1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/systm.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_media.h> 48 #include <net/ethernet.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_action.h> 52 #include <net80211/ieee80211_input.h> 53 54 /* define here, used throughout file */ 55 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 56 #define SM(_v, _f) (((_v) << _f##_S) & _f) 57 58 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 59 { 13, 14, 27, 30 }, /* MCS 0 */ 60 { 26, 29, 54, 60 }, /* MCS 1 */ 61 { 39, 43, 81, 90 }, /* MCS 2 */ 62 { 52, 58, 108, 120 }, /* MCS 3 */ 63 { 78, 87, 162, 180 }, /* MCS 4 */ 64 { 104, 116, 216, 240 }, /* MCS 5 */ 65 { 117, 130, 243, 270 }, /* MCS 6 */ 66 { 130, 144, 270, 300 }, /* MCS 7 */ 67 { 26, 29, 54, 60 }, /* MCS 8 */ 68 { 52, 58, 108, 120 }, /* MCS 9 */ 69 { 78, 87, 162, 180 }, /* MCS 10 */ 70 { 104, 116, 216, 240 }, /* MCS 11 */ 71 { 156, 173, 324, 360 }, /* MCS 12 */ 72 { 208, 231, 432, 480 }, /* MCS 13 */ 73 { 234, 260, 486, 540 }, /* MCS 14 */ 74 { 260, 289, 540, 600 }, /* MCS 15 */ 75 { 39, 43, 81, 90 }, /* MCS 16 */ 76 { 78, 87, 162, 180 }, /* MCS 17 */ 77 { 117, 130, 243, 270 }, /* MCS 18 */ 78 { 156, 173, 324, 360 }, /* MCS 19 */ 79 { 234, 260, 486, 540 }, /* MCS 20 */ 80 { 312, 347, 648, 720 }, /* MCS 21 */ 81 { 351, 390, 729, 810 }, /* MCS 22 */ 82 { 390, 433, 810, 900 }, /* MCS 23 */ 83 { 52, 58, 108, 120 }, /* MCS 24 */ 84 { 104, 116, 216, 240 }, /* MCS 25 */ 85 { 156, 173, 324, 360 }, /* MCS 26 */ 86 { 208, 231, 432, 480 }, /* MCS 27 */ 87 { 312, 347, 648, 720 }, /* MCS 28 */ 88 { 416, 462, 864, 960 }, /* MCS 29 */ 89 { 468, 520, 972, 1080 }, /* MCS 30 */ 90 { 520, 578, 1080, 1200 }, /* MCS 31 */ 91 { 0, 0, 12, 13 }, /* MCS 32 */ 92 { 78, 87, 162, 180 }, /* MCS 33 */ 93 { 104, 116, 216, 240 }, /* MCS 34 */ 94 { 130, 144, 270, 300 }, /* MCS 35 */ 95 { 117, 130, 243, 270 }, /* MCS 36 */ 96 { 156, 173, 324, 360 }, /* MCS 37 */ 97 { 195, 217, 405, 450 }, /* MCS 38 */ 98 { 104, 116, 216, 240 }, /* MCS 39 */ 99 { 130, 144, 270, 300 }, /* MCS 40 */ 100 { 130, 144, 270, 300 }, /* MCS 41 */ 101 { 156, 173, 324, 360 }, /* MCS 42 */ 102 { 182, 202, 378, 420 }, /* MCS 43 */ 103 { 182, 202, 378, 420 }, /* MCS 44 */ 104 { 208, 231, 432, 480 }, /* MCS 45 */ 105 { 156, 173, 324, 360 }, /* MCS 46 */ 106 { 195, 217, 405, 450 }, /* MCS 47 */ 107 { 195, 217, 405, 450 }, /* MCS 48 */ 108 { 234, 260, 486, 540 }, /* MCS 49 */ 109 { 273, 303, 567, 630 }, /* MCS 50 */ 110 { 273, 303, 567, 630 }, /* MCS 51 */ 111 { 312, 347, 648, 720 }, /* MCS 52 */ 112 { 130, 144, 270, 300 }, /* MCS 53 */ 113 { 156, 173, 324, 360 }, /* MCS 54 */ 114 { 182, 202, 378, 420 }, /* MCS 55 */ 115 { 156, 173, 324, 360 }, /* MCS 56 */ 116 { 182, 202, 378, 420 }, /* MCS 57 */ 117 { 208, 231, 432, 480 }, /* MCS 58 */ 118 { 234, 260, 486, 540 }, /* MCS 59 */ 119 { 208, 231, 432, 480 }, /* MCS 60 */ 120 { 234, 260, 486, 540 }, /* MCS 61 */ 121 { 260, 289, 540, 600 }, /* MCS 62 */ 122 { 260, 289, 540, 600 }, /* MCS 63 */ 123 { 286, 318, 594, 660 }, /* MCS 64 */ 124 { 195, 217, 405, 450 }, /* MCS 65 */ 125 { 234, 260, 486, 540 }, /* MCS 66 */ 126 { 273, 303, 567, 630 }, /* MCS 67 */ 127 { 234, 260, 486, 540 }, /* MCS 68 */ 128 { 273, 303, 567, 630 }, /* MCS 69 */ 129 { 312, 347, 648, 720 }, /* MCS 70 */ 130 { 351, 390, 729, 810 }, /* MCS 71 */ 131 { 312, 347, 648, 720 }, /* MCS 72 */ 132 { 351, 390, 729, 810 }, /* MCS 73 */ 133 { 390, 433, 810, 900 }, /* MCS 74 */ 134 { 390, 433, 810, 900 }, /* MCS 75 */ 135 { 429, 477, 891, 990 }, /* MCS 76 */ 136 }; 137 138 #ifdef IEEE80211_AMPDU_AGE 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 #endif 144 145 static int ieee80211_recv_bar_ena = 1; 146 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 147 0, "BAR frame processing (ena/dis)"); 148 149 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 150 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 151 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 152 "ADDBA request timeout (ms)"); 153 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 154 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 155 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 156 "ADDBA request backoff (ms)"); 157 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 158 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 159 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 160 161 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 162 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 163 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 165 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 166 static ieee80211_recv_action_func ht_recv_action_ba_delba; 167 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 168 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 169 170 static ieee80211_send_action_func ht_send_action_ba_addba; 171 static ieee80211_send_action_func ht_send_action_ba_delba; 172 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 173 174 static void 175 ieee80211_ht_init(void) 176 { 177 /* 178 * Setup HT parameters that depends on the clock frequency. 179 */ 180 #ifdef IEEE80211_AMPDU_AGE 181 ieee80211_ampdu_age = msecs_to_ticks(500); 182 #endif 183 ieee80211_addba_timeout = msecs_to_ticks(250); 184 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 185 ieee80211_bar_timeout = msecs_to_ticks(250); 186 /* 187 * Register action frame handlers. 188 */ 189 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 190 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 191 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 192 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 193 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 194 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 195 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 196 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 197 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 198 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 199 200 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 201 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 202 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 203 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 204 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 205 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 206 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 207 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 208 } 209 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 210 211 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 212 struct ieee80211_tx_ampdu *tap); 213 static int ieee80211_addba_request(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int dialogtoken, int baparamset, int batimeout); 216 static int ieee80211_addba_response(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap, 218 int code, int baparamset, int batimeout); 219 static void ieee80211_addba_stop(struct ieee80211_node *ni, 220 struct ieee80211_tx_ampdu *tap); 221 static void null_addba_response_timeout(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap); 223 224 static void ieee80211_bar_response(struct ieee80211_node *ni, 225 struct ieee80211_tx_ampdu *tap, int status); 226 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 227 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 228 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 229 int baparamset, int batimeout, int baseqctl); 230 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 231 232 void 233 ieee80211_ht_attach(struct ieee80211com *ic) 234 { 235 /* setup default aggregation policy */ 236 ic->ic_recv_action = ieee80211_recv_action; 237 ic->ic_send_action = ieee80211_send_action; 238 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 239 ic->ic_addba_request = ieee80211_addba_request; 240 ic->ic_addba_response = ieee80211_addba_response; 241 ic->ic_addba_response_timeout = null_addba_response_timeout; 242 ic->ic_addba_stop = ieee80211_addba_stop; 243 ic->ic_bar_response = ieee80211_bar_response; 244 ic->ic_ampdu_rx_start = ampdu_rx_start; 245 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 246 247 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 248 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 249 } 250 251 void 252 ieee80211_ht_detach(struct ieee80211com *ic) 253 { 254 } 255 256 void 257 ieee80211_ht_vattach(struct ieee80211vap *vap) 258 { 259 260 /* driver can override defaults */ 261 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 262 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 263 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 264 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 265 /* tx aggregation traffic thresholds */ 266 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 267 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 268 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 269 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 270 271 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 272 /* 273 * Device is HT capable; enable all HT-related 274 * facilities by default. 275 * XXX these choices may be too aggressive. 276 */ 277 vap->iv_flags_ht |= IEEE80211_FHT_HT 278 | IEEE80211_FHT_HTCOMPAT 279 ; 280 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 281 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 282 /* XXX infer from channel list? */ 283 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 284 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 285 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 286 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 287 } 288 /* enable RIFS if capable */ 289 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 290 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 291 292 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 293 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 296 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 297 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 298 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 299 } 300 /* NB: disable default legacy WDS, too many issues right now */ 301 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 302 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 303 } 304 305 void 306 ieee80211_ht_vdetach(struct ieee80211vap *vap) 307 { 308 } 309 310 static int 311 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 312 int ratetype) 313 { 314 int mword, rate; 315 316 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 317 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 318 return (0); 319 switch (ratetype) { 320 case 0: 321 rate = ieee80211_htrates[index].ht20_rate_800ns; 322 break; 323 case 1: 324 rate = ieee80211_htrates[index].ht20_rate_400ns; 325 break; 326 case 2: 327 rate = ieee80211_htrates[index].ht40_rate_800ns; 328 break; 329 default: 330 rate = ieee80211_htrates[index].ht40_rate_400ns; 331 break; 332 } 333 return (rate); 334 } 335 336 static struct printranges { 337 int minmcs; 338 int maxmcs; 339 int txstream; 340 int ratetype; 341 int htcapflags; 342 } ranges[] = { 343 { 0, 7, 1, 0, 0 }, 344 { 8, 15, 2, 0, 0 }, 345 { 16, 23, 3, 0, 0 }, 346 { 24, 31, 4, 0, 0 }, 347 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 348 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 349 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 350 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 351 { 0, 0, 0, 0, 0 }, 352 }; 353 354 static void 355 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 356 { 357 int minrate, maxrate; 358 struct printranges *range; 359 360 for (range = ranges; range->txstream != 0; range++) { 361 if (ic->ic_txstream < range->txstream) 362 continue; 363 if (range->htcapflags && 364 (ic->ic_htcaps & range->htcapflags) == 0) 365 continue; 366 if (ratetype < range->ratetype) 367 continue; 368 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 369 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 370 if (range->maxmcs) { 371 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 372 range->minmcs, range->maxmcs, 373 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 374 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 375 } else { 376 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 377 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 378 } 379 } 380 } 381 382 static void 383 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 384 { 385 const char *modestr = ieee80211_phymode_name[mode]; 386 387 ic_printf(ic, "%s MCS 20MHz\n", modestr); 388 ht_rateprint(ic, mode, 0); 389 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 390 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 391 ht_rateprint(ic, mode, 1); 392 } 393 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 394 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 395 ht_rateprint(ic, mode, 2); 396 } 397 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 398 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 399 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 400 ht_rateprint(ic, mode, 3); 401 } 402 } 403 404 void 405 ieee80211_ht_announce(struct ieee80211com *ic) 406 { 407 408 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 409 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 410 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 411 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 412 ht_announce(ic, IEEE80211_MODE_11NA); 413 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 414 ht_announce(ic, IEEE80211_MODE_11NG); 415 } 416 417 static struct ieee80211_htrateset htrateset; 418 419 const struct ieee80211_htrateset * 420 ieee80211_get_suphtrates(struct ieee80211com *ic, 421 const struct ieee80211_channel *c) 422 { 423 #define ADDRATE(x) do { \ 424 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 425 htrateset.rs_nrates++; \ 426 } while (0) 427 int i; 428 429 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 430 for (i = 0; i < ic->ic_txstream * 8; i++) 431 ADDRATE(i); 432 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 433 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 434 ADDRATE(32); 435 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 436 if (ic->ic_txstream >= 2) { 437 for (i = 33; i <= 38; i++) 438 ADDRATE(i); 439 } 440 if (ic->ic_txstream >= 3) { 441 for (i = 39; i <= 52; i++) 442 ADDRATE(i); 443 } 444 if (ic->ic_txstream == 4) { 445 for (i = 53; i <= 76; i++) 446 ADDRATE(i); 447 } 448 } 449 return &htrateset; 450 #undef ADDRATE 451 } 452 453 /* 454 * Receive processing. 455 */ 456 457 /* 458 * Decap the encapsulated A-MSDU frames and dispatch all but 459 * the last for delivery. The last frame is returned for 460 * delivery via the normal path. 461 */ 462 struct mbuf * 463 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 464 { 465 struct ieee80211vap *vap = ni->ni_vap; 466 int framelen; 467 struct mbuf *n; 468 469 /* discard 802.3 header inserted by ieee80211_decap */ 470 m_adj(m, sizeof(struct ether_header)); 471 472 vap->iv_stats.is_amsdu_decap++; 473 474 for (;;) { 475 /* 476 * Decap the first frame, bust it apart from the 477 * remainder and deliver. We leave the last frame 478 * delivery to the caller (for consistency with other 479 * code paths, could also do it here). 480 */ 481 m = ieee80211_decap1(m, &framelen); 482 if (m == NULL) { 483 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 484 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 485 vap->iv_stats.is_amsdu_tooshort++; 486 return NULL; 487 } 488 if (m->m_pkthdr.len == framelen) 489 break; 490 n = m_split(m, framelen, M_NOWAIT); 491 if (n == NULL) { 492 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 493 ni->ni_macaddr, "a-msdu", 494 "%s", "unable to split encapsulated frames"); 495 vap->iv_stats.is_amsdu_split++; 496 m_freem(m); /* NB: must reclaim */ 497 return NULL; 498 } 499 vap->iv_deliver_data(vap, ni, m); 500 501 /* 502 * Remove frame contents; each intermediate frame 503 * is required to be aligned to a 4-byte boundary. 504 */ 505 m = n; 506 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 507 } 508 return m; /* last delivered by caller */ 509 } 510 511 /* 512 * Purge all frames in the A-MPDU re-order queue. 513 */ 514 static void 515 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 516 { 517 struct mbuf *m; 518 int i; 519 520 for (i = 0; i < rap->rxa_wnd; i++) { 521 m = rap->rxa_m[i]; 522 if (m != NULL) { 523 rap->rxa_m[i] = NULL; 524 rap->rxa_qbytes -= m->m_pkthdr.len; 525 m_freem(m); 526 if (--rap->rxa_qframes == 0) 527 break; 528 } 529 } 530 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 531 ("lost %u data, %u frames on ampdu rx q", 532 rap->rxa_qbytes, rap->rxa_qframes)); 533 } 534 535 /* 536 * Start A-MPDU rx/re-order processing for the specified TID. 537 */ 538 static int 539 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 540 int baparamset, int batimeout, int baseqctl) 541 { 542 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 543 544 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 545 /* 546 * AMPDU previously setup and not terminated with a DELBA, 547 * flush the reorder q's in case anything remains. 548 */ 549 ampdu_rx_purge(rap); 550 } 551 memset(rap, 0, sizeof(*rap)); 552 rap->rxa_wnd = (bufsiz == 0) ? 553 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 554 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 555 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 556 557 return 0; 558 } 559 560 /* 561 * Public function; manually setup the RX ampdu state. 562 */ 563 int 564 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 565 { 566 struct ieee80211_rx_ampdu *rap; 567 568 /* XXX TODO: sanity check tid, seq, baw */ 569 570 rap = &ni->ni_rx_ampdu[tid]; 571 572 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 573 /* 574 * AMPDU previously setup and not terminated with a DELBA, 575 * flush the reorder q's in case anything remains. 576 */ 577 ampdu_rx_purge(rap); 578 } 579 580 memset(rap, 0, sizeof(*rap)); 581 rap->rxa_wnd = (baw== 0) ? 582 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 583 rap->rxa_start = seq; 584 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 585 586 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 587 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x\n", 588 __func__, 589 tid, 590 seq, 591 rap->rxa_wnd, 592 rap->rxa_flags); 593 594 return 0; 595 } 596 597 /* 598 * Stop A-MPDU rx processing for the specified TID. 599 */ 600 static void 601 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 602 { 603 604 ampdu_rx_purge(rap); 605 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 606 } 607 608 /* 609 * Dispatch a frame from the A-MPDU reorder queue. The 610 * frame is fed back into ieee80211_input marked with an 611 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 612 * permits ieee80211_input to optimize re-processing). 613 */ 614 static __inline void 615 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 616 { 617 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 618 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 619 (void) ieee80211_input(ni, m, 0, 0); 620 } 621 622 /* 623 * Dispatch as many frames as possible from the re-order queue. 624 * Frames will always be "at the front"; we process all frames 625 * up to the first empty slot in the window. On completion we 626 * cleanup state if there are still pending frames in the current 627 * BA window. We assume the frame at slot 0 is already handled 628 * by the caller; we always start at slot 1. 629 */ 630 static void 631 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 632 { 633 struct ieee80211vap *vap = ni->ni_vap; 634 struct mbuf *m; 635 int i; 636 637 /* flush run of frames */ 638 for (i = 1; i < rap->rxa_wnd; i++) { 639 m = rap->rxa_m[i]; 640 if (m == NULL) 641 break; 642 rap->rxa_m[i] = NULL; 643 rap->rxa_qbytes -= m->m_pkthdr.len; 644 rap->rxa_qframes--; 645 646 ampdu_dispatch(ni, m); 647 } 648 /* 649 * If frames remain, copy the mbuf pointers down so 650 * they correspond to the offsets in the new window. 651 */ 652 if (rap->rxa_qframes != 0) { 653 int n = rap->rxa_qframes, j; 654 for (j = i+1; j < rap->rxa_wnd; j++) { 655 if (rap->rxa_m[j] != NULL) { 656 rap->rxa_m[j-i] = rap->rxa_m[j]; 657 rap->rxa_m[j] = NULL; 658 if (--n == 0) 659 break; 660 } 661 } 662 KASSERT(n == 0, ("lost %d frames", n)); 663 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 664 } 665 /* 666 * Adjust the start of the BA window to 667 * reflect the frames just dispatched. 668 */ 669 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 670 vap->iv_stats.is_ampdu_rx_oor += i; 671 } 672 673 #ifdef IEEE80211_AMPDU_AGE 674 /* 675 * Dispatch all frames in the A-MPDU re-order queue. 676 */ 677 static void 678 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 679 { 680 struct ieee80211vap *vap = ni->ni_vap; 681 struct mbuf *m; 682 int i; 683 684 for (i = 0; i < rap->rxa_wnd; i++) { 685 m = rap->rxa_m[i]; 686 if (m == NULL) 687 continue; 688 rap->rxa_m[i] = NULL; 689 rap->rxa_qbytes -= m->m_pkthdr.len; 690 rap->rxa_qframes--; 691 vap->iv_stats.is_ampdu_rx_oor++; 692 693 ampdu_dispatch(ni, m); 694 if (rap->rxa_qframes == 0) 695 break; 696 } 697 } 698 #endif /* IEEE80211_AMPDU_AGE */ 699 700 /* 701 * Dispatch all frames in the A-MPDU re-order queue 702 * preceding the specified sequence number. This logic 703 * handles window moves due to a received MSDU or BAR. 704 */ 705 static void 706 ampdu_rx_flush_upto(struct ieee80211_node *ni, 707 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 708 { 709 struct ieee80211vap *vap = ni->ni_vap; 710 struct mbuf *m; 711 ieee80211_seq seqno; 712 int i; 713 714 /* 715 * Flush any complete MSDU's with a sequence number lower 716 * than winstart. Gaps may exist. Note that we may actually 717 * dispatch frames past winstart if a run continues; this is 718 * an optimization that avoids having to do a separate pass 719 * to dispatch frames after moving the BA window start. 720 */ 721 seqno = rap->rxa_start; 722 for (i = 0; i < rap->rxa_wnd; i++) { 723 m = rap->rxa_m[i]; 724 if (m != NULL) { 725 rap->rxa_m[i] = NULL; 726 rap->rxa_qbytes -= m->m_pkthdr.len; 727 rap->rxa_qframes--; 728 vap->iv_stats.is_ampdu_rx_oor++; 729 730 ampdu_dispatch(ni, m); 731 } else { 732 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 733 break; 734 } 735 seqno = IEEE80211_SEQ_INC(seqno); 736 } 737 /* 738 * If frames remain, copy the mbuf pointers down so 739 * they correspond to the offsets in the new window. 740 */ 741 if (rap->rxa_qframes != 0) { 742 int n = rap->rxa_qframes, j; 743 744 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 745 KASSERT(rap->rxa_m[0] == NULL, 746 ("%s: BA window slot 0 occupied", __func__)); 747 for (j = i+1; j < rap->rxa_wnd; j++) { 748 if (rap->rxa_m[j] != NULL) { 749 rap->rxa_m[j-i] = rap->rxa_m[j]; 750 rap->rxa_m[j] = NULL; 751 if (--n == 0) 752 break; 753 } 754 } 755 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 756 "BA win <%d:%d> winstart %d", 757 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 758 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 759 winstart)); 760 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 761 } 762 /* 763 * Move the start of the BA window; we use the 764 * sequence number of the last MSDU that was 765 * passed up the stack+1 or winstart if stopped on 766 * a gap in the reorder buffer. 767 */ 768 rap->rxa_start = seqno; 769 } 770 771 /* 772 * Process a received QoS data frame for an HT station. Handle 773 * A-MPDU reordering: if this frame is received out of order 774 * and falls within the BA window hold onto it. Otherwise if 775 * this frame completes a run, flush any pending frames. We 776 * return 1 if the frame is consumed. A 0 is returned if 777 * the frame should be processed normally by the caller. 778 */ 779 int 780 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 781 { 782 #define IEEE80211_FC0_QOSDATA \ 783 (IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0) 784 #define PROCESS 0 /* caller should process frame */ 785 #define CONSUMED 1 /* frame consumed, caller does nothing */ 786 struct ieee80211vap *vap = ni->ni_vap; 787 struct ieee80211_qosframe *wh; 788 struct ieee80211_rx_ampdu *rap; 789 ieee80211_seq rxseq; 790 uint8_t tid; 791 int off; 792 793 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 794 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 795 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 796 797 /* NB: m_len known to be sufficient */ 798 wh = mtod(m, struct ieee80211_qosframe *); 799 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 800 /* 801 * Not QoS data, shouldn't get here but just 802 * return it to the caller for processing. 803 */ 804 return PROCESS; 805 } 806 if (IEEE80211_IS_DSTODS(wh)) 807 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 808 else 809 tid = wh->i_qos[0]; 810 tid &= IEEE80211_QOS_TID; 811 rap = &ni->ni_rx_ampdu[tid]; 812 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 813 /* 814 * No ADDBA request yet, don't touch. 815 */ 816 return PROCESS; 817 } 818 rxseq = le16toh(*(uint16_t *)wh->i_seq); 819 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 820 /* 821 * Fragments are not allowed; toss. 822 */ 823 IEEE80211_DISCARD_MAC(vap, 824 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 825 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 826 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 827 vap->iv_stats.is_ampdu_rx_drop++; 828 IEEE80211_NODE_STAT(ni, rx_drop); 829 m_freem(m); 830 return CONSUMED; 831 } 832 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 833 rap->rxa_nframes++; 834 again: 835 if (rxseq == rap->rxa_start) { 836 /* 837 * First frame in window. 838 */ 839 if (rap->rxa_qframes != 0) { 840 /* 841 * Dispatch as many packets as we can. 842 */ 843 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 844 ampdu_dispatch(ni, m); 845 ampdu_rx_dispatch(rap, ni); 846 return CONSUMED; 847 } else { 848 /* 849 * In order; advance window and notify 850 * caller to dispatch directly. 851 */ 852 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 853 return PROCESS; 854 } 855 } 856 /* 857 * Frame is out of order; store if in the BA window. 858 */ 859 /* calculate offset in BA window */ 860 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 861 if (off < rap->rxa_wnd) { 862 /* 863 * Common case (hopefully): in the BA window. 864 * Sec 9.10.7.6.2 a) (p.137) 865 */ 866 #ifdef IEEE80211_AMPDU_AGE 867 /* 868 * Check for frames sitting too long in the reorder queue. 869 * This should only ever happen if frames are not delivered 870 * without the sender otherwise notifying us (e.g. with a 871 * BAR to move the window). Typically this happens because 872 * of vendor bugs that cause the sequence number to jump. 873 * When this happens we get a gap in the reorder queue that 874 * leaves frame sitting on the queue until they get pushed 875 * out due to window moves. When the vendor does not send 876 * BAR this move only happens due to explicit packet sends 877 * 878 * NB: we only track the time of the oldest frame in the 879 * reorder q; this means that if we flush we might push 880 * frames that still "new"; if this happens then subsequent 881 * frames will result in BA window moves which cost something 882 * but is still better than a big throughput dip. 883 */ 884 if (rap->rxa_qframes != 0) { 885 /* XXX honor batimeout? */ 886 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 887 /* 888 * Too long since we received the first 889 * frame; flush the reorder buffer. 890 */ 891 if (rap->rxa_qframes != 0) { 892 vap->iv_stats.is_ampdu_rx_age += 893 rap->rxa_qframes; 894 ampdu_rx_flush(ni, rap); 895 } 896 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 897 return PROCESS; 898 } 899 } else { 900 /* 901 * First frame, start aging timer. 902 */ 903 rap->rxa_age = ticks; 904 } 905 #endif /* IEEE80211_AMPDU_AGE */ 906 /* save packet */ 907 if (rap->rxa_m[off] == NULL) { 908 rap->rxa_m[off] = m; 909 rap->rxa_qframes++; 910 rap->rxa_qbytes += m->m_pkthdr.len; 911 vap->iv_stats.is_ampdu_rx_reorder++; 912 } else { 913 IEEE80211_DISCARD_MAC(vap, 914 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 915 ni->ni_macaddr, "a-mpdu duplicate", 916 "seqno %u tid %u BA win <%u:%u>", 917 rxseq, tid, rap->rxa_start, 918 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 919 vap->iv_stats.is_rx_dup++; 920 IEEE80211_NODE_STAT(ni, rx_dup); 921 m_freem(m); 922 } 923 return CONSUMED; 924 } 925 if (off < IEEE80211_SEQ_BA_RANGE) { 926 /* 927 * Outside the BA window, but within range; 928 * flush the reorder q and move the window. 929 * Sec 9.10.7.6.2 b) (p.138) 930 */ 931 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 932 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 933 rap->rxa_start, 934 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 935 rap->rxa_qframes, rxseq, tid); 936 vap->iv_stats.is_ampdu_rx_move++; 937 938 /* 939 * The spec says to flush frames up to but not including: 940 * WinStart_B = rxseq - rap->rxa_wnd + 1 941 * Then insert the frame or notify the caller to process 942 * it immediately. We can safely do this by just starting 943 * over again because we know the frame will now be within 944 * the BA window. 945 */ 946 /* NB: rxa_wnd known to be >0 */ 947 ampdu_rx_flush_upto(ni, rap, 948 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 949 goto again; 950 } else { 951 /* 952 * Outside the BA window and out of range; toss. 953 * Sec 9.10.7.6.2 c) (p.138) 954 */ 955 IEEE80211_DISCARD_MAC(vap, 956 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 957 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 958 rap->rxa_start, 959 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 960 rap->rxa_qframes, rxseq, tid, 961 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 962 vap->iv_stats.is_ampdu_rx_drop++; 963 IEEE80211_NODE_STAT(ni, rx_drop); 964 m_freem(m); 965 return CONSUMED; 966 } 967 #undef CONSUMED 968 #undef PROCESS 969 #undef IEEE80211_FC0_QOSDATA 970 } 971 972 /* 973 * Process a BAR ctl frame. Dispatch all frames up to 974 * the sequence number of the frame. If this frame is 975 * out of range it's discarded. 976 */ 977 void 978 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 979 { 980 struct ieee80211vap *vap = ni->ni_vap; 981 struct ieee80211_frame_bar *wh; 982 struct ieee80211_rx_ampdu *rap; 983 ieee80211_seq rxseq; 984 int tid, off; 985 986 if (!ieee80211_recv_bar_ena) { 987 #if 0 988 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 989 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 990 #endif 991 vap->iv_stats.is_ampdu_bar_bad++; 992 return; 993 } 994 wh = mtod(m0, struct ieee80211_frame_bar *); 995 /* XXX check basic BAR */ 996 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 997 rap = &ni->ni_rx_ampdu[tid]; 998 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 999 /* 1000 * No ADDBA request yet, don't touch. 1001 */ 1002 IEEE80211_DISCARD_MAC(vap, 1003 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1004 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1005 vap->iv_stats.is_ampdu_bar_bad++; 1006 return; 1007 } 1008 vap->iv_stats.is_ampdu_bar_rx++; 1009 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1010 if (rxseq == rap->rxa_start) 1011 return; 1012 /* calculate offset in BA window */ 1013 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1014 if (off < IEEE80211_SEQ_BA_RANGE) { 1015 /* 1016 * Flush the reorder q up to rxseq and move the window. 1017 * Sec 9.10.7.6.3 a) (p.138) 1018 */ 1019 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1020 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1021 rap->rxa_start, 1022 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1023 rap->rxa_qframes, rxseq, tid); 1024 vap->iv_stats.is_ampdu_bar_move++; 1025 1026 ampdu_rx_flush_upto(ni, rap, rxseq); 1027 if (off >= rap->rxa_wnd) { 1028 /* 1029 * BAR specifies a window start to the right of BA 1030 * window; we must move it explicitly since 1031 * ampdu_rx_flush_upto will not. 1032 */ 1033 rap->rxa_start = rxseq; 1034 } 1035 } else { 1036 /* 1037 * Out of range; toss. 1038 * Sec 9.10.7.6.3 b) (p.138) 1039 */ 1040 IEEE80211_DISCARD_MAC(vap, 1041 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1042 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1043 rap->rxa_start, 1044 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1045 rap->rxa_qframes, rxseq, tid, 1046 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1047 vap->iv_stats.is_ampdu_bar_oow++; 1048 IEEE80211_NODE_STAT(ni, rx_drop); 1049 } 1050 } 1051 1052 /* 1053 * Setup HT-specific state in a node. Called only 1054 * when HT use is negotiated so we don't do extra 1055 * work for temporary and/or legacy sta's. 1056 */ 1057 void 1058 ieee80211_ht_node_init(struct ieee80211_node *ni) 1059 { 1060 struct ieee80211_tx_ampdu *tap; 1061 int tid; 1062 1063 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1064 ni, 1065 "%s: called", 1066 __func__); 1067 1068 if (ni->ni_flags & IEEE80211_NODE_HT) { 1069 /* 1070 * Clean AMPDU state on re-associate. This handles the case 1071 * where a station leaves w/o notifying us and then returns 1072 * before node is reaped for inactivity. 1073 */ 1074 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1075 ni, 1076 "%s: calling cleanup", 1077 __func__); 1078 ieee80211_ht_node_cleanup(ni); 1079 } 1080 for (tid = 0; tid < WME_NUM_TID; tid++) { 1081 tap = &ni->ni_tx_ampdu[tid]; 1082 tap->txa_tid = tid; 1083 tap->txa_ni = ni; 1084 ieee80211_txampdu_init_pps(tap); 1085 /* NB: further initialization deferred */ 1086 } 1087 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1088 } 1089 1090 /* 1091 * Cleanup HT-specific state in a node. Called only 1092 * when HT use has been marked. 1093 */ 1094 void 1095 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1096 { 1097 struct ieee80211com *ic = ni->ni_ic; 1098 int i; 1099 1100 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1101 ni, 1102 "%s: called", 1103 __func__); 1104 1105 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1106 1107 /* XXX optimize this */ 1108 for (i = 0; i < WME_NUM_TID; i++) { 1109 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1110 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1111 ampdu_tx_stop(tap); 1112 } 1113 for (i = 0; i < WME_NUM_TID; i++) 1114 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1115 1116 ni->ni_htcap = 0; 1117 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1118 } 1119 1120 /* 1121 * Age out HT resources for a station. 1122 */ 1123 void 1124 ieee80211_ht_node_age(struct ieee80211_node *ni) 1125 { 1126 #ifdef IEEE80211_AMPDU_AGE 1127 struct ieee80211vap *vap = ni->ni_vap; 1128 uint8_t tid; 1129 #endif 1130 1131 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1132 1133 #ifdef IEEE80211_AMPDU_AGE 1134 for (tid = 0; tid < WME_NUM_TID; tid++) { 1135 struct ieee80211_rx_ampdu *rap; 1136 1137 rap = &ni->ni_rx_ampdu[tid]; 1138 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1139 continue; 1140 if (rap->rxa_qframes == 0) 1141 continue; 1142 /* 1143 * Check for frames sitting too long in the reorder queue. 1144 * See above for more details on what's happening here. 1145 */ 1146 /* XXX honor batimeout? */ 1147 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1148 /* 1149 * Too long since we received the first 1150 * frame; flush the reorder buffer. 1151 */ 1152 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1153 ampdu_rx_flush(ni, rap); 1154 } 1155 } 1156 #endif /* IEEE80211_AMPDU_AGE */ 1157 } 1158 1159 static struct ieee80211_channel * 1160 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1161 { 1162 return ieee80211_find_channel(ic, c->ic_freq, 1163 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1164 } 1165 1166 /* 1167 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1168 */ 1169 struct ieee80211_channel * 1170 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1171 struct ieee80211_channel *chan, int flags) 1172 { 1173 struct ieee80211_channel *c; 1174 1175 if (flags & IEEE80211_FHT_HT) { 1176 /* promote to HT if possible */ 1177 if (flags & IEEE80211_FHT_USEHT40) { 1178 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1179 /* NB: arbitrarily pick ht40+ over ht40- */ 1180 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1181 if (c == NULL) 1182 c = findhtchan(ic, chan, 1183 IEEE80211_CHAN_HT40D); 1184 if (c == NULL) 1185 c = findhtchan(ic, chan, 1186 IEEE80211_CHAN_HT20); 1187 if (c != NULL) 1188 chan = c; 1189 } 1190 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1191 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1192 if (c != NULL) 1193 chan = c; 1194 } 1195 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1196 /* demote to legacy, HT use is disabled */ 1197 c = ieee80211_find_channel(ic, chan->ic_freq, 1198 chan->ic_flags &~ IEEE80211_CHAN_HT); 1199 if (c != NULL) 1200 chan = c; 1201 } 1202 return chan; 1203 } 1204 1205 /* 1206 * Setup HT-specific state for a legacy WDS peer. 1207 */ 1208 void 1209 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1210 { 1211 struct ieee80211vap *vap = ni->ni_vap; 1212 struct ieee80211_tx_ampdu *tap; 1213 int tid; 1214 1215 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1216 1217 /* XXX check scan cache in case peer has an ap and we have info */ 1218 /* 1219 * If setup with a legacy channel; locate an HT channel. 1220 * Otherwise if the inherited channel (from a companion 1221 * AP) is suitable use it so we use the same location 1222 * for the extension channel). 1223 */ 1224 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1225 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1226 1227 ni->ni_htcap = 0; 1228 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1229 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1230 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1231 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1232 ni->ni_chw = 40; 1233 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1234 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1235 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1236 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1237 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1238 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1239 } else { 1240 ni->ni_chw = 20; 1241 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1242 } 1243 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1244 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1245 ni->ni_flags |= IEEE80211_NODE_RIFS; 1246 /* XXX does it make sense to enable SMPS? */ 1247 1248 ni->ni_htopmode = 0; /* XXX need protection state */ 1249 ni->ni_htstbc = 0; /* XXX need info */ 1250 1251 for (tid = 0; tid < WME_NUM_TID; tid++) { 1252 tap = &ni->ni_tx_ampdu[tid]; 1253 tap->txa_tid = tid; 1254 ieee80211_txampdu_init_pps(tap); 1255 } 1256 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1257 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1258 } 1259 1260 /* 1261 * Notify hostap vaps of a change in the HTINFO ie. 1262 */ 1263 static void 1264 htinfo_notify(struct ieee80211com *ic) 1265 { 1266 struct ieee80211vap *vap; 1267 int first = 1; 1268 1269 IEEE80211_LOCK_ASSERT(ic); 1270 1271 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1272 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1273 continue; 1274 if (vap->iv_state != IEEE80211_S_RUN || 1275 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1276 continue; 1277 if (first) { 1278 IEEE80211_NOTE(vap, 1279 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1280 vap->iv_bss, 1281 "HT bss occupancy change: %d sta, %d ht, " 1282 "%d ht40%s, HT protmode now 0x%x" 1283 , ic->ic_sta_assoc 1284 , ic->ic_ht_sta_assoc 1285 , ic->ic_ht40_sta_assoc 1286 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1287 ", non-HT sta present" : "" 1288 , ic->ic_curhtprotmode); 1289 first = 0; 1290 } 1291 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1292 } 1293 } 1294 1295 /* 1296 * Calculate HT protection mode from current 1297 * state and handle updates. 1298 */ 1299 static void 1300 htinfo_update(struct ieee80211com *ic) 1301 { 1302 uint8_t protmode; 1303 1304 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1305 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1306 | IEEE80211_HTINFO_NONHT_PRESENT; 1307 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1308 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1309 | IEEE80211_HTINFO_NONHT_PRESENT; 1310 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1311 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1312 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1313 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1314 } else { 1315 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1316 } 1317 if (protmode != ic->ic_curhtprotmode) { 1318 ic->ic_curhtprotmode = protmode; 1319 htinfo_notify(ic); 1320 } 1321 } 1322 1323 /* 1324 * Handle an HT station joining a BSS. 1325 */ 1326 void 1327 ieee80211_ht_node_join(struct ieee80211_node *ni) 1328 { 1329 struct ieee80211com *ic = ni->ni_ic; 1330 1331 IEEE80211_LOCK_ASSERT(ic); 1332 1333 if (ni->ni_flags & IEEE80211_NODE_HT) { 1334 ic->ic_ht_sta_assoc++; 1335 if (ni->ni_chw == 40) 1336 ic->ic_ht40_sta_assoc++; 1337 } 1338 htinfo_update(ic); 1339 } 1340 1341 /* 1342 * Handle an HT station leaving a BSS. 1343 */ 1344 void 1345 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1346 { 1347 struct ieee80211com *ic = ni->ni_ic; 1348 1349 IEEE80211_LOCK_ASSERT(ic); 1350 1351 if (ni->ni_flags & IEEE80211_NODE_HT) { 1352 ic->ic_ht_sta_assoc--; 1353 if (ni->ni_chw == 40) 1354 ic->ic_ht40_sta_assoc--; 1355 } 1356 htinfo_update(ic); 1357 } 1358 1359 /* 1360 * Public version of htinfo_update; used for processing 1361 * beacon frames from overlapping bss. 1362 * 1363 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1364 * (on receipt of a beacon that advertises MIXED) or 1365 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1366 * from an overlapping legacy bss). We treat MIXED with 1367 * a higher precedence than PROTOPT (i.e. we will not change 1368 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1369 * corresponds to how we handle things in htinfo_update. 1370 */ 1371 void 1372 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1373 { 1374 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1375 IEEE80211_LOCK(ic); 1376 1377 /* track non-HT station presence */ 1378 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1379 ("protmode 0x%x", protmode)); 1380 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1381 ic->ic_lastnonht = ticks; 1382 1383 if (protmode != ic->ic_curhtprotmode && 1384 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1385 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1386 /* push beacon update */ 1387 ic->ic_curhtprotmode = protmode; 1388 htinfo_notify(ic); 1389 } 1390 IEEE80211_UNLOCK(ic); 1391 #undef OPMODE 1392 } 1393 1394 /* 1395 * Time out presence of an overlapping bss with non-HT 1396 * stations. When operating in hostap mode we listen for 1397 * beacons from other stations and if we identify a non-HT 1398 * station is present we update the opmode field of the 1399 * HTINFO ie. To identify when all non-HT stations are 1400 * gone we time out this condition. 1401 */ 1402 void 1403 ieee80211_ht_timeout(struct ieee80211com *ic) 1404 { 1405 IEEE80211_LOCK_ASSERT(ic); 1406 1407 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1408 time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1409 #if 0 1410 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1411 "%s", "time out non-HT STA present on channel"); 1412 #endif 1413 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1414 htinfo_update(ic); 1415 } 1416 } 1417 1418 /* 1419 * Process an 802.11n HT capabilities ie. 1420 */ 1421 void 1422 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1423 { 1424 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1425 /* 1426 * Station used Vendor OUI ie to associate; 1427 * mark the node so when we respond we'll use 1428 * the Vendor OUI's and not the standard ie's. 1429 */ 1430 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1431 ie += 4; 1432 } else 1433 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1434 1435 ni->ni_htcap = LE_READ_2(ie + 1436 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1437 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1438 } 1439 1440 static void 1441 htinfo_parse(struct ieee80211_node *ni, 1442 const struct ieee80211_ie_htinfo *htinfo) 1443 { 1444 uint16_t w; 1445 1446 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1447 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1448 w = LE_READ_2(&htinfo->hi_byte2); 1449 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1450 w = LE_READ_2(&htinfo->hi_byte45); 1451 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1452 } 1453 1454 /* 1455 * Parse an 802.11n HT info ie and save useful information 1456 * to the node state. Note this does not effect any state 1457 * changes such as for channel width change. 1458 */ 1459 void 1460 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1461 { 1462 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1463 ie += 4; 1464 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1465 } 1466 1467 /* 1468 * Handle 11n channel switch. Use the received HT ie's to 1469 * identify the right channel to use. If we cannot locate it 1470 * in the channel table then fallback to legacy operation. 1471 * Note that we use this information to identify the node's 1472 * channel only; the caller is responsible for insuring any 1473 * required channel change is done (e.g. in sta mode when 1474 * parsing the contents of a beacon frame). 1475 */ 1476 static int 1477 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1478 { 1479 struct ieee80211com *ic = ni->ni_ic; 1480 struct ieee80211_channel *c; 1481 int chanflags; 1482 int ret = 0; 1483 1484 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1485 if (chanflags != ni->ni_chan->ic_flags) { 1486 /* XXX not right for ht40- */ 1487 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1488 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1489 /* 1490 * No HT40 channel entry in our table; fall back 1491 * to HT20 operation. This should not happen. 1492 */ 1493 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1494 #if 0 1495 IEEE80211_NOTE(ni->ni_vap, 1496 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1497 "no HT40 channel (freq %u), falling back to HT20", 1498 ni->ni_chan->ic_freq); 1499 #endif 1500 /* XXX stat */ 1501 } 1502 if (c != NULL && c != ni->ni_chan) { 1503 IEEE80211_NOTE(ni->ni_vap, 1504 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1505 "switch station to HT%d channel %u/0x%x", 1506 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1507 c->ic_freq, c->ic_flags); 1508 ni->ni_chan = c; 1509 ret = 1; 1510 } 1511 /* NB: caller responsible for forcing any channel change */ 1512 } 1513 /* update node's tx channel width */ 1514 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1515 return (ret); 1516 } 1517 1518 /* 1519 * Update 11n MIMO PS state according to received htcap. 1520 */ 1521 static __inline int 1522 htcap_update_mimo_ps(struct ieee80211_node *ni) 1523 { 1524 uint16_t oflags = ni->ni_flags; 1525 1526 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1527 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1528 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1529 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1530 break; 1531 case IEEE80211_HTCAP_SMPS_ENA: 1532 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1533 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1534 break; 1535 case IEEE80211_HTCAP_SMPS_OFF: 1536 default: /* disable on rx of reserved value */ 1537 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1538 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1539 break; 1540 } 1541 return (oflags ^ ni->ni_flags); 1542 } 1543 1544 /* 1545 * Update short GI state according to received htcap 1546 * and local settings. 1547 */ 1548 static __inline void 1549 htcap_update_shortgi(struct ieee80211_node *ni) 1550 { 1551 struct ieee80211vap *vap = ni->ni_vap; 1552 1553 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1554 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1555 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1556 ni->ni_flags |= IEEE80211_NODE_SGI20; 1557 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1558 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1559 ni->ni_flags |= IEEE80211_NODE_SGI40; 1560 } 1561 1562 /* 1563 * Parse and update HT-related state extracted from 1564 * the HT cap and info ie's. 1565 */ 1566 int 1567 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1568 const uint8_t *htcapie, const uint8_t *htinfoie) 1569 { 1570 struct ieee80211vap *vap = ni->ni_vap; 1571 const struct ieee80211_ie_htinfo *htinfo; 1572 int htflags; 1573 int ret = 0; 1574 1575 ieee80211_parse_htcap(ni, htcapie); 1576 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1577 htcap_update_mimo_ps(ni); 1578 htcap_update_shortgi(ni); 1579 1580 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1581 htinfoie += 4; 1582 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1583 htinfo_parse(ni, htinfo); 1584 1585 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1586 IEEE80211_CHAN_HT20 : 0; 1587 /* NB: honor operating mode constraint */ 1588 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1589 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1590 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1591 htflags = IEEE80211_CHAN_HT40U; 1592 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1593 htflags = IEEE80211_CHAN_HT40D; 1594 } 1595 if (htinfo_update_chw(ni, htflags)) 1596 ret = 1; 1597 1598 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1599 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1600 ni->ni_flags |= IEEE80211_NODE_RIFS; 1601 else 1602 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1603 1604 return (ret); 1605 } 1606 1607 /* 1608 * Parse and update HT-related state extracted from the HT cap ie 1609 * for a station joining an HT BSS. 1610 */ 1611 void 1612 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1613 { 1614 struct ieee80211vap *vap = ni->ni_vap; 1615 int htflags; 1616 1617 ieee80211_parse_htcap(ni, htcapie); 1618 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1619 htcap_update_mimo_ps(ni); 1620 htcap_update_shortgi(ni); 1621 1622 /* NB: honor operating mode constraint */ 1623 /* XXX 40 MHz intolerant */ 1624 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1625 IEEE80211_CHAN_HT20 : 0; 1626 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1627 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1628 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1629 htflags = IEEE80211_CHAN_HT40U; 1630 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1631 htflags = IEEE80211_CHAN_HT40D; 1632 } 1633 (void) htinfo_update_chw(ni, htflags); 1634 } 1635 1636 /* 1637 * Install received HT rate set by parsing the HT cap ie. 1638 */ 1639 int 1640 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1641 { 1642 struct ieee80211com *ic = ni->ni_ic; 1643 struct ieee80211vap *vap = ni->ni_vap; 1644 const struct ieee80211_ie_htcap *htcap; 1645 struct ieee80211_htrateset *rs; 1646 int i, maxequalmcs, maxunequalmcs; 1647 1648 maxequalmcs = ic->ic_txstream * 8 - 1; 1649 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1650 if (ic->ic_txstream >= 2) 1651 maxunequalmcs = 38; 1652 if (ic->ic_txstream >= 3) 1653 maxunequalmcs = 52; 1654 if (ic->ic_txstream >= 4) 1655 maxunequalmcs = 76; 1656 } else 1657 maxunequalmcs = 0; 1658 1659 rs = &ni->ni_htrates; 1660 memset(rs, 0, sizeof(*rs)); 1661 if (ie != NULL) { 1662 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1663 ie += 4; 1664 htcap = (const struct ieee80211_ie_htcap *) ie; 1665 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1666 if (isclr(htcap->hc_mcsset, i)) 1667 continue; 1668 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1669 IEEE80211_NOTE(vap, 1670 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1671 "WARNING, HT rate set too large; only " 1672 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1673 vap->iv_stats.is_rx_rstoobig++; 1674 break; 1675 } 1676 if (i <= 31 && i > maxequalmcs) 1677 continue; 1678 if (i == 32 && 1679 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1680 continue; 1681 if (i > 32 && i > maxunequalmcs) 1682 continue; 1683 rs->rs_rates[rs->rs_nrates++] = i; 1684 } 1685 } 1686 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1687 } 1688 1689 /* 1690 * Mark rates in a node's HT rate set as basic according 1691 * to the information in the supplied HT info ie. 1692 */ 1693 void 1694 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1695 { 1696 const struct ieee80211_ie_htinfo *htinfo; 1697 struct ieee80211_htrateset *rs; 1698 int i, j; 1699 1700 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1701 ie += 4; 1702 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1703 rs = &ni->ni_htrates; 1704 if (rs->rs_nrates == 0) { 1705 IEEE80211_NOTE(ni->ni_vap, 1706 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1707 "%s", "WARNING, empty HT rate set"); 1708 return; 1709 } 1710 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1711 if (isclr(htinfo->hi_basicmcsset, i)) 1712 continue; 1713 for (j = 0; j < rs->rs_nrates; j++) 1714 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1715 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1716 } 1717 } 1718 1719 static void 1720 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1721 { 1722 callout_init(&tap->txa_timer, 1); 1723 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1724 tap->txa_lastsample = ticks; 1725 } 1726 1727 static void 1728 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1729 { 1730 struct ieee80211_node *ni = tap->txa_ni; 1731 struct ieee80211com *ic = ni->ni_ic; 1732 1733 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1734 tap->txa_ni, 1735 "%s: called", 1736 __func__); 1737 1738 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1739 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1740 TID_TO_WME_AC(tap->txa_tid))); 1741 1742 /* 1743 * Stop BA stream if setup so driver has a chance 1744 * to reclaim any resources it might have allocated. 1745 */ 1746 ic->ic_addba_stop(ni, tap); 1747 /* 1748 * Stop any pending BAR transmit. 1749 */ 1750 bar_stop_timer(tap); 1751 1752 /* 1753 * Reset packet estimate. 1754 */ 1755 ieee80211_txampdu_init_pps(tap); 1756 1757 /* NB: clearing NAK means we may re-send ADDBA */ 1758 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1759 } 1760 1761 /* 1762 * ADDBA response timeout. 1763 * 1764 * If software aggregation and per-TID queue management was done here, 1765 * that queue would be unpaused after the ADDBA timeout occurs. 1766 */ 1767 static void 1768 addba_timeout(void *arg) 1769 { 1770 struct ieee80211_tx_ampdu *tap = arg; 1771 struct ieee80211_node *ni = tap->txa_ni; 1772 struct ieee80211com *ic = ni->ni_ic; 1773 1774 /* XXX ? */ 1775 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1776 tap->txa_attempts++; 1777 ic->ic_addba_response_timeout(ni, tap); 1778 } 1779 1780 static void 1781 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1782 { 1783 /* XXX use CALLOUT_PENDING instead? */ 1784 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1785 addba_timeout, tap); 1786 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1787 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1788 } 1789 1790 static void 1791 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1792 { 1793 /* XXX use CALLOUT_PENDING instead? */ 1794 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1795 callout_stop(&tap->txa_timer); 1796 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1797 } 1798 } 1799 1800 static void 1801 null_addba_response_timeout(struct ieee80211_node *ni, 1802 struct ieee80211_tx_ampdu *tap) 1803 { 1804 } 1805 1806 /* 1807 * Default method for requesting A-MPDU tx aggregation. 1808 * We setup the specified state block and start a timer 1809 * to wait for an ADDBA response frame. 1810 */ 1811 static int 1812 ieee80211_addba_request(struct ieee80211_node *ni, 1813 struct ieee80211_tx_ampdu *tap, 1814 int dialogtoken, int baparamset, int batimeout) 1815 { 1816 int bufsiz; 1817 1818 /* XXX locking */ 1819 tap->txa_token = dialogtoken; 1820 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1821 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1822 tap->txa_wnd = (bufsiz == 0) ? 1823 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1824 addba_start_timeout(tap); 1825 return 1; 1826 } 1827 1828 /* 1829 * Called by drivers that wish to request an ADDBA session be 1830 * setup. This brings it up and starts the request timer. 1831 */ 1832 int 1833 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 1834 { 1835 struct ieee80211_tx_ampdu *tap; 1836 1837 if (tid < 0 || tid > 15) 1838 return (0); 1839 tap = &ni->ni_tx_ampdu[tid]; 1840 1841 /* XXX locking */ 1842 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 1843 /* do deferred setup of state */ 1844 ampdu_tx_setup(tap); 1845 } 1846 /* XXX hack for not doing proper locking */ 1847 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 1848 addba_start_timeout(tap); 1849 return (1); 1850 } 1851 1852 /* 1853 * Called by drivers that have marked a session as active. 1854 */ 1855 int 1856 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 1857 int status) 1858 { 1859 struct ieee80211_tx_ampdu *tap; 1860 1861 if (tid < 0 || tid > 15) 1862 return (0); 1863 tap = &ni->ni_tx_ampdu[tid]; 1864 1865 /* XXX locking */ 1866 addba_stop_timeout(tap); 1867 if (status == 1) { 1868 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1869 tap->txa_attempts = 0; 1870 } else { 1871 /* mark tid so we don't try again */ 1872 tap->txa_flags |= IEEE80211_AGGR_NAK; 1873 } 1874 return (1); 1875 } 1876 1877 /* 1878 * Default method for processing an A-MPDU tx aggregation 1879 * response. We shutdown any pending timer and update the 1880 * state block according to the reply. 1881 */ 1882 static int 1883 ieee80211_addba_response(struct ieee80211_node *ni, 1884 struct ieee80211_tx_ampdu *tap, 1885 int status, int baparamset, int batimeout) 1886 { 1887 int bufsiz, tid; 1888 1889 /* XXX locking */ 1890 addba_stop_timeout(tap); 1891 if (status == IEEE80211_STATUS_SUCCESS) { 1892 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1893 /* XXX override our request? */ 1894 tap->txa_wnd = (bufsiz == 0) ? 1895 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1896 /* XXX AC/TID */ 1897 tid = MS(baparamset, IEEE80211_BAPS_TID); 1898 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1899 tap->txa_attempts = 0; 1900 } else { 1901 /* mark tid so we don't try again */ 1902 tap->txa_flags |= IEEE80211_AGGR_NAK; 1903 } 1904 return 1; 1905 } 1906 1907 /* 1908 * Default method for stopping A-MPDU tx aggregation. 1909 * Any timer is cleared and we drain any pending frames. 1910 */ 1911 static void 1912 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1913 { 1914 /* XXX locking */ 1915 addba_stop_timeout(tap); 1916 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1917 /* XXX clear aggregation queue */ 1918 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1919 } 1920 tap->txa_attempts = 0; 1921 } 1922 1923 /* 1924 * Process a received action frame using the default aggregation 1925 * policy. We intercept ADDBA-related frames and use them to 1926 * update our aggregation state. All other frames are passed up 1927 * for processing by ieee80211_recv_action. 1928 */ 1929 static int 1930 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1931 const struct ieee80211_frame *wh, 1932 const uint8_t *frm, const uint8_t *efrm) 1933 { 1934 struct ieee80211com *ic = ni->ni_ic; 1935 struct ieee80211vap *vap = ni->ni_vap; 1936 struct ieee80211_rx_ampdu *rap; 1937 uint8_t dialogtoken; 1938 uint16_t baparamset, batimeout, baseqctl; 1939 uint16_t args[5]; 1940 int tid; 1941 1942 dialogtoken = frm[2]; 1943 baparamset = LE_READ_2(frm+3); 1944 batimeout = LE_READ_2(frm+5); 1945 baseqctl = LE_READ_2(frm+7); 1946 1947 tid = MS(baparamset, IEEE80211_BAPS_TID); 1948 1949 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1950 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1951 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1952 dialogtoken, baparamset, 1953 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1954 batimeout, 1955 MS(baseqctl, IEEE80211_BASEQ_START), 1956 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1957 1958 rap = &ni->ni_rx_ampdu[tid]; 1959 1960 /* Send ADDBA response */ 1961 args[0] = dialogtoken; 1962 /* 1963 * NB: We ack only if the sta associated with HT and 1964 * the ap is configured to do AMPDU rx (the latter 1965 * violates the 11n spec and is mostly for testing). 1966 */ 1967 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1968 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1969 /* XXX handle ampdu_rx_start failure */ 1970 ic->ic_ampdu_rx_start(ni, rap, 1971 baparamset, batimeout, baseqctl); 1972 1973 args[1] = IEEE80211_STATUS_SUCCESS; 1974 } else { 1975 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1976 ni, "reject ADDBA request: %s", 1977 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1978 "administratively disabled" : 1979 "not negotiated for station"); 1980 vap->iv_stats.is_addba_reject++; 1981 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1982 } 1983 /* XXX honor rap flags? */ 1984 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1985 | SM(tid, IEEE80211_BAPS_TID) 1986 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1987 ; 1988 args[3] = 0; 1989 args[4] = 0; 1990 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1991 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1992 return 0; 1993 } 1994 1995 static int 1996 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 1997 const struct ieee80211_frame *wh, 1998 const uint8_t *frm, const uint8_t *efrm) 1999 { 2000 struct ieee80211com *ic = ni->ni_ic; 2001 struct ieee80211vap *vap = ni->ni_vap; 2002 struct ieee80211_tx_ampdu *tap; 2003 uint8_t dialogtoken, policy; 2004 uint16_t baparamset, batimeout, code; 2005 int tid, bufsiz; 2006 2007 dialogtoken = frm[2]; 2008 code = LE_READ_2(frm+3); 2009 baparamset = LE_READ_2(frm+5); 2010 tid = MS(baparamset, IEEE80211_BAPS_TID); 2011 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2012 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2013 batimeout = LE_READ_2(frm+7); 2014 2015 tap = &ni->ni_tx_ampdu[tid]; 2016 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2017 IEEE80211_DISCARD_MAC(vap, 2018 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2019 ni->ni_macaddr, "ADDBA response", 2020 "no pending ADDBA, tid %d dialogtoken %u " 2021 "code %d", tid, dialogtoken, code); 2022 vap->iv_stats.is_addba_norequest++; 2023 return 0; 2024 } 2025 if (dialogtoken != tap->txa_token) { 2026 IEEE80211_DISCARD_MAC(vap, 2027 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2028 ni->ni_macaddr, "ADDBA response", 2029 "dialogtoken mismatch: waiting for %d, " 2030 "received %d, tid %d code %d", 2031 tap->txa_token, dialogtoken, tid, code); 2032 vap->iv_stats.is_addba_badtoken++; 2033 return 0; 2034 } 2035 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2036 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2037 IEEE80211_DISCARD_MAC(vap, 2038 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2039 ni->ni_macaddr, "ADDBA response", 2040 "policy mismatch: expecting %s, " 2041 "received %s, tid %d code %d", 2042 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2043 policy, tid, code); 2044 vap->iv_stats.is_addba_badpolicy++; 2045 return 0; 2046 } 2047 #if 0 2048 /* XXX we take MIN in ieee80211_addba_response */ 2049 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2050 IEEE80211_DISCARD_MAC(vap, 2051 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2052 ni->ni_macaddr, "ADDBA response", 2053 "BA window too large: max %d, " 2054 "received %d, tid %d code %d", 2055 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2056 vap->iv_stats.is_addba_badbawinsize++; 2057 return 0; 2058 } 2059 #endif 2060 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2061 "recv ADDBA response: dialogtoken %u code %d " 2062 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 2063 dialogtoken, code, baparamset, tid, bufsiz, 2064 batimeout); 2065 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2066 return 0; 2067 } 2068 2069 static int 2070 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2071 const struct ieee80211_frame *wh, 2072 const uint8_t *frm, const uint8_t *efrm) 2073 { 2074 struct ieee80211com *ic = ni->ni_ic; 2075 struct ieee80211_rx_ampdu *rap; 2076 struct ieee80211_tx_ampdu *tap; 2077 uint16_t baparamset, code; 2078 int tid; 2079 2080 baparamset = LE_READ_2(frm+2); 2081 code = LE_READ_2(frm+4); 2082 2083 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2084 2085 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2086 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2087 "code %d", baparamset, tid, 2088 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2089 2090 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2091 tap = &ni->ni_tx_ampdu[tid]; 2092 ic->ic_addba_stop(ni, tap); 2093 } else { 2094 rap = &ni->ni_rx_ampdu[tid]; 2095 ic->ic_ampdu_rx_stop(ni, rap); 2096 } 2097 return 0; 2098 } 2099 2100 static int 2101 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2102 const struct ieee80211_frame *wh, 2103 const uint8_t *frm, const uint8_t *efrm) 2104 { 2105 int chw; 2106 2107 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2108 2109 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2110 "%s: HT txchwidth, width %d%s", 2111 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2112 if (chw != ni->ni_chw) { 2113 ni->ni_chw = chw; 2114 /* XXX notify on change */ 2115 } 2116 return 0; 2117 } 2118 2119 static int 2120 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2121 const struct ieee80211_frame *wh, 2122 const uint8_t *frm, const uint8_t *efrm) 2123 { 2124 const struct ieee80211_action_ht_mimopowersave *mps = 2125 (const struct ieee80211_action_ht_mimopowersave *) frm; 2126 2127 /* XXX check iv_htcaps */ 2128 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2129 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2130 else 2131 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2132 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2133 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2134 else 2135 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2136 /* XXX notify on change */ 2137 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2138 "%s: HT MIMO PS (%s%s)", __func__, 2139 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2140 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2141 ); 2142 return 0; 2143 } 2144 2145 /* 2146 * Transmit processing. 2147 */ 2148 2149 /* 2150 * Check if A-MPDU should be requested/enabled for a stream. 2151 * We require a traffic rate above a per-AC threshold and we 2152 * also handle backoff from previous failed attempts. 2153 * 2154 * Drivers may override this method to bring in information 2155 * such as link state conditions in making the decision. 2156 */ 2157 static int 2158 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2159 struct ieee80211_tx_ampdu *tap) 2160 { 2161 struct ieee80211vap *vap = ni->ni_vap; 2162 2163 if (tap->txa_avgpps < 2164 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2165 return 0; 2166 /* XXX check rssi? */ 2167 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2168 ticks < tap->txa_nextrequest) { 2169 /* 2170 * Don't retry too often; txa_nextrequest is set 2171 * to the minimum interval we'll retry after 2172 * ieee80211_addba_maxtries failed attempts are made. 2173 */ 2174 return 0; 2175 } 2176 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2177 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2178 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2179 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2180 return 1; 2181 } 2182 2183 /* 2184 * Request A-MPDU tx aggregation. Setup local state and 2185 * issue an ADDBA request. BA use will only happen after 2186 * the other end replies with ADDBA response. 2187 */ 2188 int 2189 ieee80211_ampdu_request(struct ieee80211_node *ni, 2190 struct ieee80211_tx_ampdu *tap) 2191 { 2192 struct ieee80211com *ic = ni->ni_ic; 2193 uint16_t args[5]; 2194 int tid, dialogtoken; 2195 static int tokens = 0; /* XXX */ 2196 2197 /* XXX locking */ 2198 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2199 /* do deferred setup of state */ 2200 ampdu_tx_setup(tap); 2201 } 2202 /* XXX hack for not doing proper locking */ 2203 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2204 2205 dialogtoken = (tokens+1) % 63; /* XXX */ 2206 tid = tap->txa_tid; 2207 tap->txa_start = ni->ni_txseqs[tid]; 2208 2209 args[0] = dialogtoken; 2210 args[1] = 0; /* NB: status code not used */ 2211 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2212 | SM(tid, IEEE80211_BAPS_TID) 2213 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2214 ; 2215 args[3] = 0; /* batimeout */ 2216 /* NB: do first so there's no race against reply */ 2217 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2218 /* unable to setup state, don't make request */ 2219 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2220 ni, "%s: could not setup BA stream for TID %d AC %d", 2221 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2222 /* defer next try so we don't slam the driver with requests */ 2223 tap->txa_attempts = ieee80211_addba_maxtries; 2224 /* NB: check in case driver wants to override */ 2225 if (tap->txa_nextrequest <= ticks) 2226 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2227 return 0; 2228 } 2229 tokens = dialogtoken; /* allocate token */ 2230 /* NB: after calling ic_addba_request so driver can set txa_start */ 2231 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2232 | SM(0, IEEE80211_BASEQ_FRAG) 2233 ; 2234 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2235 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2236 } 2237 2238 /* 2239 * Terminate an AMPDU tx stream. State is reclaimed 2240 * and the peer notified with a DelBA Action frame. 2241 */ 2242 void 2243 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2244 int reason) 2245 { 2246 struct ieee80211com *ic = ni->ni_ic; 2247 struct ieee80211vap *vap = ni->ni_vap; 2248 uint16_t args[4]; 2249 2250 /* XXX locking */ 2251 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2252 if (IEEE80211_AMPDU_RUNNING(tap)) { 2253 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2254 ni, "%s: stop BA stream for TID %d (reason %d)", 2255 __func__, tap->txa_tid, reason); 2256 vap->iv_stats.is_ampdu_stop++; 2257 2258 ic->ic_addba_stop(ni, tap); 2259 args[0] = tap->txa_tid; 2260 args[1] = IEEE80211_DELBAPS_INIT; 2261 args[2] = reason; /* XXX reason code */ 2262 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2263 IEEE80211_ACTION_BA_DELBA, args); 2264 } else { 2265 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2266 ni, "%s: BA stream for TID %d not running (reason %d)", 2267 __func__, tap->txa_tid, reason); 2268 vap->iv_stats.is_ampdu_stop_failed++; 2269 } 2270 } 2271 2272 /* XXX */ 2273 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2274 2275 static void 2276 bar_timeout(void *arg) 2277 { 2278 struct ieee80211_tx_ampdu *tap = arg; 2279 struct ieee80211_node *ni = tap->txa_ni; 2280 2281 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2282 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2283 2284 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2285 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2286 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2287 2288 /* guard against race with bar_tx_complete */ 2289 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2290 return; 2291 /* XXX ? */ 2292 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2293 struct ieee80211com *ic = ni->ni_ic; 2294 2295 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2296 /* 2297 * If (at least) the last BAR TX timeout was due to 2298 * an ieee80211_send_bar() failures, then we need 2299 * to make sure we notify the driver that a BAR 2300 * TX did occur and fail. This gives the driver 2301 * a chance to undo any queue pause that may 2302 * have occured. 2303 */ 2304 ic->ic_bar_response(ni, tap, 1); 2305 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2306 } else { 2307 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2308 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2309 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2310 ni, "%s: failed to TX, starting timer\n", 2311 __func__); 2312 /* 2313 * If ieee80211_send_bar() fails here, the 2314 * timer may have stopped and/or the pending 2315 * flag may be clear. Because of this, 2316 * fake the BARPEND and reset the timer. 2317 * A retransmission attempt will then occur 2318 * during the next timeout. 2319 */ 2320 /* XXX locking */ 2321 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2322 bar_start_timer(tap); 2323 } 2324 } 2325 } 2326 2327 static void 2328 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2329 { 2330 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2331 tap->txa_ni, 2332 "%s: called", 2333 __func__); 2334 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2335 } 2336 2337 static void 2338 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2339 { 2340 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2341 tap->txa_ni, 2342 "%s: called", 2343 __func__); 2344 callout_stop(&tap->txa_timer); 2345 } 2346 2347 static void 2348 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2349 { 2350 struct ieee80211_tx_ampdu *tap = arg; 2351 2352 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2353 ni, "%s: tid %u flags 0x%x pending %d status %d", 2354 __func__, tap->txa_tid, tap->txa_flags, 2355 callout_pending(&tap->txa_timer), status); 2356 2357 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2358 /* XXX locking */ 2359 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2360 callout_pending(&tap->txa_timer)) { 2361 struct ieee80211com *ic = ni->ni_ic; 2362 2363 if (status == 0) /* ACK'd */ 2364 bar_stop_timer(tap); 2365 ic->ic_bar_response(ni, tap, status); 2366 /* NB: just let timer expire so we pace requests */ 2367 } 2368 } 2369 2370 static void 2371 ieee80211_bar_response(struct ieee80211_node *ni, 2372 struct ieee80211_tx_ampdu *tap, int status) 2373 { 2374 2375 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2376 tap->txa_ni, 2377 "%s: called", 2378 __func__); 2379 if (status == 0) { /* got ACK */ 2380 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2381 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2382 tap->txa_start, 2383 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2384 tap->txa_qframes, tap->txa_seqpending, 2385 tap->txa_tid); 2386 2387 /* NB: timer already stopped in bar_tx_complete */ 2388 tap->txa_start = tap->txa_seqpending; 2389 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2390 } 2391 } 2392 2393 /* 2394 * Transmit a BAR frame to the specified node. The 2395 * BAR contents are drawn from the supplied aggregation 2396 * state associated with the node. 2397 * 2398 * NB: we only handle immediate ACK w/ compressed bitmap. 2399 */ 2400 int 2401 ieee80211_send_bar(struct ieee80211_node *ni, 2402 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2403 { 2404 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2405 struct ieee80211vap *vap = ni->ni_vap; 2406 struct ieee80211com *ic = ni->ni_ic; 2407 struct ieee80211_frame_bar *bar; 2408 struct mbuf *m; 2409 uint16_t barctl, barseqctl; 2410 uint8_t *frm; 2411 int tid, ret; 2412 2413 2414 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2415 tap->txa_ni, 2416 "%s: called", 2417 __func__); 2418 2419 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2420 /* no ADDBA response, should not happen */ 2421 /* XXX stat+msg */ 2422 return EINVAL; 2423 } 2424 /* XXX locking */ 2425 bar_stop_timer(tap); 2426 2427 ieee80211_ref_node(ni); 2428 2429 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2430 if (m == NULL) 2431 senderr(ENOMEM, is_tx_nobuf); 2432 2433 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2434 m_freem(m); 2435 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2436 /* NOTREACHED */ 2437 } 2438 2439 bar = mtod(m, struct ieee80211_frame_bar *); 2440 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2441 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2442 bar->i_fc[1] = 0; 2443 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2444 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2445 2446 tid = tap->txa_tid; 2447 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2448 0 : IEEE80211_BAR_NOACK) 2449 | IEEE80211_BAR_COMP 2450 | SM(tid, IEEE80211_BAR_TID) 2451 ; 2452 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2453 /* NB: known to have proper alignment */ 2454 bar->i_ctl = htole16(barctl); 2455 bar->i_seq = htole16(barseqctl); 2456 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2457 2458 M_WME_SETAC(m, WME_AC_VO); 2459 2460 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2461 2462 /* XXX locking */ 2463 /* init/bump attempts counter */ 2464 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2465 tap->txa_attempts = 1; 2466 else 2467 tap->txa_attempts++; 2468 tap->txa_seqpending = seq; 2469 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2470 2471 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2472 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2473 tid, barctl, seq, tap->txa_attempts); 2474 2475 /* 2476 * ic_raw_xmit will free the node reference 2477 * regardless of queue/TX success or failure. 2478 */ 2479 IEEE80211_TX_LOCK(ic); 2480 ret = ieee80211_raw_output(vap, ni, m, NULL); 2481 IEEE80211_TX_UNLOCK(ic); 2482 if (ret != 0) { 2483 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2484 ni, "send BAR: failed: (ret = %d)\n", 2485 ret); 2486 /* xmit failed, clear state flag */ 2487 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2488 vap->iv_stats.is_ampdu_bar_tx_fail++; 2489 return ret; 2490 } 2491 /* XXX hack against tx complete happening before timer is started */ 2492 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2493 bar_start_timer(tap); 2494 return 0; 2495 bad: 2496 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2497 tap->txa_ni, 2498 "%s: bad! ret=%d", 2499 __func__, ret); 2500 vap->iv_stats.is_ampdu_bar_tx_fail++; 2501 ieee80211_free_node(ni); 2502 return ret; 2503 #undef senderr 2504 } 2505 2506 static int 2507 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2508 { 2509 struct ieee80211_bpf_params params; 2510 2511 memset(¶ms, 0, sizeof(params)); 2512 params.ibp_pri = WME_AC_VO; 2513 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2514 /* NB: we know all frames are unicast */ 2515 params.ibp_try0 = ni->ni_txparms->maxretry; 2516 params.ibp_power = ni->ni_txpower; 2517 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2518 ¶ms); 2519 } 2520 2521 #define ADDSHORT(frm, v) do { \ 2522 frm[0] = (v) & 0xff; \ 2523 frm[1] = (v) >> 8; \ 2524 frm += 2; \ 2525 } while (0) 2526 2527 /* 2528 * Send an action management frame. The arguments are stuff 2529 * into a frame without inspection; the caller is assumed to 2530 * prepare them carefully (e.g. based on the aggregation state). 2531 */ 2532 static int 2533 ht_send_action_ba_addba(struct ieee80211_node *ni, 2534 int category, int action, void *arg0) 2535 { 2536 struct ieee80211vap *vap = ni->ni_vap; 2537 struct ieee80211com *ic = ni->ni_ic; 2538 uint16_t *args = arg0; 2539 struct mbuf *m; 2540 uint8_t *frm; 2541 2542 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2543 "send ADDBA %s: dialogtoken %d status %d " 2544 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2545 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2546 "request" : "response", 2547 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2548 args[3], args[4]); 2549 2550 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2551 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2552 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2553 ieee80211_ref_node(ni); 2554 2555 m = ieee80211_getmgtframe(&frm, 2556 ic->ic_headroom + sizeof(struct ieee80211_frame), 2557 sizeof(uint16_t) /* action+category */ 2558 /* XXX may action payload */ 2559 + sizeof(struct ieee80211_action_ba_addbaresponse) 2560 ); 2561 if (m != NULL) { 2562 *frm++ = category; 2563 *frm++ = action; 2564 *frm++ = args[0]; /* dialog token */ 2565 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2566 ADDSHORT(frm, args[1]); /* status code */ 2567 ADDSHORT(frm, args[2]); /* baparamset */ 2568 ADDSHORT(frm, args[3]); /* batimeout */ 2569 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2570 ADDSHORT(frm, args[4]); /* baseqctl */ 2571 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2572 return ht_action_output(ni, m); 2573 } else { 2574 vap->iv_stats.is_tx_nobuf++; 2575 ieee80211_free_node(ni); 2576 return ENOMEM; 2577 } 2578 } 2579 2580 static int 2581 ht_send_action_ba_delba(struct ieee80211_node *ni, 2582 int category, int action, void *arg0) 2583 { 2584 struct ieee80211vap *vap = ni->ni_vap; 2585 struct ieee80211com *ic = ni->ni_ic; 2586 uint16_t *args = arg0; 2587 struct mbuf *m; 2588 uint16_t baparamset; 2589 uint8_t *frm; 2590 2591 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2592 | args[1] 2593 ; 2594 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2595 "send DELBA action: tid %d, initiator %d reason %d", 2596 args[0], args[1], args[2]); 2597 2598 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2599 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2600 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2601 ieee80211_ref_node(ni); 2602 2603 m = ieee80211_getmgtframe(&frm, 2604 ic->ic_headroom + sizeof(struct ieee80211_frame), 2605 sizeof(uint16_t) /* action+category */ 2606 /* XXX may action payload */ 2607 + sizeof(struct ieee80211_action_ba_addbaresponse) 2608 ); 2609 if (m != NULL) { 2610 *frm++ = category; 2611 *frm++ = action; 2612 ADDSHORT(frm, baparamset); 2613 ADDSHORT(frm, args[2]); /* reason code */ 2614 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2615 return ht_action_output(ni, m); 2616 } else { 2617 vap->iv_stats.is_tx_nobuf++; 2618 ieee80211_free_node(ni); 2619 return ENOMEM; 2620 } 2621 } 2622 2623 static int 2624 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2625 int category, int action, void *arg0) 2626 { 2627 struct ieee80211vap *vap = ni->ni_vap; 2628 struct ieee80211com *ic = ni->ni_ic; 2629 struct mbuf *m; 2630 uint8_t *frm; 2631 2632 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2633 "send HT txchwidth: width %d", 2634 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2635 2636 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2637 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2638 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2639 ieee80211_ref_node(ni); 2640 2641 m = ieee80211_getmgtframe(&frm, 2642 ic->ic_headroom + sizeof(struct ieee80211_frame), 2643 sizeof(uint16_t) /* action+category */ 2644 /* XXX may action payload */ 2645 + sizeof(struct ieee80211_action_ba_addbaresponse) 2646 ); 2647 if (m != NULL) { 2648 *frm++ = category; 2649 *frm++ = action; 2650 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2651 IEEE80211_A_HT_TXCHWIDTH_2040 : 2652 IEEE80211_A_HT_TXCHWIDTH_20; 2653 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2654 return ht_action_output(ni, m); 2655 } else { 2656 vap->iv_stats.is_tx_nobuf++; 2657 ieee80211_free_node(ni); 2658 return ENOMEM; 2659 } 2660 } 2661 #undef ADDSHORT 2662 2663 /* 2664 * Construct the MCS bit mask for inclusion in an HT capabilities 2665 * information element. 2666 */ 2667 static void 2668 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2669 { 2670 int i; 2671 uint8_t txparams; 2672 2673 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2674 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2675 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2676 ("ic_txstream %d out of range", ic->ic_txstream)); 2677 2678 for (i = 0; i < ic->ic_rxstream * 8; i++) 2679 setbit(frm, i); 2680 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2681 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2682 setbit(frm, 32); 2683 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2684 if (ic->ic_rxstream >= 2) { 2685 for (i = 33; i <= 38; i++) 2686 setbit(frm, i); 2687 } 2688 if (ic->ic_rxstream >= 3) { 2689 for (i = 39; i <= 52; i++) 2690 setbit(frm, i); 2691 } 2692 if (ic->ic_txstream >= 4) { 2693 for (i = 53; i <= 76; i++) 2694 setbit(frm, i); 2695 } 2696 } 2697 2698 if (ic->ic_rxstream != ic->ic_txstream) { 2699 txparams = 0x1; /* TX MCS set defined */ 2700 txparams |= 0x2; /* TX RX MCS not equal */ 2701 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2702 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2703 txparams |= 0x16; /* TX unequal modulation sup */ 2704 } else 2705 txparams = 0; 2706 frm[12] = txparams; 2707 } 2708 2709 /* 2710 * Add body of an HTCAP information element. 2711 */ 2712 static uint8_t * 2713 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2714 { 2715 #define ADDSHORT(frm, v) do { \ 2716 frm[0] = (v) & 0xff; \ 2717 frm[1] = (v) >> 8; \ 2718 frm += 2; \ 2719 } while (0) 2720 struct ieee80211com *ic = ni->ni_ic; 2721 struct ieee80211vap *vap = ni->ni_vap; 2722 uint16_t caps, extcaps; 2723 int rxmax, density; 2724 2725 /* HT capabilities */ 2726 caps = vap->iv_htcaps & 0xffff; 2727 /* 2728 * Note channel width depends on whether we are operating as 2729 * a sta or not. When operating as a sta we are generating 2730 * a request based on our desired configuration. Otherwise 2731 * we are operational and the channel attributes identify 2732 * how we've been setup (which might be different if a fixed 2733 * channel is specified). 2734 */ 2735 if (vap->iv_opmode == IEEE80211_M_STA) { 2736 /* override 20/40 use based on config */ 2737 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2738 caps |= IEEE80211_HTCAP_CHWIDTH40; 2739 else 2740 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2741 2742 /* Start by using the advertised settings */ 2743 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2744 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2745 2746 /* Cap at VAP rxmax */ 2747 if (rxmax > vap->iv_ampdu_rxmax) 2748 rxmax = vap->iv_ampdu_rxmax; 2749 2750 /* 2751 * If the VAP ampdu density value greater, use that. 2752 * 2753 * (Larger density value == larger minimum gap between A-MPDU 2754 * subframes.) 2755 */ 2756 if (vap->iv_ampdu_density > density) 2757 density = vap->iv_ampdu_density; 2758 2759 /* 2760 * NB: Hardware might support HT40 on some but not all 2761 * channels. We can't determine this earlier because only 2762 * after association the channel is upgraded to HT based 2763 * on the negotiated capabilities. 2764 */ 2765 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2766 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2767 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2768 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2769 } else { 2770 /* override 20/40 use based on current channel */ 2771 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2772 caps |= IEEE80211_HTCAP_CHWIDTH40; 2773 else 2774 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2775 2776 /* XXX TODO should it start by using advertised settings? */ 2777 rxmax = vap->iv_ampdu_rxmax; 2778 density = vap->iv_ampdu_density; 2779 } 2780 2781 /* adjust short GI based on channel and config */ 2782 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2783 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2784 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2785 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2786 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2787 ADDSHORT(frm, caps); 2788 2789 /* HT parameters */ 2790 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2791 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2792 ; 2793 frm++; 2794 2795 /* pre-zero remainder of ie */ 2796 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2797 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2798 2799 /* supported MCS set */ 2800 /* 2801 * XXX: For sta mode the rate set should be restricted based 2802 * on the AP's capabilities, but ni_htrates isn't setup when 2803 * we're called to form an AssocReq frame so for now we're 2804 * restricted to the device capabilities. 2805 */ 2806 ieee80211_set_mcsset(ni->ni_ic, frm); 2807 2808 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2809 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2810 2811 /* HT extended capabilities */ 2812 extcaps = vap->iv_htextcaps & 0xffff; 2813 2814 ADDSHORT(frm, extcaps); 2815 2816 frm += sizeof(struct ieee80211_ie_htcap) - 2817 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2818 2819 return frm; 2820 #undef ADDSHORT 2821 } 2822 2823 /* 2824 * Add 802.11n HT capabilities information element 2825 */ 2826 uint8_t * 2827 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2828 { 2829 frm[0] = IEEE80211_ELEMID_HTCAP; 2830 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2831 return ieee80211_add_htcap_body(frm + 2, ni); 2832 } 2833 2834 /* 2835 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2836 * used for compatibility w/ pre-draft implementations. 2837 */ 2838 uint8_t * 2839 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2840 { 2841 frm[0] = IEEE80211_ELEMID_VENDOR; 2842 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2843 frm[2] = (BCM_OUI >> 0) & 0xff; 2844 frm[3] = (BCM_OUI >> 8) & 0xff; 2845 frm[4] = (BCM_OUI >> 16) & 0xff; 2846 frm[5] = BCM_OUI_HTCAP; 2847 return ieee80211_add_htcap_body(frm + 6, ni); 2848 } 2849 2850 /* 2851 * Construct the MCS bit mask of basic rates 2852 * for inclusion in an HT information element. 2853 */ 2854 static void 2855 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2856 { 2857 int i; 2858 2859 for (i = 0; i < rs->rs_nrates; i++) { 2860 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2861 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2862 r < IEEE80211_HTRATE_MAXSIZE) { 2863 /* NB: this assumes a particular implementation */ 2864 setbit(frm, r); 2865 } 2866 } 2867 } 2868 2869 /* 2870 * Update the HTINFO ie for a beacon frame. 2871 */ 2872 void 2873 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2874 struct ieee80211_beacon_offsets *bo) 2875 { 2876 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2877 struct ieee80211_node *ni; 2878 const struct ieee80211_channel *bsschan; 2879 struct ieee80211com *ic = vap->iv_ic; 2880 struct ieee80211_ie_htinfo *ht = 2881 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2882 2883 ni = ieee80211_ref_node(vap->iv_bss); 2884 bsschan = ni->ni_chan; 2885 2886 /* XXX only update on channel change */ 2887 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 2888 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2889 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 2890 else 2891 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 2892 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 2893 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2894 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 2895 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2896 else 2897 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 2898 if (IEEE80211_IS_CHAN_HT40(bsschan)) 2899 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 2900 2901 /* protection mode */ 2902 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 2903 2904 ieee80211_free_node(ni); 2905 2906 /* XXX propagate to vendor ie's */ 2907 #undef PROTMODE 2908 } 2909 2910 /* 2911 * Add body of an HTINFO information element. 2912 * 2913 * NB: We don't use struct ieee80211_ie_htinfo because we can 2914 * be called to fillin both a standard ie and a compat ie that 2915 * has a vendor OUI at the front. 2916 */ 2917 static uint8_t * 2918 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 2919 { 2920 struct ieee80211vap *vap = ni->ni_vap; 2921 struct ieee80211com *ic = ni->ni_ic; 2922 2923 /* pre-zero remainder of ie */ 2924 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 2925 2926 /* primary/control channel center */ 2927 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2928 2929 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2930 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 2931 else 2932 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 2933 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 2934 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2935 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 2936 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2937 else 2938 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 2939 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2940 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 2941 2942 frm[1] = ic->ic_curhtprotmode; 2943 2944 frm += 5; 2945 2946 /* basic MCS set */ 2947 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 2948 frm += sizeof(struct ieee80211_ie_htinfo) - 2949 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 2950 return frm; 2951 } 2952 2953 /* 2954 * Add 802.11n HT information information element. 2955 */ 2956 uint8_t * 2957 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 2958 { 2959 frm[0] = IEEE80211_ELEMID_HTINFO; 2960 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 2961 return ieee80211_add_htinfo_body(frm + 2, ni); 2962 } 2963 2964 /* 2965 * Add Broadcom OUI wrapped standard HTINFO ie; this is 2966 * used for compatibility w/ pre-draft implementations. 2967 */ 2968 uint8_t * 2969 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 2970 { 2971 frm[0] = IEEE80211_ELEMID_VENDOR; 2972 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 2973 frm[2] = (BCM_OUI >> 0) & 0xff; 2974 frm[3] = (BCM_OUI >> 8) & 0xff; 2975 frm[4] = (BCM_OUI >> 16) & 0xff; 2976 frm[5] = BCM_OUI_HTINFO; 2977 return ieee80211_add_htinfo_body(frm + 6, ni); 2978 } 2979