xref: /freebsd/sys/net80211/ieee80211_ht.c (revision 076ad2f836d5f49dc1375f1677335a48fe0d4b82)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 #ifdef __FreeBSD__
28 __FBSDID("$FreeBSD$");
29 #endif
30 
31 /*
32  * IEEE 802.11n protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/systm.h>
42 #include <sys/endian.h>
43 
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_action.h>
53 #include <net80211/ieee80211_input.h>
54 
55 /* define here, used throughout file */
56 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
57 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
58 
59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
60 	{  13,  14,   27,   30 },	/* MCS 0 */
61 	{  26,  29,   54,   60 },	/* MCS 1 */
62 	{  39,  43,   81,   90 },	/* MCS 2 */
63 	{  52,  58,  108,  120 },	/* MCS 3 */
64 	{  78,  87,  162,  180 },	/* MCS 4 */
65 	{ 104, 116,  216,  240 },	/* MCS 5 */
66 	{ 117, 130,  243,  270 },	/* MCS 6 */
67 	{ 130, 144,  270,  300 },	/* MCS 7 */
68 	{  26,  29,   54,   60 },	/* MCS 8 */
69 	{  52,  58,  108,  120 },	/* MCS 9 */
70 	{  78,  87,  162,  180 },	/* MCS 10 */
71 	{ 104, 116,  216,  240 },	/* MCS 11 */
72 	{ 156, 173,  324,  360 },	/* MCS 12 */
73 	{ 208, 231,  432,  480 },	/* MCS 13 */
74 	{ 234, 260,  486,  540 },	/* MCS 14 */
75 	{ 260, 289,  540,  600 },	/* MCS 15 */
76 	{  39,  43,   81,   90 },	/* MCS 16 */
77 	{  78,  87,  162,  180 },	/* MCS 17 */
78 	{ 117, 130,  243,  270 },	/* MCS 18 */
79 	{ 156, 173,  324,  360 },	/* MCS 19 */
80 	{ 234, 260,  486,  540 },	/* MCS 20 */
81 	{ 312, 347,  648,  720 },	/* MCS 21 */
82 	{ 351, 390,  729,  810 },	/* MCS 22 */
83 	{ 390, 433,  810,  900 },	/* MCS 23 */
84 	{  52,  58,  108,  120 },	/* MCS 24 */
85 	{ 104, 116,  216,  240 },	/* MCS 25 */
86 	{ 156, 173,  324,  360 },	/* MCS 26 */
87 	{ 208, 231,  432,  480 },	/* MCS 27 */
88 	{ 312, 347,  648,  720 },	/* MCS 28 */
89 	{ 416, 462,  864,  960 },	/* MCS 29 */
90 	{ 468, 520,  972, 1080 },	/* MCS 30 */
91 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
92 	{   0,   0,   12,   13 },	/* MCS 32 */
93 	{  78,  87,  162,  180 },	/* MCS 33 */
94 	{ 104, 116,  216,  240 },	/* MCS 34 */
95 	{ 130, 144,  270,  300 },	/* MCS 35 */
96 	{ 117, 130,  243,  270 },	/* MCS 36 */
97 	{ 156, 173,  324,  360 },	/* MCS 37 */
98 	{ 195, 217,  405,  450 },	/* MCS 38 */
99 	{ 104, 116,  216,  240 },	/* MCS 39 */
100 	{ 130, 144,  270,  300 },	/* MCS 40 */
101 	{ 130, 144,  270,  300 },	/* MCS 41 */
102 	{ 156, 173,  324,  360 },	/* MCS 42 */
103 	{ 182, 202,  378,  420 },	/* MCS 43 */
104 	{ 182, 202,  378,  420 },	/* MCS 44 */
105 	{ 208, 231,  432,  480 },	/* MCS 45 */
106 	{ 156, 173,  324,  360 },	/* MCS 46 */
107 	{ 195, 217,  405,  450 },	/* MCS 47 */
108 	{ 195, 217,  405,  450 },	/* MCS 48 */
109 	{ 234, 260,  486,  540 },	/* MCS 49 */
110 	{ 273, 303,  567,  630 },	/* MCS 50 */
111 	{ 273, 303,  567,  630 },	/* MCS 51 */
112 	{ 312, 347,  648,  720 },	/* MCS 52 */
113 	{ 130, 144,  270,  300 },	/* MCS 53 */
114 	{ 156, 173,  324,  360 },	/* MCS 54 */
115 	{ 182, 202,  378,  420 },	/* MCS 55 */
116 	{ 156, 173,  324,  360 },	/* MCS 56 */
117 	{ 182, 202,  378,  420 },	/* MCS 57 */
118 	{ 208, 231,  432,  480 },	/* MCS 58 */
119 	{ 234, 260,  486,  540 },	/* MCS 59 */
120 	{ 208, 231,  432,  480 },	/* MCS 60 */
121 	{ 234, 260,  486,  540 },	/* MCS 61 */
122 	{ 260, 289,  540,  600 },	/* MCS 62 */
123 	{ 260, 289,  540,  600 },	/* MCS 63 */
124 	{ 286, 318,  594,  660 },	/* MCS 64 */
125 	{ 195, 217,  405,  450 },	/* MCS 65 */
126 	{ 234, 260,  486,  540 },	/* MCS 66 */
127 	{ 273, 303,  567,  630 },	/* MCS 67 */
128 	{ 234, 260,  486,  540 },	/* MCS 68 */
129 	{ 273, 303,  567,  630 },	/* MCS 69 */
130 	{ 312, 347,  648,  720 },	/* MCS 70 */
131 	{ 351, 390,  729,  810 },	/* MCS 71 */
132 	{ 312, 347,  648,  720 },	/* MCS 72 */
133 	{ 351, 390,  729,  810 },	/* MCS 73 */
134 	{ 390, 433,  810,  900 },	/* MCS 74 */
135 	{ 390, 433,  810,  900 },	/* MCS 75 */
136 	{ 429, 477,  891,  990 },	/* MCS 76 */
137 };
138 
139 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW,
141 	&ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
142 	"AMPDU max reorder age (ms)");
143 
144 static	int ieee80211_recv_bar_ena = 1;
145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
146 	    0, "BAR frame processing (ena/dis)");
147 
148 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW,
150 	&ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
151 	"ADDBA request timeout (ms)");
152 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW,
154 	&ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
155 	"ADDBA request backoff (ms)");
156 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
158 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
159 
160 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
161 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
162 
163 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
164 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
165 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
166 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
167 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
168 
169 static	ieee80211_send_action_func ht_send_action_ba_addba;
170 static	ieee80211_send_action_func ht_send_action_ba_delba;
171 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
172 
173 static void
174 ieee80211_ht_init(void)
175 {
176 	/*
177 	 * Setup HT parameters that depends on the clock frequency.
178 	 */
179 	ieee80211_ampdu_age = msecs_to_ticks(500);
180 	ieee80211_addba_timeout = msecs_to_ticks(250);
181 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
182 	ieee80211_bar_timeout = msecs_to_ticks(250);
183 	/*
184 	 * Register action frame handlers.
185 	 */
186 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
187 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
188 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
189 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
190 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
191 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
192 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
193 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
194 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
195 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
196 
197 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
198 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
199 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
200 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
201 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
202 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
203 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
204 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
205 }
206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
207 
208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
209 	struct ieee80211_tx_ampdu *tap);
210 static int ieee80211_addba_request(struct ieee80211_node *ni,
211 	struct ieee80211_tx_ampdu *tap,
212 	int dialogtoken, int baparamset, int batimeout);
213 static int ieee80211_addba_response(struct ieee80211_node *ni,
214 	struct ieee80211_tx_ampdu *tap,
215 	int code, int baparamset, int batimeout);
216 static void ieee80211_addba_stop(struct ieee80211_node *ni,
217 	struct ieee80211_tx_ampdu *tap);
218 static void null_addba_response_timeout(struct ieee80211_node *ni,
219 	struct ieee80211_tx_ampdu *tap);
220 
221 static void ieee80211_bar_response(struct ieee80211_node *ni,
222 	struct ieee80211_tx_ampdu *tap, int status);
223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
226 	int baparamset, int batimeout, int baseqctl);
227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
228 
229 void
230 ieee80211_ht_attach(struct ieee80211com *ic)
231 {
232 	/* setup default aggregation policy */
233 	ic->ic_recv_action = ieee80211_recv_action;
234 	ic->ic_send_action = ieee80211_send_action;
235 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
236 	ic->ic_addba_request = ieee80211_addba_request;
237 	ic->ic_addba_response = ieee80211_addba_response;
238 	ic->ic_addba_response_timeout = null_addba_response_timeout;
239 	ic->ic_addba_stop = ieee80211_addba_stop;
240 	ic->ic_bar_response = ieee80211_bar_response;
241 	ic->ic_ampdu_rx_start = ampdu_rx_start;
242 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
243 
244 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
245 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
246 }
247 
248 void
249 ieee80211_ht_detach(struct ieee80211com *ic)
250 {
251 }
252 
253 void
254 ieee80211_ht_vattach(struct ieee80211vap *vap)
255 {
256 
257 	/* driver can override defaults */
258 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
259 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
260 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
261 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
262 	/* tx aggregation traffic thresholds */
263 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
264 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
265 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
266 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
267 
268 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
269 		/*
270 		 * Device is HT capable; enable all HT-related
271 		 * facilities by default.
272 		 * XXX these choices may be too aggressive.
273 		 */
274 		vap->iv_flags_ht |= IEEE80211_FHT_HT
275 				 |  IEEE80211_FHT_HTCOMPAT
276 				 ;
277 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
278 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
279 		/* XXX infer from channel list? */
280 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
281 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
282 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
283 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
284 		}
285 		/* enable RIFS if capable */
286 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
287 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
288 
289 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
290 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
291 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
292 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
293 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
294 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
295 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
296 
297 		if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC)
298 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX;
299 		if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC)
300 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX;
301 
302 		if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC)
303 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX;
304 		if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC)
305 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX;
306 	}
307 	/* NB: disable default legacy WDS, too many issues right now */
308 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
309 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
310 }
311 
312 void
313 ieee80211_ht_vdetach(struct ieee80211vap *vap)
314 {
315 }
316 
317 static int
318 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
319     int ratetype)
320 {
321 	int mword, rate;
322 
323 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
324 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
325 		return (0);
326 	switch (ratetype) {
327 	case 0:
328 		rate = ieee80211_htrates[index].ht20_rate_800ns;
329 		break;
330 	case 1:
331 		rate = ieee80211_htrates[index].ht20_rate_400ns;
332 		break;
333 	case 2:
334 		rate = ieee80211_htrates[index].ht40_rate_800ns;
335 		break;
336 	default:
337 		rate = ieee80211_htrates[index].ht40_rate_400ns;
338 		break;
339 	}
340 	return (rate);
341 }
342 
343 static struct printranges {
344 	int	minmcs;
345 	int	maxmcs;
346 	int	txstream;
347 	int	ratetype;
348 	int	htcapflags;
349 } ranges[] = {
350 	{  0,  7, 1, 0, 0 },
351 	{  8, 15, 2, 0, 0 },
352 	{ 16, 23, 3, 0, 0 },
353 	{ 24, 31, 4, 0, 0 },
354 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
355 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
356 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
357 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
358 	{  0,  0, 0, 0, 0 },
359 };
360 
361 static void
362 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
363 {
364 	int minrate, maxrate;
365 	struct printranges *range;
366 
367 	for (range = ranges; range->txstream != 0; range++) {
368 		if (ic->ic_txstream < range->txstream)
369 			continue;
370 		if (range->htcapflags &&
371 		    (ic->ic_htcaps & range->htcapflags) == 0)
372 			continue;
373 		if (ratetype < range->ratetype)
374 			continue;
375 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
376 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
377 		if (range->maxmcs) {
378 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
379 			    range->minmcs, range->maxmcs,
380 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
381 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
382 		} else {
383 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
384 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
385 		}
386 	}
387 }
388 
389 static void
390 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
391 {
392 	const char *modestr = ieee80211_phymode_name[mode];
393 
394 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
395 	ht_rateprint(ic, mode, 0);
396 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
397 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
398 		ht_rateprint(ic, mode, 1);
399 	}
400 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
401 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
402 		ht_rateprint(ic, mode, 2);
403 	}
404 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
405 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
406 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
407 		ht_rateprint(ic, mode, 3);
408 	}
409 }
410 
411 void
412 ieee80211_ht_announce(struct ieee80211com *ic)
413 {
414 
415 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
416 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
417 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
418 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
419 		ht_announce(ic, IEEE80211_MODE_11NA);
420 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
421 		ht_announce(ic, IEEE80211_MODE_11NG);
422 }
423 
424 static struct ieee80211_htrateset htrateset;
425 
426 const struct ieee80211_htrateset *
427 ieee80211_get_suphtrates(struct ieee80211com *ic,
428     const struct ieee80211_channel *c)
429 {
430 #define	ADDRATE(x)	do {						\
431 	htrateset.rs_rates[htrateset.rs_nrates] = x;			\
432 	htrateset.rs_nrates++;						\
433 } while (0)
434 	int i;
435 
436 	memset(&htrateset, 0, sizeof(struct ieee80211_htrateset));
437 	for (i = 0; i < ic->ic_txstream * 8; i++)
438 		ADDRATE(i);
439 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
440 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
441 		ADDRATE(32);
442 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
443 		if (ic->ic_txstream >= 2) {
444 			 for (i = 33; i <= 38; i++)
445 				ADDRATE(i);
446 		}
447 		if (ic->ic_txstream >= 3) {
448 			for (i = 39; i <= 52; i++)
449 				ADDRATE(i);
450 		}
451 		if (ic->ic_txstream == 4) {
452 			for (i = 53; i <= 76; i++)
453 				ADDRATE(i);
454 		}
455 	}
456 	return &htrateset;
457 #undef	ADDRATE
458 }
459 
460 /*
461  * Receive processing.
462  */
463 
464 /*
465  * Decap the encapsulated A-MSDU frames and dispatch all but
466  * the last for delivery.  The last frame is returned for
467  * delivery via the normal path.
468  */
469 struct mbuf *
470 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
471 {
472 	struct ieee80211vap *vap = ni->ni_vap;
473 	int framelen;
474 	struct mbuf *n;
475 
476 	/* discard 802.3 header inserted by ieee80211_decap */
477 	m_adj(m, sizeof(struct ether_header));
478 
479 	vap->iv_stats.is_amsdu_decap++;
480 
481 	for (;;) {
482 		/*
483 		 * Decap the first frame, bust it apart from the
484 		 * remainder and deliver.  We leave the last frame
485 		 * delivery to the caller (for consistency with other
486 		 * code paths, could also do it here).
487 		 */
488 		m = ieee80211_decap1(m, &framelen);
489 		if (m == NULL) {
490 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
491 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
492 			vap->iv_stats.is_amsdu_tooshort++;
493 			return NULL;
494 		}
495 		if (m->m_pkthdr.len == framelen)
496 			break;
497 		n = m_split(m, framelen, M_NOWAIT);
498 		if (n == NULL) {
499 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
500 			    ni->ni_macaddr, "a-msdu",
501 			    "%s", "unable to split encapsulated frames");
502 			vap->iv_stats.is_amsdu_split++;
503 			m_freem(m);			/* NB: must reclaim */
504 			return NULL;
505 		}
506 		vap->iv_deliver_data(vap, ni, m);
507 
508 		/*
509 		 * Remove frame contents; each intermediate frame
510 		 * is required to be aligned to a 4-byte boundary.
511 		 */
512 		m = n;
513 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
514 	}
515 	return m;				/* last delivered by caller */
516 }
517 
518 /*
519  * Purge all frames in the A-MPDU re-order queue.
520  */
521 static void
522 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
523 {
524 	struct mbuf *m;
525 	int i;
526 
527 	for (i = 0; i < rap->rxa_wnd; i++) {
528 		m = rap->rxa_m[i];
529 		if (m != NULL) {
530 			rap->rxa_m[i] = NULL;
531 			rap->rxa_qbytes -= m->m_pkthdr.len;
532 			m_freem(m);
533 			if (--rap->rxa_qframes == 0)
534 				break;
535 		}
536 	}
537 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
538 	    ("lost %u data, %u frames on ampdu rx q",
539 	    rap->rxa_qbytes, rap->rxa_qframes));
540 }
541 
542 /*
543  * Start A-MPDU rx/re-order processing for the specified TID.
544  */
545 static int
546 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
547 	int baparamset, int batimeout, int baseqctl)
548 {
549 	int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
550 
551 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
552 		/*
553 		 * AMPDU previously setup and not terminated with a DELBA,
554 		 * flush the reorder q's in case anything remains.
555 		 */
556 		ampdu_rx_purge(rap);
557 	}
558 	memset(rap, 0, sizeof(*rap));
559 	rap->rxa_wnd = (bufsiz == 0) ?
560 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
561 	rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START);
562 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
563 
564 	return 0;
565 }
566 
567 /*
568  * Public function; manually setup the RX ampdu state.
569  */
570 int
571 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
572 {
573 	struct ieee80211_rx_ampdu *rap;
574 
575 	/* XXX TODO: sanity check tid, seq, baw */
576 
577 	rap = &ni->ni_rx_ampdu[tid];
578 
579 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
580 		/*
581 		 * AMPDU previously setup and not terminated with a DELBA,
582 		 * flush the reorder q's in case anything remains.
583 		 */
584 		ampdu_rx_purge(rap);
585 	}
586 
587 	memset(rap, 0, sizeof(*rap));
588 	rap->rxa_wnd = (baw== 0) ?
589 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
590 	if (seq == -1) {
591 		/* Wait for the first RX frame, use that as BAW */
592 		rap->rxa_start = 0;
593 		rap->rxa_flags |= IEEE80211_AGGR_WAITRX;
594 	} else {
595 		rap->rxa_start = seq;
596 	}
597 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
598 
599 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
600 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x",
601 	    __func__,
602 	    tid,
603 	    seq,
604 	    rap->rxa_wnd,
605 	    rap->rxa_flags);
606 
607 	return 0;
608 }
609 
610 /*
611  * Public function; manually stop the RX AMPDU state.
612  */
613 void
614 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid)
615 {
616 	struct ieee80211_rx_ampdu *rap;
617 
618 	/* XXX TODO: sanity check tid, seq, baw */
619 	rap = &ni->ni_rx_ampdu[tid];
620 	ampdu_rx_stop(ni, rap);
621 }
622 
623 /*
624  * Stop A-MPDU rx processing for the specified TID.
625  */
626 static void
627 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
628 {
629 
630 	ampdu_rx_purge(rap);
631 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING
632 	    | IEEE80211_AGGR_XCHGPEND
633 	    | IEEE80211_AGGR_WAITRX);
634 }
635 
636 /*
637  * Dispatch a frame from the A-MPDU reorder queue.  The
638  * frame is fed back into ieee80211_input marked with an
639  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
640  * permits ieee80211_input to optimize re-processing).
641  */
642 static __inline void
643 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
644 {
645 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
646 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
647 	(void) ieee80211_input(ni, m, 0, 0);
648 }
649 
650 /*
651  * Dispatch as many frames as possible from the re-order queue.
652  * Frames will always be "at the front"; we process all frames
653  * up to the first empty slot in the window.  On completion we
654  * cleanup state if there are still pending frames in the current
655  * BA window.  We assume the frame at slot 0 is already handled
656  * by the caller; we always start at slot 1.
657  */
658 static void
659 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
660 {
661 	struct ieee80211vap *vap = ni->ni_vap;
662 	struct mbuf *m;
663 	int i;
664 
665 	/* flush run of frames */
666 	for (i = 1; i < rap->rxa_wnd; i++) {
667 		m = rap->rxa_m[i];
668 		if (m == NULL)
669 			break;
670 		rap->rxa_m[i] = NULL;
671 		rap->rxa_qbytes -= m->m_pkthdr.len;
672 		rap->rxa_qframes--;
673 
674 		ampdu_dispatch(ni, m);
675 	}
676 	/*
677 	 * If frames remain, copy the mbuf pointers down so
678 	 * they correspond to the offsets in the new window.
679 	 */
680 	if (rap->rxa_qframes != 0) {
681 		int n = rap->rxa_qframes, j;
682 		for (j = i+1; j < rap->rxa_wnd; j++) {
683 			if (rap->rxa_m[j] != NULL) {
684 				rap->rxa_m[j-i] = rap->rxa_m[j];
685 				rap->rxa_m[j] = NULL;
686 				if (--n == 0)
687 					break;
688 			}
689 		}
690 		KASSERT(n == 0, ("lost %d frames", n));
691 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
692 	}
693 	/*
694 	 * Adjust the start of the BA window to
695 	 * reflect the frames just dispatched.
696 	 */
697 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
698 	vap->iv_stats.is_ampdu_rx_oor += i;
699 }
700 
701 /*
702  * Dispatch all frames in the A-MPDU re-order queue.
703  */
704 static void
705 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
706 {
707 	struct ieee80211vap *vap = ni->ni_vap;
708 	struct mbuf *m;
709 	int i;
710 
711 	for (i = 0; i < rap->rxa_wnd; i++) {
712 		m = rap->rxa_m[i];
713 		if (m == NULL)
714 			continue;
715 		rap->rxa_m[i] = NULL;
716 		rap->rxa_qbytes -= m->m_pkthdr.len;
717 		rap->rxa_qframes--;
718 		vap->iv_stats.is_ampdu_rx_oor++;
719 
720 		ampdu_dispatch(ni, m);
721 		if (rap->rxa_qframes == 0)
722 			break;
723 	}
724 }
725 
726 /*
727  * Dispatch all frames in the A-MPDU re-order queue
728  * preceding the specified sequence number.  This logic
729  * handles window moves due to a received MSDU or BAR.
730  */
731 static void
732 ampdu_rx_flush_upto(struct ieee80211_node *ni,
733 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
734 {
735 	struct ieee80211vap *vap = ni->ni_vap;
736 	struct mbuf *m;
737 	ieee80211_seq seqno;
738 	int i;
739 
740 	/*
741 	 * Flush any complete MSDU's with a sequence number lower
742 	 * than winstart.  Gaps may exist.  Note that we may actually
743 	 * dispatch frames past winstart if a run continues; this is
744 	 * an optimization that avoids having to do a separate pass
745 	 * to dispatch frames after moving the BA window start.
746 	 */
747 	seqno = rap->rxa_start;
748 	for (i = 0; i < rap->rxa_wnd; i++) {
749 		m = rap->rxa_m[i];
750 		if (m != NULL) {
751 			rap->rxa_m[i] = NULL;
752 			rap->rxa_qbytes -= m->m_pkthdr.len;
753 			rap->rxa_qframes--;
754 			vap->iv_stats.is_ampdu_rx_oor++;
755 
756 			ampdu_dispatch(ni, m);
757 		} else {
758 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
759 				break;
760 		}
761 		seqno = IEEE80211_SEQ_INC(seqno);
762 	}
763 	/*
764 	 * If frames remain, copy the mbuf pointers down so
765 	 * they correspond to the offsets in the new window.
766 	 */
767 	if (rap->rxa_qframes != 0) {
768 		int n = rap->rxa_qframes, j;
769 
770 		/* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */
771 		KASSERT(rap->rxa_m[0] == NULL,
772 		    ("%s: BA window slot 0 occupied", __func__));
773 		for (j = i+1; j < rap->rxa_wnd; j++) {
774 			if (rap->rxa_m[j] != NULL) {
775 				rap->rxa_m[j-i] = rap->rxa_m[j];
776 				rap->rxa_m[j] = NULL;
777 				if (--n == 0)
778 					break;
779 			}
780 		}
781 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
782 		    "BA win <%d:%d> winstart %d",
783 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
784 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
785 		    winstart));
786 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
787 	}
788 	/*
789 	 * Move the start of the BA window; we use the
790 	 * sequence number of the last MSDU that was
791 	 * passed up the stack+1 or winstart if stopped on
792 	 * a gap in the reorder buffer.
793 	 */
794 	rap->rxa_start = seqno;
795 }
796 
797 /*
798  * Process a received QoS data frame for an HT station.  Handle
799  * A-MPDU reordering: if this frame is received out of order
800  * and falls within the BA window hold onto it.  Otherwise if
801  * this frame completes a run, flush any pending frames.  We
802  * return 1 if the frame is consumed.  A 0 is returned if
803  * the frame should be processed normally by the caller.
804  */
805 int
806 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m)
807 {
808 #define	PROCESS		0	/* caller should process frame */
809 #define	CONSUMED	1	/* frame consumed, caller does nothing */
810 	struct ieee80211vap *vap = ni->ni_vap;
811 	struct ieee80211_qosframe *wh;
812 	struct ieee80211_rx_ampdu *rap;
813 	ieee80211_seq rxseq;
814 	uint8_t tid;
815 	int off;
816 
817 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
818 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
819 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
820 
821 	/* NB: m_len known to be sufficient */
822 	wh = mtod(m, struct ieee80211_qosframe *);
823 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
824 		/*
825 		 * Not QoS data, shouldn't get here but just
826 		 * return it to the caller for processing.
827 		 */
828 		return PROCESS;
829 	}
830 
831 	/*
832 	 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery.
833 	 *
834 	 * Multicast QoS data frames are checked against a different
835 	 * counter, not the per-TID counter.
836 	 */
837 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
838 		return PROCESS;
839 
840 	if (IEEE80211_IS_DSTODS(wh))
841 		tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0];
842 	else
843 		tid = wh->i_qos[0];
844 	tid &= IEEE80211_QOS_TID;
845 	rap = &ni->ni_rx_ampdu[tid];
846 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
847 		/*
848 		 * No ADDBA request yet, don't touch.
849 		 */
850 		return PROCESS;
851 	}
852 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
853 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
854 		/*
855 		 * Fragments are not allowed; toss.
856 		 */
857 		IEEE80211_DISCARD_MAC(vap,
858 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
859 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
860 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
861 		vap->iv_stats.is_ampdu_rx_drop++;
862 		IEEE80211_NODE_STAT(ni, rx_drop);
863 		m_freem(m);
864 		return CONSUMED;
865 	}
866 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
867 	rap->rxa_nframes++;
868 
869 	/*
870 	 * Handle waiting for the first frame to define the BAW.
871 	 * Some firmware doesn't provide the RX of the starting point
872 	 * of the BAW and we have to cope.
873 	 */
874 	if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) {
875 		rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX;
876 		rap->rxa_start = rxseq;
877 	}
878 again:
879 	if (rxseq == rap->rxa_start) {
880 		/*
881 		 * First frame in window.
882 		 */
883 		if (rap->rxa_qframes != 0) {
884 			/*
885 			 * Dispatch as many packets as we can.
886 			 */
887 			KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup"));
888 			ampdu_dispatch(ni, m);
889 			ampdu_rx_dispatch(rap, ni);
890 			return CONSUMED;
891 		} else {
892 			/*
893 			 * In order; advance window and notify
894 			 * caller to dispatch directly.
895 			 */
896 			rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
897 			return PROCESS;
898 		}
899 	}
900 	/*
901 	 * Frame is out of order; store if in the BA window.
902 	 */
903 	/* calculate offset in BA window */
904 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
905 	if (off < rap->rxa_wnd) {
906 		/*
907 		 * Common case (hopefully): in the BA window.
908 		 * Sec 9.10.7.6.2 a) (p.137)
909 		 */
910 
911 		/*
912 		 * Check for frames sitting too long in the reorder queue.
913 		 * This should only ever happen if frames are not delivered
914 		 * without the sender otherwise notifying us (e.g. with a
915 		 * BAR to move the window).  Typically this happens because
916 		 * of vendor bugs that cause the sequence number to jump.
917 		 * When this happens we get a gap in the reorder queue that
918 		 * leaves frame sitting on the queue until they get pushed
919 		 * out due to window moves.  When the vendor does not send
920 		 * BAR this move only happens due to explicit packet sends
921 		 *
922 		 * NB: we only track the time of the oldest frame in the
923 		 * reorder q; this means that if we flush we might push
924 		 * frames that still "new"; if this happens then subsequent
925 		 * frames will result in BA window moves which cost something
926 		 * but is still better than a big throughput dip.
927 		 */
928 		if (rap->rxa_qframes != 0) {
929 			/* XXX honor batimeout? */
930 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
931 				/*
932 				 * Too long since we received the first
933 				 * frame; flush the reorder buffer.
934 				 */
935 				if (rap->rxa_qframes != 0) {
936 					vap->iv_stats.is_ampdu_rx_age +=
937 					    rap->rxa_qframes;
938 					ampdu_rx_flush(ni, rap);
939 				}
940 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
941 				return PROCESS;
942 			}
943 		} else {
944 			/*
945 			 * First frame, start aging timer.
946 			 */
947 			rap->rxa_age = ticks;
948 		}
949 
950 		/* save packet */
951 		if (rap->rxa_m[off] == NULL) {
952 			rap->rxa_m[off] = m;
953 			rap->rxa_qframes++;
954 			rap->rxa_qbytes += m->m_pkthdr.len;
955 			vap->iv_stats.is_ampdu_rx_reorder++;
956 		} else {
957 			IEEE80211_DISCARD_MAC(vap,
958 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
959 			    ni->ni_macaddr, "a-mpdu duplicate",
960 			    "seqno %u tid %u BA win <%u:%u>",
961 			    rxseq, tid, rap->rxa_start,
962 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
963 			vap->iv_stats.is_rx_dup++;
964 			IEEE80211_NODE_STAT(ni, rx_dup);
965 			m_freem(m);
966 		}
967 		return CONSUMED;
968 	}
969 	if (off < IEEE80211_SEQ_BA_RANGE) {
970 		/*
971 		 * Outside the BA window, but within range;
972 		 * flush the reorder q and move the window.
973 		 * Sec 9.10.7.6.2 b) (p.138)
974 		 */
975 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
976 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
977 		    rap->rxa_start,
978 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
979 		    rap->rxa_qframes, rxseq, tid);
980 		vap->iv_stats.is_ampdu_rx_move++;
981 
982 		/*
983 		 * The spec says to flush frames up to but not including:
984 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
985 		 * Then insert the frame or notify the caller to process
986 		 * it immediately.  We can safely do this by just starting
987 		 * over again because we know the frame will now be within
988 		 * the BA window.
989 		 */
990 		/* NB: rxa_wnd known to be >0 */
991 		ampdu_rx_flush_upto(ni, rap,
992 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
993 		goto again;
994 	} else {
995 		/*
996 		 * Outside the BA window and out of range; toss.
997 		 * Sec 9.10.7.6.2 c) (p.138)
998 		 */
999 		IEEE80211_DISCARD_MAC(vap,
1000 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1001 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1002 		    rap->rxa_start,
1003 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1004 		    rap->rxa_qframes, rxseq, tid,
1005 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1006 		vap->iv_stats.is_ampdu_rx_drop++;
1007 		IEEE80211_NODE_STAT(ni, rx_drop);
1008 		m_freem(m);
1009 		return CONSUMED;
1010 	}
1011 #undef CONSUMED
1012 #undef PROCESS
1013 }
1014 
1015 /*
1016  * Process a BAR ctl frame.  Dispatch all frames up to
1017  * the sequence number of the frame.  If this frame is
1018  * out of range it's discarded.
1019  */
1020 void
1021 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
1022 {
1023 	struct ieee80211vap *vap = ni->ni_vap;
1024 	struct ieee80211_frame_bar *wh;
1025 	struct ieee80211_rx_ampdu *rap;
1026 	ieee80211_seq rxseq;
1027 	int tid, off;
1028 
1029 	if (!ieee80211_recv_bar_ena) {
1030 #if 0
1031 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
1032 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
1033 #endif
1034 		vap->iv_stats.is_ampdu_bar_bad++;
1035 		return;
1036 	}
1037 	wh = mtod(m0, struct ieee80211_frame_bar *);
1038 	/* XXX check basic BAR */
1039 	tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
1040 	rap = &ni->ni_rx_ampdu[tid];
1041 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1042 		/*
1043 		 * No ADDBA request yet, don't touch.
1044 		 */
1045 		IEEE80211_DISCARD_MAC(vap,
1046 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1047 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1048 		vap->iv_stats.is_ampdu_bar_bad++;
1049 		return;
1050 	}
1051 	vap->iv_stats.is_ampdu_bar_rx++;
1052 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1053 	if (rxseq == rap->rxa_start)
1054 		return;
1055 	/* calculate offset in BA window */
1056 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1057 	if (off < IEEE80211_SEQ_BA_RANGE) {
1058 		/*
1059 		 * Flush the reorder q up to rxseq and move the window.
1060 		 * Sec 9.10.7.6.3 a) (p.138)
1061 		 */
1062 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1063 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1064 		    rap->rxa_start,
1065 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1066 		    rap->rxa_qframes, rxseq, tid);
1067 		vap->iv_stats.is_ampdu_bar_move++;
1068 
1069 		ampdu_rx_flush_upto(ni, rap, rxseq);
1070 		if (off >= rap->rxa_wnd) {
1071 			/*
1072 			 * BAR specifies a window start to the right of BA
1073 			 * window; we must move it explicitly since
1074 			 * ampdu_rx_flush_upto will not.
1075 			 */
1076 			rap->rxa_start = rxseq;
1077 		}
1078 	} else {
1079 		/*
1080 		 * Out of range; toss.
1081 		 * Sec 9.10.7.6.3 b) (p.138)
1082 		 */
1083 		IEEE80211_DISCARD_MAC(vap,
1084 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1085 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1086 		    rap->rxa_start,
1087 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1088 		    rap->rxa_qframes, rxseq, tid,
1089 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1090 		vap->iv_stats.is_ampdu_bar_oow++;
1091 		IEEE80211_NODE_STAT(ni, rx_drop);
1092 	}
1093 }
1094 
1095 /*
1096  * Setup HT-specific state in a node.  Called only
1097  * when HT use is negotiated so we don't do extra
1098  * work for temporary and/or legacy sta's.
1099  */
1100 void
1101 ieee80211_ht_node_init(struct ieee80211_node *ni)
1102 {
1103 	struct ieee80211_tx_ampdu *tap;
1104 	int tid;
1105 
1106 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1107 	    ni,
1108 	    "%s: called (%p)",
1109 	    __func__,
1110 	    ni);
1111 
1112 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1113 		/*
1114 		 * Clean AMPDU state on re-associate.  This handles the case
1115 		 * where a station leaves w/o notifying us and then returns
1116 		 * before node is reaped for inactivity.
1117 		 */
1118 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1119 		    ni,
1120 		    "%s: calling cleanup (%p)",
1121 		    __func__, ni);
1122 		ieee80211_ht_node_cleanup(ni);
1123 	}
1124 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1125 		tap = &ni->ni_tx_ampdu[tid];
1126 		tap->txa_tid = tid;
1127 		tap->txa_ni = ni;
1128 		ieee80211_txampdu_init_pps(tap);
1129 		/* NB: further initialization deferred */
1130 	}
1131 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1132 }
1133 
1134 /*
1135  * Cleanup HT-specific state in a node.  Called only
1136  * when HT use has been marked.
1137  */
1138 void
1139 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1140 {
1141 	struct ieee80211com *ic = ni->ni_ic;
1142 	int i;
1143 
1144 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1145 	    ni,
1146 	    "%s: called (%p)",
1147 	    __func__, ni);
1148 
1149 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1150 
1151 	/* XXX optimize this */
1152 	for (i = 0; i < WME_NUM_TID; i++) {
1153 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1154 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1155 			ampdu_tx_stop(tap);
1156 	}
1157 	for (i = 0; i < WME_NUM_TID; i++)
1158 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1159 
1160 	ni->ni_htcap = 0;
1161 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1162 }
1163 
1164 /*
1165  * Age out HT resources for a station.
1166  */
1167 void
1168 ieee80211_ht_node_age(struct ieee80211_node *ni)
1169 {
1170 	struct ieee80211vap *vap = ni->ni_vap;
1171 	uint8_t tid;
1172 
1173 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1174 
1175 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1176 		struct ieee80211_rx_ampdu *rap;
1177 
1178 		rap = &ni->ni_rx_ampdu[tid];
1179 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1180 			continue;
1181 		if (rap->rxa_qframes == 0)
1182 			continue;
1183 		/*
1184 		 * Check for frames sitting too long in the reorder queue.
1185 		 * See above for more details on what's happening here.
1186 		 */
1187 		/* XXX honor batimeout? */
1188 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1189 			/*
1190 			 * Too long since we received the first
1191 			 * frame; flush the reorder buffer.
1192 			 */
1193 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1194 			ampdu_rx_flush(ni, rap);
1195 		}
1196 	}
1197 }
1198 
1199 static struct ieee80211_channel *
1200 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1201 {
1202 	return ieee80211_find_channel(ic, c->ic_freq,
1203 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1204 }
1205 
1206 /*
1207  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1208  */
1209 struct ieee80211_channel *
1210 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1211 	struct ieee80211_channel *chan, int flags)
1212 {
1213 	struct ieee80211_channel *c;
1214 
1215 	if (flags & IEEE80211_FHT_HT) {
1216 		/* promote to HT if possible */
1217 		if (flags & IEEE80211_FHT_USEHT40) {
1218 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1219 				/* NB: arbitrarily pick ht40+ over ht40- */
1220 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1221 				if (c == NULL)
1222 					c = findhtchan(ic, chan,
1223 						IEEE80211_CHAN_HT40D);
1224 				if (c == NULL)
1225 					c = findhtchan(ic, chan,
1226 						IEEE80211_CHAN_HT20);
1227 				if (c != NULL)
1228 					chan = c;
1229 			}
1230 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1231 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1232 			if (c != NULL)
1233 				chan = c;
1234 		}
1235 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1236 		/* demote to legacy, HT use is disabled */
1237 		c = ieee80211_find_channel(ic, chan->ic_freq,
1238 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1239 		if (c != NULL)
1240 			chan = c;
1241 	}
1242 	return chan;
1243 }
1244 
1245 /*
1246  * Setup HT-specific state for a legacy WDS peer.
1247  */
1248 void
1249 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1250 {
1251 	struct ieee80211vap *vap = ni->ni_vap;
1252 	struct ieee80211_tx_ampdu *tap;
1253 	int tid;
1254 
1255 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1256 
1257 	/* XXX check scan cache in case peer has an ap and we have info */
1258 	/*
1259 	 * If setup with a legacy channel; locate an HT channel.
1260 	 * Otherwise if the inherited channel (from a companion
1261 	 * AP) is suitable use it so we use the same location
1262 	 * for the extension channel).
1263 	 */
1264 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1265 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1266 
1267 	ni->ni_htcap = 0;
1268 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1269 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1270 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1271 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1272 		ni->ni_chw = 40;
1273 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1274 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1275 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1276 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1277 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1278 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1279 	} else {
1280 		ni->ni_chw = 20;
1281 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1282 	}
1283 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1284 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1285 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1286 	/* XXX does it make sense to enable SMPS? */
1287 
1288 	ni->ni_htopmode = 0;		/* XXX need protection state */
1289 	ni->ni_htstbc = 0;		/* XXX need info */
1290 
1291 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1292 		tap = &ni->ni_tx_ampdu[tid];
1293 		tap->txa_tid = tid;
1294 		ieee80211_txampdu_init_pps(tap);
1295 	}
1296 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1297 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1298 }
1299 
1300 /*
1301  * Notify hostap vaps of a change in the HTINFO ie.
1302  */
1303 static void
1304 htinfo_notify(struct ieee80211com *ic)
1305 {
1306 	struct ieee80211vap *vap;
1307 	int first = 1;
1308 
1309 	IEEE80211_LOCK_ASSERT(ic);
1310 
1311 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1312 		if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1313 			continue;
1314 		if (vap->iv_state != IEEE80211_S_RUN ||
1315 		    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1316 			continue;
1317 		if (first) {
1318 			IEEE80211_NOTE(vap,
1319 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1320 			    vap->iv_bss,
1321 			    "HT bss occupancy change: %d sta, %d ht, "
1322 			    "%d ht40%s, HT protmode now 0x%x"
1323 			    , ic->ic_sta_assoc
1324 			    , ic->ic_ht_sta_assoc
1325 			    , ic->ic_ht40_sta_assoc
1326 			    , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1327 				 ", non-HT sta present" : ""
1328 			    , ic->ic_curhtprotmode);
1329 			first = 0;
1330 		}
1331 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1332 	}
1333 }
1334 
1335 /*
1336  * Calculate HT protection mode from current
1337  * state and handle updates.
1338  */
1339 static void
1340 htinfo_update(struct ieee80211com *ic)
1341 {
1342 	uint8_t protmode;
1343 
1344 	if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) {
1345 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1346 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1347 	} else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) {
1348 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1349 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1350 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1351 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1352 	    ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) {
1353 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1354 	} else {
1355 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1356 	}
1357 	if (protmode != ic->ic_curhtprotmode) {
1358 		ic->ic_curhtprotmode = protmode;
1359 		htinfo_notify(ic);
1360 	}
1361 }
1362 
1363 /*
1364  * Handle an HT station joining a BSS.
1365  */
1366 void
1367 ieee80211_ht_node_join(struct ieee80211_node *ni)
1368 {
1369 	struct ieee80211com *ic = ni->ni_ic;
1370 
1371 	IEEE80211_LOCK_ASSERT(ic);
1372 
1373 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1374 		ic->ic_ht_sta_assoc++;
1375 		if (ni->ni_chw == 40)
1376 			ic->ic_ht40_sta_assoc++;
1377 	}
1378 	htinfo_update(ic);
1379 }
1380 
1381 /*
1382  * Handle an HT station leaving a BSS.
1383  */
1384 void
1385 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1386 {
1387 	struct ieee80211com *ic = ni->ni_ic;
1388 
1389 	IEEE80211_LOCK_ASSERT(ic);
1390 
1391 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1392 		ic->ic_ht_sta_assoc--;
1393 		if (ni->ni_chw == 40)
1394 			ic->ic_ht40_sta_assoc--;
1395 	}
1396 	htinfo_update(ic);
1397 }
1398 
1399 /*
1400  * Public version of htinfo_update; used for processing
1401  * beacon frames from overlapping bss.
1402  *
1403  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1404  * (on receipt of a beacon that advertises MIXED) or
1405  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1406  * from an overlapping legacy bss).  We treat MIXED with
1407  * a higher precedence than PROTOPT (i.e. we will not change
1408  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1409  * corresponds to how we handle things in htinfo_update.
1410  */
1411 void
1412 ieee80211_htprot_update(struct ieee80211com *ic, int protmode)
1413 {
1414 #define	OPMODE(x)	SM(x, IEEE80211_HTINFO_OPMODE)
1415 	IEEE80211_LOCK(ic);
1416 
1417 	/* track non-HT station presence */
1418 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1419 	    ("protmode 0x%x", protmode));
1420 	ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1421 	ic->ic_lastnonht = ticks;
1422 
1423 	if (protmode != ic->ic_curhtprotmode &&
1424 	    (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1425 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1426 		/* push beacon update */
1427 		ic->ic_curhtprotmode = protmode;
1428 		htinfo_notify(ic);
1429 	}
1430 	IEEE80211_UNLOCK(ic);
1431 #undef OPMODE
1432 }
1433 
1434 /*
1435  * Time out presence of an overlapping bss with non-HT
1436  * stations.  When operating in hostap mode we listen for
1437  * beacons from other stations and if we identify a non-HT
1438  * station is present we update the opmode field of the
1439  * HTINFO ie.  To identify when all non-HT stations are
1440  * gone we time out this condition.
1441  */
1442 void
1443 ieee80211_ht_timeout(struct ieee80211com *ic)
1444 {
1445 	IEEE80211_LOCK_ASSERT(ic);
1446 
1447 	if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1448 	    ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1449 #if 0
1450 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1451 		    "%s", "time out non-HT STA present on channel");
1452 #endif
1453 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1454 		htinfo_update(ic);
1455 	}
1456 }
1457 
1458 /*
1459  * Process an 802.11n HT capabilities ie.
1460  */
1461 void
1462 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1463 {
1464 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1465 		/*
1466 		 * Station used Vendor OUI ie to associate;
1467 		 * mark the node so when we respond we'll use
1468 		 * the Vendor OUI's and not the standard ie's.
1469 		 */
1470 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1471 		ie += 4;
1472 	} else
1473 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1474 
1475 	ni->ni_htcap = le16dec(ie +
1476 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1477 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1478 }
1479 
1480 static void
1481 htinfo_parse(struct ieee80211_node *ni,
1482 	const struct ieee80211_ie_htinfo *htinfo)
1483 {
1484 	uint16_t w;
1485 
1486 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1487 	ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN);
1488 	w = le16dec(&htinfo->hi_byte2);
1489 	ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE);
1490 	w = le16dec(&htinfo->hi_byte45);
1491 	ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1492 }
1493 
1494 /*
1495  * Parse an 802.11n HT info ie and save useful information
1496  * to the node state.  Note this does not effect any state
1497  * changes such as for channel width change.
1498  */
1499 void
1500 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1501 {
1502 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1503 		ie += 4;
1504 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1505 }
1506 
1507 /*
1508  * Handle 11n/11ac channel switch.
1509  *
1510  * Use the received HT/VHT ie's to identify the right channel to use.
1511  * If we cannot locate it in the channel table then fallback to
1512  * legacy operation.
1513  *
1514  * Note that we use this information to identify the node's
1515  * channel only; the caller is responsible for insuring any
1516  * required channel change is done (e.g. in sta mode when
1517  * parsing the contents of a beacon frame).
1518  */
1519 static int
1520 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags)
1521 {
1522 	struct ieee80211com *ic = ni->ni_ic;
1523 	struct ieee80211_channel *c;
1524 	int chanflags;
1525 	int ret = 0;
1526 
1527 	/*
1528 	 * First step - do HT/VHT only channel lookup based on operating mode
1529 	 * flags.  This involves masking out the VHT flags as well.
1530 	 * Otherwise we end up doing the full channel walk each time
1531 	 * we trigger this, which is expensive.
1532 	 */
1533 	chanflags = (ni->ni_chan->ic_flags &~
1534 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags;
1535 
1536 	if (chanflags == ni->ni_chan->ic_flags)
1537 		goto done;
1538 
1539 	/*
1540 	 * If HT /or/ VHT flags have changed then check both.
1541 	 * We need to start by picking a HT channel anyway.
1542 	 */
1543 
1544 	c = NULL;
1545 	chanflags = (ni->ni_chan->ic_flags &~
1546 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags;
1547 	/* XXX not right for ht40- */
1548 	c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1549 	if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1550 		/*
1551 		 * No HT40 channel entry in our table; fall back
1552 		 * to HT20 operation.  This should not happen.
1553 		 */
1554 		c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1555 #if 0
1556 		IEEE80211_NOTE(ni->ni_vap,
1557 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1558 		    "no HT40 channel (freq %u), falling back to HT20",
1559 		    ni->ni_chan->ic_freq);
1560 #endif
1561 		/* XXX stat */
1562 	}
1563 
1564 	/* Nothing found - leave it alone; move onto VHT */
1565 	if (c == NULL)
1566 		c = ni->ni_chan;
1567 
1568 	/*
1569 	 * If it's non-HT, then bail out now.
1570 	 */
1571 	if (! IEEE80211_IS_CHAN_HT(c)) {
1572 		IEEE80211_NOTE(ni->ni_vap,
1573 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1574 		    "not HT; skipping VHT check (%u/0x%x)",
1575 		    c->ic_freq, c->ic_flags);
1576 		goto done;
1577 	}
1578 
1579 	/*
1580 	 * Next step - look at the current VHT flags and determine
1581 	 * if we need to upgrade.  Mask out the VHT and HT flags since
1582 	 * the vhtflags field will already have the correct HT
1583 	 * flags to use.
1584 	 */
1585 	if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) {
1586 		chanflags = (c->ic_flags
1587 		    &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT))
1588 		    | vhtflags;
1589 		IEEE80211_NOTE(ni->ni_vap,
1590 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1591 		    ni,
1592 		    "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x",
1593 		    __func__, ni->ni_vht_chanwidth, vhtflags);
1594 
1595 		IEEE80211_NOTE(ni->ni_vap,
1596 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1597 		    ni,
1598 		    "%s: VHT; trying lookup for %d/0x%08x",
1599 		    __func__, c->ic_freq, chanflags);
1600 		c = ieee80211_find_channel(ic, c->ic_freq, chanflags);
1601 	}
1602 
1603 	/* Finally, if it's changed */
1604 	if (c != NULL && c != ni->ni_chan) {
1605 		IEEE80211_NOTE(ni->ni_vap,
1606 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1607 		    "switch station to %s%d channel %u/0x%x",
1608 		    IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT",
1609 		    IEEE80211_IS_CHAN_VHT80(c) ? 80 :
1610 		      (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20),
1611 		    c->ic_freq, c->ic_flags);
1612 		ni->ni_chan = c;
1613 		ret = 1;
1614 	}
1615 	/* NB: caller responsible for forcing any channel change */
1616 
1617 done:
1618 	/* update node's (11n) tx channel width */
1619 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1620 	return (ret);
1621 }
1622 
1623 /*
1624  * Update 11n MIMO PS state according to received htcap.
1625  */
1626 static __inline int
1627 htcap_update_mimo_ps(struct ieee80211_node *ni)
1628 {
1629 	uint16_t oflags = ni->ni_flags;
1630 
1631 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1632 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1633 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1634 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1635 		break;
1636 	case IEEE80211_HTCAP_SMPS_ENA:
1637 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1638 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1639 		break;
1640 	case IEEE80211_HTCAP_SMPS_OFF:
1641 	default:		/* disable on rx of reserved value */
1642 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1643 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1644 		break;
1645 	}
1646 	return (oflags ^ ni->ni_flags);
1647 }
1648 
1649 /*
1650  * Update short GI state according to received htcap
1651  * and local settings.
1652  */
1653 static __inline void
1654 htcap_update_shortgi(struct ieee80211_node *ni)
1655 {
1656 	struct ieee80211vap *vap = ni->ni_vap;
1657 
1658 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1659 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1660 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1661 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1662 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1663 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1664 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1665 }
1666 
1667 /*
1668  * Update LDPC state according to received htcap
1669  * and local settings.
1670  */
1671 static __inline void
1672 htcap_update_ldpc(struct ieee80211_node *ni)
1673 {
1674 	struct ieee80211vap *vap = ni->ni_vap;
1675 
1676 	if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) &&
1677 	    (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX))
1678 		ni->ni_flags |= IEEE80211_NODE_LDPC;
1679 }
1680 
1681 /*
1682  * Parse and update HT-related state extracted from
1683  * the HT cap and info ie's.
1684  *
1685  * This is called from the STA management path and
1686  * the ieee80211_node_join() path.  It will take into
1687  * account the IEs discovered during scanning and
1688  * adjust things accordingly.
1689  */
1690 void
1691 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1692 	const uint8_t *htcapie, const uint8_t *htinfoie)
1693 {
1694 	struct ieee80211vap *vap = ni->ni_vap;
1695 	const struct ieee80211_ie_htinfo *htinfo;
1696 
1697 	ieee80211_parse_htcap(ni, htcapie);
1698 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1699 		htcap_update_mimo_ps(ni);
1700 	htcap_update_shortgi(ni);
1701 	htcap_update_ldpc(ni);
1702 
1703 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1704 		htinfoie += 4;
1705 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1706 	htinfo_parse(ni, htinfo);
1707 
1708 	/*
1709 	 * Defer the node channel change; we need to now
1710 	 * update VHT parameters before we do it.
1711 	 */
1712 
1713 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1714 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1715 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1716 	else
1717 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1718 }
1719 
1720 static uint32_t
1721 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags)
1722 {
1723 	struct ieee80211vap *vap = ni->ni_vap;
1724 	uint32_t vhtflags = 0;
1725 
1726 	vhtflags = 0;
1727 	if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
1728 		if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) &&
1729 		    /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */
1730 		    (MS(vap->iv_vhtcaps,
1731 		     IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) &&
1732 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) {
1733 			vhtflags = IEEE80211_CHAN_VHT160;
1734 			/* Mirror the HT40 flags */
1735 			if (htflags == IEEE80211_CHAN_HT40U) {
1736 				vhtflags |= IEEE80211_CHAN_HT40U;
1737 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1738 				vhtflags |= IEEE80211_CHAN_HT40D;
1739 			}
1740 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) &&
1741 		    /* XXX 2 means "160MHz and 80+80MHz" */
1742 		    (MS(vap->iv_vhtcaps,
1743 		     IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) &&
1744 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) {
1745 			vhtflags = IEEE80211_CHAN_VHT80_80;
1746 			/* Mirror the HT40 flags */
1747 			if (htflags == IEEE80211_CHAN_HT40U) {
1748 				vhtflags |= IEEE80211_CHAN_HT40U;
1749 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1750 				vhtflags |= IEEE80211_CHAN_HT40D;
1751 			}
1752 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) &&
1753 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) {
1754 			vhtflags = IEEE80211_CHAN_VHT80;
1755 			/* Mirror the HT40 flags */
1756 			if (htflags == IEEE80211_CHAN_HT40U) {
1757 				vhtflags |= IEEE80211_CHAN_HT40U;
1758 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1759 				vhtflags |= IEEE80211_CHAN_HT40D;
1760 			}
1761 		} else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) {
1762 			/* Mirror the HT40 flags */
1763 			/*
1764 			 * XXX TODO: if ht40 is disabled, but vht40 isn't
1765 			 * disabled then this logic will get very, very sad.
1766 			 * It's quite possible the only sane thing to do is
1767 			 * to not have vht40 as an option, and just obey
1768 			 * 'ht40' as that flag.
1769 			 */
1770 			if ((htflags == IEEE80211_CHAN_HT40U) &&
1771 			    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) {
1772 				vhtflags = IEEE80211_CHAN_VHT40U
1773 				    | IEEE80211_CHAN_HT40U;
1774 			} else if (htflags == IEEE80211_CHAN_HT40D &&
1775 			    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) {
1776 				vhtflags = IEEE80211_CHAN_VHT40D
1777 				    | IEEE80211_CHAN_HT40D;
1778 			} else if (htflags == IEEE80211_CHAN_HT20) {
1779 				vhtflags = IEEE80211_CHAN_VHT20
1780 				    | IEEE80211_CHAN_HT20;
1781 			}
1782 		} else {
1783 			vhtflags = IEEE80211_CHAN_VHT20;
1784 		}
1785 	}
1786 	return (vhtflags);
1787 }
1788 
1789 /*
1790  * Final part of updating the HT parameters.
1791  *
1792  * This is called from the STA management path and
1793  * the ieee80211_node_join() path.  It will take into
1794  * account the IEs discovered during scanning and
1795  * adjust things accordingly.
1796  *
1797  * This is done after a call to ieee80211_ht_updateparams()
1798  * because it (and the upcoming VHT version of updateparams)
1799  * needs to ensure everything is parsed before htinfo_update_chw()
1800  * is called - which will change the channel config for the
1801  * node for us.
1802  */
1803 int
1804 ieee80211_ht_updateparams_final(struct ieee80211_node *ni,
1805 	const uint8_t *htcapie, const uint8_t *htinfoie)
1806 {
1807 	struct ieee80211vap *vap = ni->ni_vap;
1808 	const struct ieee80211_ie_htinfo *htinfo;
1809 	int htflags, vhtflags;
1810 	int ret = 0;
1811 
1812 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1813 
1814 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1815 	    IEEE80211_CHAN_HT20 : 0;
1816 
1817 	/* NB: honor operating mode constraint */
1818 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
1819 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1820 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
1821 			htflags = IEEE80211_CHAN_HT40U;
1822 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
1823 			htflags = IEEE80211_CHAN_HT40D;
1824 	}
1825 
1826 	/*
1827 	 * VHT flags - do much the same; check whether VHT is available
1828 	 * and if so, what our ideal channel use would be based on our
1829 	 * capabilities and the (pre-parsed) VHT info IE.
1830 	 */
1831 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
1832 
1833 	if (htinfo_update_chw(ni, htflags, vhtflags))
1834 		ret = 1;
1835 
1836 	return (ret);
1837 }
1838 
1839 /*
1840  * Parse and update HT-related state extracted from the HT cap ie
1841  * for a station joining an HT BSS.
1842  *
1843  * This is called from the hostap path for each station.
1844  */
1845 void
1846 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
1847 {
1848 	struct ieee80211vap *vap = ni->ni_vap;
1849 
1850 	ieee80211_parse_htcap(ni, htcapie);
1851 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1852 		htcap_update_mimo_ps(ni);
1853 	htcap_update_shortgi(ni);
1854 	htcap_update_ldpc(ni);
1855 }
1856 
1857 /*
1858  * Called once HT and VHT capabilities are parsed in hostap mode -
1859  * this will adjust the channel configuration of the given node
1860  * based on the configuration and capabilities.
1861  */
1862 void
1863 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni)
1864 {
1865 	struct ieee80211vap *vap = ni->ni_vap;
1866 	int htflags;
1867 	int vhtflags;
1868 
1869 	/* NB: honor operating mode constraint */
1870 	/* XXX 40 MHz intolerant */
1871 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1872 	    IEEE80211_CHAN_HT20 : 0;
1873 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
1874 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1875 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
1876 			htflags = IEEE80211_CHAN_HT40U;
1877 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
1878 			htflags = IEEE80211_CHAN_HT40D;
1879 	}
1880 	/*
1881 	 * VHT flags - do much the same; check whether VHT is available
1882 	 * and if so, what our ideal channel use would be based on our
1883 	 * capabilities and the (pre-parsed) VHT info IE.
1884 	 */
1885 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
1886 
1887 	(void) htinfo_update_chw(ni, htflags, vhtflags);
1888 }
1889 
1890 /*
1891  * Install received HT rate set by parsing the HT cap ie.
1892  */
1893 int
1894 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
1895 {
1896 	struct ieee80211com *ic = ni->ni_ic;
1897 	struct ieee80211vap *vap = ni->ni_vap;
1898 	const struct ieee80211_ie_htcap *htcap;
1899 	struct ieee80211_htrateset *rs;
1900 	int i, maxequalmcs, maxunequalmcs;
1901 
1902 	maxequalmcs = ic->ic_txstream * 8 - 1;
1903 	maxunequalmcs = 0;
1904 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
1905 		if (ic->ic_txstream >= 2)
1906 			maxunequalmcs = 38;
1907 		if (ic->ic_txstream >= 3)
1908 			maxunequalmcs = 52;
1909 		if (ic->ic_txstream >= 4)
1910 			maxunequalmcs = 76;
1911 	}
1912 
1913 	rs = &ni->ni_htrates;
1914 	memset(rs, 0, sizeof(*rs));
1915 	if (ie != NULL) {
1916 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
1917 			ie += 4;
1918 		htcap = (const struct ieee80211_ie_htcap *) ie;
1919 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1920 			if (isclr(htcap->hc_mcsset, i))
1921 				continue;
1922 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
1923 				IEEE80211_NOTE(vap,
1924 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1925 				    "WARNING, HT rate set too large; only "
1926 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
1927 				vap->iv_stats.is_rx_rstoobig++;
1928 				break;
1929 			}
1930 			if (i <= 31 && i > maxequalmcs)
1931 				continue;
1932 			if (i == 32 &&
1933 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
1934 				continue;
1935 			if (i > 32 && i > maxunequalmcs)
1936 				continue;
1937 			rs->rs_rates[rs->rs_nrates++] = i;
1938 		}
1939 	}
1940 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
1941 }
1942 
1943 /*
1944  * Mark rates in a node's HT rate set as basic according
1945  * to the information in the supplied HT info ie.
1946  */
1947 void
1948 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
1949 {
1950 	const struct ieee80211_ie_htinfo *htinfo;
1951 	struct ieee80211_htrateset *rs;
1952 	int i, j;
1953 
1954 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1955 		ie += 4;
1956 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
1957 	rs = &ni->ni_htrates;
1958 	if (rs->rs_nrates == 0) {
1959 		IEEE80211_NOTE(ni->ni_vap,
1960 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1961 		    "%s", "WARNING, empty HT rate set");
1962 		return;
1963 	}
1964 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1965 		if (isclr(htinfo->hi_basicmcsset, i))
1966 			continue;
1967 		for (j = 0; j < rs->rs_nrates; j++)
1968 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
1969 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
1970 	}
1971 }
1972 
1973 static void
1974 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
1975 {
1976 	callout_init(&tap->txa_timer, 1);
1977 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
1978 	tap->txa_lastsample = ticks;
1979 }
1980 
1981 static void
1982 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
1983 {
1984 	struct ieee80211_node *ni = tap->txa_ni;
1985 	struct ieee80211com *ic = ni->ni_ic;
1986 
1987 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
1988 	    tap->txa_ni,
1989 	    "%s: called",
1990 	    __func__);
1991 
1992 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
1993 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
1994 	    TID_TO_WME_AC(tap->txa_tid)));
1995 
1996 	/*
1997 	 * Stop BA stream if setup so driver has a chance
1998 	 * to reclaim any resources it might have allocated.
1999 	 */
2000 	ic->ic_addba_stop(ni, tap);
2001 	/*
2002 	 * Stop any pending BAR transmit.
2003 	 */
2004 	bar_stop_timer(tap);
2005 
2006 	/*
2007 	 * Reset packet estimate.
2008 	 */
2009 	ieee80211_txampdu_init_pps(tap);
2010 
2011 	/* NB: clearing NAK means we may re-send ADDBA */
2012 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
2013 }
2014 
2015 /*
2016  * ADDBA response timeout.
2017  *
2018  * If software aggregation and per-TID queue management was done here,
2019  * that queue would be unpaused after the ADDBA timeout occurs.
2020  */
2021 static void
2022 addba_timeout(void *arg)
2023 {
2024 	struct ieee80211_tx_ampdu *tap = arg;
2025 	struct ieee80211_node *ni = tap->txa_ni;
2026 	struct ieee80211com *ic = ni->ni_ic;
2027 
2028 	/* XXX ? */
2029 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2030 	tap->txa_attempts++;
2031 	ic->ic_addba_response_timeout(ni, tap);
2032 }
2033 
2034 static void
2035 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
2036 {
2037 	/* XXX use CALLOUT_PENDING instead? */
2038 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
2039 	    addba_timeout, tap);
2040 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
2041 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
2042 }
2043 
2044 static void
2045 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
2046 {
2047 	/* XXX use CALLOUT_PENDING instead? */
2048 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
2049 		callout_stop(&tap->txa_timer);
2050 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2051 	}
2052 }
2053 
2054 static void
2055 null_addba_response_timeout(struct ieee80211_node *ni,
2056     struct ieee80211_tx_ampdu *tap)
2057 {
2058 }
2059 
2060 /*
2061  * Default method for requesting A-MPDU tx aggregation.
2062  * We setup the specified state block and start a timer
2063  * to wait for an ADDBA response frame.
2064  */
2065 static int
2066 ieee80211_addba_request(struct ieee80211_node *ni,
2067 	struct ieee80211_tx_ampdu *tap,
2068 	int dialogtoken, int baparamset, int batimeout)
2069 {
2070 	int bufsiz;
2071 
2072 	/* XXX locking */
2073 	tap->txa_token = dialogtoken;
2074 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
2075 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2076 	tap->txa_wnd = (bufsiz == 0) ?
2077 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2078 	addba_start_timeout(tap);
2079 	return 1;
2080 }
2081 
2082 /*
2083  * Called by drivers that wish to request an ADDBA session be
2084  * setup.  This brings it up and starts the request timer.
2085  */
2086 int
2087 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
2088 {
2089 	struct ieee80211_tx_ampdu *tap;
2090 
2091 	if (tid < 0 || tid > 15)
2092 		return (0);
2093 	tap = &ni->ni_tx_ampdu[tid];
2094 
2095 	/* XXX locking */
2096 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2097 		/* do deferred setup of state */
2098 		ampdu_tx_setup(tap);
2099 	}
2100 	/* XXX hack for not doing proper locking */
2101 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2102 	addba_start_timeout(tap);
2103 	return (1);
2104 }
2105 
2106 /*
2107  * Called by drivers that have marked a session as active.
2108  */
2109 int
2110 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
2111     int status)
2112 {
2113 	struct ieee80211_tx_ampdu *tap;
2114 
2115 	if (tid < 0 || tid > 15)
2116 		return (0);
2117 	tap = &ni->ni_tx_ampdu[tid];
2118 
2119 	/* XXX locking */
2120 	addba_stop_timeout(tap);
2121 	if (status == 1) {
2122 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2123 		tap->txa_attempts = 0;
2124 	} else {
2125 		/* mark tid so we don't try again */
2126 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2127 	}
2128 	return (1);
2129 }
2130 
2131 /*
2132  * Default method for processing an A-MPDU tx aggregation
2133  * response.  We shutdown any pending timer and update the
2134  * state block according to the reply.
2135  */
2136 static int
2137 ieee80211_addba_response(struct ieee80211_node *ni,
2138 	struct ieee80211_tx_ampdu *tap,
2139 	int status, int baparamset, int batimeout)
2140 {
2141 	int bufsiz, tid;
2142 
2143 	/* XXX locking */
2144 	addba_stop_timeout(tap);
2145 	if (status == IEEE80211_STATUS_SUCCESS) {
2146 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2147 		/* XXX override our request? */
2148 		tap->txa_wnd = (bufsiz == 0) ?
2149 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2150 		/* XXX AC/TID */
2151 		tid = MS(baparamset, IEEE80211_BAPS_TID);
2152 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2153 		tap->txa_attempts = 0;
2154 	} else {
2155 		/* mark tid so we don't try again */
2156 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2157 	}
2158 	return 1;
2159 }
2160 
2161 /*
2162  * Default method for stopping A-MPDU tx aggregation.
2163  * Any timer is cleared and we drain any pending frames.
2164  */
2165 static void
2166 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
2167 {
2168 	/* XXX locking */
2169 	addba_stop_timeout(tap);
2170 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
2171 		/* XXX clear aggregation queue */
2172 		tap->txa_flags &= ~IEEE80211_AGGR_RUNNING;
2173 	}
2174 	tap->txa_attempts = 0;
2175 }
2176 
2177 /*
2178  * Process a received action frame using the default aggregation
2179  * policy.  We intercept ADDBA-related frames and use them to
2180  * update our aggregation state.  All other frames are passed up
2181  * for processing by ieee80211_recv_action.
2182  */
2183 static int
2184 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
2185 	const struct ieee80211_frame *wh,
2186 	const uint8_t *frm, const uint8_t *efrm)
2187 {
2188 	struct ieee80211com *ic = ni->ni_ic;
2189 	struct ieee80211vap *vap = ni->ni_vap;
2190 	struct ieee80211_rx_ampdu *rap;
2191 	uint8_t dialogtoken;
2192 	uint16_t baparamset, batimeout, baseqctl;
2193 	uint16_t args[5];
2194 	int tid;
2195 
2196 	dialogtoken = frm[2];
2197 	baparamset = le16dec(frm+3);
2198 	batimeout = le16dec(frm+5);
2199 	baseqctl = le16dec(frm+7);
2200 
2201 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2202 
2203 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2204 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
2205 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d",
2206 	    dialogtoken, baparamset,
2207 	    tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ),
2208 	    batimeout,
2209 	    MS(baseqctl, IEEE80211_BASEQ_START),
2210 	    MS(baseqctl, IEEE80211_BASEQ_FRAG));
2211 
2212 	rap = &ni->ni_rx_ampdu[tid];
2213 
2214 	/* Send ADDBA response */
2215 	args[0] = dialogtoken;
2216 	/*
2217 	 * NB: We ack only if the sta associated with HT and
2218 	 * the ap is configured to do AMPDU rx (the latter
2219 	 * violates the 11n spec and is mostly for testing).
2220 	 */
2221 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
2222 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
2223 		/* XXX handle ampdu_rx_start failure */
2224 		ic->ic_ampdu_rx_start(ni, rap,
2225 		    baparamset, batimeout, baseqctl);
2226 
2227 		args[1] = IEEE80211_STATUS_SUCCESS;
2228 	} else {
2229 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2230 		    ni, "reject ADDBA request: %s",
2231 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
2232 		       "administratively disabled" :
2233 		       "not negotiated for station");
2234 		vap->iv_stats.is_addba_reject++;
2235 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
2236 	}
2237 	/* XXX honor rap flags? */
2238 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
2239 		| SM(tid, IEEE80211_BAPS_TID)
2240 		| SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
2241 		;
2242 	args[3] = 0;
2243 	args[4] = 0;
2244 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2245 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
2246 	return 0;
2247 }
2248 
2249 static int
2250 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
2251 	const struct ieee80211_frame *wh,
2252 	const uint8_t *frm, const uint8_t *efrm)
2253 {
2254 	struct ieee80211com *ic = ni->ni_ic;
2255 	struct ieee80211vap *vap = ni->ni_vap;
2256 	struct ieee80211_tx_ampdu *tap;
2257 	uint8_t dialogtoken, policy;
2258 	uint16_t baparamset, batimeout, code;
2259 	int tid, bufsiz;
2260 
2261 	dialogtoken = frm[2];
2262 	code = le16dec(frm+3);
2263 	baparamset = le16dec(frm+5);
2264 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2265 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2266 	policy = MS(baparamset, IEEE80211_BAPS_POLICY);
2267 	batimeout = le16dec(frm+7);
2268 
2269 	tap = &ni->ni_tx_ampdu[tid];
2270 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2271 		IEEE80211_DISCARD_MAC(vap,
2272 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2273 		    ni->ni_macaddr, "ADDBA response",
2274 		    "no pending ADDBA, tid %d dialogtoken %u "
2275 		    "code %d", tid, dialogtoken, code);
2276 		vap->iv_stats.is_addba_norequest++;
2277 		return 0;
2278 	}
2279 	if (dialogtoken != tap->txa_token) {
2280 		IEEE80211_DISCARD_MAC(vap,
2281 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2282 		    ni->ni_macaddr, "ADDBA response",
2283 		    "dialogtoken mismatch: waiting for %d, "
2284 		    "received %d, tid %d code %d",
2285 		    tap->txa_token, dialogtoken, tid, code);
2286 		vap->iv_stats.is_addba_badtoken++;
2287 		return 0;
2288 	}
2289 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2290 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2291 		IEEE80211_DISCARD_MAC(vap,
2292 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2293 		    ni->ni_macaddr, "ADDBA response",
2294 		    "policy mismatch: expecting %s, "
2295 		    "received %s, tid %d code %d",
2296 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2297 		    policy, tid, code);
2298 		vap->iv_stats.is_addba_badpolicy++;
2299 		return 0;
2300 	}
2301 #if 0
2302 	/* XXX we take MIN in ieee80211_addba_response */
2303 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2304 		IEEE80211_DISCARD_MAC(vap,
2305 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2306 		    ni->ni_macaddr, "ADDBA response",
2307 		    "BA window too large: max %d, "
2308 		    "received %d, tid %d code %d",
2309 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2310 		vap->iv_stats.is_addba_badbawinsize++;
2311 		return 0;
2312 	}
2313 #endif
2314 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2315 	    "recv ADDBA response: dialogtoken %u code %d "
2316 	    "baparamset 0x%x (tid %d bufsiz %d) batimeout %d",
2317 	    dialogtoken, code, baparamset, tid, bufsiz,
2318 	    batimeout);
2319 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2320 	return 0;
2321 }
2322 
2323 static int
2324 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2325 	const struct ieee80211_frame *wh,
2326 	const uint8_t *frm, const uint8_t *efrm)
2327 {
2328 	struct ieee80211com *ic = ni->ni_ic;
2329 	struct ieee80211_rx_ampdu *rap;
2330 	struct ieee80211_tx_ampdu *tap;
2331 	uint16_t baparamset, code;
2332 	int tid;
2333 
2334 	baparamset = le16dec(frm+2);
2335 	code = le16dec(frm+4);
2336 
2337 	tid = MS(baparamset, IEEE80211_DELBAPS_TID);
2338 
2339 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2340 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2341 	    "code %d", baparamset, tid,
2342 	    MS(baparamset, IEEE80211_DELBAPS_INIT), code);
2343 
2344 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2345 		tap = &ni->ni_tx_ampdu[tid];
2346 		ic->ic_addba_stop(ni, tap);
2347 	} else {
2348 		rap = &ni->ni_rx_ampdu[tid];
2349 		ic->ic_ampdu_rx_stop(ni, rap);
2350 	}
2351 	return 0;
2352 }
2353 
2354 static int
2355 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2356 	const struct ieee80211_frame *wh,
2357 	const uint8_t *frm, const uint8_t *efrm)
2358 {
2359 	int chw;
2360 
2361 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2362 
2363 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2364 	    "%s: HT txchwidth, width %d%s",
2365 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2366 	if (chw != ni->ni_chw) {
2367 		/* XXX does this need to change the ht40 station count? */
2368 		ni->ni_chw = chw;
2369 		/* XXX notify on change */
2370 	}
2371 	return 0;
2372 }
2373 
2374 static int
2375 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2376 	const struct ieee80211_frame *wh,
2377 	const uint8_t *frm, const uint8_t *efrm)
2378 {
2379 	const struct ieee80211_action_ht_mimopowersave *mps =
2380 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2381 
2382 	/* XXX check iv_htcaps */
2383 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2384 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2385 	else
2386 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2387 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2388 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2389 	else
2390 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2391 	/* XXX notify on change */
2392 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2393 	    "%s: HT MIMO PS (%s%s)", __func__,
2394 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2395 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2396 	);
2397 	return 0;
2398 }
2399 
2400 /*
2401  * Transmit processing.
2402  */
2403 
2404 /*
2405  * Check if A-MPDU should be requested/enabled for a stream.
2406  * We require a traffic rate above a per-AC threshold and we
2407  * also handle backoff from previous failed attempts.
2408  *
2409  * Drivers may override this method to bring in information
2410  * such as link state conditions in making the decision.
2411  */
2412 static int
2413 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2414 	struct ieee80211_tx_ampdu *tap)
2415 {
2416 	struct ieee80211vap *vap = ni->ni_vap;
2417 
2418 	if (tap->txa_avgpps <
2419 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2420 		return 0;
2421 	/* XXX check rssi? */
2422 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2423 	    ieee80211_time_after(ticks, tap->txa_nextrequest)) {
2424 		/*
2425 		 * Don't retry too often; txa_nextrequest is set
2426 		 * to the minimum interval we'll retry after
2427 		 * ieee80211_addba_maxtries failed attempts are made.
2428 		 */
2429 		return 0;
2430 	}
2431 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2432 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d",
2433 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2434 	    tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts);
2435 	return 1;
2436 }
2437 
2438 /*
2439  * Request A-MPDU tx aggregation.  Setup local state and
2440  * issue an ADDBA request.  BA use will only happen after
2441  * the other end replies with ADDBA response.
2442  */
2443 int
2444 ieee80211_ampdu_request(struct ieee80211_node *ni,
2445 	struct ieee80211_tx_ampdu *tap)
2446 {
2447 	struct ieee80211com *ic = ni->ni_ic;
2448 	uint16_t args[5];
2449 	int tid, dialogtoken;
2450 	static int tokens = 0;	/* XXX */
2451 
2452 	/* XXX locking */
2453 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2454 		/* do deferred setup of state */
2455 		ampdu_tx_setup(tap);
2456 	}
2457 	/* XXX hack for not doing proper locking */
2458 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2459 
2460 	dialogtoken = (tokens+1) % 63;		/* XXX */
2461 	tid = tap->txa_tid;
2462 
2463 	/*
2464 	 * XXX TODO: This is racy with any other parallel TX going on. :(
2465 	 */
2466 	tap->txa_start = ni->ni_txseqs[tid];
2467 
2468 	args[0] = dialogtoken;
2469 	args[1] = 0;	/* NB: status code not used */
2470 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2471 		| SM(tid, IEEE80211_BAPS_TID)
2472 		| SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ)
2473 		;
2474 	args[3] = 0;	/* batimeout */
2475 	/* NB: do first so there's no race against reply */
2476 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2477 		/* unable to setup state, don't make request */
2478 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2479 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2480 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2481 		/* defer next try so we don't slam the driver with requests */
2482 		tap->txa_attempts = ieee80211_addba_maxtries;
2483 		/* NB: check in case driver wants to override */
2484 		if (tap->txa_nextrequest <= ticks)
2485 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2486 		return 0;
2487 	}
2488 	tokens = dialogtoken;			/* allocate token */
2489 	/* NB: after calling ic_addba_request so driver can set txa_start */
2490 	args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START)
2491 		| SM(0, IEEE80211_BASEQ_FRAG)
2492 		;
2493 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2494 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2495 }
2496 
2497 /*
2498  * Terminate an AMPDU tx stream.  State is reclaimed
2499  * and the peer notified with a DelBA Action frame.
2500  */
2501 void
2502 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2503 	int reason)
2504 {
2505 	struct ieee80211com *ic = ni->ni_ic;
2506 	struct ieee80211vap *vap = ni->ni_vap;
2507 	uint16_t args[4];
2508 
2509 	/* XXX locking */
2510 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2511 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2512 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2513 		    ni, "%s: stop BA stream for TID %d (reason: %d (%s))",
2514 		    __func__, tap->txa_tid, reason,
2515 		    ieee80211_reason_to_string(reason));
2516 		vap->iv_stats.is_ampdu_stop++;
2517 
2518 		ic->ic_addba_stop(ni, tap);
2519 		args[0] = tap->txa_tid;
2520 		args[1] = IEEE80211_DELBAPS_INIT;
2521 		args[2] = reason;			/* XXX reason code */
2522 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2523 			IEEE80211_ACTION_BA_DELBA, args);
2524 	} else {
2525 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2526 		    ni, "%s: BA stream for TID %d not running "
2527 		    "(reason: %d (%s))", __func__, tap->txa_tid, reason,
2528 		    ieee80211_reason_to_string(reason));
2529 		vap->iv_stats.is_ampdu_stop_failed++;
2530 	}
2531 }
2532 
2533 /* XXX */
2534 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2535 
2536 static void
2537 bar_timeout(void *arg)
2538 {
2539 	struct ieee80211_tx_ampdu *tap = arg;
2540 	struct ieee80211_node *ni = tap->txa_ni;
2541 
2542 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2543 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2544 
2545 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2546 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2547 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2548 
2549 	/* guard against race with bar_tx_complete */
2550 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2551 		return;
2552 	/* XXX ? */
2553 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2554 		struct ieee80211com *ic = ni->ni_ic;
2555 
2556 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2557 		/*
2558 		 * If (at least) the last BAR TX timeout was due to
2559 		 * an ieee80211_send_bar() failures, then we need
2560 		 * to make sure we notify the driver that a BAR
2561 		 * TX did occur and fail.  This gives the driver
2562 		 * a chance to undo any queue pause that may
2563 		 * have occurred.
2564 		 */
2565 		ic->ic_bar_response(ni, tap, 1);
2566 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2567 	} else {
2568 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2569 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2570 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2571 			    ni, "%s: failed to TX, starting timer\n",
2572 			    __func__);
2573 			/*
2574 			 * If ieee80211_send_bar() fails here, the
2575 			 * timer may have stopped and/or the pending
2576 			 * flag may be clear.  Because of this,
2577 			 * fake the BARPEND and reset the timer.
2578 			 * A retransmission attempt will then occur
2579 			 * during the next timeout.
2580 			 */
2581 			/* XXX locking */
2582 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2583 			bar_start_timer(tap);
2584 		}
2585 	}
2586 }
2587 
2588 static void
2589 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2590 {
2591 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2592 	    tap->txa_ni,
2593 	    "%s: called",
2594 	    __func__);
2595 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2596 }
2597 
2598 static void
2599 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2600 {
2601 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2602 	    tap->txa_ni,
2603 	    "%s: called",
2604 	    __func__);
2605 	callout_stop(&tap->txa_timer);
2606 }
2607 
2608 static void
2609 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2610 {
2611 	struct ieee80211_tx_ampdu *tap = arg;
2612 
2613 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2614 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2615 	    __func__, tap->txa_tid, tap->txa_flags,
2616 	    callout_pending(&tap->txa_timer), status);
2617 
2618 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2619 	/* XXX locking */
2620 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2621 	    callout_pending(&tap->txa_timer)) {
2622 		struct ieee80211com *ic = ni->ni_ic;
2623 
2624 		if (status == 0)		/* ACK'd */
2625 			bar_stop_timer(tap);
2626 		ic->ic_bar_response(ni, tap, status);
2627 		/* NB: just let timer expire so we pace requests */
2628 	}
2629 }
2630 
2631 static void
2632 ieee80211_bar_response(struct ieee80211_node *ni,
2633 	struct ieee80211_tx_ampdu *tap, int status)
2634 {
2635 
2636 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2637 	    tap->txa_ni,
2638 	    "%s: called",
2639 	    __func__);
2640 	if (status == 0) {		/* got ACK */
2641 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2642 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2643 		    tap->txa_start,
2644 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2645 		    tap->txa_qframes, tap->txa_seqpending,
2646 		    tap->txa_tid);
2647 
2648 		/* NB: timer already stopped in bar_tx_complete */
2649 		tap->txa_start = tap->txa_seqpending;
2650 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2651 	}
2652 }
2653 
2654 /*
2655  * Transmit a BAR frame to the specified node.  The
2656  * BAR contents are drawn from the supplied aggregation
2657  * state associated with the node.
2658  *
2659  * NB: we only handle immediate ACK w/ compressed bitmap.
2660  */
2661 int
2662 ieee80211_send_bar(struct ieee80211_node *ni,
2663 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2664 {
2665 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2666 	struct ieee80211vap *vap = ni->ni_vap;
2667 	struct ieee80211com *ic = ni->ni_ic;
2668 	struct ieee80211_frame_bar *bar;
2669 	struct mbuf *m;
2670 	uint16_t barctl, barseqctl;
2671 	uint8_t *frm;
2672 	int tid, ret;
2673 
2674 
2675 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2676 	    tap->txa_ni,
2677 	    "%s: called",
2678 	    __func__);
2679 
2680 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2681 		/* no ADDBA response, should not happen */
2682 		/* XXX stat+msg */
2683 		return EINVAL;
2684 	}
2685 	/* XXX locking */
2686 	bar_stop_timer(tap);
2687 
2688 	ieee80211_ref_node(ni);
2689 
2690 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2691 	if (m == NULL)
2692 		senderr(ENOMEM, is_tx_nobuf);
2693 
2694 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2695 		m_freem(m);
2696 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2697 		/* NOTREACHED */
2698 	}
2699 
2700 	bar = mtod(m, struct ieee80211_frame_bar *);
2701 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2702 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2703 	bar->i_fc[1] = 0;
2704 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2705 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2706 
2707 	tid = tap->txa_tid;
2708 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2709 			0 : IEEE80211_BAR_NOACK)
2710 		| IEEE80211_BAR_COMP
2711 		| SM(tid, IEEE80211_BAR_TID)
2712 		;
2713 	barseqctl = SM(seq, IEEE80211_BAR_SEQ_START);
2714 	/* NB: known to have proper alignment */
2715 	bar->i_ctl = htole16(barctl);
2716 	bar->i_seq = htole16(barseqctl);
2717 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2718 
2719 	M_WME_SETAC(m, WME_AC_VO);
2720 
2721 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2722 
2723 	/* XXX locking */
2724 	/* init/bump attempts counter */
2725 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2726 		tap->txa_attempts = 1;
2727 	else
2728 		tap->txa_attempts++;
2729 	tap->txa_seqpending = seq;
2730 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2731 
2732 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2733 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2734 	    tid, barctl, seq, tap->txa_attempts);
2735 
2736 	/*
2737 	 * ic_raw_xmit will free the node reference
2738 	 * regardless of queue/TX success or failure.
2739 	 */
2740 	IEEE80211_TX_LOCK(ic);
2741 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2742 	IEEE80211_TX_UNLOCK(ic);
2743 	if (ret != 0) {
2744 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2745 		    ni, "send BAR: failed: (ret = %d)\n",
2746 		    ret);
2747 		/* xmit failed, clear state flag */
2748 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2749 		vap->iv_stats.is_ampdu_bar_tx_fail++;
2750 		return ret;
2751 	}
2752 	/* XXX hack against tx complete happening before timer is started */
2753 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
2754 		bar_start_timer(tap);
2755 	return 0;
2756 bad:
2757 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2758 	    tap->txa_ni,
2759 	    "%s: bad! ret=%d",
2760 	    __func__, ret);
2761 	vap->iv_stats.is_ampdu_bar_tx_fail++;
2762 	ieee80211_free_node(ni);
2763 	return ret;
2764 #undef senderr
2765 }
2766 
2767 static int
2768 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
2769 {
2770 	struct ieee80211_bpf_params params;
2771 
2772 	memset(&params, 0, sizeof(params));
2773 	params.ibp_pri = WME_AC_VO;
2774 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
2775 	/* NB: we know all frames are unicast */
2776 	params.ibp_try0 = ni->ni_txparms->maxretry;
2777 	params.ibp_power = ni->ni_txpower;
2778 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
2779 	     &params);
2780 }
2781 
2782 #define	ADDSHORT(frm, v) do {			\
2783 	frm[0] = (v) & 0xff;			\
2784 	frm[1] = (v) >> 8;			\
2785 	frm += 2;				\
2786 } while (0)
2787 
2788 /*
2789  * Send an action management frame.  The arguments are stuff
2790  * into a frame without inspection; the caller is assumed to
2791  * prepare them carefully (e.g. based on the aggregation state).
2792  */
2793 static int
2794 ht_send_action_ba_addba(struct ieee80211_node *ni,
2795 	int category, int action, void *arg0)
2796 {
2797 	struct ieee80211vap *vap = ni->ni_vap;
2798 	struct ieee80211com *ic = ni->ni_ic;
2799 	uint16_t *args = arg0;
2800 	struct mbuf *m;
2801 	uint8_t *frm;
2802 
2803 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2804 	    "send ADDBA %s: dialogtoken %d status %d "
2805 	    "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x",
2806 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
2807 		"request" : "response",
2808 	    args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID),
2809 	    args[3], args[4]);
2810 
2811 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2812 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2813 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2814 	ieee80211_ref_node(ni);
2815 
2816 	m = ieee80211_getmgtframe(&frm,
2817 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2818 	    sizeof(uint16_t)	/* action+category */
2819 	    /* XXX may action payload */
2820 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2821 	);
2822 	if (m != NULL) {
2823 		*frm++ = category;
2824 		*frm++ = action;
2825 		*frm++ = args[0];		/* dialog token */
2826 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
2827 			ADDSHORT(frm, args[1]);	/* status code */
2828 		ADDSHORT(frm, args[2]);		/* baparamset */
2829 		ADDSHORT(frm, args[3]);		/* batimeout */
2830 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
2831 			ADDSHORT(frm, args[4]);	/* baseqctl */
2832 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2833 		return ht_action_output(ni, m);
2834 	} else {
2835 		vap->iv_stats.is_tx_nobuf++;
2836 		ieee80211_free_node(ni);
2837 		return ENOMEM;
2838 	}
2839 }
2840 
2841 static int
2842 ht_send_action_ba_delba(struct ieee80211_node *ni,
2843 	int category, int action, void *arg0)
2844 {
2845 	struct ieee80211vap *vap = ni->ni_vap;
2846 	struct ieee80211com *ic = ni->ni_ic;
2847 	uint16_t *args = arg0;
2848 	struct mbuf *m;
2849 	uint16_t baparamset;
2850 	uint8_t *frm;
2851 
2852 	baparamset = SM(args[0], IEEE80211_DELBAPS_TID)
2853 		   | args[1]
2854 		   ;
2855 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2856 	    "send DELBA action: tid %d, initiator %d reason %d (%s)",
2857 	    args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
2858 
2859 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2860 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2861 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2862 	ieee80211_ref_node(ni);
2863 
2864 	m = ieee80211_getmgtframe(&frm,
2865 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2866 	    sizeof(uint16_t)	/* action+category */
2867 	    /* XXX may action payload */
2868 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2869 	);
2870 	if (m != NULL) {
2871 		*frm++ = category;
2872 		*frm++ = action;
2873 		ADDSHORT(frm, baparamset);
2874 		ADDSHORT(frm, args[2]);		/* reason code */
2875 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2876 		return ht_action_output(ni, m);
2877 	} else {
2878 		vap->iv_stats.is_tx_nobuf++;
2879 		ieee80211_free_node(ni);
2880 		return ENOMEM;
2881 	}
2882 }
2883 
2884 static int
2885 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
2886 	int category, int action, void *arg0)
2887 {
2888 	struct ieee80211vap *vap = ni->ni_vap;
2889 	struct ieee80211com *ic = ni->ni_ic;
2890 	struct mbuf *m;
2891 	uint8_t *frm;
2892 
2893 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2894 	    "send HT txchwidth: width %d",
2895 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
2896 
2897 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2898 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2899 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2900 	ieee80211_ref_node(ni);
2901 
2902 	m = ieee80211_getmgtframe(&frm,
2903 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2904 	    sizeof(uint16_t)	/* action+category */
2905 	    /* XXX may action payload */
2906 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2907 	);
2908 	if (m != NULL) {
2909 		*frm++ = category;
2910 		*frm++ = action;
2911 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
2912 			IEEE80211_A_HT_TXCHWIDTH_2040 :
2913 			IEEE80211_A_HT_TXCHWIDTH_20;
2914 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2915 		return ht_action_output(ni, m);
2916 	} else {
2917 		vap->iv_stats.is_tx_nobuf++;
2918 		ieee80211_free_node(ni);
2919 		return ENOMEM;
2920 	}
2921 }
2922 #undef ADDSHORT
2923 
2924 /*
2925  * Construct the MCS bit mask for inclusion in an HT capabilities
2926  * information element.
2927  */
2928 static void
2929 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
2930 {
2931 	int i;
2932 	uint8_t txparams;
2933 
2934 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
2935 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
2936 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
2937 	    ("ic_txstream %d out of range", ic->ic_txstream));
2938 
2939 	for (i = 0; i < ic->ic_rxstream * 8; i++)
2940 		setbit(frm, i);
2941 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2942 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
2943 		setbit(frm, 32);
2944 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
2945 		if (ic->ic_rxstream >= 2) {
2946 			for (i = 33; i <= 38; i++)
2947 				setbit(frm, i);
2948 		}
2949 		if (ic->ic_rxstream >= 3) {
2950 			for (i = 39; i <= 52; i++)
2951 				setbit(frm, i);
2952 		}
2953 		if (ic->ic_txstream >= 4) {
2954 			for (i = 53; i <= 76; i++)
2955 				setbit(frm, i);
2956 		}
2957 	}
2958 
2959 	if (ic->ic_rxstream != ic->ic_txstream) {
2960 		txparams = 0x1;			/* TX MCS set defined */
2961 		txparams |= 0x2;		/* TX RX MCS not equal */
2962 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
2963 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
2964 			txparams |= 0x16;	/* TX unequal modulation sup */
2965 	} else
2966 		txparams = 0;
2967 	frm[12] = txparams;
2968 }
2969 
2970 /*
2971  * Add body of an HTCAP information element.
2972  */
2973 static uint8_t *
2974 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
2975 {
2976 #define	ADDSHORT(frm, v) do {			\
2977 	frm[0] = (v) & 0xff;			\
2978 	frm[1] = (v) >> 8;			\
2979 	frm += 2;				\
2980 } while (0)
2981 	struct ieee80211com *ic = ni->ni_ic;
2982 	struct ieee80211vap *vap = ni->ni_vap;
2983 	uint16_t caps, extcaps;
2984 	int rxmax, density;
2985 
2986 	/* HT capabilities */
2987 	caps = vap->iv_htcaps & 0xffff;
2988 	/*
2989 	 * Note channel width depends on whether we are operating as
2990 	 * a sta or not.  When operating as a sta we are generating
2991 	 * a request based on our desired configuration.  Otherwise
2992 	 * we are operational and the channel attributes identify
2993 	 * how we've been setup (which might be different if a fixed
2994 	 * channel is specified).
2995 	 */
2996 	if (vap->iv_opmode == IEEE80211_M_STA) {
2997 		/* override 20/40 use based on config */
2998 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
2999 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3000 		else
3001 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3002 
3003 		/* Start by using the advertised settings */
3004 		rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
3005 		density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
3006 
3007 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
3008 		    "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n",
3009 		    __func__,
3010 		    rxmax,
3011 		    density,
3012 		    vap->iv_ampdu_rxmax,
3013 		    vap->iv_ampdu_density);
3014 
3015 		/* Cap at VAP rxmax */
3016 		if (rxmax > vap->iv_ampdu_rxmax)
3017 			rxmax = vap->iv_ampdu_rxmax;
3018 
3019 		/*
3020 		 * If the VAP ampdu density value greater, use that.
3021 		 *
3022 		 * (Larger density value == larger minimum gap between A-MPDU
3023 		 * subframes.)
3024 		 */
3025 		if (vap->iv_ampdu_density > density)
3026 			density = vap->iv_ampdu_density;
3027 
3028 		/*
3029 		 * NB: Hardware might support HT40 on some but not all
3030 		 * channels. We can't determine this earlier because only
3031 		 * after association the channel is upgraded to HT based
3032 		 * on the negotiated capabilities.
3033 		 */
3034 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
3035 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
3036 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
3037 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3038 	} else {
3039 		/* override 20/40 use based on current channel */
3040 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3041 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3042 		else
3043 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3044 
3045 		/* XXX TODO should it start by using advertised settings? */
3046 		rxmax = vap->iv_ampdu_rxmax;
3047 		density = vap->iv_ampdu_density;
3048 	}
3049 
3050 	/* adjust short GI based on channel and config */
3051 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3052 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3053 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3054 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3055 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3056 
3057 	/* adjust STBC based on receive capabilities */
3058 	if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0)
3059 		caps &= ~IEEE80211_HTCAP_RXSTBC;
3060 
3061 	/* adjust LDPC based on receive capabilites */
3062 	if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0)
3063 		caps &= ~IEEE80211_HTCAP_LDPC;
3064 
3065 	ADDSHORT(frm, caps);
3066 
3067 	/* HT parameters */
3068 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3069 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
3070 	     ;
3071 	frm++;
3072 
3073 	/* pre-zero remainder of ie */
3074 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3075 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3076 
3077 	/* supported MCS set */
3078 	/*
3079 	 * XXX: For sta mode the rate set should be restricted based
3080 	 * on the AP's capabilities, but ni_htrates isn't setup when
3081 	 * we're called to form an AssocReq frame so for now we're
3082 	 * restricted to the device capabilities.
3083 	 */
3084 	ieee80211_set_mcsset(ni->ni_ic, frm);
3085 
3086 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3087 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3088 
3089 	/* HT extended capabilities */
3090 	extcaps = vap->iv_htextcaps & 0xffff;
3091 
3092 	ADDSHORT(frm, extcaps);
3093 
3094 	frm += sizeof(struct ieee80211_ie_htcap) -
3095 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3096 
3097 	return frm;
3098 #undef ADDSHORT
3099 }
3100 
3101 /*
3102  * Add 802.11n HT capabilities information element
3103  */
3104 uint8_t *
3105 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
3106 {
3107 	frm[0] = IEEE80211_ELEMID_HTCAP;
3108 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3109 	return ieee80211_add_htcap_body(frm + 2, ni);
3110 }
3111 
3112 /*
3113  * Non-associated probe request - add HT capabilities based on
3114  * the current channel configuration.
3115  */
3116 static uint8_t *
3117 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap,
3118     struct ieee80211_channel *c)
3119 {
3120 #define	ADDSHORT(frm, v) do {			\
3121 	frm[0] = (v) & 0xff;			\
3122 	frm[1] = (v) >> 8;			\
3123 	frm += 2;				\
3124 } while (0)
3125 	struct ieee80211com *ic = vap->iv_ic;
3126 	uint16_t caps, extcaps;
3127 	int rxmax, density;
3128 
3129 	/* HT capabilities */
3130 	caps = vap->iv_htcaps & 0xffff;
3131 
3132 	/*
3133 	 * We don't use this in STA mode; only in IBSS mode.
3134 	 * So in IBSS mode we base our HTCAP flags on the
3135 	 * given channel.
3136 	 */
3137 
3138 	/* override 20/40 use based on current channel */
3139 	if (IEEE80211_IS_CHAN_HT40(c))
3140 		caps |= IEEE80211_HTCAP_CHWIDTH40;
3141 	else
3142 		caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3143 
3144 	/* Use the currently configured values */
3145 	rxmax = vap->iv_ampdu_rxmax;
3146 	density = vap->iv_ampdu_density;
3147 
3148 	/* adjust short GI based on channel and config */
3149 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3150 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3151 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3152 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3153 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3154 	ADDSHORT(frm, caps);
3155 
3156 	/* HT parameters */
3157 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3158 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
3159 	     ;
3160 	frm++;
3161 
3162 	/* pre-zero remainder of ie */
3163 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3164 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3165 
3166 	/* supported MCS set */
3167 	/*
3168 	 * XXX: For sta mode the rate set should be restricted based
3169 	 * on the AP's capabilities, but ni_htrates isn't setup when
3170 	 * we're called to form an AssocReq frame so for now we're
3171 	 * restricted to the device capabilities.
3172 	 */
3173 	ieee80211_set_mcsset(ic, frm);
3174 
3175 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3176 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3177 
3178 	/* HT extended capabilities */
3179 	extcaps = vap->iv_htextcaps & 0xffff;
3180 
3181 	ADDSHORT(frm, extcaps);
3182 
3183 	frm += sizeof(struct ieee80211_ie_htcap) -
3184 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3185 
3186 	return frm;
3187 #undef ADDSHORT
3188 }
3189 
3190 /*
3191  * Add 802.11n HT capabilities information element
3192  */
3193 uint8_t *
3194 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap,
3195     struct ieee80211_channel *c)
3196 {
3197 	frm[0] = IEEE80211_ELEMID_HTCAP;
3198 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3199 	return ieee80211_add_htcap_body_ch(frm + 2, vap, c);
3200 }
3201 
3202 /*
3203  * Add Broadcom OUI wrapped standard HTCAP ie; this is
3204  * used for compatibility w/ pre-draft implementations.
3205  */
3206 uint8_t *
3207 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
3208 {
3209 	frm[0] = IEEE80211_ELEMID_VENDOR;
3210 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
3211 	frm[2] = (BCM_OUI >> 0) & 0xff;
3212 	frm[3] = (BCM_OUI >> 8) & 0xff;
3213 	frm[4] = (BCM_OUI >> 16) & 0xff;
3214 	frm[5] = BCM_OUI_HTCAP;
3215 	return ieee80211_add_htcap_body(frm + 6, ni);
3216 }
3217 
3218 /*
3219  * Construct the MCS bit mask of basic rates
3220  * for inclusion in an HT information element.
3221  */
3222 static void
3223 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
3224 {
3225 	int i;
3226 
3227 	for (i = 0; i < rs->rs_nrates; i++) {
3228 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
3229 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
3230 		    r < IEEE80211_HTRATE_MAXSIZE) {
3231 			/* NB: this assumes a particular implementation */
3232 			setbit(frm, r);
3233 		}
3234 	}
3235 }
3236 
3237 /*
3238  * Update the HTINFO ie for a beacon frame.
3239  */
3240 void
3241 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
3242 	struct ieee80211_beacon_offsets *bo)
3243 {
3244 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
3245 	struct ieee80211_node *ni;
3246 	const struct ieee80211_channel *bsschan;
3247 	struct ieee80211com *ic = vap->iv_ic;
3248 	struct ieee80211_ie_htinfo *ht =
3249 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
3250 
3251 	ni = ieee80211_ref_node(vap->iv_bss);
3252 	bsschan = ni->ni_chan;
3253 
3254 	/* XXX only update on channel change */
3255 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
3256 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3257 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
3258 	else
3259 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
3260 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
3261 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3262 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
3263 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3264 	else
3265 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
3266 	if (IEEE80211_IS_CHAN_HT40(bsschan))
3267 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
3268 
3269 	/* protection mode */
3270 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
3271 
3272 	ieee80211_free_node(ni);
3273 
3274 	/* XXX propagate to vendor ie's */
3275 #undef PROTMODE
3276 }
3277 
3278 /*
3279  * Add body of an HTINFO information element.
3280  *
3281  * NB: We don't use struct ieee80211_ie_htinfo because we can
3282  * be called to fillin both a standard ie and a compat ie that
3283  * has a vendor OUI at the front.
3284  */
3285 static uint8_t *
3286 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
3287 {
3288 	struct ieee80211vap *vap = ni->ni_vap;
3289 	struct ieee80211com *ic = ni->ni_ic;
3290 
3291 	/* pre-zero remainder of ie */
3292 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
3293 
3294 	/* primary/control channel center */
3295 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3296 
3297 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3298 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
3299 	else
3300 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
3301 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3302 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3303 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3304 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3305 	else
3306 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
3307 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3308 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
3309 
3310 	frm[1] = ic->ic_curhtprotmode;
3311 
3312 	frm += 5;
3313 
3314 	/* basic MCS set */
3315 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
3316 	frm += sizeof(struct ieee80211_ie_htinfo) -
3317 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
3318 	return frm;
3319 }
3320 
3321 /*
3322  * Add 802.11n HT information information element.
3323  */
3324 uint8_t *
3325 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
3326 {
3327 	frm[0] = IEEE80211_ELEMID_HTINFO;
3328 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
3329 	return ieee80211_add_htinfo_body(frm + 2, ni);
3330 }
3331 
3332 /*
3333  * Add Broadcom OUI wrapped standard HTINFO ie; this is
3334  * used for compatibility w/ pre-draft implementations.
3335  */
3336 uint8_t *
3337 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
3338 {
3339 	frm[0] = IEEE80211_ELEMID_VENDOR;
3340 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
3341 	frm[2] = (BCM_OUI >> 0) & 0xff;
3342 	frm[3] = (BCM_OUI >> 8) & 0xff;
3343 	frm[4] = (BCM_OUI >> 16) & 0xff;
3344 	frm[5] = BCM_OUI_HTINFO;
3345 	return ieee80211_add_htinfo_body(frm + 6, ni);
3346 }
3347