1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/systm.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_media.h> 48 #include <net/ethernet.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_action.h> 52 #include <net80211/ieee80211_input.h> 53 54 /* define here, used throughout file */ 55 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 56 #define SM(_v, _f) (((_v) << _f##_S) & _f) 57 58 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 59 { 13, 14, 27, 30 }, /* MCS 0 */ 60 { 26, 29, 54, 60 }, /* MCS 1 */ 61 { 39, 43, 81, 90 }, /* MCS 2 */ 62 { 52, 58, 108, 120 }, /* MCS 3 */ 63 { 78, 87, 162, 180 }, /* MCS 4 */ 64 { 104, 116, 216, 240 }, /* MCS 5 */ 65 { 117, 130, 243, 270 }, /* MCS 6 */ 66 { 130, 144, 270, 300 }, /* MCS 7 */ 67 { 26, 29, 54, 60 }, /* MCS 8 */ 68 { 52, 58, 108, 120 }, /* MCS 9 */ 69 { 78, 87, 162, 180 }, /* MCS 10 */ 70 { 104, 116, 216, 240 }, /* MCS 11 */ 71 { 156, 173, 324, 360 }, /* MCS 12 */ 72 { 208, 231, 432, 480 }, /* MCS 13 */ 73 { 234, 260, 486, 540 }, /* MCS 14 */ 74 { 260, 289, 540, 600 }, /* MCS 15 */ 75 { 39, 43, 81, 90 }, /* MCS 16 */ 76 { 78, 87, 162, 180 }, /* MCS 17 */ 77 { 117, 130, 243, 270 }, /* MCS 18 */ 78 { 156, 173, 324, 360 }, /* MCS 19 */ 79 { 234, 260, 486, 540 }, /* MCS 20 */ 80 { 312, 347, 648, 720 }, /* MCS 21 */ 81 { 351, 390, 729, 810 }, /* MCS 22 */ 82 { 390, 433, 810, 900 }, /* MCS 23 */ 83 { 52, 58, 108, 120 }, /* MCS 24 */ 84 { 104, 116, 216, 240 }, /* MCS 25 */ 85 { 156, 173, 324, 360 }, /* MCS 26 */ 86 { 208, 231, 432, 480 }, /* MCS 27 */ 87 { 312, 347, 648, 720 }, /* MCS 28 */ 88 { 416, 462, 864, 960 }, /* MCS 29 */ 89 { 468, 520, 972, 1080 }, /* MCS 30 */ 90 { 520, 578, 1080, 1200 }, /* MCS 31 */ 91 { 0, 0, 12, 13 }, /* MCS 32 */ 92 { 78, 87, 162, 180 }, /* MCS 33 */ 93 { 104, 116, 216, 240 }, /* MCS 34 */ 94 { 130, 144, 270, 300 }, /* MCS 35 */ 95 { 117, 130, 243, 270 }, /* MCS 36 */ 96 { 156, 173, 324, 360 }, /* MCS 37 */ 97 { 195, 217, 405, 450 }, /* MCS 38 */ 98 { 104, 116, 216, 240 }, /* MCS 39 */ 99 { 130, 144, 270, 300 }, /* MCS 40 */ 100 { 130, 144, 270, 300 }, /* MCS 41 */ 101 { 156, 173, 324, 360 }, /* MCS 42 */ 102 { 182, 202, 378, 420 }, /* MCS 43 */ 103 { 182, 202, 378, 420 }, /* MCS 44 */ 104 { 208, 231, 432, 480 }, /* MCS 45 */ 105 { 156, 173, 324, 360 }, /* MCS 46 */ 106 { 195, 217, 405, 450 }, /* MCS 47 */ 107 { 195, 217, 405, 450 }, /* MCS 48 */ 108 { 234, 260, 486, 540 }, /* MCS 49 */ 109 { 273, 303, 567, 630 }, /* MCS 50 */ 110 { 273, 303, 567, 630 }, /* MCS 51 */ 111 { 312, 347, 648, 720 }, /* MCS 52 */ 112 { 130, 144, 270, 300 }, /* MCS 53 */ 113 { 156, 173, 324, 360 }, /* MCS 54 */ 114 { 182, 202, 378, 420 }, /* MCS 55 */ 115 { 156, 173, 324, 360 }, /* MCS 56 */ 116 { 182, 202, 378, 420 }, /* MCS 57 */ 117 { 208, 231, 432, 480 }, /* MCS 58 */ 118 { 234, 260, 486, 540 }, /* MCS 59 */ 119 { 208, 231, 432, 480 }, /* MCS 60 */ 120 { 234, 260, 486, 540 }, /* MCS 61 */ 121 { 260, 289, 540, 600 }, /* MCS 62 */ 122 { 260, 289, 540, 600 }, /* MCS 63 */ 123 { 286, 318, 594, 660 }, /* MCS 64 */ 124 { 195, 217, 405, 450 }, /* MCS 65 */ 125 { 234, 260, 486, 540 }, /* MCS 66 */ 126 { 273, 303, 567, 630 }, /* MCS 67 */ 127 { 234, 260, 486, 540 }, /* MCS 68 */ 128 { 273, 303, 567, 630 }, /* MCS 69 */ 129 { 312, 347, 648, 720 }, /* MCS 70 */ 130 { 351, 390, 729, 810 }, /* MCS 71 */ 131 { 312, 347, 648, 720 }, /* MCS 72 */ 132 { 351, 390, 729, 810 }, /* MCS 73 */ 133 { 390, 433, 810, 900 }, /* MCS 74 */ 134 { 390, 433, 810, 900 }, /* MCS 75 */ 135 { 429, 477, 891, 990 }, /* MCS 76 */ 136 }; 137 138 #ifdef IEEE80211_AMPDU_AGE 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 #endif 144 145 static int ieee80211_recv_bar_ena = 1; 146 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 147 0, "BAR frame processing (ena/dis)"); 148 149 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 150 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 151 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 152 "ADDBA request timeout (ms)"); 153 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 154 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 155 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 156 "ADDBA request backoff (ms)"); 157 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 158 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLTYPE_INT | CTLFLAG_RW, 159 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 160 161 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 162 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 163 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 165 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 166 static ieee80211_recv_action_func ht_recv_action_ba_delba; 167 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 168 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 169 170 static ieee80211_send_action_func ht_send_action_ba_addba; 171 static ieee80211_send_action_func ht_send_action_ba_delba; 172 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 173 174 static void 175 ieee80211_ht_init(void) 176 { 177 /* 178 * Setup HT parameters that depends on the clock frequency. 179 */ 180 #ifdef IEEE80211_AMPDU_AGE 181 ieee80211_ampdu_age = msecs_to_ticks(500); 182 #endif 183 ieee80211_addba_timeout = msecs_to_ticks(250); 184 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 185 ieee80211_bar_timeout = msecs_to_ticks(250); 186 /* 187 * Register action frame handlers. 188 */ 189 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 190 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 191 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 192 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 193 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 194 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 195 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 196 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 197 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 198 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 199 200 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 201 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 202 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 203 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 204 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 205 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 206 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 207 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 208 } 209 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 210 211 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 212 struct ieee80211_tx_ampdu *tap); 213 static int ieee80211_addba_request(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int dialogtoken, int baparamset, int batimeout); 216 static int ieee80211_addba_response(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap, 218 int code, int baparamset, int batimeout); 219 static void ieee80211_addba_stop(struct ieee80211_node *ni, 220 struct ieee80211_tx_ampdu *tap); 221 static void null_addba_response_timeout(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap); 223 224 static void ieee80211_bar_response(struct ieee80211_node *ni, 225 struct ieee80211_tx_ampdu *tap, int status); 226 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 227 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 228 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 229 int baparamset, int batimeout, int baseqctl); 230 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 231 232 void 233 ieee80211_ht_attach(struct ieee80211com *ic) 234 { 235 /* setup default aggregation policy */ 236 ic->ic_recv_action = ieee80211_recv_action; 237 ic->ic_send_action = ieee80211_send_action; 238 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 239 ic->ic_addba_request = ieee80211_addba_request; 240 ic->ic_addba_response = ieee80211_addba_response; 241 ic->ic_addba_response_timeout = null_addba_response_timeout; 242 ic->ic_addba_stop = ieee80211_addba_stop; 243 ic->ic_bar_response = ieee80211_bar_response; 244 ic->ic_ampdu_rx_start = ampdu_rx_start; 245 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 246 247 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 248 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 249 } 250 251 void 252 ieee80211_ht_detach(struct ieee80211com *ic) 253 { 254 } 255 256 void 257 ieee80211_ht_vattach(struct ieee80211vap *vap) 258 { 259 260 /* driver can override defaults */ 261 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 262 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 263 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 264 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 265 /* tx aggregation traffic thresholds */ 266 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 267 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 268 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 269 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 270 271 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 272 /* 273 * Device is HT capable; enable all HT-related 274 * facilities by default. 275 * XXX these choices may be too aggressive. 276 */ 277 vap->iv_flags_ht |= IEEE80211_FHT_HT 278 | IEEE80211_FHT_HTCOMPAT 279 ; 280 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 281 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 282 /* XXX infer from channel list? */ 283 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 284 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 285 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 286 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 287 } 288 /* enable RIFS if capable */ 289 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 290 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 291 292 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 293 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 296 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 297 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 298 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 299 } 300 /* NB: disable default legacy WDS, too many issues right now */ 301 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 302 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 303 } 304 305 void 306 ieee80211_ht_vdetach(struct ieee80211vap *vap) 307 { 308 } 309 310 static int 311 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 312 int ratetype) 313 { 314 int mword, rate; 315 316 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 317 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 318 return (0); 319 switch (ratetype) { 320 case 0: 321 rate = ieee80211_htrates[index].ht20_rate_800ns; 322 break; 323 case 1: 324 rate = ieee80211_htrates[index].ht20_rate_400ns; 325 break; 326 case 2: 327 rate = ieee80211_htrates[index].ht40_rate_800ns; 328 break; 329 default: 330 rate = ieee80211_htrates[index].ht40_rate_400ns; 331 break; 332 } 333 return (rate); 334 } 335 336 static struct printranges { 337 int minmcs; 338 int maxmcs; 339 int txstream; 340 int ratetype; 341 int htcapflags; 342 } ranges[] = { 343 { 0, 7, 1, 0, 0 }, 344 { 8, 15, 2, 0, 0 }, 345 { 16, 23, 3, 0, 0 }, 346 { 24, 31, 4, 0, 0 }, 347 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 348 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 349 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 350 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 351 { 0, 0, 0, 0, 0 }, 352 }; 353 354 static void 355 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 356 { 357 struct ifnet *ifp = ic->ic_ifp; 358 int minrate, maxrate; 359 struct printranges *range; 360 361 for (range = ranges; range->txstream != 0; range++) { 362 if (ic->ic_txstream < range->txstream) 363 continue; 364 if (range->htcapflags && 365 (ic->ic_htcaps & range->htcapflags) == 0) 366 continue; 367 if (ratetype < range->ratetype) 368 continue; 369 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 370 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 371 if (range->maxmcs) { 372 if_printf(ifp, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 373 range->minmcs, range->maxmcs, 374 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 375 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 376 } else { 377 if_printf(ifp, "MCS %d: %d%sMbps\n", range->minmcs, 378 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 379 } 380 } 381 } 382 383 static void 384 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 385 { 386 struct ifnet *ifp = ic->ic_ifp; 387 const char *modestr = ieee80211_phymode_name[mode]; 388 389 if_printf(ifp, "%s MCS 20MHz\n", modestr); 390 ht_rateprint(ic, mode, 0); 391 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 392 if_printf(ifp, "%s MCS 20MHz SGI\n", modestr); 393 ht_rateprint(ic, mode, 1); 394 } 395 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 396 if_printf(ifp, "%s MCS 40MHz:\n", modestr); 397 ht_rateprint(ic, mode, 2); 398 } 399 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 400 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 401 if_printf(ifp, "%s MCS 40MHz SGI:\n", modestr); 402 ht_rateprint(ic, mode, 3); 403 } 404 } 405 406 void 407 ieee80211_ht_announce(struct ieee80211com *ic) 408 { 409 struct ifnet *ifp = ic->ic_ifp; 410 411 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 412 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 413 if_printf(ifp, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 414 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 415 ht_announce(ic, IEEE80211_MODE_11NA); 416 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 417 ht_announce(ic, IEEE80211_MODE_11NG); 418 } 419 420 static struct ieee80211_htrateset htrateset; 421 422 const struct ieee80211_htrateset * 423 ieee80211_get_suphtrates(struct ieee80211com *ic, 424 const struct ieee80211_channel *c) 425 { 426 #define ADDRATE(x) do { \ 427 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 428 htrateset.rs_nrates++; \ 429 } while (0) 430 int i; 431 432 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 433 for (i = 0; i < ic->ic_txstream * 8; i++) 434 ADDRATE(i); 435 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 436 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 437 ADDRATE(32); 438 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 439 if (ic->ic_txstream >= 2) { 440 for (i = 33; i <= 38; i++) 441 ADDRATE(i); 442 } 443 if (ic->ic_txstream >= 3) { 444 for (i = 39; i <= 52; i++) 445 ADDRATE(i); 446 } 447 if (ic->ic_txstream == 4) { 448 for (i = 53; i <= 76; i++) 449 ADDRATE(i); 450 } 451 } 452 return &htrateset; 453 #undef ADDRATE 454 } 455 456 /* 457 * Receive processing. 458 */ 459 460 /* 461 * Decap the encapsulated A-MSDU frames and dispatch all but 462 * the last for delivery. The last frame is returned for 463 * delivery via the normal path. 464 */ 465 struct mbuf * 466 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 467 { 468 struct ieee80211vap *vap = ni->ni_vap; 469 int framelen; 470 struct mbuf *n; 471 472 /* discard 802.3 header inserted by ieee80211_decap */ 473 m_adj(m, sizeof(struct ether_header)); 474 475 vap->iv_stats.is_amsdu_decap++; 476 477 for (;;) { 478 /* 479 * Decap the first frame, bust it apart from the 480 * remainder and deliver. We leave the last frame 481 * delivery to the caller (for consistency with other 482 * code paths, could also do it here). 483 */ 484 m = ieee80211_decap1(m, &framelen); 485 if (m == NULL) { 486 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 487 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 488 vap->iv_stats.is_amsdu_tooshort++; 489 return NULL; 490 } 491 if (m->m_pkthdr.len == framelen) 492 break; 493 n = m_split(m, framelen, M_NOWAIT); 494 if (n == NULL) { 495 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 496 ni->ni_macaddr, "a-msdu", 497 "%s", "unable to split encapsulated frames"); 498 vap->iv_stats.is_amsdu_split++; 499 m_freem(m); /* NB: must reclaim */ 500 return NULL; 501 } 502 vap->iv_deliver_data(vap, ni, m); 503 504 /* 505 * Remove frame contents; each intermediate frame 506 * is required to be aligned to a 4-byte boundary. 507 */ 508 m = n; 509 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 510 } 511 return m; /* last delivered by caller */ 512 } 513 514 /* 515 * Purge all frames in the A-MPDU re-order queue. 516 */ 517 static void 518 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 519 { 520 struct mbuf *m; 521 int i; 522 523 for (i = 0; i < rap->rxa_wnd; i++) { 524 m = rap->rxa_m[i]; 525 if (m != NULL) { 526 rap->rxa_m[i] = NULL; 527 rap->rxa_qbytes -= m->m_pkthdr.len; 528 m_freem(m); 529 if (--rap->rxa_qframes == 0) 530 break; 531 } 532 } 533 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 534 ("lost %u data, %u frames on ampdu rx q", 535 rap->rxa_qbytes, rap->rxa_qframes)); 536 } 537 538 /* 539 * Start A-MPDU rx/re-order processing for the specified TID. 540 */ 541 static int 542 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 543 int baparamset, int batimeout, int baseqctl) 544 { 545 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 546 547 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 548 /* 549 * AMPDU previously setup and not terminated with a DELBA, 550 * flush the reorder q's in case anything remains. 551 */ 552 ampdu_rx_purge(rap); 553 } 554 memset(rap, 0, sizeof(*rap)); 555 rap->rxa_wnd = (bufsiz == 0) ? 556 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 557 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 558 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 559 560 return 0; 561 } 562 563 /* 564 * Stop A-MPDU rx processing for the specified TID. 565 */ 566 static void 567 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 568 { 569 570 ampdu_rx_purge(rap); 571 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 572 } 573 574 /* 575 * Dispatch a frame from the A-MPDU reorder queue. The 576 * frame is fed back into ieee80211_input marked with an 577 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 578 * permits ieee80211_input to optimize re-processing). 579 */ 580 static __inline void 581 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 582 { 583 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 584 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 585 (void) ieee80211_input(ni, m, 0, 0); 586 } 587 588 /* 589 * Dispatch as many frames as possible from the re-order queue. 590 * Frames will always be "at the front"; we process all frames 591 * up to the first empty slot in the window. On completion we 592 * cleanup state if there are still pending frames in the current 593 * BA window. We assume the frame at slot 0 is already handled 594 * by the caller; we always start at slot 1. 595 */ 596 static void 597 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 598 { 599 struct ieee80211vap *vap = ni->ni_vap; 600 struct mbuf *m; 601 int i; 602 603 /* flush run of frames */ 604 for (i = 1; i < rap->rxa_wnd; i++) { 605 m = rap->rxa_m[i]; 606 if (m == NULL) 607 break; 608 rap->rxa_m[i] = NULL; 609 rap->rxa_qbytes -= m->m_pkthdr.len; 610 rap->rxa_qframes--; 611 612 ampdu_dispatch(ni, m); 613 } 614 /* 615 * If frames remain, copy the mbuf pointers down so 616 * they correspond to the offsets in the new window. 617 */ 618 if (rap->rxa_qframes != 0) { 619 int n = rap->rxa_qframes, j; 620 for (j = i+1; j < rap->rxa_wnd; j++) { 621 if (rap->rxa_m[j] != NULL) { 622 rap->rxa_m[j-i] = rap->rxa_m[j]; 623 rap->rxa_m[j] = NULL; 624 if (--n == 0) 625 break; 626 } 627 } 628 KASSERT(n == 0, ("lost %d frames", n)); 629 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 630 } 631 /* 632 * Adjust the start of the BA window to 633 * reflect the frames just dispatched. 634 */ 635 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 636 vap->iv_stats.is_ampdu_rx_oor += i; 637 } 638 639 #ifdef IEEE80211_AMPDU_AGE 640 /* 641 * Dispatch all frames in the A-MPDU re-order queue. 642 */ 643 static void 644 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 645 { 646 struct ieee80211vap *vap = ni->ni_vap; 647 struct mbuf *m; 648 int i; 649 650 for (i = 0; i < rap->rxa_wnd; i++) { 651 m = rap->rxa_m[i]; 652 if (m == NULL) 653 continue; 654 rap->rxa_m[i] = NULL; 655 rap->rxa_qbytes -= m->m_pkthdr.len; 656 rap->rxa_qframes--; 657 vap->iv_stats.is_ampdu_rx_oor++; 658 659 ampdu_dispatch(ni, m); 660 if (rap->rxa_qframes == 0) 661 break; 662 } 663 } 664 #endif /* IEEE80211_AMPDU_AGE */ 665 666 /* 667 * Dispatch all frames in the A-MPDU re-order queue 668 * preceding the specified sequence number. This logic 669 * handles window moves due to a received MSDU or BAR. 670 */ 671 static void 672 ampdu_rx_flush_upto(struct ieee80211_node *ni, 673 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 674 { 675 struct ieee80211vap *vap = ni->ni_vap; 676 struct mbuf *m; 677 ieee80211_seq seqno; 678 int i; 679 680 /* 681 * Flush any complete MSDU's with a sequence number lower 682 * than winstart. Gaps may exist. Note that we may actually 683 * dispatch frames past winstart if a run continues; this is 684 * an optimization that avoids having to do a separate pass 685 * to dispatch frames after moving the BA window start. 686 */ 687 seqno = rap->rxa_start; 688 for (i = 0; i < rap->rxa_wnd; i++) { 689 m = rap->rxa_m[i]; 690 if (m != NULL) { 691 rap->rxa_m[i] = NULL; 692 rap->rxa_qbytes -= m->m_pkthdr.len; 693 rap->rxa_qframes--; 694 vap->iv_stats.is_ampdu_rx_oor++; 695 696 ampdu_dispatch(ni, m); 697 } else { 698 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 699 break; 700 } 701 seqno = IEEE80211_SEQ_INC(seqno); 702 } 703 /* 704 * If frames remain, copy the mbuf pointers down so 705 * they correspond to the offsets in the new window. 706 */ 707 if (rap->rxa_qframes != 0) { 708 int n = rap->rxa_qframes, j; 709 710 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 711 KASSERT(rap->rxa_m[0] == NULL, 712 ("%s: BA window slot 0 occupied", __func__)); 713 for (j = i+1; j < rap->rxa_wnd; j++) { 714 if (rap->rxa_m[j] != NULL) { 715 rap->rxa_m[j-i] = rap->rxa_m[j]; 716 rap->rxa_m[j] = NULL; 717 if (--n == 0) 718 break; 719 } 720 } 721 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 722 "BA win <%d:%d> winstart %d", 723 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 724 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 725 winstart)); 726 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 727 } 728 /* 729 * Move the start of the BA window; we use the 730 * sequence number of the last MSDU that was 731 * passed up the stack+1 or winstart if stopped on 732 * a gap in the reorder buffer. 733 */ 734 rap->rxa_start = seqno; 735 } 736 737 /* 738 * Process a received QoS data frame for an HT station. Handle 739 * A-MPDU reordering: if this frame is received out of order 740 * and falls within the BA window hold onto it. Otherwise if 741 * this frame completes a run, flush any pending frames. We 742 * return 1 if the frame is consumed. A 0 is returned if 743 * the frame should be processed normally by the caller. 744 */ 745 int 746 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 747 { 748 #define IEEE80211_FC0_QOSDATA \ 749 (IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0) 750 #define PROCESS 0 /* caller should process frame */ 751 #define CONSUMED 1 /* frame consumed, caller does nothing */ 752 struct ieee80211vap *vap = ni->ni_vap; 753 struct ieee80211_qosframe *wh; 754 struct ieee80211_rx_ampdu *rap; 755 ieee80211_seq rxseq; 756 uint8_t tid; 757 int off; 758 759 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 760 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 761 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 762 763 /* NB: m_len known to be sufficient */ 764 wh = mtod(m, struct ieee80211_qosframe *); 765 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 766 /* 767 * Not QoS data, shouldn't get here but just 768 * return it to the caller for processing. 769 */ 770 return PROCESS; 771 } 772 if (IEEE80211_IS_DSTODS(wh)) 773 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 774 else 775 tid = wh->i_qos[0]; 776 tid &= IEEE80211_QOS_TID; 777 rap = &ni->ni_rx_ampdu[tid]; 778 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 779 /* 780 * No ADDBA request yet, don't touch. 781 */ 782 return PROCESS; 783 } 784 rxseq = le16toh(*(uint16_t *)wh->i_seq); 785 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 786 /* 787 * Fragments are not allowed; toss. 788 */ 789 IEEE80211_DISCARD_MAC(vap, 790 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 791 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 792 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 793 vap->iv_stats.is_ampdu_rx_drop++; 794 IEEE80211_NODE_STAT(ni, rx_drop); 795 m_freem(m); 796 return CONSUMED; 797 } 798 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 799 rap->rxa_nframes++; 800 again: 801 if (rxseq == rap->rxa_start) { 802 /* 803 * First frame in window. 804 */ 805 if (rap->rxa_qframes != 0) { 806 /* 807 * Dispatch as many packets as we can. 808 */ 809 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 810 ampdu_dispatch(ni, m); 811 ampdu_rx_dispatch(rap, ni); 812 return CONSUMED; 813 } else { 814 /* 815 * In order; advance window and notify 816 * caller to dispatch directly. 817 */ 818 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 819 return PROCESS; 820 } 821 } 822 /* 823 * Frame is out of order; store if in the BA window. 824 */ 825 /* calculate offset in BA window */ 826 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 827 if (off < rap->rxa_wnd) { 828 /* 829 * Common case (hopefully): in the BA window. 830 * Sec 9.10.7.6.2 a) (p.137) 831 */ 832 #ifdef IEEE80211_AMPDU_AGE 833 /* 834 * Check for frames sitting too long in the reorder queue. 835 * This should only ever happen if frames are not delivered 836 * without the sender otherwise notifying us (e.g. with a 837 * BAR to move the window). Typically this happens because 838 * of vendor bugs that cause the sequence number to jump. 839 * When this happens we get a gap in the reorder queue that 840 * leaves frame sitting on the queue until they get pushed 841 * out due to window moves. When the vendor does not send 842 * BAR this move only happens due to explicit packet sends 843 * 844 * NB: we only track the time of the oldest frame in the 845 * reorder q; this means that if we flush we might push 846 * frames that still "new"; if this happens then subsequent 847 * frames will result in BA window moves which cost something 848 * but is still better than a big throughput dip. 849 */ 850 if (rap->rxa_qframes != 0) { 851 /* XXX honor batimeout? */ 852 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 853 /* 854 * Too long since we received the first 855 * frame; flush the reorder buffer. 856 */ 857 if (rap->rxa_qframes != 0) { 858 vap->iv_stats.is_ampdu_rx_age += 859 rap->rxa_qframes; 860 ampdu_rx_flush(ni, rap); 861 } 862 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 863 return PROCESS; 864 } 865 } else { 866 /* 867 * First frame, start aging timer. 868 */ 869 rap->rxa_age = ticks; 870 } 871 #endif /* IEEE80211_AMPDU_AGE */ 872 /* save packet */ 873 if (rap->rxa_m[off] == NULL) { 874 rap->rxa_m[off] = m; 875 rap->rxa_qframes++; 876 rap->rxa_qbytes += m->m_pkthdr.len; 877 vap->iv_stats.is_ampdu_rx_reorder++; 878 } else { 879 IEEE80211_DISCARD_MAC(vap, 880 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 881 ni->ni_macaddr, "a-mpdu duplicate", 882 "seqno %u tid %u BA win <%u:%u>", 883 rxseq, tid, rap->rxa_start, 884 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 885 vap->iv_stats.is_rx_dup++; 886 IEEE80211_NODE_STAT(ni, rx_dup); 887 m_freem(m); 888 } 889 return CONSUMED; 890 } 891 if (off < IEEE80211_SEQ_BA_RANGE) { 892 /* 893 * Outside the BA window, but within range; 894 * flush the reorder q and move the window. 895 * Sec 9.10.7.6.2 b) (p.138) 896 */ 897 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 898 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 899 rap->rxa_start, 900 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 901 rap->rxa_qframes, rxseq, tid); 902 vap->iv_stats.is_ampdu_rx_move++; 903 904 /* 905 * The spec says to flush frames up to but not including: 906 * WinStart_B = rxseq - rap->rxa_wnd + 1 907 * Then insert the frame or notify the caller to process 908 * it immediately. We can safely do this by just starting 909 * over again because we know the frame will now be within 910 * the BA window. 911 */ 912 /* NB: rxa_wnd known to be >0 */ 913 ampdu_rx_flush_upto(ni, rap, 914 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 915 goto again; 916 } else { 917 /* 918 * Outside the BA window and out of range; toss. 919 * Sec 9.10.7.6.2 c) (p.138) 920 */ 921 IEEE80211_DISCARD_MAC(vap, 922 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 923 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 924 rap->rxa_start, 925 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 926 rap->rxa_qframes, rxseq, tid, 927 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 928 vap->iv_stats.is_ampdu_rx_drop++; 929 IEEE80211_NODE_STAT(ni, rx_drop); 930 m_freem(m); 931 return CONSUMED; 932 } 933 #undef CONSUMED 934 #undef PROCESS 935 #undef IEEE80211_FC0_QOSDATA 936 } 937 938 /* 939 * Process a BAR ctl frame. Dispatch all frames up to 940 * the sequence number of the frame. If this frame is 941 * out of range it's discarded. 942 */ 943 void 944 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 945 { 946 struct ieee80211vap *vap = ni->ni_vap; 947 struct ieee80211_frame_bar *wh; 948 struct ieee80211_rx_ampdu *rap; 949 ieee80211_seq rxseq; 950 int tid, off; 951 952 if (!ieee80211_recv_bar_ena) { 953 #if 0 954 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 955 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 956 #endif 957 vap->iv_stats.is_ampdu_bar_bad++; 958 return; 959 } 960 wh = mtod(m0, struct ieee80211_frame_bar *); 961 /* XXX check basic BAR */ 962 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 963 rap = &ni->ni_rx_ampdu[tid]; 964 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 965 /* 966 * No ADDBA request yet, don't touch. 967 */ 968 IEEE80211_DISCARD_MAC(vap, 969 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 970 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 971 vap->iv_stats.is_ampdu_bar_bad++; 972 return; 973 } 974 vap->iv_stats.is_ampdu_bar_rx++; 975 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 976 if (rxseq == rap->rxa_start) 977 return; 978 /* calculate offset in BA window */ 979 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 980 if (off < IEEE80211_SEQ_BA_RANGE) { 981 /* 982 * Flush the reorder q up to rxseq and move the window. 983 * Sec 9.10.7.6.3 a) (p.138) 984 */ 985 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 986 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 987 rap->rxa_start, 988 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 989 rap->rxa_qframes, rxseq, tid); 990 vap->iv_stats.is_ampdu_bar_move++; 991 992 ampdu_rx_flush_upto(ni, rap, rxseq); 993 if (off >= rap->rxa_wnd) { 994 /* 995 * BAR specifies a window start to the right of BA 996 * window; we must move it explicitly since 997 * ampdu_rx_flush_upto will not. 998 */ 999 rap->rxa_start = rxseq; 1000 } 1001 } else { 1002 /* 1003 * Out of range; toss. 1004 * Sec 9.10.7.6.3 b) (p.138) 1005 */ 1006 IEEE80211_DISCARD_MAC(vap, 1007 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1008 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1009 rap->rxa_start, 1010 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1011 rap->rxa_qframes, rxseq, tid, 1012 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1013 vap->iv_stats.is_ampdu_bar_oow++; 1014 IEEE80211_NODE_STAT(ni, rx_drop); 1015 } 1016 } 1017 1018 /* 1019 * Setup HT-specific state in a node. Called only 1020 * when HT use is negotiated so we don't do extra 1021 * work for temporary and/or legacy sta's. 1022 */ 1023 void 1024 ieee80211_ht_node_init(struct ieee80211_node *ni) 1025 { 1026 struct ieee80211_tx_ampdu *tap; 1027 int tid; 1028 1029 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1030 ni, 1031 "%s: called", 1032 __func__); 1033 1034 if (ni->ni_flags & IEEE80211_NODE_HT) { 1035 /* 1036 * Clean AMPDU state on re-associate. This handles the case 1037 * where a station leaves w/o notifying us and then returns 1038 * before node is reaped for inactivity. 1039 */ 1040 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1041 ni, 1042 "%s: calling cleanup", 1043 __func__); 1044 ieee80211_ht_node_cleanup(ni); 1045 } 1046 for (tid = 0; tid < WME_NUM_TID; tid++) { 1047 tap = &ni->ni_tx_ampdu[tid]; 1048 tap->txa_tid = tid; 1049 tap->txa_ni = ni; 1050 /* NB: further initialization deferred */ 1051 } 1052 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1053 } 1054 1055 /* 1056 * Cleanup HT-specific state in a node. Called only 1057 * when HT use has been marked. 1058 */ 1059 void 1060 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1061 { 1062 struct ieee80211com *ic = ni->ni_ic; 1063 int i; 1064 1065 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1066 ni, 1067 "%s: called", 1068 __func__); 1069 1070 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1071 1072 /* XXX optimize this */ 1073 for (i = 0; i < WME_NUM_TID; i++) { 1074 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1075 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1076 ampdu_tx_stop(tap); 1077 } 1078 for (i = 0; i < WME_NUM_TID; i++) 1079 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1080 1081 ni->ni_htcap = 0; 1082 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1083 } 1084 1085 /* 1086 * Age out HT resources for a station. 1087 */ 1088 void 1089 ieee80211_ht_node_age(struct ieee80211_node *ni) 1090 { 1091 #ifdef IEEE80211_AMPDU_AGE 1092 struct ieee80211vap *vap = ni->ni_vap; 1093 uint8_t tid; 1094 #endif 1095 1096 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1097 1098 #ifdef IEEE80211_AMPDU_AGE 1099 for (tid = 0; tid < WME_NUM_TID; tid++) { 1100 struct ieee80211_rx_ampdu *rap; 1101 1102 rap = &ni->ni_rx_ampdu[tid]; 1103 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1104 continue; 1105 if (rap->rxa_qframes == 0) 1106 continue; 1107 /* 1108 * Check for frames sitting too long in the reorder queue. 1109 * See above for more details on what's happening here. 1110 */ 1111 /* XXX honor batimeout? */ 1112 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1113 /* 1114 * Too long since we received the first 1115 * frame; flush the reorder buffer. 1116 */ 1117 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1118 ampdu_rx_flush(ni, rap); 1119 } 1120 } 1121 #endif /* IEEE80211_AMPDU_AGE */ 1122 } 1123 1124 static struct ieee80211_channel * 1125 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1126 { 1127 return ieee80211_find_channel(ic, c->ic_freq, 1128 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1129 } 1130 1131 /* 1132 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1133 */ 1134 struct ieee80211_channel * 1135 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1136 struct ieee80211_channel *chan, int flags) 1137 { 1138 struct ieee80211_channel *c; 1139 1140 if (flags & IEEE80211_FHT_HT) { 1141 /* promote to HT if possible */ 1142 if (flags & IEEE80211_FHT_USEHT40) { 1143 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1144 /* NB: arbitrarily pick ht40+ over ht40- */ 1145 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1146 if (c == NULL) 1147 c = findhtchan(ic, chan, 1148 IEEE80211_CHAN_HT40D); 1149 if (c == NULL) 1150 c = findhtchan(ic, chan, 1151 IEEE80211_CHAN_HT20); 1152 if (c != NULL) 1153 chan = c; 1154 } 1155 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1156 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1157 if (c != NULL) 1158 chan = c; 1159 } 1160 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1161 /* demote to legacy, HT use is disabled */ 1162 c = ieee80211_find_channel(ic, chan->ic_freq, 1163 chan->ic_flags &~ IEEE80211_CHAN_HT); 1164 if (c != NULL) 1165 chan = c; 1166 } 1167 return chan; 1168 } 1169 1170 /* 1171 * Setup HT-specific state for a legacy WDS peer. 1172 */ 1173 void 1174 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1175 { 1176 struct ieee80211vap *vap = ni->ni_vap; 1177 struct ieee80211_tx_ampdu *tap; 1178 int tid; 1179 1180 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1181 1182 /* XXX check scan cache in case peer has an ap and we have info */ 1183 /* 1184 * If setup with a legacy channel; locate an HT channel. 1185 * Otherwise if the inherited channel (from a companion 1186 * AP) is suitable use it so we use the same location 1187 * for the extension channel). 1188 */ 1189 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1190 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1191 1192 ni->ni_htcap = 0; 1193 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1194 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1195 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1196 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1197 ni->ni_chw = 40; 1198 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1199 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1200 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1201 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1202 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1203 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1204 } else { 1205 ni->ni_chw = 20; 1206 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1207 } 1208 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1209 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1210 ni->ni_flags |= IEEE80211_NODE_RIFS; 1211 /* XXX does it make sense to enable SMPS? */ 1212 1213 ni->ni_htopmode = 0; /* XXX need protection state */ 1214 ni->ni_htstbc = 0; /* XXX need info */ 1215 1216 for (tid = 0; tid < WME_NUM_TID; tid++) { 1217 tap = &ni->ni_tx_ampdu[tid]; 1218 tap->txa_tid = tid; 1219 } 1220 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1221 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1222 } 1223 1224 /* 1225 * Notify hostap vaps of a change in the HTINFO ie. 1226 */ 1227 static void 1228 htinfo_notify(struct ieee80211com *ic) 1229 { 1230 struct ieee80211vap *vap; 1231 int first = 1; 1232 1233 IEEE80211_LOCK_ASSERT(ic); 1234 1235 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1236 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1237 continue; 1238 if (vap->iv_state != IEEE80211_S_RUN || 1239 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1240 continue; 1241 if (first) { 1242 IEEE80211_NOTE(vap, 1243 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1244 vap->iv_bss, 1245 "HT bss occupancy change: %d sta, %d ht, " 1246 "%d ht40%s, HT protmode now 0x%x" 1247 , ic->ic_sta_assoc 1248 , ic->ic_ht_sta_assoc 1249 , ic->ic_ht40_sta_assoc 1250 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1251 ", non-HT sta present" : "" 1252 , ic->ic_curhtprotmode); 1253 first = 0; 1254 } 1255 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1256 } 1257 } 1258 1259 /* 1260 * Calculate HT protection mode from current 1261 * state and handle updates. 1262 */ 1263 static void 1264 htinfo_update(struct ieee80211com *ic) 1265 { 1266 uint8_t protmode; 1267 1268 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1269 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1270 | IEEE80211_HTINFO_NONHT_PRESENT; 1271 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1272 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1273 | IEEE80211_HTINFO_NONHT_PRESENT; 1274 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1275 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1276 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1277 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1278 } else { 1279 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1280 } 1281 if (protmode != ic->ic_curhtprotmode) { 1282 ic->ic_curhtprotmode = protmode; 1283 htinfo_notify(ic); 1284 } 1285 } 1286 1287 /* 1288 * Handle an HT station joining a BSS. 1289 */ 1290 void 1291 ieee80211_ht_node_join(struct ieee80211_node *ni) 1292 { 1293 struct ieee80211com *ic = ni->ni_ic; 1294 1295 IEEE80211_LOCK_ASSERT(ic); 1296 1297 if (ni->ni_flags & IEEE80211_NODE_HT) { 1298 ic->ic_ht_sta_assoc++; 1299 if (ni->ni_chw == 40) 1300 ic->ic_ht40_sta_assoc++; 1301 } 1302 htinfo_update(ic); 1303 } 1304 1305 /* 1306 * Handle an HT station leaving a BSS. 1307 */ 1308 void 1309 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1310 { 1311 struct ieee80211com *ic = ni->ni_ic; 1312 1313 IEEE80211_LOCK_ASSERT(ic); 1314 1315 if (ni->ni_flags & IEEE80211_NODE_HT) { 1316 ic->ic_ht_sta_assoc--; 1317 if (ni->ni_chw == 40) 1318 ic->ic_ht40_sta_assoc--; 1319 } 1320 htinfo_update(ic); 1321 } 1322 1323 /* 1324 * Public version of htinfo_update; used for processing 1325 * beacon frames from overlapping bss. 1326 * 1327 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1328 * (on receipt of a beacon that advertises MIXED) or 1329 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1330 * from an overlapping legacy bss). We treat MIXED with 1331 * a higher precedence than PROTOPT (i.e. we will not change 1332 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1333 * corresponds to how we handle things in htinfo_update. 1334 */ 1335 void 1336 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1337 { 1338 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1339 IEEE80211_LOCK(ic); 1340 1341 /* track non-HT station presence */ 1342 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1343 ("protmode 0x%x", protmode)); 1344 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1345 ic->ic_lastnonht = ticks; 1346 1347 if (protmode != ic->ic_curhtprotmode && 1348 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1349 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1350 /* push beacon update */ 1351 ic->ic_curhtprotmode = protmode; 1352 htinfo_notify(ic); 1353 } 1354 IEEE80211_UNLOCK(ic); 1355 #undef OPMODE 1356 } 1357 1358 /* 1359 * Time out presence of an overlapping bss with non-HT 1360 * stations. When operating in hostap mode we listen for 1361 * beacons from other stations and if we identify a non-HT 1362 * station is present we update the opmode field of the 1363 * HTINFO ie. To identify when all non-HT stations are 1364 * gone we time out this condition. 1365 */ 1366 void 1367 ieee80211_ht_timeout(struct ieee80211com *ic) 1368 { 1369 IEEE80211_LOCK_ASSERT(ic); 1370 1371 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1372 time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1373 #if 0 1374 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1375 "%s", "time out non-HT STA present on channel"); 1376 #endif 1377 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1378 htinfo_update(ic); 1379 } 1380 } 1381 1382 /* unalligned little endian access */ 1383 #define LE_READ_2(p) \ 1384 ((uint16_t) \ 1385 ((((const uint8_t *)(p))[0] ) | \ 1386 (((const uint8_t *)(p))[1] << 8))) 1387 1388 /* 1389 * Process an 802.11n HT capabilities ie. 1390 */ 1391 void 1392 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1393 { 1394 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1395 /* 1396 * Station used Vendor OUI ie to associate; 1397 * mark the node so when we respond we'll use 1398 * the Vendor OUI's and not the standard ie's. 1399 */ 1400 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1401 ie += 4; 1402 } else 1403 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1404 1405 ni->ni_htcap = LE_READ_2(ie + 1406 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1407 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1408 } 1409 1410 static void 1411 htinfo_parse(struct ieee80211_node *ni, 1412 const struct ieee80211_ie_htinfo *htinfo) 1413 { 1414 uint16_t w; 1415 1416 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1417 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1418 w = LE_READ_2(&htinfo->hi_byte2); 1419 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1420 w = LE_READ_2(&htinfo->hi_byte45); 1421 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1422 } 1423 1424 /* 1425 * Parse an 802.11n HT info ie and save useful information 1426 * to the node state. Note this does not effect any state 1427 * changes such as for channel width change. 1428 */ 1429 void 1430 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1431 { 1432 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1433 ie += 4; 1434 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1435 } 1436 1437 /* 1438 * Handle 11n channel switch. Use the received HT ie's to 1439 * identify the right channel to use. If we cannot locate it 1440 * in the channel table then fallback to legacy operation. 1441 * Note that we use this information to identify the node's 1442 * channel only; the caller is responsible for insuring any 1443 * required channel change is done (e.g. in sta mode when 1444 * parsing the contents of a beacon frame). 1445 */ 1446 static int 1447 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1448 { 1449 struct ieee80211com *ic = ni->ni_ic; 1450 struct ieee80211_channel *c; 1451 int chanflags; 1452 int ret = 0; 1453 1454 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1455 if (chanflags != ni->ni_chan->ic_flags) { 1456 /* XXX not right for ht40- */ 1457 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1458 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1459 /* 1460 * No HT40 channel entry in our table; fall back 1461 * to HT20 operation. This should not happen. 1462 */ 1463 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1464 #if 0 1465 IEEE80211_NOTE(ni->ni_vap, 1466 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1467 "no HT40 channel (freq %u), falling back to HT20", 1468 ni->ni_chan->ic_freq); 1469 #endif 1470 /* XXX stat */ 1471 } 1472 if (c != NULL && c != ni->ni_chan) { 1473 IEEE80211_NOTE(ni->ni_vap, 1474 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1475 "switch station to HT%d channel %u/0x%x", 1476 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1477 c->ic_freq, c->ic_flags); 1478 ni->ni_chan = c; 1479 ret = 1; 1480 } 1481 /* NB: caller responsible for forcing any channel change */ 1482 } 1483 /* update node's tx channel width */ 1484 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1485 return (ret); 1486 } 1487 1488 /* 1489 * Update 11n MIMO PS state according to received htcap. 1490 */ 1491 static __inline int 1492 htcap_update_mimo_ps(struct ieee80211_node *ni) 1493 { 1494 uint16_t oflags = ni->ni_flags; 1495 1496 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1497 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1498 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1499 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1500 break; 1501 case IEEE80211_HTCAP_SMPS_ENA: 1502 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1503 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1504 break; 1505 case IEEE80211_HTCAP_SMPS_OFF: 1506 default: /* disable on rx of reserved value */ 1507 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1508 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1509 break; 1510 } 1511 return (oflags ^ ni->ni_flags); 1512 } 1513 1514 /* 1515 * Update short GI state according to received htcap 1516 * and local settings. 1517 */ 1518 static __inline void 1519 htcap_update_shortgi(struct ieee80211_node *ni) 1520 { 1521 struct ieee80211vap *vap = ni->ni_vap; 1522 1523 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1524 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1525 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1526 ni->ni_flags |= IEEE80211_NODE_SGI20; 1527 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1528 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1529 ni->ni_flags |= IEEE80211_NODE_SGI40; 1530 } 1531 1532 /* 1533 * Parse and update HT-related state extracted from 1534 * the HT cap and info ie's. 1535 */ 1536 int 1537 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1538 const uint8_t *htcapie, const uint8_t *htinfoie) 1539 { 1540 struct ieee80211vap *vap = ni->ni_vap; 1541 const struct ieee80211_ie_htinfo *htinfo; 1542 int htflags; 1543 int ret = 0; 1544 1545 ieee80211_parse_htcap(ni, htcapie); 1546 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1547 htcap_update_mimo_ps(ni); 1548 htcap_update_shortgi(ni); 1549 1550 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1551 htinfoie += 4; 1552 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1553 htinfo_parse(ni, htinfo); 1554 1555 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1556 IEEE80211_CHAN_HT20 : 0; 1557 /* NB: honor operating mode constraint */ 1558 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1559 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1560 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1561 htflags = IEEE80211_CHAN_HT40U; 1562 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1563 htflags = IEEE80211_CHAN_HT40D; 1564 } 1565 if (htinfo_update_chw(ni, htflags)) 1566 ret = 1; 1567 1568 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1569 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1570 ni->ni_flags |= IEEE80211_NODE_RIFS; 1571 else 1572 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1573 1574 return (ret); 1575 } 1576 1577 /* 1578 * Parse and update HT-related state extracted from the HT cap ie 1579 * for a station joining an HT BSS. 1580 */ 1581 void 1582 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1583 { 1584 struct ieee80211vap *vap = ni->ni_vap; 1585 int htflags; 1586 1587 ieee80211_parse_htcap(ni, htcapie); 1588 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1589 htcap_update_mimo_ps(ni); 1590 htcap_update_shortgi(ni); 1591 1592 /* NB: honor operating mode constraint */ 1593 /* XXX 40 MHz intolerant */ 1594 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1595 IEEE80211_CHAN_HT20 : 0; 1596 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1597 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1598 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1599 htflags = IEEE80211_CHAN_HT40U; 1600 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1601 htflags = IEEE80211_CHAN_HT40D; 1602 } 1603 (void) htinfo_update_chw(ni, htflags); 1604 } 1605 1606 /* 1607 * Install received HT rate set by parsing the HT cap ie. 1608 */ 1609 int 1610 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1611 { 1612 struct ieee80211com *ic = ni->ni_ic; 1613 struct ieee80211vap *vap = ni->ni_vap; 1614 const struct ieee80211_ie_htcap *htcap; 1615 struct ieee80211_htrateset *rs; 1616 int i, maxequalmcs, maxunequalmcs; 1617 1618 maxequalmcs = ic->ic_txstream * 8 - 1; 1619 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1620 if (ic->ic_txstream >= 2) 1621 maxunequalmcs = 38; 1622 if (ic->ic_txstream >= 3) 1623 maxunequalmcs = 52; 1624 if (ic->ic_txstream >= 4) 1625 maxunequalmcs = 76; 1626 } else 1627 maxunequalmcs = 0; 1628 1629 rs = &ni->ni_htrates; 1630 memset(rs, 0, sizeof(*rs)); 1631 if (ie != NULL) { 1632 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1633 ie += 4; 1634 htcap = (const struct ieee80211_ie_htcap *) ie; 1635 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1636 if (isclr(htcap->hc_mcsset, i)) 1637 continue; 1638 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1639 IEEE80211_NOTE(vap, 1640 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1641 "WARNING, HT rate set too large; only " 1642 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1643 vap->iv_stats.is_rx_rstoobig++; 1644 break; 1645 } 1646 if (i <= 31 && i > maxequalmcs) 1647 continue; 1648 if (i == 32 && 1649 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1650 continue; 1651 if (i > 32 && i > maxunequalmcs) 1652 continue; 1653 rs->rs_rates[rs->rs_nrates++] = i; 1654 } 1655 } 1656 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1657 } 1658 1659 /* 1660 * Mark rates in a node's HT rate set as basic according 1661 * to the information in the supplied HT info ie. 1662 */ 1663 void 1664 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1665 { 1666 const struct ieee80211_ie_htinfo *htinfo; 1667 struct ieee80211_htrateset *rs; 1668 int i, j; 1669 1670 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1671 ie += 4; 1672 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1673 rs = &ni->ni_htrates; 1674 if (rs->rs_nrates == 0) { 1675 IEEE80211_NOTE(ni->ni_vap, 1676 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1677 "%s", "WARNING, empty HT rate set"); 1678 return; 1679 } 1680 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1681 if (isclr(htinfo->hi_basicmcsset, i)) 1682 continue; 1683 for (j = 0; j < rs->rs_nrates; j++) 1684 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1685 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1686 } 1687 } 1688 1689 static void 1690 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1691 { 1692 callout_init(&tap->txa_timer, CALLOUT_MPSAFE); 1693 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1694 } 1695 1696 static void 1697 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1698 { 1699 struct ieee80211_node *ni = tap->txa_ni; 1700 struct ieee80211com *ic = ni->ni_ic; 1701 1702 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1703 tap->txa_ni, 1704 "%s: called", 1705 __func__); 1706 1707 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1708 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1709 TID_TO_WME_AC(tap->txa_tid))); 1710 1711 /* 1712 * Stop BA stream if setup so driver has a chance 1713 * to reclaim any resources it might have allocated. 1714 */ 1715 ic->ic_addba_stop(ni, tap); 1716 /* 1717 * Stop any pending BAR transmit. 1718 */ 1719 bar_stop_timer(tap); 1720 1721 tap->txa_lastsample = 0; 1722 tap->txa_avgpps = 0; 1723 /* NB: clearing NAK means we may re-send ADDBA */ 1724 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1725 } 1726 1727 /* 1728 * ADDBA response timeout. 1729 * 1730 * If software aggregation and per-TID queue management was done here, 1731 * that queue would be unpaused after the ADDBA timeout occurs. 1732 */ 1733 static void 1734 addba_timeout(void *arg) 1735 { 1736 struct ieee80211_tx_ampdu *tap = arg; 1737 struct ieee80211_node *ni = tap->txa_ni; 1738 struct ieee80211com *ic = ni->ni_ic; 1739 1740 /* XXX ? */ 1741 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1742 tap->txa_attempts++; 1743 ic->ic_addba_response_timeout(ni, tap); 1744 } 1745 1746 static void 1747 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1748 { 1749 /* XXX use CALLOUT_PENDING instead? */ 1750 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1751 addba_timeout, tap); 1752 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1753 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1754 } 1755 1756 static void 1757 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1758 { 1759 /* XXX use CALLOUT_PENDING instead? */ 1760 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1761 callout_stop(&tap->txa_timer); 1762 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1763 } 1764 } 1765 1766 static void 1767 null_addba_response_timeout(struct ieee80211_node *ni, 1768 struct ieee80211_tx_ampdu *tap) 1769 { 1770 } 1771 1772 /* 1773 * Default method for requesting A-MPDU tx aggregation. 1774 * We setup the specified state block and start a timer 1775 * to wait for an ADDBA response frame. 1776 */ 1777 static int 1778 ieee80211_addba_request(struct ieee80211_node *ni, 1779 struct ieee80211_tx_ampdu *tap, 1780 int dialogtoken, int baparamset, int batimeout) 1781 { 1782 int bufsiz; 1783 1784 /* XXX locking */ 1785 tap->txa_token = dialogtoken; 1786 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1787 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1788 tap->txa_wnd = (bufsiz == 0) ? 1789 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1790 addba_start_timeout(tap); 1791 return 1; 1792 } 1793 1794 /* 1795 * Default method for processing an A-MPDU tx aggregation 1796 * response. We shutdown any pending timer and update the 1797 * state block according to the reply. 1798 */ 1799 static int 1800 ieee80211_addba_response(struct ieee80211_node *ni, 1801 struct ieee80211_tx_ampdu *tap, 1802 int status, int baparamset, int batimeout) 1803 { 1804 int bufsiz, tid; 1805 1806 /* XXX locking */ 1807 addba_stop_timeout(tap); 1808 if (status == IEEE80211_STATUS_SUCCESS) { 1809 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1810 /* XXX override our request? */ 1811 tap->txa_wnd = (bufsiz == 0) ? 1812 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1813 /* XXX AC/TID */ 1814 tid = MS(baparamset, IEEE80211_BAPS_TID); 1815 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1816 tap->txa_attempts = 0; 1817 } else { 1818 /* mark tid so we don't try again */ 1819 tap->txa_flags |= IEEE80211_AGGR_NAK; 1820 } 1821 return 1; 1822 } 1823 1824 /* 1825 * Default method for stopping A-MPDU tx aggregation. 1826 * Any timer is cleared and we drain any pending frames. 1827 */ 1828 static void 1829 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1830 { 1831 /* XXX locking */ 1832 addba_stop_timeout(tap); 1833 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1834 /* XXX clear aggregation queue */ 1835 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1836 } 1837 tap->txa_attempts = 0; 1838 } 1839 1840 /* 1841 * Process a received action frame using the default aggregation 1842 * policy. We intercept ADDBA-related frames and use them to 1843 * update our aggregation state. All other frames are passed up 1844 * for processing by ieee80211_recv_action. 1845 */ 1846 static int 1847 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1848 const struct ieee80211_frame *wh, 1849 const uint8_t *frm, const uint8_t *efrm) 1850 { 1851 struct ieee80211com *ic = ni->ni_ic; 1852 struct ieee80211vap *vap = ni->ni_vap; 1853 struct ieee80211_rx_ampdu *rap; 1854 uint8_t dialogtoken; 1855 uint16_t baparamset, batimeout, baseqctl; 1856 uint16_t args[5]; 1857 int tid; 1858 1859 dialogtoken = frm[2]; 1860 baparamset = LE_READ_2(frm+3); 1861 batimeout = LE_READ_2(frm+5); 1862 baseqctl = LE_READ_2(frm+7); 1863 1864 tid = MS(baparamset, IEEE80211_BAPS_TID); 1865 1866 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1867 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1868 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1869 dialogtoken, baparamset, 1870 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1871 batimeout, 1872 MS(baseqctl, IEEE80211_BASEQ_START), 1873 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1874 1875 rap = &ni->ni_rx_ampdu[tid]; 1876 1877 /* Send ADDBA response */ 1878 args[0] = dialogtoken; 1879 /* 1880 * NB: We ack only if the sta associated with HT and 1881 * the ap is configured to do AMPDU rx (the latter 1882 * violates the 11n spec and is mostly for testing). 1883 */ 1884 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1885 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1886 /* XXX handle ampdu_rx_start failure */ 1887 ic->ic_ampdu_rx_start(ni, rap, 1888 baparamset, batimeout, baseqctl); 1889 1890 args[1] = IEEE80211_STATUS_SUCCESS; 1891 } else { 1892 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1893 ni, "reject ADDBA request: %s", 1894 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1895 "administratively disabled" : 1896 "not negotiated for station"); 1897 vap->iv_stats.is_addba_reject++; 1898 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1899 } 1900 /* XXX honor rap flags? */ 1901 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1902 | SM(tid, IEEE80211_BAPS_TID) 1903 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1904 ; 1905 args[3] = 0; 1906 args[4] = 0; 1907 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1908 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1909 return 0; 1910 } 1911 1912 static int 1913 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 1914 const struct ieee80211_frame *wh, 1915 const uint8_t *frm, const uint8_t *efrm) 1916 { 1917 struct ieee80211com *ic = ni->ni_ic; 1918 struct ieee80211vap *vap = ni->ni_vap; 1919 struct ieee80211_tx_ampdu *tap; 1920 uint8_t dialogtoken, policy; 1921 uint16_t baparamset, batimeout, code; 1922 int tid, bufsiz; 1923 1924 dialogtoken = frm[2]; 1925 code = LE_READ_2(frm+3); 1926 baparamset = LE_READ_2(frm+5); 1927 tid = MS(baparamset, IEEE80211_BAPS_TID); 1928 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1929 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 1930 batimeout = LE_READ_2(frm+7); 1931 1932 tap = &ni->ni_tx_ampdu[tid]; 1933 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1934 IEEE80211_DISCARD_MAC(vap, 1935 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1936 ni->ni_macaddr, "ADDBA response", 1937 "no pending ADDBA, tid %d dialogtoken %u " 1938 "code %d", tid, dialogtoken, code); 1939 vap->iv_stats.is_addba_norequest++; 1940 return 0; 1941 } 1942 if (dialogtoken != tap->txa_token) { 1943 IEEE80211_DISCARD_MAC(vap, 1944 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1945 ni->ni_macaddr, "ADDBA response", 1946 "dialogtoken mismatch: waiting for %d, " 1947 "received %d, tid %d code %d", 1948 tap->txa_token, dialogtoken, tid, code); 1949 vap->iv_stats.is_addba_badtoken++; 1950 return 0; 1951 } 1952 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 1953 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 1954 IEEE80211_DISCARD_MAC(vap, 1955 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1956 ni->ni_macaddr, "ADDBA response", 1957 "policy mismatch: expecting %s, " 1958 "received %s, tid %d code %d", 1959 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 1960 policy, tid, code); 1961 vap->iv_stats.is_addba_badpolicy++; 1962 return 0; 1963 } 1964 #if 0 1965 /* XXX we take MIN in ieee80211_addba_response */ 1966 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 1967 IEEE80211_DISCARD_MAC(vap, 1968 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1969 ni->ni_macaddr, "ADDBA response", 1970 "BA window too large: max %d, " 1971 "received %d, tid %d code %d", 1972 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 1973 vap->iv_stats.is_addba_badbawinsize++; 1974 return 0; 1975 } 1976 #endif 1977 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1978 "recv ADDBA response: dialogtoken %u code %d " 1979 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 1980 dialogtoken, code, baparamset, tid, bufsiz, 1981 batimeout); 1982 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 1983 return 0; 1984 } 1985 1986 static int 1987 ht_recv_action_ba_delba(struct ieee80211_node *ni, 1988 const struct ieee80211_frame *wh, 1989 const uint8_t *frm, const uint8_t *efrm) 1990 { 1991 struct ieee80211com *ic = ni->ni_ic; 1992 struct ieee80211_rx_ampdu *rap; 1993 struct ieee80211_tx_ampdu *tap; 1994 uint16_t baparamset, code; 1995 int tid; 1996 1997 baparamset = LE_READ_2(frm+2); 1998 code = LE_READ_2(frm+4); 1999 2000 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2001 2002 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2003 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2004 "code %d", baparamset, tid, 2005 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2006 2007 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2008 tap = &ni->ni_tx_ampdu[tid]; 2009 ic->ic_addba_stop(ni, tap); 2010 } else { 2011 rap = &ni->ni_rx_ampdu[tid]; 2012 ic->ic_ampdu_rx_stop(ni, rap); 2013 } 2014 return 0; 2015 } 2016 2017 static int 2018 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2019 const struct ieee80211_frame *wh, 2020 const uint8_t *frm, const uint8_t *efrm) 2021 { 2022 int chw; 2023 2024 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2025 2026 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2027 "%s: HT txchwidth, width %d%s", 2028 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2029 if (chw != ni->ni_chw) { 2030 ni->ni_chw = chw; 2031 /* XXX notify on change */ 2032 } 2033 return 0; 2034 } 2035 2036 static int 2037 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2038 const struct ieee80211_frame *wh, 2039 const uint8_t *frm, const uint8_t *efrm) 2040 { 2041 const struct ieee80211_action_ht_mimopowersave *mps = 2042 (const struct ieee80211_action_ht_mimopowersave *) frm; 2043 2044 /* XXX check iv_htcaps */ 2045 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2046 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2047 else 2048 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2049 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2050 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2051 else 2052 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2053 /* XXX notify on change */ 2054 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2055 "%s: HT MIMO PS (%s%s)", __func__, 2056 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2057 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2058 ); 2059 return 0; 2060 } 2061 2062 /* 2063 * Transmit processing. 2064 */ 2065 2066 /* 2067 * Check if A-MPDU should be requested/enabled for a stream. 2068 * We require a traffic rate above a per-AC threshold and we 2069 * also handle backoff from previous failed attempts. 2070 * 2071 * Drivers may override this method to bring in information 2072 * such as link state conditions in making the decision. 2073 */ 2074 static int 2075 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2076 struct ieee80211_tx_ampdu *tap) 2077 { 2078 struct ieee80211vap *vap = ni->ni_vap; 2079 2080 if (tap->txa_avgpps < 2081 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2082 return 0; 2083 /* XXX check rssi? */ 2084 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2085 ticks < tap->txa_nextrequest) { 2086 /* 2087 * Don't retry too often; txa_nextrequest is set 2088 * to the minimum interval we'll retry after 2089 * ieee80211_addba_maxtries failed attempts are made. 2090 */ 2091 return 0; 2092 } 2093 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2094 "enable AMPDU on tid %d (%s), avgpps %d pkts %d", 2095 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2096 tap->txa_avgpps, tap->txa_pkts); 2097 return 1; 2098 } 2099 2100 /* 2101 * Request A-MPDU tx aggregation. Setup local state and 2102 * issue an ADDBA request. BA use will only happen after 2103 * the other end replies with ADDBA response. 2104 */ 2105 int 2106 ieee80211_ampdu_request(struct ieee80211_node *ni, 2107 struct ieee80211_tx_ampdu *tap) 2108 { 2109 struct ieee80211com *ic = ni->ni_ic; 2110 uint16_t args[5]; 2111 int tid, dialogtoken; 2112 static int tokens = 0; /* XXX */ 2113 2114 /* XXX locking */ 2115 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2116 /* do deferred setup of state */ 2117 ampdu_tx_setup(tap); 2118 } 2119 /* XXX hack for not doing proper locking */ 2120 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2121 2122 dialogtoken = (tokens+1) % 63; /* XXX */ 2123 tid = tap->txa_tid; 2124 tap->txa_start = ni->ni_txseqs[tid]; 2125 2126 args[0] = dialogtoken; 2127 args[1] = 0; /* NB: status code not used */ 2128 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2129 | SM(tid, IEEE80211_BAPS_TID) 2130 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2131 ; 2132 args[3] = 0; /* batimeout */ 2133 /* NB: do first so there's no race against reply */ 2134 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2135 /* unable to setup state, don't make request */ 2136 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2137 ni, "%s: could not setup BA stream for TID %d AC %d", 2138 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2139 /* defer next try so we don't slam the driver with requests */ 2140 tap->txa_attempts = ieee80211_addba_maxtries; 2141 /* NB: check in case driver wants to override */ 2142 if (tap->txa_nextrequest <= ticks) 2143 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2144 return 0; 2145 } 2146 tokens = dialogtoken; /* allocate token */ 2147 /* NB: after calling ic_addba_request so driver can set txa_start */ 2148 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2149 | SM(0, IEEE80211_BASEQ_FRAG) 2150 ; 2151 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2152 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2153 } 2154 2155 /* 2156 * Terminate an AMPDU tx stream. State is reclaimed 2157 * and the peer notified with a DelBA Action frame. 2158 */ 2159 void 2160 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2161 int reason) 2162 { 2163 struct ieee80211com *ic = ni->ni_ic; 2164 struct ieee80211vap *vap = ni->ni_vap; 2165 uint16_t args[4]; 2166 2167 /* XXX locking */ 2168 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2169 if (IEEE80211_AMPDU_RUNNING(tap)) { 2170 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2171 ni, "%s: stop BA stream for TID %d (reason %d)", 2172 __func__, tap->txa_tid, reason); 2173 vap->iv_stats.is_ampdu_stop++; 2174 2175 ic->ic_addba_stop(ni, tap); 2176 args[0] = tap->txa_tid; 2177 args[1] = IEEE80211_DELBAPS_INIT; 2178 args[2] = reason; /* XXX reason code */ 2179 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2180 IEEE80211_ACTION_BA_DELBA, args); 2181 } else { 2182 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2183 ni, "%s: BA stream for TID %d not running (reason %d)", 2184 __func__, tap->txa_tid, reason); 2185 vap->iv_stats.is_ampdu_stop_failed++; 2186 } 2187 } 2188 2189 /* XXX */ 2190 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2191 2192 static void 2193 bar_timeout(void *arg) 2194 { 2195 struct ieee80211_tx_ampdu *tap = arg; 2196 struct ieee80211_node *ni = tap->txa_ni; 2197 2198 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2199 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2200 2201 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2202 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2203 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2204 2205 /* guard against race with bar_tx_complete */ 2206 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2207 return; 2208 /* XXX ? */ 2209 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2210 struct ieee80211com *ic = ni->ni_ic; 2211 2212 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2213 /* 2214 * If (at least) the last BAR TX timeout was due to 2215 * an ieee80211_send_bar() failures, then we need 2216 * to make sure we notify the driver that a BAR 2217 * TX did occur and fail. This gives the driver 2218 * a chance to undo any queue pause that may 2219 * have occured. 2220 */ 2221 ic->ic_bar_response(ni, tap, 1); 2222 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2223 } else { 2224 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2225 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2226 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2227 ni, "%s: failed to TX, starting timer\n", 2228 __func__); 2229 /* 2230 * If ieee80211_send_bar() fails here, the 2231 * timer may have stopped and/or the pending 2232 * flag may be clear. Because of this, 2233 * fake the BARPEND and reset the timer. 2234 * A retransmission attempt will then occur 2235 * during the next timeout. 2236 */ 2237 /* XXX locking */ 2238 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2239 bar_start_timer(tap); 2240 } 2241 } 2242 } 2243 2244 static void 2245 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2246 { 2247 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2248 tap->txa_ni, 2249 "%s: called", 2250 __func__); 2251 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2252 } 2253 2254 static void 2255 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2256 { 2257 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2258 tap->txa_ni, 2259 "%s: called", 2260 __func__); 2261 callout_stop(&tap->txa_timer); 2262 } 2263 2264 static void 2265 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2266 { 2267 struct ieee80211_tx_ampdu *tap = arg; 2268 2269 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2270 ni, "%s: tid %u flags 0x%x pending %d status %d", 2271 __func__, tap->txa_tid, tap->txa_flags, 2272 callout_pending(&tap->txa_timer), status); 2273 2274 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2275 /* XXX locking */ 2276 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2277 callout_pending(&tap->txa_timer)) { 2278 struct ieee80211com *ic = ni->ni_ic; 2279 2280 if (status == 0) /* ACK'd */ 2281 bar_stop_timer(tap); 2282 ic->ic_bar_response(ni, tap, status); 2283 /* NB: just let timer expire so we pace requests */ 2284 } 2285 } 2286 2287 static void 2288 ieee80211_bar_response(struct ieee80211_node *ni, 2289 struct ieee80211_tx_ampdu *tap, int status) 2290 { 2291 2292 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2293 tap->txa_ni, 2294 "%s: called", 2295 __func__); 2296 if (status == 0) { /* got ACK */ 2297 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2298 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2299 tap->txa_start, 2300 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2301 tap->txa_qframes, tap->txa_seqpending, 2302 tap->txa_tid); 2303 2304 /* NB: timer already stopped in bar_tx_complete */ 2305 tap->txa_start = tap->txa_seqpending; 2306 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2307 } 2308 } 2309 2310 /* 2311 * Transmit a BAR frame to the specified node. The 2312 * BAR contents are drawn from the supplied aggregation 2313 * state associated with the node. 2314 * 2315 * NB: we only handle immediate ACK w/ compressed bitmap. 2316 */ 2317 int 2318 ieee80211_send_bar(struct ieee80211_node *ni, 2319 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2320 { 2321 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2322 struct ieee80211vap *vap = ni->ni_vap; 2323 struct ieee80211com *ic = ni->ni_ic; 2324 struct ieee80211_frame_bar *bar; 2325 struct mbuf *m; 2326 uint16_t barctl, barseqctl; 2327 uint8_t *frm; 2328 int tid, ret; 2329 2330 2331 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2332 tap->txa_ni, 2333 "%s: called", 2334 __func__); 2335 2336 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2337 /* no ADDBA response, should not happen */ 2338 /* XXX stat+msg */ 2339 return EINVAL; 2340 } 2341 /* XXX locking */ 2342 bar_stop_timer(tap); 2343 2344 ieee80211_ref_node(ni); 2345 2346 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2347 if (m == NULL) 2348 senderr(ENOMEM, is_tx_nobuf); 2349 2350 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2351 m_freem(m); 2352 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2353 /* NOTREACHED */ 2354 } 2355 2356 bar = mtod(m, struct ieee80211_frame_bar *); 2357 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2358 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2359 bar->i_fc[1] = 0; 2360 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2361 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2362 2363 tid = tap->txa_tid; 2364 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2365 0 : IEEE80211_BAR_NOACK) 2366 | IEEE80211_BAR_COMP 2367 | SM(tid, IEEE80211_BAR_TID) 2368 ; 2369 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2370 /* NB: known to have proper alignment */ 2371 bar->i_ctl = htole16(barctl); 2372 bar->i_seq = htole16(barseqctl); 2373 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2374 2375 M_WME_SETAC(m, WME_AC_VO); 2376 2377 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2378 2379 /* XXX locking */ 2380 /* init/bump attempts counter */ 2381 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2382 tap->txa_attempts = 1; 2383 else 2384 tap->txa_attempts++; 2385 tap->txa_seqpending = seq; 2386 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2387 2388 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2389 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2390 tid, barctl, seq, tap->txa_attempts); 2391 2392 /* 2393 * ic_raw_xmit will free the node reference 2394 * regardless of queue/TX success or failure. 2395 */ 2396 IEEE80211_TX_LOCK(ic); 2397 ret = ieee80211_raw_output(vap, ni, m, NULL); 2398 IEEE80211_TX_UNLOCK(ic); 2399 if (ret != 0) { 2400 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2401 ni, "send BAR: failed: (ret = %d)\n", 2402 ret); 2403 /* xmit failed, clear state flag */ 2404 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2405 vap->iv_stats.is_ampdu_bar_tx_fail++; 2406 return ret; 2407 } 2408 /* XXX hack against tx complete happening before timer is started */ 2409 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2410 bar_start_timer(tap); 2411 return 0; 2412 bad: 2413 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2414 tap->txa_ni, 2415 "%s: bad! ret=%d", 2416 __func__, ret); 2417 vap->iv_stats.is_ampdu_bar_tx_fail++; 2418 ieee80211_free_node(ni); 2419 return ret; 2420 #undef senderr 2421 } 2422 2423 static int 2424 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2425 { 2426 struct ieee80211_bpf_params params; 2427 2428 memset(¶ms, 0, sizeof(params)); 2429 params.ibp_pri = WME_AC_VO; 2430 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2431 /* NB: we know all frames are unicast */ 2432 params.ibp_try0 = ni->ni_txparms->maxretry; 2433 params.ibp_power = ni->ni_txpower; 2434 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2435 ¶ms); 2436 } 2437 2438 #define ADDSHORT(frm, v) do { \ 2439 frm[0] = (v) & 0xff; \ 2440 frm[1] = (v) >> 8; \ 2441 frm += 2; \ 2442 } while (0) 2443 2444 /* 2445 * Send an action management frame. The arguments are stuff 2446 * into a frame without inspection; the caller is assumed to 2447 * prepare them carefully (e.g. based on the aggregation state). 2448 */ 2449 static int 2450 ht_send_action_ba_addba(struct ieee80211_node *ni, 2451 int category, int action, void *arg0) 2452 { 2453 struct ieee80211vap *vap = ni->ni_vap; 2454 struct ieee80211com *ic = ni->ni_ic; 2455 uint16_t *args = arg0; 2456 struct mbuf *m; 2457 uint8_t *frm; 2458 2459 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2460 "send ADDBA %s: dialogtoken %d status %d " 2461 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2462 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2463 "request" : "response", 2464 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2465 args[3], args[4]); 2466 2467 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2468 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2469 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2470 ieee80211_ref_node(ni); 2471 2472 m = ieee80211_getmgtframe(&frm, 2473 ic->ic_headroom + sizeof(struct ieee80211_frame), 2474 sizeof(uint16_t) /* action+category */ 2475 /* XXX may action payload */ 2476 + sizeof(struct ieee80211_action_ba_addbaresponse) 2477 ); 2478 if (m != NULL) { 2479 *frm++ = category; 2480 *frm++ = action; 2481 *frm++ = args[0]; /* dialog token */ 2482 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2483 ADDSHORT(frm, args[1]); /* status code */ 2484 ADDSHORT(frm, args[2]); /* baparamset */ 2485 ADDSHORT(frm, args[3]); /* batimeout */ 2486 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2487 ADDSHORT(frm, args[4]); /* baseqctl */ 2488 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2489 return ht_action_output(ni, m); 2490 } else { 2491 vap->iv_stats.is_tx_nobuf++; 2492 ieee80211_free_node(ni); 2493 return ENOMEM; 2494 } 2495 } 2496 2497 static int 2498 ht_send_action_ba_delba(struct ieee80211_node *ni, 2499 int category, int action, void *arg0) 2500 { 2501 struct ieee80211vap *vap = ni->ni_vap; 2502 struct ieee80211com *ic = ni->ni_ic; 2503 uint16_t *args = arg0; 2504 struct mbuf *m; 2505 uint16_t baparamset; 2506 uint8_t *frm; 2507 2508 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2509 | args[1] 2510 ; 2511 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2512 "send DELBA action: tid %d, initiator %d reason %d", 2513 args[0], args[1], args[2]); 2514 2515 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2516 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2517 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2518 ieee80211_ref_node(ni); 2519 2520 m = ieee80211_getmgtframe(&frm, 2521 ic->ic_headroom + sizeof(struct ieee80211_frame), 2522 sizeof(uint16_t) /* action+category */ 2523 /* XXX may action payload */ 2524 + sizeof(struct ieee80211_action_ba_addbaresponse) 2525 ); 2526 if (m != NULL) { 2527 *frm++ = category; 2528 *frm++ = action; 2529 ADDSHORT(frm, baparamset); 2530 ADDSHORT(frm, args[2]); /* reason code */ 2531 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2532 return ht_action_output(ni, m); 2533 } else { 2534 vap->iv_stats.is_tx_nobuf++; 2535 ieee80211_free_node(ni); 2536 return ENOMEM; 2537 } 2538 } 2539 2540 static int 2541 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2542 int category, int action, void *arg0) 2543 { 2544 struct ieee80211vap *vap = ni->ni_vap; 2545 struct ieee80211com *ic = ni->ni_ic; 2546 struct mbuf *m; 2547 uint8_t *frm; 2548 2549 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2550 "send HT txchwidth: width %d", 2551 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2552 2553 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2554 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2555 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2556 ieee80211_ref_node(ni); 2557 2558 m = ieee80211_getmgtframe(&frm, 2559 ic->ic_headroom + sizeof(struct ieee80211_frame), 2560 sizeof(uint16_t) /* action+category */ 2561 /* XXX may action payload */ 2562 + sizeof(struct ieee80211_action_ba_addbaresponse) 2563 ); 2564 if (m != NULL) { 2565 *frm++ = category; 2566 *frm++ = action; 2567 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2568 IEEE80211_A_HT_TXCHWIDTH_2040 : 2569 IEEE80211_A_HT_TXCHWIDTH_20; 2570 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2571 return ht_action_output(ni, m); 2572 } else { 2573 vap->iv_stats.is_tx_nobuf++; 2574 ieee80211_free_node(ni); 2575 return ENOMEM; 2576 } 2577 } 2578 #undef ADDSHORT 2579 2580 /* 2581 * Construct the MCS bit mask for inclusion in an HT capabilities 2582 * information element. 2583 */ 2584 static void 2585 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2586 { 2587 int i; 2588 uint8_t txparams; 2589 2590 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2591 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2592 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2593 ("ic_txstream %d out of range", ic->ic_txstream)); 2594 2595 for (i = 0; i < ic->ic_rxstream * 8; i++) 2596 setbit(frm, i); 2597 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2598 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2599 setbit(frm, 32); 2600 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2601 if (ic->ic_rxstream >= 2) { 2602 for (i = 33; i <= 38; i++) 2603 setbit(frm, i); 2604 } 2605 if (ic->ic_rxstream >= 3) { 2606 for (i = 39; i <= 52; i++) 2607 setbit(frm, i); 2608 } 2609 if (ic->ic_txstream >= 4) { 2610 for (i = 53; i <= 76; i++) 2611 setbit(frm, i); 2612 } 2613 } 2614 2615 if (ic->ic_rxstream != ic->ic_txstream) { 2616 txparams = 0x1; /* TX MCS set defined */ 2617 txparams |= 0x2; /* TX RX MCS not equal */ 2618 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2619 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2620 txparams |= 0x16; /* TX unequal modulation sup */ 2621 } else 2622 txparams = 0; 2623 frm[12] = txparams; 2624 } 2625 2626 /* 2627 * Add body of an HTCAP information element. 2628 */ 2629 static uint8_t * 2630 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2631 { 2632 #define ADDSHORT(frm, v) do { \ 2633 frm[0] = (v) & 0xff; \ 2634 frm[1] = (v) >> 8; \ 2635 frm += 2; \ 2636 } while (0) 2637 struct ieee80211com *ic = ni->ni_ic; 2638 struct ieee80211vap *vap = ni->ni_vap; 2639 uint16_t caps, extcaps; 2640 int rxmax, density; 2641 2642 /* HT capabilities */ 2643 caps = vap->iv_htcaps & 0xffff; 2644 /* 2645 * Note channel width depends on whether we are operating as 2646 * a sta or not. When operating as a sta we are generating 2647 * a request based on our desired configuration. Otherwise 2648 * we are operational and the channel attributes identify 2649 * how we've been setup (which might be different if a fixed 2650 * channel is specified). 2651 */ 2652 if (vap->iv_opmode == IEEE80211_M_STA) { 2653 /* override 20/40 use based on config */ 2654 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2655 caps |= IEEE80211_HTCAP_CHWIDTH40; 2656 else 2657 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2658 /* use advertised setting (XXX locally constraint) */ 2659 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2660 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2661 2662 /* 2663 * NB: Hardware might support HT40 on some but not all 2664 * channels. We can't determine this earlier because only 2665 * after association the channel is upgraded to HT based 2666 * on the negotiated capabilities. 2667 */ 2668 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2669 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2670 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2671 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2672 } else { 2673 /* override 20/40 use based on current channel */ 2674 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2675 caps |= IEEE80211_HTCAP_CHWIDTH40; 2676 else 2677 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2678 rxmax = vap->iv_ampdu_rxmax; 2679 density = vap->iv_ampdu_density; 2680 } 2681 /* adjust short GI based on channel and config */ 2682 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2683 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2684 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2685 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2686 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2687 ADDSHORT(frm, caps); 2688 2689 /* HT parameters */ 2690 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2691 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2692 ; 2693 frm++; 2694 2695 /* pre-zero remainder of ie */ 2696 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2697 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2698 2699 /* supported MCS set */ 2700 /* 2701 * XXX: For sta mode the rate set should be restricted based 2702 * on the AP's capabilities, but ni_htrates isn't setup when 2703 * we're called to form an AssocReq frame so for now we're 2704 * restricted to the device capabilities. 2705 */ 2706 ieee80211_set_mcsset(ni->ni_ic, frm); 2707 2708 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2709 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2710 2711 /* HT extended capabilities */ 2712 extcaps = vap->iv_htextcaps & 0xffff; 2713 2714 ADDSHORT(frm, extcaps); 2715 2716 frm += sizeof(struct ieee80211_ie_htcap) - 2717 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2718 2719 return frm; 2720 #undef ADDSHORT 2721 } 2722 2723 /* 2724 * Add 802.11n HT capabilities information element 2725 */ 2726 uint8_t * 2727 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2728 { 2729 frm[0] = IEEE80211_ELEMID_HTCAP; 2730 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2731 return ieee80211_add_htcap_body(frm + 2, ni); 2732 } 2733 2734 /* 2735 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2736 * used for compatibility w/ pre-draft implementations. 2737 */ 2738 uint8_t * 2739 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2740 { 2741 frm[0] = IEEE80211_ELEMID_VENDOR; 2742 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2743 frm[2] = (BCM_OUI >> 0) & 0xff; 2744 frm[3] = (BCM_OUI >> 8) & 0xff; 2745 frm[4] = (BCM_OUI >> 16) & 0xff; 2746 frm[5] = BCM_OUI_HTCAP; 2747 return ieee80211_add_htcap_body(frm + 6, ni); 2748 } 2749 2750 /* 2751 * Construct the MCS bit mask of basic rates 2752 * for inclusion in an HT information element. 2753 */ 2754 static void 2755 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2756 { 2757 int i; 2758 2759 for (i = 0; i < rs->rs_nrates; i++) { 2760 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2761 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2762 r < IEEE80211_HTRATE_MAXSIZE) { 2763 /* NB: this assumes a particular implementation */ 2764 setbit(frm, r); 2765 } 2766 } 2767 } 2768 2769 /* 2770 * Update the HTINFO ie for a beacon frame. 2771 */ 2772 void 2773 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2774 struct ieee80211_beacon_offsets *bo) 2775 { 2776 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2777 struct ieee80211_node *ni; 2778 const struct ieee80211_channel *bsschan; 2779 struct ieee80211com *ic = vap->iv_ic; 2780 struct ieee80211_ie_htinfo *ht = 2781 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2782 2783 ni = ieee80211_ref_node(vap->iv_bss); 2784 bsschan = ni->ni_chan; 2785 2786 /* XXX only update on channel change */ 2787 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 2788 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2789 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 2790 else 2791 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 2792 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 2793 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2794 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 2795 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2796 else 2797 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 2798 if (IEEE80211_IS_CHAN_HT40(bsschan)) 2799 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 2800 2801 /* protection mode */ 2802 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 2803 2804 ieee80211_free_node(ni); 2805 2806 /* XXX propagate to vendor ie's */ 2807 #undef PROTMODE 2808 } 2809 2810 /* 2811 * Add body of an HTINFO information element. 2812 * 2813 * NB: We don't use struct ieee80211_ie_htinfo because we can 2814 * be called to fillin both a standard ie and a compat ie that 2815 * has a vendor OUI at the front. 2816 */ 2817 static uint8_t * 2818 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 2819 { 2820 struct ieee80211vap *vap = ni->ni_vap; 2821 struct ieee80211com *ic = ni->ni_ic; 2822 2823 /* pre-zero remainder of ie */ 2824 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 2825 2826 /* primary/control channel center */ 2827 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2828 2829 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2830 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 2831 else 2832 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 2833 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 2834 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2835 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 2836 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2837 else 2838 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 2839 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2840 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 2841 2842 frm[1] = ic->ic_curhtprotmode; 2843 2844 frm += 5; 2845 2846 /* basic MCS set */ 2847 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 2848 frm += sizeof(struct ieee80211_ie_htinfo) - 2849 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 2850 return frm; 2851 } 2852 2853 /* 2854 * Add 802.11n HT information information element. 2855 */ 2856 uint8_t * 2857 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 2858 { 2859 frm[0] = IEEE80211_ELEMID_HTINFO; 2860 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 2861 return ieee80211_add_htinfo_body(frm + 2, ni); 2862 } 2863 2864 /* 2865 * Add Broadcom OUI wrapped standard HTINFO ie; this is 2866 * used for compatibility w/ pre-draft implementations. 2867 */ 2868 uint8_t * 2869 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 2870 { 2871 frm[0] = IEEE80211_ELEMID_VENDOR; 2872 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 2873 frm[2] = (BCM_OUI >> 0) & 0xff; 2874 frm[3] = (BCM_OUI >> 8) & 0xff; 2875 frm[4] = (BCM_OUI >> 16) & 0xff; 2876 frm[5] = BCM_OUI_HTINFO; 2877 return ieee80211_add_htinfo_body(frm + 6, ni); 2878 } 2879