = IEEE80211_ELEMID_HTINFO; 3061 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3062 return ieee80211_add_htinfo_body(frm + 2, ni); 3063 } 3064 3065 /* 3066 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3067 * used for compatibility w/ pre-draft implementations. 3068 */ 3069 uint8_t * 3070 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3071 { 3072 frm[0] = IEEE80211_ELEMID_VENDOR; 3073 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3074 frm[2] = (BCM_OUI >> 0) & 0xff; 3075 frm[3] = (BCM_OUI >> 8) & 0xff; 3076 frm[4] = (BCM_OUI >> 16) & 0xff; 3077 frm[5] = BCM_OUI_HTINFO; 3078 return ieee80211_add_htinfo_body(frm + 6, ni); 3079 } 3080