1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/systm.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/if.h> 46 #include <net/if_media.h> 47 #include <net/ethernet.h> 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_input.h> 51 52 /* define here, used throughout file */ 53 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 54 #define SM(_v, _f) (((_v) << _f##_S) & _f) 55 56 const struct ieee80211_mcs_rates ieee80211_htrates[16] = { 57 { 13, 14, 27, 30 }, /* MCS 0 */ 58 { 26, 29, 54, 60 }, /* MCS 1 */ 59 { 39, 43, 81, 90 }, /* MCS 2 */ 60 { 52, 58, 108, 120 }, /* MCS 3 */ 61 { 78, 87, 162, 180 }, /* MCS 4 */ 62 { 104, 116, 216, 240 }, /* MCS 5 */ 63 { 117, 130, 243, 270 }, /* MCS 6 */ 64 { 130, 144, 270, 300 }, /* MCS 7 */ 65 { 26, 29, 54, 60 }, /* MCS 8 */ 66 { 52, 58, 108, 120 }, /* MCS 9 */ 67 { 78, 87, 162, 180 }, /* MCS 10 */ 68 { 104, 116, 216, 240 }, /* MCS 11 */ 69 { 156, 173, 324, 360 }, /* MCS 12 */ 70 { 208, 231, 432, 480 }, /* MCS 13 */ 71 { 234, 260, 486, 540 }, /* MCS 14 */ 72 { 260, 289, 540, 600 } /* MCS 15 */ 73 }; 74 75 static const struct ieee80211_htrateset ieee80211_rateset_11n = 76 { 16, { 77 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 78 10, 11, 12, 13, 14, 15 } 79 }; 80 81 #ifdef IEEE80211_AMPDU_AGE 82 /* XXX public for sysctl hookup */ 83 int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 84 #endif 85 int ieee80211_recv_bar_ena = 1; 86 int ieee80211_addba_timeout = -1; /* timeout waiting for ADDBA response */ 87 int ieee80211_addba_backoff = -1; /* backoff after max ADDBA requests */ 88 int ieee80211_addba_maxtries = 3; /* max ADDBA requests before backoff */ 89 int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 90 int ieee80211_bar_maxtries = 50; /* max BAR requests before DELBA */ 91 92 /* 93 * Setup HT parameters that depends on the clock frequency. 94 */ 95 static void 96 ieee80211_ht_setup(void) 97 { 98 #ifdef IEEE80211_AMPDU_AGE 99 ieee80211_ampdu_age = msecs_to_ticks(500); 100 #endif 101 ieee80211_addba_timeout = msecs_to_ticks(250); 102 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 103 ieee80211_bar_timeout = msecs_to_ticks(250); 104 } 105 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_setup, NULL); 106 107 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 108 struct ieee80211_tx_ampdu *tap); 109 static int ieee80211_addba_request(struct ieee80211_node *ni, 110 struct ieee80211_tx_ampdu *tap, 111 int dialogtoken, int baparamset, int batimeout); 112 static int ieee80211_addba_response(struct ieee80211_node *ni, 113 struct ieee80211_tx_ampdu *tap, 114 int code, int baparamset, int batimeout); 115 static void ieee80211_addba_stop(struct ieee80211_node *ni, 116 struct ieee80211_tx_ampdu *tap); 117 static void ieee80211_aggr_recv_action(struct ieee80211_node *ni, 118 const uint8_t *frm, const uint8_t *efrm); 119 static void ieee80211_bar_response(struct ieee80211_node *ni, 120 struct ieee80211_tx_ampdu *tap, int status); 121 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 122 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 123 124 void 125 ieee80211_ht_attach(struct ieee80211com *ic) 126 { 127 /* setup default aggregation policy */ 128 ic->ic_recv_action = ieee80211_aggr_recv_action; 129 ic->ic_send_action = ieee80211_send_action; 130 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 131 ic->ic_addba_request = ieee80211_addba_request; 132 ic->ic_addba_response = ieee80211_addba_response; 133 ic->ic_addba_stop = ieee80211_addba_stop; 134 ic->ic_bar_response = ieee80211_bar_response; 135 136 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 137 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 138 } 139 140 void 141 ieee80211_ht_detach(struct ieee80211com *ic) 142 { 143 } 144 145 void 146 ieee80211_ht_vattach(struct ieee80211vap *vap) 147 { 148 149 /* driver can override defaults */ 150 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 151 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 152 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 153 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 154 /* tx aggregation traffic thresholds */ 155 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 156 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 157 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 158 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 159 160 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 161 /* 162 * Device is HT capable; enable all HT-related 163 * facilities by default. 164 * XXX these choices may be too aggressive. 165 */ 166 vap->iv_flags_ext |= IEEE80211_FEXT_HT 167 | IEEE80211_FEXT_HTCOMPAT 168 ; 169 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 170 vap->iv_flags_ext |= IEEE80211_FEXT_SHORTGI20; 171 /* XXX infer from channel list? */ 172 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 173 vap->iv_flags_ext |= IEEE80211_FEXT_USEHT40; 174 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 175 vap->iv_flags_ext |= IEEE80211_FEXT_SHORTGI40; 176 } 177 /* enable RIFS if capable */ 178 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 179 vap->iv_flags_ext |= IEEE80211_FEXT_RIFS; 180 181 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 182 vap->iv_flags_ext |= IEEE80211_FEXT_AMPDU_RX; 183 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 184 vap->iv_flags_ext |= IEEE80211_FEXT_AMPDU_TX; 185 vap->iv_flags_ext |= IEEE80211_FEXT_AMSDU_RX; 186 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 187 vap->iv_flags_ext |= IEEE80211_FEXT_AMSDU_TX; 188 } 189 /* NB: disable default legacy WDS, too many issues right now */ 190 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 191 vap->iv_flags_ext &= ~IEEE80211_FEXT_HT; 192 } 193 194 void 195 ieee80211_ht_vdetach(struct ieee80211vap *vap) 196 { 197 } 198 199 static void 200 ht_announce(struct ieee80211com *ic, int mode, 201 const struct ieee80211_htrateset *rs) 202 { 203 struct ifnet *ifp = ic->ic_ifp; 204 int i, rate, mword; 205 206 if_printf(ifp, "%s MCS: ", ieee80211_phymode_name[mode]); 207 for (i = 0; i < rs->rs_nrates; i++) { 208 mword = ieee80211_rate2media(ic, 209 rs->rs_rates[i] | IEEE80211_RATE_MCS, mode); 210 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 211 continue; 212 rate = ieee80211_htrates[rs->rs_rates[i]].ht40_rate_400ns; 213 printf("%s%d%sMbps", (i != 0 ? " " : ""), 214 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 215 } 216 printf("\n"); 217 } 218 219 void 220 ieee80211_ht_announce(struct ieee80211com *ic) 221 { 222 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 223 ht_announce(ic, IEEE80211_MODE_11NA, &ieee80211_rateset_11n); 224 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 225 ht_announce(ic, IEEE80211_MODE_11NG, &ieee80211_rateset_11n); 226 } 227 228 const struct ieee80211_htrateset * 229 ieee80211_get_suphtrates(struct ieee80211com *ic, 230 const struct ieee80211_channel *c) 231 { 232 return &ieee80211_rateset_11n; 233 } 234 235 /* 236 * Receive processing. 237 */ 238 239 /* 240 * Decap the encapsulated A-MSDU frames and dispatch all but 241 * the last for delivery. The last frame is returned for 242 * delivery via the normal path. 243 */ 244 struct mbuf * 245 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 246 { 247 struct ieee80211vap *vap = ni->ni_vap; 248 int framelen; 249 struct mbuf *n; 250 251 /* discard 802.3 header inserted by ieee80211_decap */ 252 m_adj(m, sizeof(struct ether_header)); 253 254 vap->iv_stats.is_amsdu_decap++; 255 256 for (;;) { 257 /* 258 * Decap the first frame, bust it apart from the 259 * remainder and deliver. We leave the last frame 260 * delivery to the caller (for consistency with other 261 * code paths, could also do it here). 262 */ 263 m = ieee80211_decap1(m, &framelen); 264 if (m == NULL) { 265 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 266 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 267 vap->iv_stats.is_amsdu_tooshort++; 268 return NULL; 269 } 270 if (m->m_pkthdr.len == framelen) 271 break; 272 n = m_split(m, framelen, M_NOWAIT); 273 if (n == NULL) { 274 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 275 ni->ni_macaddr, "a-msdu", 276 "%s", "unable to split encapsulated frames"); 277 vap->iv_stats.is_amsdu_split++; 278 m_freem(m); /* NB: must reclaim */ 279 return NULL; 280 } 281 vap->iv_deliver_data(vap, ni, m); 282 283 /* 284 * Remove frame contents; each intermediate frame 285 * is required to be aligned to a 4-byte boundary. 286 */ 287 m = n; 288 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 289 } 290 return m; /* last delivered by caller */ 291 } 292 293 /* 294 * Purge all frames in the A-MPDU re-order queue. 295 */ 296 static void 297 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 298 { 299 struct mbuf *m; 300 int i; 301 302 for (i = 0; i < rap->rxa_wnd; i++) { 303 m = rap->rxa_m[i]; 304 if (m != NULL) { 305 rap->rxa_m[i] = NULL; 306 rap->rxa_qbytes -= m->m_pkthdr.len; 307 m_freem(m); 308 if (--rap->rxa_qframes == 0) 309 break; 310 } 311 } 312 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 313 ("lost %u data, %u frames on ampdu rx q", 314 rap->rxa_qbytes, rap->rxa_qframes)); 315 } 316 317 /* 318 * Start A-MPDU rx/re-order processing for the specified TID. 319 */ 320 static void 321 ampdu_rx_start(struct ieee80211_rx_ampdu *rap, int bufsiz, int start) 322 { 323 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 324 /* 325 * AMPDU previously setup and not terminated with a DELBA, 326 * flush the reorder q's in case anything remains. 327 */ 328 ampdu_rx_purge(rap); 329 } 330 memset(rap, 0, sizeof(*rap)); 331 rap->rxa_wnd = (bufsiz == 0) ? 332 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 333 rap->rxa_start = start; 334 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 335 } 336 337 /* 338 * Stop A-MPDU rx processing for the specified TID. 339 */ 340 static void 341 ampdu_rx_stop(struct ieee80211_rx_ampdu *rap) 342 { 343 ampdu_rx_purge(rap); 344 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 345 } 346 347 /* 348 * Dispatch a frame from the A-MPDU reorder queue. The 349 * frame is fed back into ieee80211_input marked with an 350 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 351 * permits ieee80211_input to optimize re-processing). 352 */ 353 static __inline void 354 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 355 { 356 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 357 /* NB: rssi, noise, and rstamp are ignored w/ M_AMPDU_MPDU set */ 358 (void) ieee80211_input(ni, m, 0, 0, 0); 359 } 360 361 /* 362 * Dispatch as many frames as possible from the re-order queue. 363 * Frames will always be "at the front"; we process all frames 364 * up to the first empty slot in the window. On completion we 365 * cleanup state if there are still pending frames in the current 366 * BA window. We assume the frame at slot 0 is already handled 367 * by the caller; we always start at slot 1. 368 */ 369 static void 370 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 371 { 372 struct ieee80211vap *vap = ni->ni_vap; 373 struct mbuf *m; 374 int i; 375 376 /* flush run of frames */ 377 for (i = 1; i < rap->rxa_wnd; i++) { 378 m = rap->rxa_m[i]; 379 if (m == NULL) 380 break; 381 rap->rxa_m[i] = NULL; 382 rap->rxa_qbytes -= m->m_pkthdr.len; 383 rap->rxa_qframes--; 384 385 ampdu_dispatch(ni, m); 386 } 387 /* 388 * If frames remain, copy the mbuf pointers down so 389 * they correspond to the offsets in the new window. 390 */ 391 if (rap->rxa_qframes != 0) { 392 int n = rap->rxa_qframes, j; 393 for (j = i+1; j < rap->rxa_wnd; j++) { 394 if (rap->rxa_m[j] != NULL) { 395 rap->rxa_m[j-i] = rap->rxa_m[j]; 396 rap->rxa_m[j] = NULL; 397 if (--n == 0) 398 break; 399 } 400 } 401 KASSERT(n == 0, ("lost %d frames", n)); 402 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 403 } 404 /* 405 * Adjust the start of the BA window to 406 * reflect the frames just dispatched. 407 */ 408 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 409 vap->iv_stats.is_ampdu_rx_oor += i; 410 } 411 412 #ifdef IEEE80211_AMPDU_AGE 413 /* 414 * Dispatch all frames in the A-MPDU re-order queue. 415 */ 416 static void 417 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 418 { 419 struct ieee80211vap *vap = ni->ni_vap; 420 struct mbuf *m; 421 int i; 422 423 for (i = 0; i < rap->rxa_wnd; i++) { 424 m = rap->rxa_m[i]; 425 if (m == NULL) 426 continue; 427 rap->rxa_m[i] = NULL; 428 rap->rxa_qbytes -= m->m_pkthdr.len; 429 rap->rxa_qframes--; 430 vap->iv_stats.is_ampdu_rx_oor++; 431 432 ampdu_dispatch(ni, m); 433 if (rap->rxa_qframes == 0) 434 break; 435 } 436 } 437 #endif /* IEEE80211_AMPDU_AGE */ 438 439 /* 440 * Dispatch all frames in the A-MPDU re-order queue 441 * preceding the specified sequence number. This logic 442 * handles window moves due to a received MSDU or BAR. 443 */ 444 static void 445 ampdu_rx_flush_upto(struct ieee80211_node *ni, 446 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 447 { 448 struct ieee80211vap *vap = ni->ni_vap; 449 struct mbuf *m; 450 ieee80211_seq seqno; 451 int i; 452 453 /* 454 * Flush any complete MSDU's with a sequence number lower 455 * than winstart. Gaps may exist. Note that we may actually 456 * dispatch frames past winstart if a run continues; this is 457 * an optimization that avoids having to do a separate pass 458 * to dispatch frames after moving the BA window start. 459 */ 460 seqno = rap->rxa_start; 461 for (i = 0; i < rap->rxa_wnd; i++) { 462 m = rap->rxa_m[i]; 463 if (m != NULL) { 464 rap->rxa_m[i] = NULL; 465 rap->rxa_qbytes -= m->m_pkthdr.len; 466 rap->rxa_qframes--; 467 vap->iv_stats.is_ampdu_rx_oor++; 468 469 ampdu_dispatch(ni, m); 470 } else { 471 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 472 break; 473 } 474 seqno = IEEE80211_SEQ_INC(seqno); 475 } 476 /* 477 * If frames remain, copy the mbuf pointers down so 478 * they correspond to the offsets in the new window. 479 */ 480 if (rap->rxa_qframes != 0) { 481 int n = rap->rxa_qframes, j; 482 483 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 484 KASSERT(rap->rxa_m[0] == NULL, 485 ("%s: BA window slot 0 occupied", __func__)); 486 for (j = i+1; j < rap->rxa_wnd; j++) { 487 if (rap->rxa_m[j] != NULL) { 488 rap->rxa_m[j-i] = rap->rxa_m[j]; 489 rap->rxa_m[j] = NULL; 490 if (--n == 0) 491 break; 492 } 493 } 494 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 495 "BA win <%d:%d> winstart %d", 496 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 497 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 498 winstart)); 499 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 500 } 501 /* 502 * Move the start of the BA window; we use the 503 * sequence number of the last MSDU that was 504 * passed up the stack+1 or winstart if stopped on 505 * a gap in the reorder buffer. 506 */ 507 rap->rxa_start = seqno; 508 } 509 510 /* 511 * Process a received QoS data frame for an HT station. Handle 512 * A-MPDU reordering: if this frame is received out of order 513 * and falls within the BA window hold onto it. Otherwise if 514 * this frame completes a run, flush any pending frames. We 515 * return 1 if the frame is consumed. A 0 is returned if 516 * the frame should be processed normally by the caller. 517 */ 518 int 519 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 520 { 521 #define IEEE80211_FC0_QOSDATA \ 522 (IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0) 523 #define PROCESS 0 /* caller should process frame */ 524 #define CONSUMED 1 /* frame consumed, caller does nothing */ 525 struct ieee80211vap *vap = ni->ni_vap; 526 struct ieee80211_qosframe *wh; 527 struct ieee80211_rx_ampdu *rap; 528 ieee80211_seq rxseq; 529 uint8_t tid; 530 int off; 531 532 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 533 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 534 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 535 536 /* NB: m_len known to be sufficient */ 537 wh = mtod(m, struct ieee80211_qosframe *); 538 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 539 /* 540 * Not QoS data, shouldn't get here but just 541 * return it to the caller for processing. 542 */ 543 return PROCESS; 544 } 545 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS) 546 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 547 else 548 tid = wh->i_qos[0]; 549 tid &= IEEE80211_QOS_TID; 550 rap = &ni->ni_rx_ampdu[tid]; 551 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 552 /* 553 * No ADDBA request yet, don't touch. 554 */ 555 return PROCESS; 556 } 557 rxseq = le16toh(*(uint16_t *)wh->i_seq); 558 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 559 /* 560 * Fragments are not allowed; toss. 561 */ 562 IEEE80211_DISCARD_MAC(vap, 563 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 564 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 565 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 566 vap->iv_stats.is_ampdu_rx_drop++; 567 IEEE80211_NODE_STAT(ni, rx_drop); 568 m_freem(m); 569 return CONSUMED; 570 } 571 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 572 rap->rxa_nframes++; 573 again: 574 if (rxseq == rap->rxa_start) { 575 /* 576 * First frame in window. 577 */ 578 if (rap->rxa_qframes != 0) { 579 /* 580 * Dispatch as many packets as we can. 581 */ 582 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 583 ampdu_dispatch(ni, m); 584 ampdu_rx_dispatch(rap, ni); 585 return CONSUMED; 586 } else { 587 /* 588 * In order; advance window and notify 589 * caller to dispatch directly. 590 */ 591 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 592 return PROCESS; 593 } 594 } 595 /* 596 * Frame is out of order; store if in the BA window. 597 */ 598 /* calculate offset in BA window */ 599 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 600 if (off < rap->rxa_wnd) { 601 /* 602 * Common case (hopefully): in the BA window. 603 * Sec 9.10.7.6 a) (D2.04 p.118 line 47) 604 */ 605 #ifdef IEEE80211_AMPDU_AGE 606 /* 607 * Check for frames sitting too long in the reorder queue. 608 * This should only ever happen if frames are not delivered 609 * without the sender otherwise notifying us (e.g. with a 610 * BAR to move the window). Typically this happens because 611 * of vendor bugs that cause the sequence number to jump. 612 * When this happens we get a gap in the reorder queue that 613 * leaves frame sitting on the queue until they get pushed 614 * out due to window moves. When the vendor does not send 615 * BAR this move only happens due to explicit packet sends 616 * 617 * NB: we only track the time of the oldest frame in the 618 * reorder q; this means that if we flush we might push 619 * frames that still "new"; if this happens then subsequent 620 * frames will result in BA window moves which cost something 621 * but is still better than a big throughput dip. 622 */ 623 if (rap->rxa_qframes != 0) { 624 /* XXX honor batimeout? */ 625 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 626 /* 627 * Too long since we received the first 628 * frame; flush the reorder buffer. 629 */ 630 if (rap->rxa_qframes != 0) { 631 vap->iv_stats.is_ampdu_rx_age += 632 rap->rxa_qframes; 633 ampdu_rx_flush(ni, rap); 634 } 635 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 636 return PROCESS; 637 } 638 } else { 639 /* 640 * First frame, start aging timer. 641 */ 642 rap->rxa_age = ticks; 643 } 644 #endif /* IEEE80211_AMPDU_AGE */ 645 /* save packet */ 646 if (rap->rxa_m[off] == NULL) { 647 rap->rxa_m[off] = m; 648 rap->rxa_qframes++; 649 rap->rxa_qbytes += m->m_pkthdr.len; 650 vap->iv_stats.is_ampdu_rx_reorder++; 651 } else { 652 IEEE80211_DISCARD_MAC(vap, 653 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 654 ni->ni_macaddr, "a-mpdu duplicate", 655 "seqno %u tid %u BA win <%u:%u>", 656 rxseq, tid, rap->rxa_start, 657 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 658 vap->iv_stats.is_rx_dup++; 659 IEEE80211_NODE_STAT(ni, rx_dup); 660 m_freem(m); 661 } 662 return CONSUMED; 663 } 664 if (off < IEEE80211_SEQ_BA_RANGE) { 665 /* 666 * Outside the BA window, but within range; 667 * flush the reorder q and move the window. 668 * Sec 9.10.7.6 b) (D2.04 p.118 line 60) 669 */ 670 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 671 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 672 rap->rxa_start, 673 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 674 rap->rxa_qframes, rxseq, tid); 675 vap->iv_stats.is_ampdu_rx_move++; 676 677 /* 678 * The spec says to flush frames up to but not including: 679 * WinStart_B = rxseq - rap->rxa_wnd + 1 680 * Then insert the frame or notify the caller to process 681 * it immediately. We can safely do this by just starting 682 * over again because we know the frame will now be within 683 * the BA window. 684 */ 685 /* NB: rxa_wnd known to be >0 */ 686 ampdu_rx_flush_upto(ni, rap, 687 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 688 goto again; 689 } else { 690 /* 691 * Outside the BA window and out of range; toss. 692 * Sec 9.10.7.6 c) (D2.04 p.119 line 16) 693 */ 694 IEEE80211_DISCARD_MAC(vap, 695 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 696 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 697 rap->rxa_start, 698 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 699 rap->rxa_qframes, rxseq, tid, 700 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 701 vap->iv_stats.is_ampdu_rx_drop++; 702 IEEE80211_NODE_STAT(ni, rx_drop); 703 m_freem(m); 704 return CONSUMED; 705 } 706 #undef CONSUMED 707 #undef PROCESS 708 #undef IEEE80211_FC0_QOSDATA 709 } 710 711 /* 712 * Process a BAR ctl frame. Dispatch all frames up to 713 * the sequence number of the frame. If this frame is 714 * out of range it's discarded. 715 */ 716 void 717 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 718 { 719 struct ieee80211vap *vap = ni->ni_vap; 720 struct ieee80211_frame_bar *wh; 721 struct ieee80211_rx_ampdu *rap; 722 ieee80211_seq rxseq; 723 int tid, off; 724 725 if (!ieee80211_recv_bar_ena) { 726 #if 0 727 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 728 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 729 #endif 730 vap->iv_stats.is_ampdu_bar_bad++; 731 return; 732 } 733 wh = mtod(m0, struct ieee80211_frame_bar *); 734 /* XXX check basic BAR */ 735 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 736 rap = &ni->ni_rx_ampdu[tid]; 737 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 738 /* 739 * No ADDBA request yet, don't touch. 740 */ 741 IEEE80211_DISCARD_MAC(vap, 742 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 743 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 744 vap->iv_stats.is_ampdu_bar_bad++; 745 return; 746 } 747 vap->iv_stats.is_ampdu_bar_rx++; 748 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 749 if (rxseq == rap->rxa_start) 750 return; 751 /* calculate offset in BA window */ 752 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 753 if (off < IEEE80211_SEQ_BA_RANGE) { 754 /* 755 * Flush the reorder q up to rxseq and move the window. 756 * Sec 9.10.7.6 a) (D2.04 p.119 line 22) 757 */ 758 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 759 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 760 rap->rxa_start, 761 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 762 rap->rxa_qframes, rxseq, tid); 763 vap->iv_stats.is_ampdu_bar_move++; 764 765 ampdu_rx_flush_upto(ni, rap, rxseq); 766 if (off >= rap->rxa_wnd) { 767 /* 768 * BAR specifies a window start to the right of BA 769 * window; we must move it explicitly since 770 * ampdu_rx_flush_upto will not. 771 */ 772 rap->rxa_start = rxseq; 773 } 774 } else { 775 /* 776 * Out of range; toss. 777 * Sec 9.10.7.6 b) (D2.04 p.119 line 41) 778 */ 779 IEEE80211_DISCARD_MAC(vap, 780 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 781 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 782 rap->rxa_start, 783 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 784 rap->rxa_qframes, rxseq, tid, 785 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 786 vap->iv_stats.is_ampdu_bar_oow++; 787 IEEE80211_NODE_STAT(ni, rx_drop); 788 } 789 } 790 791 /* 792 * Setup HT-specific state in a node. Called only 793 * when HT use is negotiated so we don't do extra 794 * work for temporary and/or legacy sta's. 795 */ 796 void 797 ieee80211_ht_node_init(struct ieee80211_node *ni) 798 { 799 struct ieee80211_tx_ampdu *tap; 800 int ac; 801 802 if (ni->ni_flags & IEEE80211_NODE_HT) { 803 /* 804 * Clean AMPDU state on re-associate. This handles the case 805 * where a station leaves w/o notifying us and then returns 806 * before node is reaped for inactivity. 807 */ 808 ieee80211_ht_node_cleanup(ni); 809 } 810 for (ac = 0; ac < WME_NUM_AC; ac++) { 811 tap = &ni->ni_tx_ampdu[ac]; 812 tap->txa_ac = ac; 813 tap->txa_ni = ni; 814 /* NB: further initialization deferred */ 815 } 816 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 817 } 818 819 /* 820 * Cleanup HT-specific state in a node. Called only 821 * when HT use has been marked. 822 */ 823 void 824 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 825 { 826 int i; 827 828 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 829 830 /* XXX optimize this */ 831 for (i = 0; i < WME_NUM_AC; i++) { 832 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 833 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 834 ampdu_tx_stop(tap); 835 } 836 for (i = 0; i < WME_NUM_TID; i++) 837 ampdu_rx_stop(&ni->ni_rx_ampdu[i]); 838 839 ni->ni_htcap = 0; 840 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 841 } 842 843 /* 844 * Age out HT resources for a station. 845 */ 846 void 847 ieee80211_ht_node_age(struct ieee80211_node *ni) 848 { 849 #ifdef IEEE80211_AMPDU_AGE 850 struct ieee80211vap *vap = ni->ni_vap; 851 uint8_t tid; 852 #endif 853 854 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 855 856 #ifdef IEEE80211_AMPDU_AGE 857 for (tid = 0; tid < WME_NUM_TID; tid++) { 858 struct ieee80211_rx_ampdu *rap; 859 860 rap = &ni->ni_rx_ampdu[tid]; 861 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 862 continue; 863 if (rap->rxa_qframes == 0) 864 continue; 865 /* 866 * Check for frames sitting too long in the reorder queue. 867 * See above for more details on what's happening here. 868 */ 869 /* XXX honor batimeout? */ 870 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 871 /* 872 * Too long since we received the first 873 * frame; flush the reorder buffer. 874 */ 875 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 876 ampdu_rx_flush(ni, rap); 877 } 878 } 879 #endif /* IEEE80211_AMPDU_AGE */ 880 } 881 882 static struct ieee80211_channel * 883 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 884 { 885 return ieee80211_find_channel(ic, c->ic_freq, 886 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 887 } 888 889 /* 890 * Adjust a channel to be HT/non-HT according to the vap's configuration. 891 */ 892 struct ieee80211_channel * 893 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 894 struct ieee80211_channel *chan, int flags) 895 { 896 struct ieee80211_channel *c; 897 898 if (flags & IEEE80211_FEXT_HT) { 899 /* promote to HT if possible */ 900 if (flags & IEEE80211_FEXT_USEHT40) { 901 if (!IEEE80211_IS_CHAN_HT40(chan)) { 902 /* NB: arbitrarily pick ht40+ over ht40- */ 903 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 904 if (c == NULL) 905 c = findhtchan(ic, chan, 906 IEEE80211_CHAN_HT40D); 907 if (c == NULL) 908 c = findhtchan(ic, chan, 909 IEEE80211_CHAN_HT20); 910 if (c != NULL) 911 chan = c; 912 } 913 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 914 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 915 if (c != NULL) 916 chan = c; 917 } 918 } else if (IEEE80211_IS_CHAN_HT(chan)) { 919 /* demote to legacy, HT use is disabled */ 920 c = ieee80211_find_channel(ic, chan->ic_freq, 921 chan->ic_flags &~ IEEE80211_CHAN_HT); 922 if (c != NULL) 923 chan = c; 924 } 925 return chan; 926 } 927 928 /* 929 * Setup HT-specific state for a legacy WDS peer. 930 */ 931 void 932 ieee80211_ht_wds_init(struct ieee80211_node *ni) 933 { 934 struct ieee80211vap *vap = ni->ni_vap; 935 struct ieee80211_tx_ampdu *tap; 936 int ac; 937 938 KASSERT(vap->iv_flags_ext & IEEE80211_FEXT_HT, ("no HT requested")); 939 940 /* XXX check scan cache in case peer has an ap and we have info */ 941 /* 942 * If setup with a legacy channel; locate an HT channel. 943 * Otherwise if the inherited channel (from a companion 944 * AP) is suitable use it so we use the same location 945 * for the extension channel). 946 */ 947 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 948 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 949 950 ni->ni_htcap = 0; 951 if (vap->iv_flags_ext & IEEE80211_FEXT_SHORTGI20) 952 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 953 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 954 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 955 ni->ni_chw = 40; 956 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 957 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 958 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 959 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 960 if (vap->iv_flags_ext & IEEE80211_FEXT_SHORTGI40) 961 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 962 } else { 963 ni->ni_chw = 20; 964 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 965 } 966 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 967 if (vap->iv_flags_ext & IEEE80211_FEXT_RIFS) 968 ni->ni_flags |= IEEE80211_NODE_RIFS; 969 /* XXX does it make sense to enable SMPS? */ 970 971 ni->ni_htopmode = 0; /* XXX need protection state */ 972 ni->ni_htstbc = 0; /* XXX need info */ 973 974 for (ac = 0; ac < WME_NUM_AC; ac++) { 975 tap = &ni->ni_tx_ampdu[ac]; 976 tap->txa_ac = ac; 977 } 978 /* NB: AMPDU tx/rx governed by IEEE80211_FEXT_AMPDU_{TX,RX} */ 979 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 980 } 981 982 /* 983 * Notify hostap vaps of a change in the HTINFO ie. 984 */ 985 static void 986 htinfo_notify(struct ieee80211com *ic) 987 { 988 struct ieee80211vap *vap; 989 int first = 1; 990 991 IEEE80211_LOCK_ASSERT(ic); 992 993 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 994 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 995 continue; 996 if (vap->iv_state != IEEE80211_S_RUN || 997 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 998 continue; 999 if (first) { 1000 IEEE80211_NOTE(vap, 1001 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1002 vap->iv_bss, 1003 "HT bss occupancy change: %d sta, %d ht, " 1004 "%d ht40%s, HT protmode now 0x%x" 1005 , ic->ic_sta_assoc 1006 , ic->ic_ht_sta_assoc 1007 , ic->ic_ht40_sta_assoc 1008 , (ic->ic_flags_ext & IEEE80211_FEXT_NONHT_PR) ? 1009 ", non-HT sta present" : "" 1010 , ic->ic_curhtprotmode); 1011 first = 0; 1012 } 1013 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1014 } 1015 } 1016 1017 /* 1018 * Calculate HT protection mode from current 1019 * state and handle updates. 1020 */ 1021 static void 1022 htinfo_update(struct ieee80211com *ic) 1023 { 1024 uint8_t protmode; 1025 1026 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1027 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1028 | IEEE80211_HTINFO_NONHT_PRESENT; 1029 } else if (ic->ic_flags_ext & IEEE80211_FEXT_NONHT_PR) { 1030 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1031 | IEEE80211_HTINFO_NONHT_PRESENT; 1032 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1033 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1034 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1035 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1036 } else { 1037 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1038 } 1039 if (protmode != ic->ic_curhtprotmode) { 1040 ic->ic_curhtprotmode = protmode; 1041 htinfo_notify(ic); 1042 } 1043 } 1044 1045 /* 1046 * Handle an HT station joining a BSS. 1047 */ 1048 void 1049 ieee80211_ht_node_join(struct ieee80211_node *ni) 1050 { 1051 struct ieee80211com *ic = ni->ni_ic; 1052 1053 IEEE80211_LOCK_ASSERT(ic); 1054 1055 if (ni->ni_flags & IEEE80211_NODE_HT) { 1056 ic->ic_ht_sta_assoc++; 1057 if (ni->ni_chw == 40) 1058 ic->ic_ht40_sta_assoc++; 1059 } 1060 htinfo_update(ic); 1061 } 1062 1063 /* 1064 * Handle an HT station leaving a BSS. 1065 */ 1066 void 1067 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1068 { 1069 struct ieee80211com *ic = ni->ni_ic; 1070 1071 IEEE80211_LOCK_ASSERT(ic); 1072 1073 if (ni->ni_flags & IEEE80211_NODE_HT) { 1074 ic->ic_ht_sta_assoc--; 1075 if (ni->ni_chw == 40) 1076 ic->ic_ht40_sta_assoc--; 1077 } 1078 htinfo_update(ic); 1079 } 1080 1081 /* 1082 * Public version of htinfo_update; used for processing 1083 * beacon frames from overlapping bss. 1084 * 1085 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1086 * (on receipt of a beacon that advertises MIXED) or 1087 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1088 * from an overlapping legacy bss). We treat MIXED with 1089 * a higher precedence than PROTOPT (i.e. we will not change 1090 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1091 * corresponds to how we handle things in htinfo_update. 1092 */ 1093 void 1094 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1095 { 1096 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1097 IEEE80211_LOCK(ic); 1098 1099 /* track non-HT station presence */ 1100 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1101 ("protmode 0x%x", protmode)); 1102 ic->ic_flags_ext |= IEEE80211_FEXT_NONHT_PR; 1103 ic->ic_lastnonht = ticks; 1104 1105 if (protmode != ic->ic_curhtprotmode && 1106 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1107 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1108 /* push beacon update */ 1109 ic->ic_curhtprotmode = protmode; 1110 htinfo_notify(ic); 1111 } 1112 IEEE80211_UNLOCK(ic); 1113 #undef OPMODE 1114 } 1115 1116 /* 1117 * Time out presence of an overlapping bss with non-HT 1118 * stations. When operating in hostap mode we listen for 1119 * beacons from other stations and if we identify a non-HT 1120 * station is present we update the opmode field of the 1121 * HTINFO ie. To identify when all non-HT stations are 1122 * gone we time out this condition. 1123 */ 1124 void 1125 ieee80211_ht_timeout(struct ieee80211com *ic) 1126 { 1127 IEEE80211_LOCK_ASSERT(ic); 1128 1129 if ((ic->ic_flags_ext & IEEE80211_FEXT_NONHT_PR) && 1130 time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1131 #if 0 1132 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1133 "%s", "time out non-HT STA present on channel"); 1134 #endif 1135 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONHT_PR; 1136 htinfo_update(ic); 1137 } 1138 } 1139 1140 /* unalligned little endian access */ 1141 #define LE_READ_2(p) \ 1142 ((uint16_t) \ 1143 ((((const uint8_t *)(p))[0] ) | \ 1144 (((const uint8_t *)(p))[1] << 8))) 1145 1146 /* 1147 * Process an 802.11n HT capabilities ie. 1148 */ 1149 void 1150 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1151 { 1152 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1153 /* 1154 * Station used Vendor OUI ie to associate; 1155 * mark the node so when we respond we'll use 1156 * the Vendor OUI's and not the standard ie's. 1157 */ 1158 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1159 ie += 4; 1160 } else 1161 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1162 1163 ni->ni_htcap = LE_READ_2(ie + 1164 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1165 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1166 } 1167 1168 static void 1169 htinfo_parse(struct ieee80211_node *ni, 1170 const struct ieee80211_ie_htinfo *htinfo) 1171 { 1172 uint16_t w; 1173 1174 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1175 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1176 w = LE_READ_2(&htinfo->hi_byte2); 1177 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1178 w = LE_READ_2(&htinfo->hi_byte45); 1179 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1180 } 1181 1182 /* 1183 * Parse an 802.11n HT info ie and save useful information 1184 * to the node state. Note this does not effect any state 1185 * changes such as for channel width change. 1186 */ 1187 void 1188 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1189 { 1190 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1191 ie += 4; 1192 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1193 } 1194 1195 /* 1196 * Handle 11n channel switch. Use the received HT ie's to 1197 * identify the right channel to use. If we cannot locate it 1198 * in the channel table then fallback to legacy operation. 1199 * Note that we use this information to identify the node's 1200 * channel only; the caller is responsible for insuring any 1201 * required channel change is done (e.g. in sta mode when 1202 * parsing the contents of a beacon frame). 1203 */ 1204 static void 1205 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1206 { 1207 struct ieee80211com *ic = ni->ni_ic; 1208 struct ieee80211_channel *c; 1209 int chanflags; 1210 1211 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1212 if (chanflags != ni->ni_chan->ic_flags) { 1213 /* XXX not right for ht40- */ 1214 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1215 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1216 /* 1217 * No HT40 channel entry in our table; fall back 1218 * to HT20 operation. This should not happen. 1219 */ 1220 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1221 #if 0 1222 IEEE80211_NOTE(ni->ni_vap, 1223 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1224 "no HT40 channel (freq %u), falling back to HT20", 1225 ni->ni_chan->ic_freq); 1226 #endif 1227 /* XXX stat */ 1228 } 1229 if (c != NULL && c != ni->ni_chan) { 1230 IEEE80211_NOTE(ni->ni_vap, 1231 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1232 "switch station to HT%d channel %u/0x%x", 1233 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1234 c->ic_freq, c->ic_flags); 1235 ni->ni_chan = c; 1236 } 1237 /* NB: caller responsible for forcing any channel change */ 1238 } 1239 /* update node's tx channel width */ 1240 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1241 } 1242 1243 /* 1244 * Update 11n MIMO PS state according to received htcap. 1245 */ 1246 static __inline int 1247 htcap_update_mimo_ps(struct ieee80211_node *ni) 1248 { 1249 uint16_t oflags = ni->ni_flags; 1250 1251 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1252 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1253 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1254 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1255 break; 1256 case IEEE80211_HTCAP_SMPS_ENA: 1257 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1258 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1259 break; 1260 case IEEE80211_HTCAP_SMPS_OFF: 1261 default: /* disable on rx of reserved value */ 1262 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1263 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1264 break; 1265 } 1266 return (oflags ^ ni->ni_flags); 1267 } 1268 1269 /* 1270 * Update short GI state according to received htcap 1271 * and local settings. 1272 */ 1273 static __inline void 1274 htcap_update_shortgi(struct ieee80211_node *ni) 1275 { 1276 struct ieee80211vap *vap = ni->ni_vap; 1277 1278 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1279 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1280 (vap->iv_flags_ext & IEEE80211_FEXT_SHORTGI20)) 1281 ni->ni_flags |= IEEE80211_NODE_SGI20; 1282 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1283 (vap->iv_flags_ext & IEEE80211_FEXT_SHORTGI40)) 1284 ni->ni_flags |= IEEE80211_NODE_SGI40; 1285 } 1286 1287 /* 1288 * Parse and update HT-related state extracted from 1289 * the HT cap and info ie's. 1290 */ 1291 void 1292 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1293 const uint8_t *htcapie, const uint8_t *htinfoie) 1294 { 1295 struct ieee80211vap *vap = ni->ni_vap; 1296 const struct ieee80211_ie_htinfo *htinfo; 1297 int htflags; 1298 1299 ieee80211_parse_htcap(ni, htcapie); 1300 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1301 htcap_update_mimo_ps(ni); 1302 htcap_update_shortgi(ni); 1303 1304 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1305 htinfoie += 4; 1306 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1307 htinfo_parse(ni, htinfo); 1308 1309 htflags = (vap->iv_flags_ext & IEEE80211_FEXT_HT) ? 1310 IEEE80211_CHAN_HT20 : 0; 1311 /* NB: honor operating mode constraint */ 1312 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1313 (vap->iv_flags_ext & IEEE80211_FEXT_USEHT40)) { 1314 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1315 htflags = IEEE80211_CHAN_HT40U; 1316 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1317 htflags = IEEE80211_CHAN_HT40D; 1318 } 1319 htinfo_update_chw(ni, htflags); 1320 1321 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1322 (vap->iv_flags_ext & IEEE80211_FEXT_RIFS)) 1323 ni->ni_flags |= IEEE80211_NODE_RIFS; 1324 else 1325 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1326 } 1327 1328 /* 1329 * Parse and update HT-related state extracted from the HT cap ie 1330 * for a station joining an HT BSS. 1331 */ 1332 void 1333 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1334 { 1335 struct ieee80211vap *vap = ni->ni_vap; 1336 int htflags; 1337 1338 ieee80211_parse_htcap(ni, htcapie); 1339 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1340 htcap_update_mimo_ps(ni); 1341 htcap_update_shortgi(ni); 1342 1343 /* NB: honor operating mode constraint */ 1344 /* XXX 40 MHZ intolerant */ 1345 htflags = (vap->iv_flags_ext & IEEE80211_FEXT_HT) ? 1346 IEEE80211_CHAN_HT20 : 0; 1347 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1348 (vap->iv_flags_ext & IEEE80211_FEXT_USEHT40)) { 1349 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1350 htflags = IEEE80211_CHAN_HT40U; 1351 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1352 htflags = IEEE80211_CHAN_HT40D; 1353 } 1354 htinfo_update_chw(ni, htflags); 1355 } 1356 1357 /* 1358 * Install received HT rate set by parsing the HT cap ie. 1359 */ 1360 int 1361 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1362 { 1363 struct ieee80211vap *vap = ni->ni_vap; 1364 const struct ieee80211_ie_htcap *htcap; 1365 struct ieee80211_htrateset *rs; 1366 int i; 1367 1368 rs = &ni->ni_htrates; 1369 memset(rs, 0, sizeof(*rs)); 1370 if (ie != NULL) { 1371 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1372 ie += 4; 1373 htcap = (const struct ieee80211_ie_htcap *) ie; 1374 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1375 if (isclr(htcap->hc_mcsset, i)) 1376 continue; 1377 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1378 IEEE80211_NOTE(vap, 1379 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1380 "WARNING, HT rate set too large; only " 1381 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1382 vap->iv_stats.is_rx_rstoobig++; 1383 break; 1384 } 1385 rs->rs_rates[rs->rs_nrates++] = i; 1386 } 1387 } 1388 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1389 } 1390 1391 /* 1392 * Mark rates in a node's HT rate set as basic according 1393 * to the information in the supplied HT info ie. 1394 */ 1395 void 1396 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1397 { 1398 const struct ieee80211_ie_htinfo *htinfo; 1399 struct ieee80211_htrateset *rs; 1400 int i, j; 1401 1402 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1403 ie += 4; 1404 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1405 rs = &ni->ni_htrates; 1406 if (rs->rs_nrates == 0) { 1407 IEEE80211_NOTE(ni->ni_vap, 1408 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1409 "%s", "WARNING, empty HT rate set"); 1410 return; 1411 } 1412 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1413 if (isclr(htinfo->hi_basicmcsset, i)) 1414 continue; 1415 for (j = 0; j < rs->rs_nrates; j++) 1416 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1417 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1418 } 1419 } 1420 1421 static void 1422 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1423 { 1424 callout_init(&tap->txa_timer, CALLOUT_MPSAFE); 1425 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1426 } 1427 1428 static void 1429 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1430 { 1431 struct ieee80211_node *ni = tap->txa_ni; 1432 struct ieee80211com *ic = ni->ni_ic; 1433 1434 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1435 ("txa_flags 0x%x ac %d", tap->txa_flags, tap->txa_ac)); 1436 1437 /* 1438 * Stop BA stream if setup so driver has a chance 1439 * to reclaim any resources it might have allocated. 1440 */ 1441 ic->ic_addba_stop(ni, tap); 1442 /* 1443 * Stop any pending BAR transmit. 1444 */ 1445 bar_stop_timer(tap); 1446 1447 tap->txa_lastsample = 0; 1448 tap->txa_avgpps = 0; 1449 /* NB: clearing NAK means we may re-send ADDBA */ 1450 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1451 } 1452 1453 static void 1454 addba_timeout(void *arg) 1455 { 1456 struct ieee80211_tx_ampdu *tap = arg; 1457 1458 /* XXX ? */ 1459 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1460 tap->txa_attempts++; 1461 } 1462 1463 static void 1464 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1465 { 1466 /* XXX use CALLOUT_PENDING instead? */ 1467 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1468 addba_timeout, tap); 1469 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1470 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1471 } 1472 1473 static void 1474 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1475 { 1476 /* XXX use CALLOUT_PENDING instead? */ 1477 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1478 callout_stop(&tap->txa_timer); 1479 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1480 } 1481 } 1482 1483 /* 1484 * Default method for requesting A-MPDU tx aggregation. 1485 * We setup the specified state block and start a timer 1486 * to wait for an ADDBA response frame. 1487 */ 1488 static int 1489 ieee80211_addba_request(struct ieee80211_node *ni, 1490 struct ieee80211_tx_ampdu *tap, 1491 int dialogtoken, int baparamset, int batimeout) 1492 { 1493 int bufsiz; 1494 1495 /* XXX locking */ 1496 tap->txa_token = dialogtoken; 1497 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1498 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1499 tap->txa_wnd = (bufsiz == 0) ? 1500 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1501 addba_start_timeout(tap); 1502 return 1; 1503 } 1504 1505 /* 1506 * Default method for processing an A-MPDU tx aggregation 1507 * response. We shutdown any pending timer and update the 1508 * state block according to the reply. 1509 */ 1510 static int 1511 ieee80211_addba_response(struct ieee80211_node *ni, 1512 struct ieee80211_tx_ampdu *tap, 1513 int status, int baparamset, int batimeout) 1514 { 1515 int bufsiz, tid; 1516 1517 /* XXX locking */ 1518 addba_stop_timeout(tap); 1519 if (status == IEEE80211_STATUS_SUCCESS) { 1520 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1521 /* XXX override our request? */ 1522 tap->txa_wnd = (bufsiz == 0) ? 1523 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1524 /* XXX AC/TID */ 1525 tid = MS(baparamset, IEEE80211_BAPS_TID); 1526 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1527 tap->txa_attempts = 0; 1528 } else { 1529 /* mark tid so we don't try again */ 1530 tap->txa_flags |= IEEE80211_AGGR_NAK; 1531 } 1532 return 1; 1533 } 1534 1535 /* 1536 * Default method for stopping A-MPDU tx aggregation. 1537 * Any timer is cleared and we drain any pending frames. 1538 */ 1539 static void 1540 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1541 { 1542 /* XXX locking */ 1543 addba_stop_timeout(tap); 1544 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1545 /* XXX clear aggregation queue */ 1546 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1547 } 1548 tap->txa_attempts = 0; 1549 } 1550 1551 /* 1552 * Process a received action frame using the default aggregation 1553 * policy. We intercept ADDBA-related frames and use them to 1554 * update our aggregation state. All other frames are passed up 1555 * for processing by ieee80211_recv_action. 1556 */ 1557 static void 1558 ieee80211_aggr_recv_action(struct ieee80211_node *ni, 1559 const uint8_t *frm, const uint8_t *efrm) 1560 { 1561 struct ieee80211com *ic = ni->ni_ic; 1562 struct ieee80211vap *vap = ni->ni_vap; 1563 const struct ieee80211_action *ia; 1564 struct ieee80211_rx_ampdu *rap; 1565 struct ieee80211_tx_ampdu *tap; 1566 uint8_t dialogtoken, policy; 1567 uint16_t baparamset, batimeout, baseqctl, code; 1568 uint16_t args[4]; 1569 int tid, ac, bufsiz; 1570 1571 ia = (const struct ieee80211_action *) frm; 1572 switch (ia->ia_category) { 1573 case IEEE80211_ACTION_CAT_BA: 1574 switch (ia->ia_action) { 1575 case IEEE80211_ACTION_BA_ADDBA_REQUEST: 1576 dialogtoken = frm[2]; 1577 baparamset = LE_READ_2(frm+3); 1578 batimeout = LE_READ_2(frm+5); 1579 baseqctl = LE_READ_2(frm+7); 1580 1581 tid = MS(baparamset, IEEE80211_BAPS_TID); 1582 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1583 1584 IEEE80211_NOTE(vap, 1585 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1586 "recv ADDBA request: dialogtoken %u " 1587 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d " 1588 "baseqctl %d:%d", 1589 dialogtoken, baparamset, tid, bufsiz, batimeout, 1590 MS(baseqctl, IEEE80211_BASEQ_START), 1591 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1592 1593 rap = &ni->ni_rx_ampdu[tid]; 1594 1595 /* Send ADDBA response */ 1596 args[0] = dialogtoken; 1597 /* 1598 * NB: We ack only if the sta associated with HT and 1599 * the ap is configured to do AMPDU rx (the latter 1600 * violates the 11n spec and is mostly for testing). 1601 */ 1602 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1603 (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_RX)) { 1604 ampdu_rx_start(rap, bufsiz, 1605 MS(baseqctl, IEEE80211_BASEQ_START)); 1606 1607 args[1] = IEEE80211_STATUS_SUCCESS; 1608 } else { 1609 IEEE80211_NOTE(vap, 1610 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1611 ni, "reject ADDBA request: %s", 1612 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1613 "administratively disabled" : 1614 "not negotiated for station"); 1615 vap->iv_stats.is_addba_reject++; 1616 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1617 } 1618 /* XXX honor rap flags? */ 1619 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1620 | SM(tid, IEEE80211_BAPS_TID) 1621 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1622 ; 1623 args[3] = 0; 1624 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1625 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1626 return; 1627 1628 case IEEE80211_ACTION_BA_ADDBA_RESPONSE: 1629 dialogtoken = frm[2]; 1630 code = LE_READ_2(frm+3); 1631 baparamset = LE_READ_2(frm+5); 1632 tid = MS(baparamset, IEEE80211_BAPS_TID); 1633 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1634 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 1635 batimeout = LE_READ_2(frm+7); 1636 1637 ac = TID_TO_WME_AC(tid); 1638 tap = &ni->ni_tx_ampdu[ac]; 1639 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1640 IEEE80211_DISCARD_MAC(vap, 1641 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1642 ni->ni_macaddr, "ADDBA response", 1643 "no pending ADDBA, tid %d dialogtoken %u " 1644 "code %d", tid, dialogtoken, code); 1645 vap->iv_stats.is_addba_norequest++; 1646 return; 1647 } 1648 if (dialogtoken != tap->txa_token) { 1649 IEEE80211_DISCARD_MAC(vap, 1650 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1651 ni->ni_macaddr, "ADDBA response", 1652 "dialogtoken mismatch: waiting for %d, " 1653 "received %d, tid %d code %d", 1654 tap->txa_token, dialogtoken, tid, code); 1655 vap->iv_stats.is_addba_badtoken++; 1656 return; 1657 } 1658 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 1659 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 1660 IEEE80211_DISCARD_MAC(vap, 1661 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1662 ni->ni_macaddr, "ADDBA response", 1663 "policy mismatch: expecting %s, " 1664 "received %s, tid %d code %d", 1665 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 1666 policy, tid, code); 1667 vap->iv_stats.is_addba_badpolicy++; 1668 return; 1669 } 1670 #if 0 1671 /* XXX we take MIN in ieee80211_addba_response */ 1672 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 1673 IEEE80211_DISCARD_MAC(vap, 1674 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1675 ni->ni_macaddr, "ADDBA response", 1676 "BA window too large: max %d, " 1677 "received %d, tid %d code %d", 1678 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 1679 vap->iv_stats.is_addba_badbawinsize++; 1680 return; 1681 } 1682 #endif 1683 IEEE80211_NOTE(vap, 1684 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1685 "recv ADDBA response: dialogtoken %u code %d " 1686 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 1687 dialogtoken, code, baparamset, tid, bufsiz, 1688 batimeout); 1689 ic->ic_addba_response(ni, tap, 1690 code, baparamset, batimeout); 1691 return; 1692 1693 case IEEE80211_ACTION_BA_DELBA: 1694 baparamset = LE_READ_2(frm+2); 1695 code = LE_READ_2(frm+4); 1696 1697 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 1698 1699 IEEE80211_NOTE(vap, 1700 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1701 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 1702 "code %d", baparamset, tid, 1703 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 1704 1705 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 1706 ac = TID_TO_WME_AC(tid); 1707 tap = &ni->ni_tx_ampdu[ac]; 1708 ic->ic_addba_stop(ni, tap); 1709 } else { 1710 rap = &ni->ni_rx_ampdu[tid]; 1711 ampdu_rx_stop(rap); 1712 } 1713 return; 1714 } 1715 break; 1716 } 1717 ieee80211_recv_action(ni, frm, efrm); 1718 } 1719 1720 /* 1721 * Process a received 802.11n action frame. 1722 * Aggregation-related frames are assumed to be handled 1723 * already; we handle any other frames we can, otherwise 1724 * complain about being unsupported (with debugging). 1725 */ 1726 void 1727 ieee80211_recv_action(struct ieee80211_node *ni, 1728 const uint8_t *frm, const uint8_t *efrm) 1729 { 1730 struct ieee80211vap *vap = ni->ni_vap; 1731 const struct ieee80211_action *ia; 1732 int chw; 1733 1734 ia = (const struct ieee80211_action *) frm; 1735 switch (ia->ia_category) { 1736 case IEEE80211_ACTION_CAT_BA: 1737 IEEE80211_NOTE(vap, 1738 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1739 "%s: BA action %d not implemented", __func__, 1740 ia->ia_action); 1741 vap->iv_stats.is_rx_mgtdiscard++; 1742 break; 1743 case IEEE80211_ACTION_CAT_HT: 1744 switch (ia->ia_action) { 1745 case IEEE80211_ACTION_HT_TXCHWIDTH: 1746 chw = frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040 ? 40 : 20; 1747 IEEE80211_NOTE(vap, 1748 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1749 "%s: HT txchwidth, width %d%s", 1750 __func__, chw, ni->ni_chw != chw ? "*" : ""); 1751 if (chw != ni->ni_chw) { 1752 ni->ni_chw = chw; 1753 /* XXX notify on change */ 1754 } 1755 break; 1756 case IEEE80211_ACTION_HT_MIMOPWRSAVE: { 1757 const struct ieee80211_action_ht_mimopowersave *mps = 1758 (const struct ieee80211_action_ht_mimopowersave *) ia; 1759 /* XXX check iv_htcaps */ 1760 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 1761 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1762 else 1763 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1764 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 1765 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1766 else 1767 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1768 /* XXX notify on change */ 1769 IEEE80211_NOTE(vap, 1770 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1771 "%s: HT MIMO PS (%s%s)", __func__, 1772 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? 1773 "on" : "off", 1774 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? 1775 "+rts" : "" 1776 ); 1777 break; 1778 } 1779 default: 1780 IEEE80211_NOTE(vap, 1781 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1782 "%s: HT action %d not implemented", __func__, 1783 ia->ia_action); 1784 vap->iv_stats.is_rx_mgtdiscard++; 1785 break; 1786 } 1787 break; 1788 default: 1789 IEEE80211_NOTE(vap, 1790 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1791 "%s: category %d not implemented", __func__, 1792 ia->ia_category); 1793 vap->iv_stats.is_rx_mgtdiscard++; 1794 break; 1795 } 1796 } 1797 1798 /* 1799 * Transmit processing. 1800 */ 1801 1802 /* 1803 * Check if A-MPDU should be requested/enabled for a stream. 1804 * We require a traffic rate above a per-AC threshold and we 1805 * also handle backoff from previous failed attempts. 1806 * 1807 * Drivers may override this method to bring in information 1808 * such as link state conditions in making the decision. 1809 */ 1810 static int 1811 ieee80211_ampdu_enable(struct ieee80211_node *ni, 1812 struct ieee80211_tx_ampdu *tap) 1813 { 1814 struct ieee80211vap *vap = ni->ni_vap; 1815 1816 if (tap->txa_avgpps < vap->iv_ampdu_mintraffic[tap->txa_ac]) 1817 return 0; 1818 /* XXX check rssi? */ 1819 if (tap->txa_attempts >= ieee80211_addba_maxtries && 1820 ticks < tap->txa_nextrequest) { 1821 /* 1822 * Don't retry too often; txa_nextrequest is set 1823 * to the minimum interval we'll retry after 1824 * ieee80211_addba_maxtries failed attempts are made. 1825 */ 1826 return 0; 1827 } 1828 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1829 "enable AMPDU on %s, avgpps %d pkts %d", 1830 ieee80211_wme_acnames[tap->txa_ac], tap->txa_avgpps, tap->txa_pkts); 1831 return 1; 1832 } 1833 1834 /* 1835 * Request A-MPDU tx aggregation. Setup local state and 1836 * issue an ADDBA request. BA use will only happen after 1837 * the other end replies with ADDBA response. 1838 */ 1839 int 1840 ieee80211_ampdu_request(struct ieee80211_node *ni, 1841 struct ieee80211_tx_ampdu *tap) 1842 { 1843 struct ieee80211com *ic = ni->ni_ic; 1844 uint16_t args[4]; 1845 int tid, dialogtoken; 1846 static int tokens = 0; /* XXX */ 1847 1848 /* XXX locking */ 1849 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 1850 /* do deferred setup of state */ 1851 ampdu_tx_setup(tap); 1852 } 1853 /* XXX hack for not doing proper locking */ 1854 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 1855 1856 dialogtoken = (tokens+1) % 63; /* XXX */ 1857 tid = WME_AC_TO_TID(tap->txa_ac); 1858 tap->txa_start = ni->ni_txseqs[tid]; 1859 1860 args[0] = dialogtoken; 1861 args[1] = IEEE80211_BAPS_POLICY_IMMEDIATE 1862 | SM(tid, IEEE80211_BAPS_TID) 1863 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 1864 ; 1865 args[2] = 0; /* batimeout */ 1866 /* NB: do first so there's no race against reply */ 1867 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[1], args[2])) { 1868 /* unable to setup state, don't make request */ 1869 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1870 ni, "%s: could not setup BA stream for AC %d", 1871 __func__, tap->txa_ac); 1872 /* defer next try so we don't slam the driver with requests */ 1873 tap->txa_attempts = ieee80211_addba_maxtries; 1874 /* NB: check in case driver wants to override */ 1875 if (tap->txa_nextrequest <= ticks) 1876 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 1877 return 0; 1878 } 1879 tokens = dialogtoken; /* allocate token */ 1880 /* NB: after calling ic_addba_request so driver can set txa_start */ 1881 args[3] = SM(tap->txa_start, IEEE80211_BASEQ_START) 1882 | SM(0, IEEE80211_BASEQ_FRAG) 1883 ; 1884 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1885 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 1886 } 1887 1888 /* 1889 * Terminate an AMPDU tx stream. State is reclaimed 1890 * and the peer notified with a DelBA Action frame. 1891 */ 1892 void 1893 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 1894 int reason) 1895 { 1896 struct ieee80211com *ic = ni->ni_ic; 1897 struct ieee80211vap *vap = ni->ni_vap; 1898 uint16_t args[4]; 1899 1900 /* XXX locking */ 1901 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 1902 if (IEEE80211_AMPDU_RUNNING(tap)) { 1903 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1904 ni, "%s: stop BA stream for AC %d (reason %d)", 1905 __func__, tap->txa_ac, reason); 1906 vap->iv_stats.is_ampdu_stop++; 1907 1908 ic->ic_addba_stop(ni, tap); 1909 args[0] = WME_AC_TO_TID(tap->txa_ac); 1910 args[1] = IEEE80211_DELBAPS_INIT; 1911 args[2] = reason; /* XXX reason code */ 1912 ieee80211_send_action(ni, IEEE80211_ACTION_CAT_BA, 1913 IEEE80211_ACTION_BA_DELBA, args); 1914 } else { 1915 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1916 ni, "%s: BA stream for AC %d not running (reason %d)", 1917 __func__, tap->txa_ac, reason); 1918 vap->iv_stats.is_ampdu_stop_failed++; 1919 } 1920 } 1921 1922 static void 1923 bar_timeout(void *arg) 1924 { 1925 struct ieee80211_tx_ampdu *tap = arg; 1926 struct ieee80211_node *ni = tap->txa_ni; 1927 1928 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 1929 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 1930 1931 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1932 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 1933 tap->txa_ac, tap->txa_flags, tap->txa_attempts); 1934 1935 /* guard against race with bar_tx_complete */ 1936 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 1937 return; 1938 /* XXX ? */ 1939 if (tap->txa_attempts >= ieee80211_bar_maxtries) 1940 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 1941 else 1942 ieee80211_send_bar(ni, tap, tap->txa_seqpending); 1943 } 1944 1945 static void 1946 bar_start_timer(struct ieee80211_tx_ampdu *tap) 1947 { 1948 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 1949 } 1950 1951 static void 1952 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 1953 { 1954 callout_stop(&tap->txa_timer); 1955 } 1956 1957 static void 1958 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 1959 { 1960 struct ieee80211_tx_ampdu *tap = arg; 1961 1962 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1963 ni, "%s: tid %u flags 0x%x pending %d status %d", 1964 __func__, tap->txa_ac, tap->txa_flags, 1965 callout_pending(&tap->txa_timer), status); 1966 1967 /* XXX locking */ 1968 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 1969 callout_pending(&tap->txa_timer)) { 1970 struct ieee80211com *ic = ni->ni_ic; 1971 1972 if (status) /* ACK'd */ 1973 bar_stop_timer(tap); 1974 ic->ic_bar_response(ni, tap, status); 1975 /* NB: just let timer expire so we pace requests */ 1976 } 1977 } 1978 1979 static void 1980 ieee80211_bar_response(struct ieee80211_node *ni, 1981 struct ieee80211_tx_ampdu *tap, int status) 1982 { 1983 1984 if (status != 0) { /* got ACK */ 1985 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1986 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 1987 tap->txa_start, 1988 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 1989 tap->txa_qframes, tap->txa_seqpending, 1990 WME_AC_TO_TID(tap->txa_ac)); 1991 1992 /* NB: timer already stopped in bar_tx_complete */ 1993 tap->txa_start = tap->txa_seqpending; 1994 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 1995 } 1996 } 1997 1998 /* 1999 * Transmit a BAR frame to the specified node. The 2000 * BAR contents are drawn from the supplied aggregation 2001 * state associated with the node. 2002 * 2003 * NB: we only handle immediate ACK w/ compressed bitmap. 2004 */ 2005 int 2006 ieee80211_send_bar(struct ieee80211_node *ni, 2007 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2008 { 2009 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2010 struct ieee80211vap *vap = ni->ni_vap; 2011 struct ieee80211com *ic = ni->ni_ic; 2012 struct ieee80211_frame_bar *bar; 2013 struct mbuf *m; 2014 uint16_t barctl, barseqctl; 2015 uint8_t *frm; 2016 int tid, ret; 2017 2018 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2019 /* no ADDBA response, should not happen */ 2020 /* XXX stat+msg */ 2021 return EINVAL; 2022 } 2023 /* XXX locking */ 2024 bar_stop_timer(tap); 2025 2026 ieee80211_ref_node(ni); 2027 2028 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2029 if (m == NULL) 2030 senderr(ENOMEM, is_tx_nobuf); 2031 2032 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2033 m_freem(m); 2034 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2035 /* NOTREACHED */ 2036 } 2037 2038 bar = mtod(m, struct ieee80211_frame_bar *); 2039 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2040 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2041 bar->i_fc[1] = 0; 2042 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2043 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2044 2045 tid = WME_AC_TO_TID(tap->txa_ac); 2046 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2047 0 : IEEE80211_BAR_NOACK) 2048 | IEEE80211_BAR_COMP 2049 | SM(tid, IEEE80211_BAR_TID) 2050 ; 2051 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2052 /* NB: known to have proper alignment */ 2053 bar->i_ctl = htole16(barctl); 2054 bar->i_seq = htole16(barseqctl); 2055 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2056 2057 M_WME_SETAC(m, WME_AC_VO); 2058 2059 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2060 2061 /* XXX locking */ 2062 /* init/bump attempts counter */ 2063 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2064 tap->txa_attempts = 1; 2065 else 2066 tap->txa_attempts++; 2067 tap->txa_seqpending = seq; 2068 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2069 2070 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2071 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2072 tid, barctl, seq, tap->txa_attempts); 2073 2074 ret = ic->ic_raw_xmit(ni, m, NULL); 2075 if (ret != 0) { 2076 /* xmit failed, clear state flag */ 2077 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2078 goto bad; 2079 } 2080 /* XXX hack against tx complete happening before timer is started */ 2081 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2082 bar_start_timer(tap); 2083 return 0; 2084 bad: 2085 ieee80211_free_node(ni); 2086 return ret; 2087 #undef senderr 2088 } 2089 2090 /* 2091 * Send an action management frame. The arguments are stuff 2092 * into a frame without inspection; the caller is assumed to 2093 * prepare them carefully (e.g. based on the aggregation state). 2094 */ 2095 int 2096 ieee80211_send_action(struct ieee80211_node *ni, 2097 int category, int action, uint16_t args[4]) 2098 { 2099 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2100 #define ADDSHORT(frm, v) do { \ 2101 frm[0] = (v) & 0xff; \ 2102 frm[1] = (v) >> 8; \ 2103 frm += 2; \ 2104 } while (0) 2105 struct ieee80211vap *vap = ni->ni_vap; 2106 struct ieee80211com *ic = ni->ni_ic; 2107 struct ieee80211_bpf_params params; 2108 struct mbuf *m; 2109 uint8_t *frm; 2110 uint16_t baparamset; 2111 int ret; 2112 2113 KASSERT(ni != NULL, ("null node")); 2114 2115 /* 2116 * Hold a reference on the node so it doesn't go away until after 2117 * the xmit is complete all the way in the driver. On error we 2118 * will remove our reference. 2119 */ 2120 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2121 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2122 __func__, __LINE__, 2123 ni, ether_sprintf(ni->ni_macaddr), 2124 ieee80211_node_refcnt(ni)+1); 2125 ieee80211_ref_node(ni); 2126 2127 m = ieee80211_getmgtframe(&frm, 2128 ic->ic_headroom + sizeof(struct ieee80211_frame), 2129 sizeof(uint16_t) /* action+category */ 2130 /* XXX may action payload */ 2131 + sizeof(struct ieee80211_action_ba_addbaresponse) 2132 ); 2133 if (m == NULL) 2134 senderr(ENOMEM, is_tx_nobuf); 2135 2136 *frm++ = category; 2137 *frm++ = action; 2138 switch (category) { 2139 case IEEE80211_ACTION_CAT_BA: 2140 switch (action) { 2141 case IEEE80211_ACTION_BA_ADDBA_REQUEST: 2142 IEEE80211_NOTE(vap, 2143 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2144 "send ADDBA request: dialogtoken %d " 2145 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2146 args[0], args[1], MS(args[1], IEEE80211_BAPS_TID), 2147 args[2], args[3]); 2148 2149 *frm++ = args[0]; /* dialog token */ 2150 ADDSHORT(frm, args[1]); /* baparamset */ 2151 ADDSHORT(frm, args[2]); /* batimeout */ 2152 ADDSHORT(frm, args[3]); /* baseqctl */ 2153 break; 2154 case IEEE80211_ACTION_BA_ADDBA_RESPONSE: 2155 IEEE80211_NOTE(vap, 2156 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2157 "send ADDBA response: dialogtoken %d status %d " 2158 "baparamset 0x%x (tid %d) batimeout %d", 2159 args[0], args[1], args[2], 2160 MS(args[2], IEEE80211_BAPS_TID), args[3]); 2161 2162 *frm++ = args[0]; /* dialog token */ 2163 ADDSHORT(frm, args[1]); /* statuscode */ 2164 ADDSHORT(frm, args[2]); /* baparamset */ 2165 ADDSHORT(frm, args[3]); /* batimeout */ 2166 break; 2167 case IEEE80211_ACTION_BA_DELBA: 2168 /* XXX */ 2169 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2170 | args[1] 2171 ; 2172 ADDSHORT(frm, baparamset); 2173 ADDSHORT(frm, args[2]); /* reason code */ 2174 2175 IEEE80211_NOTE(vap, 2176 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2177 "send DELBA action: tid %d, initiator %d reason %d", 2178 args[0], args[1], args[2]); 2179 break; 2180 default: 2181 goto badaction; 2182 } 2183 break; 2184 case IEEE80211_ACTION_CAT_HT: 2185 switch (action) { 2186 case IEEE80211_ACTION_HT_TXCHWIDTH: 2187 IEEE80211_NOTE(vap, 2188 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2189 ni, "send HT txchwidth: width %d", 2190 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20 2191 ); 2192 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2193 IEEE80211_A_HT_TXCHWIDTH_2040 : 2194 IEEE80211_A_HT_TXCHWIDTH_20; 2195 break; 2196 default: 2197 goto badaction; 2198 } 2199 break; 2200 default: 2201 badaction: 2202 IEEE80211_NOTE(vap, 2203 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2204 "%s: unsupported category %d action %d", __func__, 2205 category, action); 2206 senderr(EINVAL, is_tx_unknownmgt); 2207 /* NOTREACHED */ 2208 } 2209 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2210 2211 memset(¶ms, 0, sizeof(params)); 2212 params.ibp_pri = WME_AC_VO; 2213 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2214 /* NB: we know all frames are unicast */ 2215 params.ibp_try0 = ni->ni_txparms->maxretry; 2216 params.ibp_power = ni->ni_txpower; 2217 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2218 ¶ms); 2219 bad: 2220 ieee80211_free_node(ni); 2221 if (m != NULL) 2222 m_freem(m); 2223 return ret; 2224 #undef ADDSHORT 2225 #undef senderr 2226 } 2227 2228 /* 2229 * Construct the MCS bit mask for inclusion 2230 * in an HT information element. 2231 */ 2232 static void 2233 ieee80211_set_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2234 { 2235 int i; 2236 2237 for (i = 0; i < rs->rs_nrates; i++) { 2238 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2239 if (r < IEEE80211_HTRATE_MAXSIZE) { /* XXX? */ 2240 /* NB: this assumes a particular implementation */ 2241 setbit(frm, r); 2242 } 2243 } 2244 } 2245 2246 /* 2247 * Add body of an HTCAP information element. 2248 */ 2249 static uint8_t * 2250 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2251 { 2252 #define ADDSHORT(frm, v) do { \ 2253 frm[0] = (v) & 0xff; \ 2254 frm[1] = (v) >> 8; \ 2255 frm += 2; \ 2256 } while (0) 2257 struct ieee80211vap *vap = ni->ni_vap; 2258 uint16_t caps; 2259 int rxmax, density; 2260 2261 /* HT capabilities */ 2262 caps = vap->iv_htcaps & 0xffff; 2263 /* 2264 * Note channel width depends on whether we are operating as 2265 * a sta or not. When operating as a sta we are generating 2266 * a request based on our desired configuration. Otherwise 2267 * we are operational and the channel attributes identify 2268 * how we've been setup (which might be different if a fixed 2269 * channel is specified). 2270 */ 2271 if (vap->iv_opmode == IEEE80211_M_STA) { 2272 /* override 20/40 use based on config */ 2273 if (vap->iv_flags_ext & IEEE80211_FEXT_USEHT40) 2274 caps |= IEEE80211_HTCAP_CHWIDTH40; 2275 else 2276 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2277 /* use advertised setting (XXX locally constraint) */ 2278 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2279 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2280 } else { 2281 /* override 20/40 use based on current channel */ 2282 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2283 caps |= IEEE80211_HTCAP_CHWIDTH40; 2284 else 2285 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2286 rxmax = vap->iv_ampdu_rxmax; 2287 density = vap->iv_ampdu_density; 2288 } 2289 /* adjust short GI based on channel and config */ 2290 if ((vap->iv_flags_ext & IEEE80211_FEXT_SHORTGI20) == 0) 2291 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2292 if ((vap->iv_flags_ext & IEEE80211_FEXT_SHORTGI40) == 0 || 2293 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2294 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2295 ADDSHORT(frm, caps); 2296 2297 /* HT parameters */ 2298 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2299 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2300 ; 2301 frm++; 2302 2303 /* pre-zero remainder of ie */ 2304 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2305 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2306 2307 /* supported MCS set */ 2308 /* 2309 * XXX it would better to get the rate set from ni_htrates 2310 * so we can restrict it but for sta mode ni_htrates isn't 2311 * setup when we're called to form an AssocReq frame so for 2312 * now we're restricted to the default HT rate set. 2313 */ 2314 ieee80211_set_htrates(frm, &ieee80211_rateset_11n); 2315 2316 frm += sizeof(struct ieee80211_ie_htcap) - 2317 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2318 return frm; 2319 #undef ADDSHORT 2320 } 2321 2322 /* 2323 * Add 802.11n HT capabilities information element 2324 */ 2325 uint8_t * 2326 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2327 { 2328 frm[0] = IEEE80211_ELEMID_HTCAP; 2329 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2330 return ieee80211_add_htcap_body(frm + 2, ni); 2331 } 2332 2333 /* 2334 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2335 * used for compatibility w/ pre-draft implementations. 2336 */ 2337 uint8_t * 2338 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2339 { 2340 frm[0] = IEEE80211_ELEMID_VENDOR; 2341 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2342 frm[2] = (BCM_OUI >> 0) & 0xff; 2343 frm[3] = (BCM_OUI >> 8) & 0xff; 2344 frm[4] = (BCM_OUI >> 16) & 0xff; 2345 frm[5] = BCM_OUI_HTCAP; 2346 return ieee80211_add_htcap_body(frm + 6, ni); 2347 } 2348 2349 /* 2350 * Construct the MCS bit mask of basic rates 2351 * for inclusion in an HT information element. 2352 */ 2353 static void 2354 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2355 { 2356 int i; 2357 2358 for (i = 0; i < rs->rs_nrates; i++) { 2359 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2360 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2361 r < IEEE80211_HTRATE_MAXSIZE) { 2362 /* NB: this assumes a particular implementation */ 2363 setbit(frm, r); 2364 } 2365 } 2366 } 2367 2368 /* 2369 * Update the HTINFO ie for a beacon frame. 2370 */ 2371 void 2372 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2373 struct ieee80211_beacon_offsets *bo) 2374 { 2375 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2376 const struct ieee80211_channel *bsschan = vap->iv_bss->ni_chan; 2377 struct ieee80211com *ic = vap->iv_ic; 2378 struct ieee80211_ie_htinfo *ht = 2379 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2380 2381 /* XXX only update on channel change */ 2382 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 2383 if (vap->iv_flags_ext & IEEE80211_FEXT_RIFS) 2384 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 2385 else 2386 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 2387 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 2388 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2389 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 2390 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2391 else 2392 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 2393 if (IEEE80211_IS_CHAN_HT40(bsschan)) 2394 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 2395 2396 /* protection mode */ 2397 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 2398 2399 /* XXX propagate to vendor ie's */ 2400 #undef PROTMODE 2401 } 2402 2403 /* 2404 * Add body of an HTINFO information element. 2405 * 2406 * NB: We don't use struct ieee80211_ie_htinfo because we can 2407 * be called to fillin both a standard ie and a compat ie that 2408 * has a vendor OUI at the front. 2409 */ 2410 static uint8_t * 2411 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 2412 { 2413 struct ieee80211vap *vap = ni->ni_vap; 2414 struct ieee80211com *ic = ni->ni_ic; 2415 2416 /* pre-zero remainder of ie */ 2417 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 2418 2419 /* primary/control channel center */ 2420 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2421 2422 if (vap->iv_flags_ext & IEEE80211_FEXT_RIFS) 2423 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 2424 else 2425 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 2426 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 2427 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2428 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 2429 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2430 else 2431 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 2432 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2433 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 2434 2435 frm[1] = ic->ic_curhtprotmode; 2436 2437 frm += 5; 2438 2439 /* basic MCS set */ 2440 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 2441 frm += sizeof(struct ieee80211_ie_htinfo) - 2442 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 2443 return frm; 2444 } 2445 2446 /* 2447 * Add 802.11n HT information information element. 2448 */ 2449 uint8_t * 2450 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 2451 { 2452 frm[0] = IEEE80211_ELEMID_HTINFO; 2453 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 2454 return ieee80211_add_htinfo_body(frm + 2, ni); 2455 } 2456 2457 /* 2458 * Add Broadcom OUI wrapped standard HTINFO ie; this is 2459 * used for compatibility w/ pre-draft implementations. 2460 */ 2461 uint8_t * 2462 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 2463 { 2464 frm[0] = IEEE80211_ELEMID_VENDOR; 2465 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 2466 frm[2] = (BCM_OUI >> 0) & 0xff; 2467 frm[3] = (BCM_OUI >> 8) & 0xff; 2468 frm[4] = (BCM_OUI >> 16) & 0xff; 2469 frm[5] = BCM_OUI_HTINFO; 2470 return ieee80211_add_htinfo_body(frm + 6, ni); 2471 } 2472