1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/systm.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/if.h> 46 #include <net/if_media.h> 47 #include <net/ethernet.h> 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_action.h> 51 #include <net80211/ieee80211_input.h> 52 53 /* define here, used throughout file */ 54 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 55 #define SM(_v, _f) (((_v) << _f##_S) & _f) 56 57 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 58 { 13, 14, 27, 30 }, /* MCS 0 */ 59 { 26, 29, 54, 60 }, /* MCS 1 */ 60 { 39, 43, 81, 90 }, /* MCS 2 */ 61 { 52, 58, 108, 120 }, /* MCS 3 */ 62 { 78, 87, 162, 180 }, /* MCS 4 */ 63 { 104, 116, 216, 240 }, /* MCS 5 */ 64 { 117, 130, 243, 270 }, /* MCS 6 */ 65 { 130, 144, 270, 300 }, /* MCS 7 */ 66 { 26, 29, 54, 60 }, /* MCS 8 */ 67 { 52, 58, 108, 120 }, /* MCS 9 */ 68 { 78, 87, 162, 180 }, /* MCS 10 */ 69 { 104, 116, 216, 240 }, /* MCS 11 */ 70 { 156, 173, 324, 360 }, /* MCS 12 */ 71 { 208, 231, 432, 480 }, /* MCS 13 */ 72 { 234, 260, 486, 540 }, /* MCS 14 */ 73 { 260, 289, 540, 600 }, /* MCS 15 */ 74 { 39, 43, 81, 90 }, /* MCS 16 */ 75 { 78, 87, 162, 180 }, /* MCS 17 */ 76 { 117, 130, 243, 270 }, /* MCS 18 */ 77 { 156, 173, 324, 360 }, /* MCS 19 */ 78 { 234, 260, 486, 540 }, /* MCS 20 */ 79 { 312, 347, 648, 720 }, /* MCS 21 */ 80 { 351, 390, 729, 810 }, /* MCS 22 */ 81 { 390, 433, 810, 900 }, /* MCS 23 */ 82 { 52, 58, 108, 120 }, /* MCS 24 */ 83 { 104, 116, 216, 240 }, /* MCS 25 */ 84 { 156, 173, 324, 360 }, /* MCS 26 */ 85 { 208, 231, 432, 480 }, /* MCS 27 */ 86 { 312, 347, 648, 720 }, /* MCS 28 */ 87 { 416, 462, 864, 960 }, /* MCS 29 */ 88 { 468, 520, 972, 1080 }, /* MCS 30 */ 89 { 520, 578, 1080, 1200 }, /* MCS 31 */ 90 { 0, 0, 12, 13 }, /* MCS 32 */ 91 { 78, 87, 162, 180 }, /* MCS 33 */ 92 { 104, 116, 216, 240 }, /* MCS 34 */ 93 { 130, 144, 270, 300 }, /* MCS 35 */ 94 { 117, 130, 243, 270 }, /* MCS 36 */ 95 { 156, 173, 324, 360 }, /* MCS 37 */ 96 { 195, 217, 405, 450 }, /* MCS 38 */ 97 { 104, 116, 216, 240 }, /* MCS 39 */ 98 { 130, 144, 270, 300 }, /* MCS 40 */ 99 { 130, 144, 270, 300 }, /* MCS 41 */ 100 { 156, 173, 324, 360 }, /* MCS 42 */ 101 { 182, 202, 378, 420 }, /* MCS 43 */ 102 { 182, 202, 378, 420 }, /* MCS 44 */ 103 { 208, 231, 432, 480 }, /* MCS 45 */ 104 { 156, 173, 324, 360 }, /* MCS 46 */ 105 { 195, 217, 405, 450 }, /* MCS 47 */ 106 { 195, 217, 405, 450 }, /* MCS 48 */ 107 { 234, 260, 486, 540 }, /* MCS 49 */ 108 { 273, 303, 567, 630 }, /* MCS 50 */ 109 { 273, 303, 567, 630 }, /* MCS 51 */ 110 { 312, 347, 648, 720 }, /* MCS 52 */ 111 { 130, 144, 270, 300 }, /* MCS 53 */ 112 { 156, 173, 324, 360 }, /* MCS 54 */ 113 { 182, 202, 378, 420 }, /* MCS 55 */ 114 { 156, 173, 324, 360 }, /* MCS 56 */ 115 { 182, 202, 378, 420 }, /* MCS 57 */ 116 { 208, 231, 432, 480 }, /* MCS 58 */ 117 { 234, 260, 486, 540 }, /* MCS 59 */ 118 { 208, 231, 432, 480 }, /* MCS 60 */ 119 { 234, 260, 486, 540 }, /* MCS 61 */ 120 { 260, 289, 540, 600 }, /* MCS 62 */ 121 { 260, 289, 540, 600 }, /* MCS 63 */ 122 { 286, 318, 594, 660 }, /* MCS 64 */ 123 { 195, 217, 405, 450 }, /* MCS 65 */ 124 { 234, 260, 486, 540 }, /* MCS 66 */ 125 { 273, 303, 567, 630 }, /* MCS 67 */ 126 { 234, 260, 486, 540 }, /* MCS 68 */ 127 { 273, 303, 567, 630 }, /* MCS 69 */ 128 { 312, 347, 648, 720 }, /* MCS 70 */ 129 { 351, 390, 729, 810 }, /* MCS 71 */ 130 { 312, 347, 648, 720 }, /* MCS 72 */ 131 { 351, 390, 729, 810 }, /* MCS 73 */ 132 { 390, 433, 810, 900 }, /* MCS 74 */ 133 { 390, 433, 810, 900 }, /* MCS 75 */ 134 { 429, 477, 891, 990 }, /* MCS 76 */ 135 }; 136 137 #ifdef IEEE80211_AMPDU_AGE 138 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 139 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 140 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 141 "AMPDU max reorder age (ms)"); 142 #endif 143 144 static int ieee80211_recv_bar_ena = 1; 145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 146 0, "BAR frame processing (ena/dis)"); 147 148 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLTYPE_INT | CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 #ifdef IEEE80211_AMPDU_AGE 180 ieee80211_ampdu_age = msecs_to_ticks(500); 181 #endif 182 ieee80211_addba_timeout = msecs_to_ticks(250); 183 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 184 ieee80211_bar_timeout = msecs_to_ticks(250); 185 /* 186 * Register action frame handlers. 187 */ 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 193 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 196 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 197 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 198 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 204 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 205 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 206 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 207 } 208 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 209 210 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap); 212 static int ieee80211_addba_request(struct ieee80211_node *ni, 213 struct ieee80211_tx_ampdu *tap, 214 int dialogtoken, int baparamset, int batimeout); 215 static int ieee80211_addba_response(struct ieee80211_node *ni, 216 struct ieee80211_tx_ampdu *tap, 217 int code, int baparamset, int batimeout); 218 static void ieee80211_addba_stop(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 static void null_addba_response_timeout(struct ieee80211_node *ni, 221 struct ieee80211_tx_ampdu *tap); 222 223 static void ieee80211_bar_response(struct ieee80211_node *ni, 224 struct ieee80211_tx_ampdu *tap, int status); 225 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 226 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 227 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 228 int baparamset, int batimeout, int baseqctl); 229 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 230 231 void 232 ieee80211_ht_attach(struct ieee80211com *ic) 233 { 234 /* setup default aggregation policy */ 235 ic->ic_recv_action = ieee80211_recv_action; 236 ic->ic_send_action = ieee80211_send_action; 237 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 238 ic->ic_addba_request = ieee80211_addba_request; 239 ic->ic_addba_response = ieee80211_addba_response; 240 ic->ic_addba_response_timeout = null_addba_response_timeout; 241 ic->ic_addba_stop = ieee80211_addba_stop; 242 ic->ic_bar_response = ieee80211_bar_response; 243 ic->ic_ampdu_rx_start = ampdu_rx_start; 244 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 245 246 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 247 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 248 } 249 250 void 251 ieee80211_ht_detach(struct ieee80211com *ic) 252 { 253 } 254 255 void 256 ieee80211_ht_vattach(struct ieee80211vap *vap) 257 { 258 259 /* driver can override defaults */ 260 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 261 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 262 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 263 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 264 /* tx aggregation traffic thresholds */ 265 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 266 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 267 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 268 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 269 270 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 271 /* 272 * Device is HT capable; enable all HT-related 273 * facilities by default. 274 * XXX these choices may be too aggressive. 275 */ 276 vap->iv_flags_ht |= IEEE80211_FHT_HT 277 | IEEE80211_FHT_HTCOMPAT 278 ; 279 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 280 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 281 /* XXX infer from channel list? */ 282 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 283 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 284 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 285 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 286 } 287 /* enable RIFS if capable */ 288 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 289 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 290 291 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 292 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 293 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 294 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 295 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 296 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 297 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 298 } 299 /* NB: disable default legacy WDS, too many issues right now */ 300 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 301 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 302 } 303 304 void 305 ieee80211_ht_vdetach(struct ieee80211vap *vap) 306 { 307 } 308 309 static int 310 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 311 int ratetype) 312 { 313 int mword, rate; 314 315 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 316 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 317 return (0); 318 switch (ratetype) { 319 case 0: 320 rate = ieee80211_htrates[index].ht20_rate_800ns; 321 break; 322 case 1: 323 rate = ieee80211_htrates[index].ht20_rate_400ns; 324 break; 325 case 2: 326 rate = ieee80211_htrates[index].ht40_rate_800ns; 327 break; 328 default: 329 rate = ieee80211_htrates[index].ht40_rate_400ns; 330 break; 331 } 332 return (rate); 333 } 334 335 static struct printranges { 336 int minmcs; 337 int maxmcs; 338 int txstream; 339 int ratetype; 340 int htcapflags; 341 } ranges[] = { 342 { 0, 7, 1, 0, 0 }, 343 { 8, 15, 2, 0, 0 }, 344 { 16, 23, 3, 0, 0 }, 345 { 24, 31, 4, 0, 0 }, 346 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 347 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 348 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 349 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 350 { 0, 0, 0, 0, 0 }, 351 }; 352 353 static void 354 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 355 { 356 struct ifnet *ifp = ic->ic_ifp; 357 int minrate, maxrate; 358 struct printranges *range; 359 360 for (range = ranges; range->txstream != 0; range++) { 361 if (ic->ic_txstream < range->txstream) 362 continue; 363 if (range->htcapflags && 364 (ic->ic_htcaps & range->htcapflags) == 0) 365 continue; 366 if (ratetype < range->ratetype) 367 continue; 368 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 369 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 370 if (range->maxmcs) { 371 if_printf(ifp, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 372 range->minmcs, range->maxmcs, 373 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 374 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 375 } else { 376 if_printf(ifp, "MCS %d: %d%sMbps\n", range->minmcs, 377 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 378 } 379 } 380 } 381 382 static void 383 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 384 { 385 struct ifnet *ifp = ic->ic_ifp; 386 const char *modestr = ieee80211_phymode_name[mode]; 387 388 if_printf(ifp, "%s MCS 20MHz\n", modestr); 389 ht_rateprint(ic, mode, 0); 390 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 391 if_printf(ifp, "%s MCS 20MHz SGI\n", modestr); 392 ht_rateprint(ic, mode, 1); 393 } 394 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 395 if_printf(ifp, "%s MCS 40MHz:\n", modestr); 396 ht_rateprint(ic, mode, 2); 397 } 398 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 399 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 400 if_printf(ifp, "%s MCS 40MHz SGI:\n", modestr); 401 ht_rateprint(ic, mode, 3); 402 } 403 } 404 405 void 406 ieee80211_ht_announce(struct ieee80211com *ic) 407 { 408 struct ifnet *ifp = ic->ic_ifp; 409 410 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 411 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 412 if_printf(ifp, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 413 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 414 ht_announce(ic, IEEE80211_MODE_11NA); 415 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 416 ht_announce(ic, IEEE80211_MODE_11NG); 417 } 418 419 static struct ieee80211_htrateset htrateset; 420 421 const struct ieee80211_htrateset * 422 ieee80211_get_suphtrates(struct ieee80211com *ic, 423 const struct ieee80211_channel *c) 424 { 425 #define ADDRATE(x) do { \ 426 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 427 htrateset.rs_nrates++; \ 428 } while (0) 429 int i; 430 431 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 432 for (i = 0; i < ic->ic_txstream * 8; i++) 433 ADDRATE(i); 434 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 435 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 436 ADDRATE(32); 437 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 438 if (ic->ic_txstream >= 2) { 439 for (i = 33; i <= 38; i++) 440 ADDRATE(i); 441 } 442 if (ic->ic_txstream >= 3) { 443 for (i = 39; i <= 52; i++) 444 ADDRATE(i); 445 } 446 if (ic->ic_txstream == 4) { 447 for (i = 53; i <= 76; i++) 448 ADDRATE(i); 449 } 450 } 451 return &htrateset; 452 #undef ADDRATE 453 } 454 455 /* 456 * Receive processing. 457 */ 458 459 /* 460 * Decap the encapsulated A-MSDU frames and dispatch all but 461 * the last for delivery. The last frame is returned for 462 * delivery via the normal path. 463 */ 464 struct mbuf * 465 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 466 { 467 struct ieee80211vap *vap = ni->ni_vap; 468 int framelen; 469 struct mbuf *n; 470 471 /* discard 802.3 header inserted by ieee80211_decap */ 472 m_adj(m, sizeof(struct ether_header)); 473 474 vap->iv_stats.is_amsdu_decap++; 475 476 for (;;) { 477 /* 478 * Decap the first frame, bust it apart from the 479 * remainder and deliver. We leave the last frame 480 * delivery to the caller (for consistency with other 481 * code paths, could also do it here). 482 */ 483 m = ieee80211_decap1(m, &framelen); 484 if (m == NULL) { 485 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 486 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 487 vap->iv_stats.is_amsdu_tooshort++; 488 return NULL; 489 } 490 if (m->m_pkthdr.len == framelen) 491 break; 492 n = m_split(m, framelen, M_NOWAIT); 493 if (n == NULL) { 494 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 495 ni->ni_macaddr, "a-msdu", 496 "%s", "unable to split encapsulated frames"); 497 vap->iv_stats.is_amsdu_split++; 498 m_freem(m); /* NB: must reclaim */ 499 return NULL; 500 } 501 vap->iv_deliver_data(vap, ni, m); 502 503 /* 504 * Remove frame contents; each intermediate frame 505 * is required to be aligned to a 4-byte boundary. 506 */ 507 m = n; 508 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 509 } 510 return m; /* last delivered by caller */ 511 } 512 513 /* 514 * Purge all frames in the A-MPDU re-order queue. 515 */ 516 static void 517 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 518 { 519 struct mbuf *m; 520 int i; 521 522 for (i = 0; i < rap->rxa_wnd; i++) { 523 m = rap->rxa_m[i]; 524 if (m != NULL) { 525 rap->rxa_m[i] = NULL; 526 rap->rxa_qbytes -= m->m_pkthdr.len; 527 m_freem(m); 528 if (--rap->rxa_qframes == 0) 529 break; 530 } 531 } 532 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 533 ("lost %u data, %u frames on ampdu rx q", 534 rap->rxa_qbytes, rap->rxa_qframes)); 535 } 536 537 /* 538 * Start A-MPDU rx/re-order processing for the specified TID. 539 */ 540 static int 541 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 542 int baparamset, int batimeout, int baseqctl) 543 { 544 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 545 546 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 547 /* 548 * AMPDU previously setup and not terminated with a DELBA, 549 * flush the reorder q's in case anything remains. 550 */ 551 ampdu_rx_purge(rap); 552 } 553 memset(rap, 0, sizeof(*rap)); 554 rap->rxa_wnd = (bufsiz == 0) ? 555 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 556 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 557 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 558 559 return 0; 560 } 561 562 /* 563 * Stop A-MPDU rx processing for the specified TID. 564 */ 565 static void 566 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 567 { 568 569 ampdu_rx_purge(rap); 570 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 571 } 572 573 /* 574 * Dispatch a frame from the A-MPDU reorder queue. The 575 * frame is fed back into ieee80211_input marked with an 576 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 577 * permits ieee80211_input to optimize re-processing). 578 */ 579 static __inline void 580 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 581 { 582 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 583 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 584 (void) ieee80211_input(ni, m, 0, 0); 585 } 586 587 /* 588 * Dispatch as many frames as possible from the re-order queue. 589 * Frames will always be "at the front"; we process all frames 590 * up to the first empty slot in the window. On completion we 591 * cleanup state if there are still pending frames in the current 592 * BA window. We assume the frame at slot 0 is already handled 593 * by the caller; we always start at slot 1. 594 */ 595 static void 596 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 597 { 598 struct ieee80211vap *vap = ni->ni_vap; 599 struct mbuf *m; 600 int i; 601 602 /* flush run of frames */ 603 for (i = 1; i < rap->rxa_wnd; i++) { 604 m = rap->rxa_m[i]; 605 if (m == NULL) 606 break; 607 rap->rxa_m[i] = NULL; 608 rap->rxa_qbytes -= m->m_pkthdr.len; 609 rap->rxa_qframes--; 610 611 ampdu_dispatch(ni, m); 612 } 613 /* 614 * If frames remain, copy the mbuf pointers down so 615 * they correspond to the offsets in the new window. 616 */ 617 if (rap->rxa_qframes != 0) { 618 int n = rap->rxa_qframes, j; 619 for (j = i+1; j < rap->rxa_wnd; j++) { 620 if (rap->rxa_m[j] != NULL) { 621 rap->rxa_m[j-i] = rap->rxa_m[j]; 622 rap->rxa_m[j] = NULL; 623 if (--n == 0) 624 break; 625 } 626 } 627 KASSERT(n == 0, ("lost %d frames", n)); 628 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 629 } 630 /* 631 * Adjust the start of the BA window to 632 * reflect the frames just dispatched. 633 */ 634 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 635 vap->iv_stats.is_ampdu_rx_oor += i; 636 } 637 638 #ifdef IEEE80211_AMPDU_AGE 639 /* 640 * Dispatch all frames in the A-MPDU re-order queue. 641 */ 642 static void 643 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 644 { 645 struct ieee80211vap *vap = ni->ni_vap; 646 struct mbuf *m; 647 int i; 648 649 for (i = 0; i < rap->rxa_wnd; i++) { 650 m = rap->rxa_m[i]; 651 if (m == NULL) 652 continue; 653 rap->rxa_m[i] = NULL; 654 rap->rxa_qbytes -= m->m_pkthdr.len; 655 rap->rxa_qframes--; 656 vap->iv_stats.is_ampdu_rx_oor++; 657 658 ampdu_dispatch(ni, m); 659 if (rap->rxa_qframes == 0) 660 break; 661 } 662 } 663 #endif /* IEEE80211_AMPDU_AGE */ 664 665 /* 666 * Dispatch all frames in the A-MPDU re-order queue 667 * preceding the specified sequence number. This logic 668 * handles window moves due to a received MSDU or BAR. 669 */ 670 static void 671 ampdu_rx_flush_upto(struct ieee80211_node *ni, 672 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 673 { 674 struct ieee80211vap *vap = ni->ni_vap; 675 struct mbuf *m; 676 ieee80211_seq seqno; 677 int i; 678 679 /* 680 * Flush any complete MSDU's with a sequence number lower 681 * than winstart. Gaps may exist. Note that we may actually 682 * dispatch frames past winstart if a run continues; this is 683 * an optimization that avoids having to do a separate pass 684 * to dispatch frames after moving the BA window start. 685 */ 686 seqno = rap->rxa_start; 687 for (i = 0; i < rap->rxa_wnd; i++) { 688 m = rap->rxa_m[i]; 689 if (m != NULL) { 690 rap->rxa_m[i] = NULL; 691 rap->rxa_qbytes -= m->m_pkthdr.len; 692 rap->rxa_qframes--; 693 vap->iv_stats.is_ampdu_rx_oor++; 694 695 ampdu_dispatch(ni, m); 696 } else { 697 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 698 break; 699 } 700 seqno = IEEE80211_SEQ_INC(seqno); 701 } 702 /* 703 * If frames remain, copy the mbuf pointers down so 704 * they correspond to the offsets in the new window. 705 */ 706 if (rap->rxa_qframes != 0) { 707 int n = rap->rxa_qframes, j; 708 709 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 710 KASSERT(rap->rxa_m[0] == NULL, 711 ("%s: BA window slot 0 occupied", __func__)); 712 for (j = i+1; j < rap->rxa_wnd; j++) { 713 if (rap->rxa_m[j] != NULL) { 714 rap->rxa_m[j-i] = rap->rxa_m[j]; 715 rap->rxa_m[j] = NULL; 716 if (--n == 0) 717 break; 718 } 719 } 720 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 721 "BA win <%d:%d> winstart %d", 722 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 723 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 724 winstart)); 725 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 726 } 727 /* 728 * Move the start of the BA window; we use the 729 * sequence number of the last MSDU that was 730 * passed up the stack+1 or winstart if stopped on 731 * a gap in the reorder buffer. 732 */ 733 rap->rxa_start = seqno; 734 } 735 736 /* 737 * Process a received QoS data frame for an HT station. Handle 738 * A-MPDU reordering: if this frame is received out of order 739 * and falls within the BA window hold onto it. Otherwise if 740 * this frame completes a run, flush any pending frames. We 741 * return 1 if the frame is consumed. A 0 is returned if 742 * the frame should be processed normally by the caller. 743 */ 744 int 745 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 746 { 747 #define IEEE80211_FC0_QOSDATA \ 748 (IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0) 749 #define PROCESS 0 /* caller should process frame */ 750 #define CONSUMED 1 /* frame consumed, caller does nothing */ 751 struct ieee80211vap *vap = ni->ni_vap; 752 struct ieee80211_qosframe *wh; 753 struct ieee80211_rx_ampdu *rap; 754 ieee80211_seq rxseq; 755 uint8_t tid; 756 int off; 757 758 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 759 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 760 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 761 762 /* NB: m_len known to be sufficient */ 763 wh = mtod(m, struct ieee80211_qosframe *); 764 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 765 /* 766 * Not QoS data, shouldn't get here but just 767 * return it to the caller for processing. 768 */ 769 return PROCESS; 770 } 771 if (IEEE80211_IS_DSTODS(wh)) 772 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 773 else 774 tid = wh->i_qos[0]; 775 tid &= IEEE80211_QOS_TID; 776 rap = &ni->ni_rx_ampdu[tid]; 777 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 778 /* 779 * No ADDBA request yet, don't touch. 780 */ 781 return PROCESS; 782 } 783 rxseq = le16toh(*(uint16_t *)wh->i_seq); 784 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 785 /* 786 * Fragments are not allowed; toss. 787 */ 788 IEEE80211_DISCARD_MAC(vap, 789 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 790 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 791 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 792 vap->iv_stats.is_ampdu_rx_drop++; 793 IEEE80211_NODE_STAT(ni, rx_drop); 794 m_freem(m); 795 return CONSUMED; 796 } 797 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 798 rap->rxa_nframes++; 799 again: 800 if (rxseq == rap->rxa_start) { 801 /* 802 * First frame in window. 803 */ 804 if (rap->rxa_qframes != 0) { 805 /* 806 * Dispatch as many packets as we can. 807 */ 808 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 809 ampdu_dispatch(ni, m); 810 ampdu_rx_dispatch(rap, ni); 811 return CONSUMED; 812 } else { 813 /* 814 * In order; advance window and notify 815 * caller to dispatch directly. 816 */ 817 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 818 return PROCESS; 819 } 820 } 821 /* 822 * Frame is out of order; store if in the BA window. 823 */ 824 /* calculate offset in BA window */ 825 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 826 if (off < rap->rxa_wnd) { 827 /* 828 * Common case (hopefully): in the BA window. 829 * Sec 9.10.7.6.2 a) (p.137) 830 */ 831 #ifdef IEEE80211_AMPDU_AGE 832 /* 833 * Check for frames sitting too long in the reorder queue. 834 * This should only ever happen if frames are not delivered 835 * without the sender otherwise notifying us (e.g. with a 836 * BAR to move the window). Typically this happens because 837 * of vendor bugs that cause the sequence number to jump. 838 * When this happens we get a gap in the reorder queue that 839 * leaves frame sitting on the queue until they get pushed 840 * out due to window moves. When the vendor does not send 841 * BAR this move only happens due to explicit packet sends 842 * 843 * NB: we only track the time of the oldest frame in the 844 * reorder q; this means that if we flush we might push 845 * frames that still "new"; if this happens then subsequent 846 * frames will result in BA window moves which cost something 847 * but is still better than a big throughput dip. 848 */ 849 if (rap->rxa_qframes != 0) { 850 /* XXX honor batimeout? */ 851 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 852 /* 853 * Too long since we received the first 854 * frame; flush the reorder buffer. 855 */ 856 if (rap->rxa_qframes != 0) { 857 vap->iv_stats.is_ampdu_rx_age += 858 rap->rxa_qframes; 859 ampdu_rx_flush(ni, rap); 860 } 861 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 862 return PROCESS; 863 } 864 } else { 865 /* 866 * First frame, start aging timer. 867 */ 868 rap->rxa_age = ticks; 869 } 870 #endif /* IEEE80211_AMPDU_AGE */ 871 /* save packet */ 872 if (rap->rxa_m[off] == NULL) { 873 rap->rxa_m[off] = m; 874 rap->rxa_qframes++; 875 rap->rxa_qbytes += m->m_pkthdr.len; 876 vap->iv_stats.is_ampdu_rx_reorder++; 877 } else { 878 IEEE80211_DISCARD_MAC(vap, 879 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 880 ni->ni_macaddr, "a-mpdu duplicate", 881 "seqno %u tid %u BA win <%u:%u>", 882 rxseq, tid, rap->rxa_start, 883 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 884 vap->iv_stats.is_rx_dup++; 885 IEEE80211_NODE_STAT(ni, rx_dup); 886 m_freem(m); 887 } 888 return CONSUMED; 889 } 890 if (off < IEEE80211_SEQ_BA_RANGE) { 891 /* 892 * Outside the BA window, but within range; 893 * flush the reorder q and move the window. 894 * Sec 9.10.7.6.2 b) (p.138) 895 */ 896 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 897 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 898 rap->rxa_start, 899 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 900 rap->rxa_qframes, rxseq, tid); 901 vap->iv_stats.is_ampdu_rx_move++; 902 903 /* 904 * The spec says to flush frames up to but not including: 905 * WinStart_B = rxseq - rap->rxa_wnd + 1 906 * Then insert the frame or notify the caller to process 907 * it immediately. We can safely do this by just starting 908 * over again because we know the frame will now be within 909 * the BA window. 910 */ 911 /* NB: rxa_wnd known to be >0 */ 912 ampdu_rx_flush_upto(ni, rap, 913 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 914 goto again; 915 } else { 916 /* 917 * Outside the BA window and out of range; toss. 918 * Sec 9.10.7.6.2 c) (p.138) 919 */ 920 IEEE80211_DISCARD_MAC(vap, 921 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 922 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 923 rap->rxa_start, 924 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 925 rap->rxa_qframes, rxseq, tid, 926 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 927 vap->iv_stats.is_ampdu_rx_drop++; 928 IEEE80211_NODE_STAT(ni, rx_drop); 929 m_freem(m); 930 return CONSUMED; 931 } 932 #undef CONSUMED 933 #undef PROCESS 934 #undef IEEE80211_FC0_QOSDATA 935 } 936 937 /* 938 * Process a BAR ctl frame. Dispatch all frames up to 939 * the sequence number of the frame. If this frame is 940 * out of range it's discarded. 941 */ 942 void 943 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 944 { 945 struct ieee80211vap *vap = ni->ni_vap; 946 struct ieee80211_frame_bar *wh; 947 struct ieee80211_rx_ampdu *rap; 948 ieee80211_seq rxseq; 949 int tid, off; 950 951 if (!ieee80211_recv_bar_ena) { 952 #if 0 953 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 954 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 955 #endif 956 vap->iv_stats.is_ampdu_bar_bad++; 957 return; 958 } 959 wh = mtod(m0, struct ieee80211_frame_bar *); 960 /* XXX check basic BAR */ 961 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 962 rap = &ni->ni_rx_ampdu[tid]; 963 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 964 /* 965 * No ADDBA request yet, don't touch. 966 */ 967 IEEE80211_DISCARD_MAC(vap, 968 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 969 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 970 vap->iv_stats.is_ampdu_bar_bad++; 971 return; 972 } 973 vap->iv_stats.is_ampdu_bar_rx++; 974 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 975 if (rxseq == rap->rxa_start) 976 return; 977 /* calculate offset in BA window */ 978 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 979 if (off < IEEE80211_SEQ_BA_RANGE) { 980 /* 981 * Flush the reorder q up to rxseq and move the window. 982 * Sec 9.10.7.6.3 a) (p.138) 983 */ 984 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 985 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 986 rap->rxa_start, 987 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 988 rap->rxa_qframes, rxseq, tid); 989 vap->iv_stats.is_ampdu_bar_move++; 990 991 ampdu_rx_flush_upto(ni, rap, rxseq); 992 if (off >= rap->rxa_wnd) { 993 /* 994 * BAR specifies a window start to the right of BA 995 * window; we must move it explicitly since 996 * ampdu_rx_flush_upto will not. 997 */ 998 rap->rxa_start = rxseq; 999 } 1000 } else { 1001 /* 1002 * Out of range; toss. 1003 * Sec 9.10.7.6.3 b) (p.138) 1004 */ 1005 IEEE80211_DISCARD_MAC(vap, 1006 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1007 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1008 rap->rxa_start, 1009 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1010 rap->rxa_qframes, rxseq, tid, 1011 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1012 vap->iv_stats.is_ampdu_bar_oow++; 1013 IEEE80211_NODE_STAT(ni, rx_drop); 1014 } 1015 } 1016 1017 /* 1018 * Setup HT-specific state in a node. Called only 1019 * when HT use is negotiated so we don't do extra 1020 * work for temporary and/or legacy sta's. 1021 */ 1022 void 1023 ieee80211_ht_node_init(struct ieee80211_node *ni) 1024 { 1025 struct ieee80211_tx_ampdu *tap; 1026 int tid; 1027 1028 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1029 ni, 1030 "%s: called", 1031 __func__); 1032 1033 if (ni->ni_flags & IEEE80211_NODE_HT) { 1034 /* 1035 * Clean AMPDU state on re-associate. This handles the case 1036 * where a station leaves w/o notifying us and then returns 1037 * before node is reaped for inactivity. 1038 */ 1039 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1040 ni, 1041 "%s: calling cleanup", 1042 __func__); 1043 ieee80211_ht_node_cleanup(ni); 1044 } 1045 for (tid = 0; tid < WME_NUM_TID; tid++) { 1046 tap = &ni->ni_tx_ampdu[tid]; 1047 tap->txa_tid = tid; 1048 tap->txa_ni = ni; 1049 /* NB: further initialization deferred */ 1050 } 1051 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1052 } 1053 1054 /* 1055 * Cleanup HT-specific state in a node. Called only 1056 * when HT use has been marked. 1057 */ 1058 void 1059 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1060 { 1061 struct ieee80211com *ic = ni->ni_ic; 1062 int i; 1063 1064 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1065 ni, 1066 "%s: called", 1067 __func__); 1068 1069 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1070 1071 /* XXX optimize this */ 1072 for (i = 0; i < WME_NUM_TID; i++) { 1073 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1074 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1075 ampdu_tx_stop(tap); 1076 } 1077 for (i = 0; i < WME_NUM_TID; i++) 1078 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1079 1080 ni->ni_htcap = 0; 1081 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1082 } 1083 1084 /* 1085 * Age out HT resources for a station. 1086 */ 1087 void 1088 ieee80211_ht_node_age(struct ieee80211_node *ni) 1089 { 1090 #ifdef IEEE80211_AMPDU_AGE 1091 struct ieee80211vap *vap = ni->ni_vap; 1092 uint8_t tid; 1093 #endif 1094 1095 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1096 1097 #ifdef IEEE80211_AMPDU_AGE 1098 for (tid = 0; tid < WME_NUM_TID; tid++) { 1099 struct ieee80211_rx_ampdu *rap; 1100 1101 rap = &ni->ni_rx_ampdu[tid]; 1102 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1103 continue; 1104 if (rap->rxa_qframes == 0) 1105 continue; 1106 /* 1107 * Check for frames sitting too long in the reorder queue. 1108 * See above for more details on what's happening here. 1109 */ 1110 /* XXX honor batimeout? */ 1111 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1112 /* 1113 * Too long since we received the first 1114 * frame; flush the reorder buffer. 1115 */ 1116 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1117 ampdu_rx_flush(ni, rap); 1118 } 1119 } 1120 #endif /* IEEE80211_AMPDU_AGE */ 1121 } 1122 1123 static struct ieee80211_channel * 1124 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1125 { 1126 return ieee80211_find_channel(ic, c->ic_freq, 1127 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1128 } 1129 1130 /* 1131 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1132 */ 1133 struct ieee80211_channel * 1134 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1135 struct ieee80211_channel *chan, int flags) 1136 { 1137 struct ieee80211_channel *c; 1138 1139 if (flags & IEEE80211_FHT_HT) { 1140 /* promote to HT if possible */ 1141 if (flags & IEEE80211_FHT_USEHT40) { 1142 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1143 /* NB: arbitrarily pick ht40+ over ht40- */ 1144 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1145 if (c == NULL) 1146 c = findhtchan(ic, chan, 1147 IEEE80211_CHAN_HT40D); 1148 if (c == NULL) 1149 c = findhtchan(ic, chan, 1150 IEEE80211_CHAN_HT20); 1151 if (c != NULL) 1152 chan = c; 1153 } 1154 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1155 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1156 if (c != NULL) 1157 chan = c; 1158 } 1159 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1160 /* demote to legacy, HT use is disabled */ 1161 c = ieee80211_find_channel(ic, chan->ic_freq, 1162 chan->ic_flags &~ IEEE80211_CHAN_HT); 1163 if (c != NULL) 1164 chan = c; 1165 } 1166 return chan; 1167 } 1168 1169 /* 1170 * Setup HT-specific state for a legacy WDS peer. 1171 */ 1172 void 1173 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1174 { 1175 struct ieee80211vap *vap = ni->ni_vap; 1176 struct ieee80211_tx_ampdu *tap; 1177 int tid; 1178 1179 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1180 1181 /* XXX check scan cache in case peer has an ap and we have info */ 1182 /* 1183 * If setup with a legacy channel; locate an HT channel. 1184 * Otherwise if the inherited channel (from a companion 1185 * AP) is suitable use it so we use the same location 1186 * for the extension channel). 1187 */ 1188 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1189 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1190 1191 ni->ni_htcap = 0; 1192 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1193 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1194 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1195 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1196 ni->ni_chw = 40; 1197 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1198 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1199 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1200 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1201 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1202 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1203 } else { 1204 ni->ni_chw = 20; 1205 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1206 } 1207 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1208 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1209 ni->ni_flags |= IEEE80211_NODE_RIFS; 1210 /* XXX does it make sense to enable SMPS? */ 1211 1212 ni->ni_htopmode = 0; /* XXX need protection state */ 1213 ni->ni_htstbc = 0; /* XXX need info */ 1214 1215 for (tid = 0; tid < WME_NUM_TID; tid++) { 1216 tap = &ni->ni_tx_ampdu[tid]; 1217 tap->txa_tid = tid; 1218 } 1219 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1220 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1221 } 1222 1223 /* 1224 * Notify hostap vaps of a change in the HTINFO ie. 1225 */ 1226 static void 1227 htinfo_notify(struct ieee80211com *ic) 1228 { 1229 struct ieee80211vap *vap; 1230 int first = 1; 1231 1232 IEEE80211_LOCK_ASSERT(ic); 1233 1234 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1235 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1236 continue; 1237 if (vap->iv_state != IEEE80211_S_RUN || 1238 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1239 continue; 1240 if (first) { 1241 IEEE80211_NOTE(vap, 1242 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1243 vap->iv_bss, 1244 "HT bss occupancy change: %d sta, %d ht, " 1245 "%d ht40%s, HT protmode now 0x%x" 1246 , ic->ic_sta_assoc 1247 , ic->ic_ht_sta_assoc 1248 , ic->ic_ht40_sta_assoc 1249 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1250 ", non-HT sta present" : "" 1251 , ic->ic_curhtprotmode); 1252 first = 0; 1253 } 1254 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1255 } 1256 } 1257 1258 /* 1259 * Calculate HT protection mode from current 1260 * state and handle updates. 1261 */ 1262 static void 1263 htinfo_update(struct ieee80211com *ic) 1264 { 1265 uint8_t protmode; 1266 1267 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1268 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1269 | IEEE80211_HTINFO_NONHT_PRESENT; 1270 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1271 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1272 | IEEE80211_HTINFO_NONHT_PRESENT; 1273 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1274 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1275 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1276 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1277 } else { 1278 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1279 } 1280 if (protmode != ic->ic_curhtprotmode) { 1281 ic->ic_curhtprotmode = protmode; 1282 htinfo_notify(ic); 1283 } 1284 } 1285 1286 /* 1287 * Handle an HT station joining a BSS. 1288 */ 1289 void 1290 ieee80211_ht_node_join(struct ieee80211_node *ni) 1291 { 1292 struct ieee80211com *ic = ni->ni_ic; 1293 1294 IEEE80211_LOCK_ASSERT(ic); 1295 1296 if (ni->ni_flags & IEEE80211_NODE_HT) { 1297 ic->ic_ht_sta_assoc++; 1298 if (ni->ni_chw == 40) 1299 ic->ic_ht40_sta_assoc++; 1300 } 1301 htinfo_update(ic); 1302 } 1303 1304 /* 1305 * Handle an HT station leaving a BSS. 1306 */ 1307 void 1308 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1309 { 1310 struct ieee80211com *ic = ni->ni_ic; 1311 1312 IEEE80211_LOCK_ASSERT(ic); 1313 1314 if (ni->ni_flags & IEEE80211_NODE_HT) { 1315 ic->ic_ht_sta_assoc--; 1316 if (ni->ni_chw == 40) 1317 ic->ic_ht40_sta_assoc--; 1318 } 1319 htinfo_update(ic); 1320 } 1321 1322 /* 1323 * Public version of htinfo_update; used for processing 1324 * beacon frames from overlapping bss. 1325 * 1326 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1327 * (on receipt of a beacon that advertises MIXED) or 1328 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1329 * from an overlapping legacy bss). We treat MIXED with 1330 * a higher precedence than PROTOPT (i.e. we will not change 1331 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1332 * corresponds to how we handle things in htinfo_update. 1333 */ 1334 void 1335 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1336 { 1337 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1338 IEEE80211_LOCK(ic); 1339 1340 /* track non-HT station presence */ 1341 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1342 ("protmode 0x%x", protmode)); 1343 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1344 ic->ic_lastnonht = ticks; 1345 1346 if (protmode != ic->ic_curhtprotmode && 1347 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1348 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1349 /* push beacon update */ 1350 ic->ic_curhtprotmode = protmode; 1351 htinfo_notify(ic); 1352 } 1353 IEEE80211_UNLOCK(ic); 1354 #undef OPMODE 1355 } 1356 1357 /* 1358 * Time out presence of an overlapping bss with non-HT 1359 * stations. When operating in hostap mode we listen for 1360 * beacons from other stations and if we identify a non-HT 1361 * station is present we update the opmode field of the 1362 * HTINFO ie. To identify when all non-HT stations are 1363 * gone we time out this condition. 1364 */ 1365 void 1366 ieee80211_ht_timeout(struct ieee80211com *ic) 1367 { 1368 IEEE80211_LOCK_ASSERT(ic); 1369 1370 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1371 time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1372 #if 0 1373 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1374 "%s", "time out non-HT STA present on channel"); 1375 #endif 1376 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1377 htinfo_update(ic); 1378 } 1379 } 1380 1381 /* unalligned little endian access */ 1382 #define LE_READ_2(p) \ 1383 ((uint16_t) \ 1384 ((((const uint8_t *)(p))[0] ) | \ 1385 (((const uint8_t *)(p))[1] << 8))) 1386 1387 /* 1388 * Process an 802.11n HT capabilities ie. 1389 */ 1390 void 1391 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1392 { 1393 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1394 /* 1395 * Station used Vendor OUI ie to associate; 1396 * mark the node so when we respond we'll use 1397 * the Vendor OUI's and not the standard ie's. 1398 */ 1399 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1400 ie += 4; 1401 } else 1402 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1403 1404 ni->ni_htcap = LE_READ_2(ie + 1405 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1406 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1407 } 1408 1409 static void 1410 htinfo_parse(struct ieee80211_node *ni, 1411 const struct ieee80211_ie_htinfo *htinfo) 1412 { 1413 uint16_t w; 1414 1415 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1416 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1417 w = LE_READ_2(&htinfo->hi_byte2); 1418 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1419 w = LE_READ_2(&htinfo->hi_byte45); 1420 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1421 } 1422 1423 /* 1424 * Parse an 802.11n HT info ie and save useful information 1425 * to the node state. Note this does not effect any state 1426 * changes such as for channel width change. 1427 */ 1428 void 1429 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1430 { 1431 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1432 ie += 4; 1433 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1434 } 1435 1436 /* 1437 * Handle 11n channel switch. Use the received HT ie's to 1438 * identify the right channel to use. If we cannot locate it 1439 * in the channel table then fallback to legacy operation. 1440 * Note that we use this information to identify the node's 1441 * channel only; the caller is responsible for insuring any 1442 * required channel change is done (e.g. in sta mode when 1443 * parsing the contents of a beacon frame). 1444 */ 1445 static int 1446 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1447 { 1448 struct ieee80211com *ic = ni->ni_ic; 1449 struct ieee80211_channel *c; 1450 int chanflags; 1451 int ret = 0; 1452 1453 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1454 if (chanflags != ni->ni_chan->ic_flags) { 1455 /* XXX not right for ht40- */ 1456 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1457 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1458 /* 1459 * No HT40 channel entry in our table; fall back 1460 * to HT20 operation. This should not happen. 1461 */ 1462 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1463 #if 0 1464 IEEE80211_NOTE(ni->ni_vap, 1465 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1466 "no HT40 channel (freq %u), falling back to HT20", 1467 ni->ni_chan->ic_freq); 1468 #endif 1469 /* XXX stat */ 1470 } 1471 if (c != NULL && c != ni->ni_chan) { 1472 IEEE80211_NOTE(ni->ni_vap, 1473 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1474 "switch station to HT%d channel %u/0x%x", 1475 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1476 c->ic_freq, c->ic_flags); 1477 ni->ni_chan = c; 1478 ret = 1; 1479 } 1480 /* NB: caller responsible for forcing any channel change */ 1481 } 1482 /* update node's tx channel width */ 1483 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1484 return (ret); 1485 } 1486 1487 /* 1488 * Update 11n MIMO PS state according to received htcap. 1489 */ 1490 static __inline int 1491 htcap_update_mimo_ps(struct ieee80211_node *ni) 1492 { 1493 uint16_t oflags = ni->ni_flags; 1494 1495 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1496 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1497 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1498 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1499 break; 1500 case IEEE80211_HTCAP_SMPS_ENA: 1501 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1502 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1503 break; 1504 case IEEE80211_HTCAP_SMPS_OFF: 1505 default: /* disable on rx of reserved value */ 1506 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1507 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1508 break; 1509 } 1510 return (oflags ^ ni->ni_flags); 1511 } 1512 1513 /* 1514 * Update short GI state according to received htcap 1515 * and local settings. 1516 */ 1517 static __inline void 1518 htcap_update_shortgi(struct ieee80211_node *ni) 1519 { 1520 struct ieee80211vap *vap = ni->ni_vap; 1521 1522 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1523 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1524 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1525 ni->ni_flags |= IEEE80211_NODE_SGI20; 1526 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1527 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1528 ni->ni_flags |= IEEE80211_NODE_SGI40; 1529 } 1530 1531 /* 1532 * Parse and update HT-related state extracted from 1533 * the HT cap and info ie's. 1534 */ 1535 int 1536 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1537 const uint8_t *htcapie, const uint8_t *htinfoie) 1538 { 1539 struct ieee80211vap *vap = ni->ni_vap; 1540 const struct ieee80211_ie_htinfo *htinfo; 1541 int htflags; 1542 int ret = 0; 1543 1544 ieee80211_parse_htcap(ni, htcapie); 1545 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1546 htcap_update_mimo_ps(ni); 1547 htcap_update_shortgi(ni); 1548 1549 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1550 htinfoie += 4; 1551 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1552 htinfo_parse(ni, htinfo); 1553 1554 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1555 IEEE80211_CHAN_HT20 : 0; 1556 /* NB: honor operating mode constraint */ 1557 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1558 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1559 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1560 htflags = IEEE80211_CHAN_HT40U; 1561 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1562 htflags = IEEE80211_CHAN_HT40D; 1563 } 1564 if (htinfo_update_chw(ni, htflags)) 1565 ret = 1; 1566 1567 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1568 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1569 ni->ni_flags |= IEEE80211_NODE_RIFS; 1570 else 1571 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1572 1573 return (ret); 1574 } 1575 1576 /* 1577 * Parse and update HT-related state extracted from the HT cap ie 1578 * for a station joining an HT BSS. 1579 */ 1580 void 1581 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1582 { 1583 struct ieee80211vap *vap = ni->ni_vap; 1584 int htflags; 1585 1586 ieee80211_parse_htcap(ni, htcapie); 1587 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1588 htcap_update_mimo_ps(ni); 1589 htcap_update_shortgi(ni); 1590 1591 /* NB: honor operating mode constraint */ 1592 /* XXX 40 MHz intolerant */ 1593 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1594 IEEE80211_CHAN_HT20 : 0; 1595 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1596 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1597 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1598 htflags = IEEE80211_CHAN_HT40U; 1599 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1600 htflags = IEEE80211_CHAN_HT40D; 1601 } 1602 (void) htinfo_update_chw(ni, htflags); 1603 } 1604 1605 /* 1606 * Install received HT rate set by parsing the HT cap ie. 1607 */ 1608 int 1609 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1610 { 1611 struct ieee80211com *ic = ni->ni_ic; 1612 struct ieee80211vap *vap = ni->ni_vap; 1613 const struct ieee80211_ie_htcap *htcap; 1614 struct ieee80211_htrateset *rs; 1615 int i, maxequalmcs, maxunequalmcs; 1616 1617 maxequalmcs = ic->ic_txstream * 8 - 1; 1618 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1619 if (ic->ic_txstream >= 2) 1620 maxunequalmcs = 38; 1621 if (ic->ic_txstream >= 3) 1622 maxunequalmcs = 52; 1623 if (ic->ic_txstream >= 4) 1624 maxunequalmcs = 76; 1625 } else 1626 maxunequalmcs = 0; 1627 1628 rs = &ni->ni_htrates; 1629 memset(rs, 0, sizeof(*rs)); 1630 if (ie != NULL) { 1631 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1632 ie += 4; 1633 htcap = (const struct ieee80211_ie_htcap *) ie; 1634 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1635 if (isclr(htcap->hc_mcsset, i)) 1636 continue; 1637 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1638 IEEE80211_NOTE(vap, 1639 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1640 "WARNING, HT rate set too large; only " 1641 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1642 vap->iv_stats.is_rx_rstoobig++; 1643 break; 1644 } 1645 if (i <= 31 && i > maxequalmcs) 1646 continue; 1647 if (i == 32 && 1648 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1649 continue; 1650 if (i > 32 && i > maxunequalmcs) 1651 continue; 1652 rs->rs_rates[rs->rs_nrates++] = i; 1653 } 1654 } 1655 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1656 } 1657 1658 /* 1659 * Mark rates in a node's HT rate set as basic according 1660 * to the information in the supplied HT info ie. 1661 */ 1662 void 1663 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1664 { 1665 const struct ieee80211_ie_htinfo *htinfo; 1666 struct ieee80211_htrateset *rs; 1667 int i, j; 1668 1669 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1670 ie += 4; 1671 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1672 rs = &ni->ni_htrates; 1673 if (rs->rs_nrates == 0) { 1674 IEEE80211_NOTE(ni->ni_vap, 1675 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1676 "%s", "WARNING, empty HT rate set"); 1677 return; 1678 } 1679 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1680 if (isclr(htinfo->hi_basicmcsset, i)) 1681 continue; 1682 for (j = 0; j < rs->rs_nrates; j++) 1683 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1684 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1685 } 1686 } 1687 1688 static void 1689 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1690 { 1691 callout_init(&tap->txa_timer, CALLOUT_MPSAFE); 1692 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1693 } 1694 1695 static void 1696 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1697 { 1698 struct ieee80211_node *ni = tap->txa_ni; 1699 struct ieee80211com *ic = ni->ni_ic; 1700 1701 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1702 tap->txa_ni, 1703 "%s: called", 1704 __func__); 1705 1706 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1707 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1708 TID_TO_WME_AC(tap->txa_tid))); 1709 1710 /* 1711 * Stop BA stream if setup so driver has a chance 1712 * to reclaim any resources it might have allocated. 1713 */ 1714 ic->ic_addba_stop(ni, tap); 1715 /* 1716 * Stop any pending BAR transmit. 1717 */ 1718 bar_stop_timer(tap); 1719 1720 tap->txa_lastsample = 0; 1721 tap->txa_avgpps = 0; 1722 /* NB: clearing NAK means we may re-send ADDBA */ 1723 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1724 } 1725 1726 /* 1727 * ADDBA response timeout. 1728 * 1729 * If software aggregation and per-TID queue management was done here, 1730 * that queue would be unpaused after the ADDBA timeout occurs. 1731 */ 1732 static void 1733 addba_timeout(void *arg) 1734 { 1735 struct ieee80211_tx_ampdu *tap = arg; 1736 struct ieee80211_node *ni = tap->txa_ni; 1737 struct ieee80211com *ic = ni->ni_ic; 1738 1739 /* XXX ? */ 1740 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1741 tap->txa_attempts++; 1742 ic->ic_addba_response_timeout(ni, tap); 1743 } 1744 1745 static void 1746 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1747 { 1748 /* XXX use CALLOUT_PENDING instead? */ 1749 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1750 addba_timeout, tap); 1751 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1752 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1753 } 1754 1755 static void 1756 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1757 { 1758 /* XXX use CALLOUT_PENDING instead? */ 1759 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1760 callout_stop(&tap->txa_timer); 1761 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1762 } 1763 } 1764 1765 static void 1766 null_addba_response_timeout(struct ieee80211_node *ni, 1767 struct ieee80211_tx_ampdu *tap) 1768 { 1769 } 1770 1771 /* 1772 * Default method for requesting A-MPDU tx aggregation. 1773 * We setup the specified state block and start a timer 1774 * to wait for an ADDBA response frame. 1775 */ 1776 static int 1777 ieee80211_addba_request(struct ieee80211_node *ni, 1778 struct ieee80211_tx_ampdu *tap, 1779 int dialogtoken, int baparamset, int batimeout) 1780 { 1781 int bufsiz; 1782 1783 /* XXX locking */ 1784 tap->txa_token = dialogtoken; 1785 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1786 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1787 tap->txa_wnd = (bufsiz == 0) ? 1788 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1789 addba_start_timeout(tap); 1790 return 1; 1791 } 1792 1793 /* 1794 * Default method for processing an A-MPDU tx aggregation 1795 * response. We shutdown any pending timer and update the 1796 * state block according to the reply. 1797 */ 1798 static int 1799 ieee80211_addba_response(struct ieee80211_node *ni, 1800 struct ieee80211_tx_ampdu *tap, 1801 int status, int baparamset, int batimeout) 1802 { 1803 int bufsiz, tid; 1804 1805 /* XXX locking */ 1806 addba_stop_timeout(tap); 1807 if (status == IEEE80211_STATUS_SUCCESS) { 1808 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1809 /* XXX override our request? */ 1810 tap->txa_wnd = (bufsiz == 0) ? 1811 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1812 /* XXX AC/TID */ 1813 tid = MS(baparamset, IEEE80211_BAPS_TID); 1814 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1815 tap->txa_attempts = 0; 1816 } else { 1817 /* mark tid so we don't try again */ 1818 tap->txa_flags |= IEEE80211_AGGR_NAK; 1819 } 1820 return 1; 1821 } 1822 1823 /* 1824 * Default method for stopping A-MPDU tx aggregation. 1825 * Any timer is cleared and we drain any pending frames. 1826 */ 1827 static void 1828 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1829 { 1830 /* XXX locking */ 1831 addba_stop_timeout(tap); 1832 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1833 /* XXX clear aggregation queue */ 1834 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1835 } 1836 tap->txa_attempts = 0; 1837 } 1838 1839 /* 1840 * Process a received action frame using the default aggregation 1841 * policy. We intercept ADDBA-related frames and use them to 1842 * update our aggregation state. All other frames are passed up 1843 * for processing by ieee80211_recv_action. 1844 */ 1845 static int 1846 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1847 const struct ieee80211_frame *wh, 1848 const uint8_t *frm, const uint8_t *efrm) 1849 { 1850 struct ieee80211com *ic = ni->ni_ic; 1851 struct ieee80211vap *vap = ni->ni_vap; 1852 struct ieee80211_rx_ampdu *rap; 1853 uint8_t dialogtoken; 1854 uint16_t baparamset, batimeout, baseqctl; 1855 uint16_t args[5]; 1856 int tid; 1857 1858 dialogtoken = frm[2]; 1859 baparamset = LE_READ_2(frm+3); 1860 batimeout = LE_READ_2(frm+5); 1861 baseqctl = LE_READ_2(frm+7); 1862 1863 tid = MS(baparamset, IEEE80211_BAPS_TID); 1864 1865 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1866 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1867 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1868 dialogtoken, baparamset, 1869 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1870 batimeout, 1871 MS(baseqctl, IEEE80211_BASEQ_START), 1872 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1873 1874 rap = &ni->ni_rx_ampdu[tid]; 1875 1876 /* Send ADDBA response */ 1877 args[0] = dialogtoken; 1878 /* 1879 * NB: We ack only if the sta associated with HT and 1880 * the ap is configured to do AMPDU rx (the latter 1881 * violates the 11n spec and is mostly for testing). 1882 */ 1883 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1884 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1885 /* XXX handle ampdu_rx_start failure */ 1886 ic->ic_ampdu_rx_start(ni, rap, 1887 baparamset, batimeout, baseqctl); 1888 1889 args[1] = IEEE80211_STATUS_SUCCESS; 1890 } else { 1891 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1892 ni, "reject ADDBA request: %s", 1893 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1894 "administratively disabled" : 1895 "not negotiated for station"); 1896 vap->iv_stats.is_addba_reject++; 1897 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1898 } 1899 /* XXX honor rap flags? */ 1900 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1901 | SM(tid, IEEE80211_BAPS_TID) 1902 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1903 ; 1904 args[3] = 0; 1905 args[4] = 0; 1906 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1907 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1908 return 0; 1909 } 1910 1911 static int 1912 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 1913 const struct ieee80211_frame *wh, 1914 const uint8_t *frm, const uint8_t *efrm) 1915 { 1916 struct ieee80211com *ic = ni->ni_ic; 1917 struct ieee80211vap *vap = ni->ni_vap; 1918 struct ieee80211_tx_ampdu *tap; 1919 uint8_t dialogtoken, policy; 1920 uint16_t baparamset, batimeout, code; 1921 int tid, bufsiz; 1922 1923 dialogtoken = frm[2]; 1924 code = LE_READ_2(frm+3); 1925 baparamset = LE_READ_2(frm+5); 1926 tid = MS(baparamset, IEEE80211_BAPS_TID); 1927 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1928 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 1929 batimeout = LE_READ_2(frm+7); 1930 1931 tap = &ni->ni_tx_ampdu[tid]; 1932 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1933 IEEE80211_DISCARD_MAC(vap, 1934 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1935 ni->ni_macaddr, "ADDBA response", 1936 "no pending ADDBA, tid %d dialogtoken %u " 1937 "code %d", tid, dialogtoken, code); 1938 vap->iv_stats.is_addba_norequest++; 1939 return 0; 1940 } 1941 if (dialogtoken != tap->txa_token) { 1942 IEEE80211_DISCARD_MAC(vap, 1943 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1944 ni->ni_macaddr, "ADDBA response", 1945 "dialogtoken mismatch: waiting for %d, " 1946 "received %d, tid %d code %d", 1947 tap->txa_token, dialogtoken, tid, code); 1948 vap->iv_stats.is_addba_badtoken++; 1949 return 0; 1950 } 1951 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 1952 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 1953 IEEE80211_DISCARD_MAC(vap, 1954 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1955 ni->ni_macaddr, "ADDBA response", 1956 "policy mismatch: expecting %s, " 1957 "received %s, tid %d code %d", 1958 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 1959 policy, tid, code); 1960 vap->iv_stats.is_addba_badpolicy++; 1961 return 0; 1962 } 1963 #if 0 1964 /* XXX we take MIN in ieee80211_addba_response */ 1965 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 1966 IEEE80211_DISCARD_MAC(vap, 1967 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1968 ni->ni_macaddr, "ADDBA response", 1969 "BA window too large: max %d, " 1970 "received %d, tid %d code %d", 1971 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 1972 vap->iv_stats.is_addba_badbawinsize++; 1973 return 0; 1974 } 1975 #endif 1976 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1977 "recv ADDBA response: dialogtoken %u code %d " 1978 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 1979 dialogtoken, code, baparamset, tid, bufsiz, 1980 batimeout); 1981 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 1982 return 0; 1983 } 1984 1985 static int 1986 ht_recv_action_ba_delba(struct ieee80211_node *ni, 1987 const struct ieee80211_frame *wh, 1988 const uint8_t *frm, const uint8_t *efrm) 1989 { 1990 struct ieee80211com *ic = ni->ni_ic; 1991 struct ieee80211_rx_ampdu *rap; 1992 struct ieee80211_tx_ampdu *tap; 1993 uint16_t baparamset, code; 1994 int tid; 1995 1996 baparamset = LE_READ_2(frm+2); 1997 code = LE_READ_2(frm+4); 1998 1999 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2000 2001 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2002 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2003 "code %d", baparamset, tid, 2004 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2005 2006 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2007 tap = &ni->ni_tx_ampdu[tid]; 2008 ic->ic_addba_stop(ni, tap); 2009 } else { 2010 rap = &ni->ni_rx_ampdu[tid]; 2011 ic->ic_ampdu_rx_stop(ni, rap); 2012 } 2013 return 0; 2014 } 2015 2016 static int 2017 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2018 const struct ieee80211_frame *wh, 2019 const uint8_t *frm, const uint8_t *efrm) 2020 { 2021 int chw; 2022 2023 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2024 2025 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2026 "%s: HT txchwidth, width %d%s", 2027 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2028 if (chw != ni->ni_chw) { 2029 ni->ni_chw = chw; 2030 /* XXX notify on change */ 2031 } 2032 return 0; 2033 } 2034 2035 static int 2036 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2037 const struct ieee80211_frame *wh, 2038 const uint8_t *frm, const uint8_t *efrm) 2039 { 2040 const struct ieee80211_action_ht_mimopowersave *mps = 2041 (const struct ieee80211_action_ht_mimopowersave *) frm; 2042 2043 /* XXX check iv_htcaps */ 2044 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2045 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2046 else 2047 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2048 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2049 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2050 else 2051 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2052 /* XXX notify on change */ 2053 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2054 "%s: HT MIMO PS (%s%s)", __func__, 2055 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2056 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2057 ); 2058 return 0; 2059 } 2060 2061 /* 2062 * Transmit processing. 2063 */ 2064 2065 /* 2066 * Check if A-MPDU should be requested/enabled for a stream. 2067 * We require a traffic rate above a per-AC threshold and we 2068 * also handle backoff from previous failed attempts. 2069 * 2070 * Drivers may override this method to bring in information 2071 * such as link state conditions in making the decision. 2072 */ 2073 static int 2074 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2075 struct ieee80211_tx_ampdu *tap) 2076 { 2077 struct ieee80211vap *vap = ni->ni_vap; 2078 2079 if (tap->txa_avgpps < 2080 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2081 return 0; 2082 /* XXX check rssi? */ 2083 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2084 ticks < tap->txa_nextrequest) { 2085 /* 2086 * Don't retry too often; txa_nextrequest is set 2087 * to the minimum interval we'll retry after 2088 * ieee80211_addba_maxtries failed attempts are made. 2089 */ 2090 return 0; 2091 } 2092 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2093 "enable AMPDU on tid %d (%s), avgpps %d pkts %d", 2094 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2095 tap->txa_avgpps, tap->txa_pkts); 2096 return 1; 2097 } 2098 2099 /* 2100 * Request A-MPDU tx aggregation. Setup local state and 2101 * issue an ADDBA request. BA use will only happen after 2102 * the other end replies with ADDBA response. 2103 */ 2104 int 2105 ieee80211_ampdu_request(struct ieee80211_node *ni, 2106 struct ieee80211_tx_ampdu *tap) 2107 { 2108 struct ieee80211com *ic = ni->ni_ic; 2109 uint16_t args[5]; 2110 int tid, dialogtoken; 2111 static int tokens = 0; /* XXX */ 2112 2113 /* XXX locking */ 2114 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2115 /* do deferred setup of state */ 2116 ampdu_tx_setup(tap); 2117 } 2118 /* XXX hack for not doing proper locking */ 2119 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2120 2121 dialogtoken = (tokens+1) % 63; /* XXX */ 2122 tid = tap->txa_tid; 2123 tap->txa_start = ni->ni_txseqs[tid]; 2124 2125 args[0] = dialogtoken; 2126 args[1] = 0; /* NB: status code not used */ 2127 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2128 | SM(tid, IEEE80211_BAPS_TID) 2129 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2130 ; 2131 args[3] = 0; /* batimeout */ 2132 /* NB: do first so there's no race against reply */ 2133 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2134 /* unable to setup state, don't make request */ 2135 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2136 ni, "%s: could not setup BA stream for TID %d AC %d", 2137 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2138 /* defer next try so we don't slam the driver with requests */ 2139 tap->txa_attempts = ieee80211_addba_maxtries; 2140 /* NB: check in case driver wants to override */ 2141 if (tap->txa_nextrequest <= ticks) 2142 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2143 return 0; 2144 } 2145 tokens = dialogtoken; /* allocate token */ 2146 /* NB: after calling ic_addba_request so driver can set txa_start */ 2147 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2148 | SM(0, IEEE80211_BASEQ_FRAG) 2149 ; 2150 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2151 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2152 } 2153 2154 /* 2155 * Terminate an AMPDU tx stream. State is reclaimed 2156 * and the peer notified with a DelBA Action frame. 2157 */ 2158 void 2159 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2160 int reason) 2161 { 2162 struct ieee80211com *ic = ni->ni_ic; 2163 struct ieee80211vap *vap = ni->ni_vap; 2164 uint16_t args[4]; 2165 2166 /* XXX locking */ 2167 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2168 if (IEEE80211_AMPDU_RUNNING(tap)) { 2169 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2170 ni, "%s: stop BA stream for TID %d (reason %d)", 2171 __func__, tap->txa_tid, reason); 2172 vap->iv_stats.is_ampdu_stop++; 2173 2174 ic->ic_addba_stop(ni, tap); 2175 args[0] = tap->txa_tid; 2176 args[1] = IEEE80211_DELBAPS_INIT; 2177 args[2] = reason; /* XXX reason code */ 2178 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2179 IEEE80211_ACTION_BA_DELBA, args); 2180 } else { 2181 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2182 ni, "%s: BA stream for TID %d not running (reason %d)", 2183 __func__, tap->txa_tid, reason); 2184 vap->iv_stats.is_ampdu_stop_failed++; 2185 } 2186 } 2187 2188 /* XXX */ 2189 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2190 2191 static void 2192 bar_timeout(void *arg) 2193 { 2194 struct ieee80211_tx_ampdu *tap = arg; 2195 struct ieee80211_node *ni = tap->txa_ni; 2196 2197 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2198 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2199 2200 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2201 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2202 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2203 2204 /* guard against race with bar_tx_complete */ 2205 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2206 return; 2207 /* XXX ? */ 2208 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2209 struct ieee80211com *ic = ni->ni_ic; 2210 2211 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2212 /* 2213 * If (at least) the last BAR TX timeout was due to 2214 * an ieee80211_send_bar() failures, then we need 2215 * to make sure we notify the driver that a BAR 2216 * TX did occur and fail. This gives the driver 2217 * a chance to undo any queue pause that may 2218 * have occured. 2219 */ 2220 ic->ic_bar_response(ni, tap, 1); 2221 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2222 } else { 2223 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2224 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2225 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2226 ni, "%s: failed to TX, starting timer\n", 2227 __func__); 2228 /* 2229 * If ieee80211_send_bar() fails here, the 2230 * timer may have stopped and/or the pending 2231 * flag may be clear. Because of this, 2232 * fake the BARPEND and reset the timer. 2233 * A retransmission attempt will then occur 2234 * during the next timeout. 2235 */ 2236 /* XXX locking */ 2237 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2238 bar_start_timer(tap); 2239 } 2240 } 2241 } 2242 2243 static void 2244 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2245 { 2246 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2247 tap->txa_ni, 2248 "%s: called", 2249 __func__); 2250 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2251 } 2252 2253 static void 2254 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2255 { 2256 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2257 tap->txa_ni, 2258 "%s: called", 2259 __func__); 2260 callout_stop(&tap->txa_timer); 2261 } 2262 2263 static void 2264 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2265 { 2266 struct ieee80211_tx_ampdu *tap = arg; 2267 2268 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2269 ni, "%s: tid %u flags 0x%x pending %d status %d", 2270 __func__, tap->txa_tid, tap->txa_flags, 2271 callout_pending(&tap->txa_timer), status); 2272 2273 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2274 /* XXX locking */ 2275 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2276 callout_pending(&tap->txa_timer)) { 2277 struct ieee80211com *ic = ni->ni_ic; 2278 2279 if (status == 0) /* ACK'd */ 2280 bar_stop_timer(tap); 2281 ic->ic_bar_response(ni, tap, status); 2282 /* NB: just let timer expire so we pace requests */ 2283 } 2284 } 2285 2286 static void 2287 ieee80211_bar_response(struct ieee80211_node *ni, 2288 struct ieee80211_tx_ampdu *tap, int status) 2289 { 2290 2291 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2292 tap->txa_ni, 2293 "%s: called", 2294 __func__); 2295 if (status == 0) { /* got ACK */ 2296 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2297 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2298 tap->txa_start, 2299 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2300 tap->txa_qframes, tap->txa_seqpending, 2301 tap->txa_tid); 2302 2303 /* NB: timer already stopped in bar_tx_complete */ 2304 tap->txa_start = tap->txa_seqpending; 2305 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2306 } 2307 } 2308 2309 /* 2310 * Transmit a BAR frame to the specified node. The 2311 * BAR contents are drawn from the supplied aggregation 2312 * state associated with the node. 2313 * 2314 * NB: we only handle immediate ACK w/ compressed bitmap. 2315 */ 2316 int 2317 ieee80211_send_bar(struct ieee80211_node *ni, 2318 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2319 { 2320 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2321 struct ieee80211vap *vap = ni->ni_vap; 2322 struct ieee80211com *ic = ni->ni_ic; 2323 struct ieee80211_frame_bar *bar; 2324 struct mbuf *m; 2325 uint16_t barctl, barseqctl; 2326 uint8_t *frm; 2327 int tid, ret; 2328 2329 2330 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2331 tap->txa_ni, 2332 "%s: called", 2333 __func__); 2334 2335 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2336 /* no ADDBA response, should not happen */ 2337 /* XXX stat+msg */ 2338 return EINVAL; 2339 } 2340 /* XXX locking */ 2341 bar_stop_timer(tap); 2342 2343 ieee80211_ref_node(ni); 2344 2345 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2346 if (m == NULL) 2347 senderr(ENOMEM, is_tx_nobuf); 2348 2349 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2350 m_freem(m); 2351 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2352 /* NOTREACHED */ 2353 } 2354 2355 bar = mtod(m, struct ieee80211_frame_bar *); 2356 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2357 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2358 bar->i_fc[1] = 0; 2359 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2360 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2361 2362 tid = tap->txa_tid; 2363 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2364 0 : IEEE80211_BAR_NOACK) 2365 | IEEE80211_BAR_COMP 2366 | SM(tid, IEEE80211_BAR_TID) 2367 ; 2368 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2369 /* NB: known to have proper alignment */ 2370 bar->i_ctl = htole16(barctl); 2371 bar->i_seq = htole16(barseqctl); 2372 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2373 2374 M_WME_SETAC(m, WME_AC_VO); 2375 2376 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2377 2378 /* XXX locking */ 2379 /* init/bump attempts counter */ 2380 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2381 tap->txa_attempts = 1; 2382 else 2383 tap->txa_attempts++; 2384 tap->txa_seqpending = seq; 2385 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2386 2387 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2388 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2389 tid, barctl, seq, tap->txa_attempts); 2390 2391 /* 2392 * ic_raw_xmit will free the node reference 2393 * regardless of queue/TX success or failure. 2394 */ 2395 IEEE80211_TX_LOCK(ic); 2396 ret = ieee80211_raw_output(vap, ni, m, NULL); 2397 IEEE80211_TX_UNLOCK(ic); 2398 if (ret != 0) { 2399 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2400 ni, "send BAR: failed: (ret = %d)\n", 2401 ret); 2402 /* xmit failed, clear state flag */ 2403 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2404 vap->iv_stats.is_ampdu_bar_tx_fail++; 2405 return ret; 2406 } 2407 /* XXX hack against tx complete happening before timer is started */ 2408 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2409 bar_start_timer(tap); 2410 return 0; 2411 bad: 2412 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2413 tap->txa_ni, 2414 "%s: bad! ret=%d", 2415 __func__, ret); 2416 vap->iv_stats.is_ampdu_bar_tx_fail++; 2417 ieee80211_free_node(ni); 2418 return ret; 2419 #undef senderr 2420 } 2421 2422 static int 2423 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2424 { 2425 struct ieee80211_bpf_params params; 2426 2427 memset(¶ms, 0, sizeof(params)); 2428 params.ibp_pri = WME_AC_VO; 2429 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2430 /* NB: we know all frames are unicast */ 2431 params.ibp_try0 = ni->ni_txparms->maxretry; 2432 params.ibp_power = ni->ni_txpower; 2433 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2434 ¶ms); 2435 } 2436 2437 #define ADDSHORT(frm, v) do { \ 2438 frm[0] = (v) & 0xff; \ 2439 frm[1] = (v) >> 8; \ 2440 frm += 2; \ 2441 } while (0) 2442 2443 /* 2444 * Send an action management frame. The arguments are stuff 2445 * into a frame without inspection; the caller is assumed to 2446 * prepare them carefully (e.g. based on the aggregation state). 2447 */ 2448 static int 2449 ht_send_action_ba_addba(struct ieee80211_node *ni, 2450 int category, int action, void *arg0) 2451 { 2452 struct ieee80211vap *vap = ni->ni_vap; 2453 struct ieee80211com *ic = ni->ni_ic; 2454 uint16_t *args = arg0; 2455 struct mbuf *m; 2456 uint8_t *frm; 2457 2458 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2459 "send ADDBA %s: dialogtoken %d status %d " 2460 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2461 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2462 "request" : "response", 2463 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2464 args[3], args[4]); 2465 2466 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2467 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2468 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2469 ieee80211_ref_node(ni); 2470 2471 m = ieee80211_getmgtframe(&frm, 2472 ic->ic_headroom + sizeof(struct ieee80211_frame), 2473 sizeof(uint16_t) /* action+category */ 2474 /* XXX may action payload */ 2475 + sizeof(struct ieee80211_action_ba_addbaresponse) 2476 ); 2477 if (m != NULL) { 2478 *frm++ = category; 2479 *frm++ = action; 2480 *frm++ = args[0]; /* dialog token */ 2481 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2482 ADDSHORT(frm, args[1]); /* status code */ 2483 ADDSHORT(frm, args[2]); /* baparamset */ 2484 ADDSHORT(frm, args[3]); /* batimeout */ 2485 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2486 ADDSHORT(frm, args[4]); /* baseqctl */ 2487 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2488 return ht_action_output(ni, m); 2489 } else { 2490 vap->iv_stats.is_tx_nobuf++; 2491 ieee80211_free_node(ni); 2492 return ENOMEM; 2493 } 2494 } 2495 2496 static int 2497 ht_send_action_ba_delba(struct ieee80211_node *ni, 2498 int category, int action, void *arg0) 2499 { 2500 struct ieee80211vap *vap = ni->ni_vap; 2501 struct ieee80211com *ic = ni->ni_ic; 2502 uint16_t *args = arg0; 2503 struct mbuf *m; 2504 uint16_t baparamset; 2505 uint8_t *frm; 2506 2507 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2508 | args[1] 2509 ; 2510 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2511 "send DELBA action: tid %d, initiator %d reason %d", 2512 args[0], args[1], args[2]); 2513 2514 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2515 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2516 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2517 ieee80211_ref_node(ni); 2518 2519 m = ieee80211_getmgtframe(&frm, 2520 ic->ic_headroom + sizeof(struct ieee80211_frame), 2521 sizeof(uint16_t) /* action+category */ 2522 /* XXX may action payload */ 2523 + sizeof(struct ieee80211_action_ba_addbaresponse) 2524 ); 2525 if (m != NULL) { 2526 *frm++ = category; 2527 *frm++ = action; 2528 ADDSHORT(frm, baparamset); 2529 ADDSHORT(frm, args[2]); /* reason code */ 2530 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2531 return ht_action_output(ni, m); 2532 } else { 2533 vap->iv_stats.is_tx_nobuf++; 2534 ieee80211_free_node(ni); 2535 return ENOMEM; 2536 } 2537 } 2538 2539 static int 2540 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2541 int category, int action, void *arg0) 2542 { 2543 struct ieee80211vap *vap = ni->ni_vap; 2544 struct ieee80211com *ic = ni->ni_ic; 2545 struct mbuf *m; 2546 uint8_t *frm; 2547 2548 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2549 "send HT txchwidth: width %d", 2550 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2551 2552 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2553 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2554 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2555 ieee80211_ref_node(ni); 2556 2557 m = ieee80211_getmgtframe(&frm, 2558 ic->ic_headroom + sizeof(struct ieee80211_frame), 2559 sizeof(uint16_t) /* action+category */ 2560 /* XXX may action payload */ 2561 + sizeof(struct ieee80211_action_ba_addbaresponse) 2562 ); 2563 if (m != NULL) { 2564 *frm++ = category; 2565 *frm++ = action; 2566 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2567 IEEE80211_A_HT_TXCHWIDTH_2040 : 2568 IEEE80211_A_HT_TXCHWIDTH_20; 2569 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2570 return ht_action_output(ni, m); 2571 } else { 2572 vap->iv_stats.is_tx_nobuf++; 2573 ieee80211_free_node(ni); 2574 return ENOMEM; 2575 } 2576 } 2577 #undef ADDSHORT 2578 2579 /* 2580 * Construct the MCS bit mask for inclusion in an HT capabilities 2581 * information element. 2582 */ 2583 static void 2584 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2585 { 2586 int i; 2587 uint8_t txparams; 2588 2589 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2590 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2591 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2592 ("ic_txstream %d out of range", ic->ic_txstream)); 2593 2594 for (i = 0; i < ic->ic_rxstream * 8; i++) 2595 setbit(frm, i); 2596 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2597 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2598 setbit(frm, 32); 2599 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2600 if (ic->ic_rxstream >= 2) { 2601 for (i = 33; i <= 38; i++) 2602 setbit(frm, i); 2603 } 2604 if (ic->ic_rxstream >= 3) { 2605 for (i = 39; i <= 52; i++) 2606 setbit(frm, i); 2607 } 2608 if (ic->ic_txstream >= 4) { 2609 for (i = 53; i <= 76; i++) 2610 setbit(frm, i); 2611 } 2612 } 2613 2614 if (ic->ic_rxstream != ic->ic_txstream) { 2615 txparams = 0x1; /* TX MCS set defined */ 2616 txparams |= 0x2; /* TX RX MCS not equal */ 2617 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2618 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2619 txparams |= 0x16; /* TX unequal modulation sup */ 2620 } else 2621 txparams = 0; 2622 frm[12] = txparams; 2623 } 2624 2625 /* 2626 * Add body of an HTCAP information element. 2627 */ 2628 static uint8_t * 2629 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2630 { 2631 #define ADDSHORT(frm, v) do { \ 2632 frm[0] = (v) & 0xff; \ 2633 frm[1] = (v) >> 8; \ 2634 frm += 2; \ 2635 } while (0) 2636 struct ieee80211com *ic = ni->ni_ic; 2637 struct ieee80211vap *vap = ni->ni_vap; 2638 uint16_t caps, extcaps; 2639 int rxmax, density; 2640 2641 /* HT capabilities */ 2642 caps = vap->iv_htcaps & 0xffff; 2643 /* 2644 * Note channel width depends on whether we are operating as 2645 * a sta or not. When operating as a sta we are generating 2646 * a request based on our desired configuration. Otherwise 2647 * we are operational and the channel attributes identify 2648 * how we've been setup (which might be different if a fixed 2649 * channel is specified). 2650 */ 2651 if (vap->iv_opmode == IEEE80211_M_STA) { 2652 /* override 20/40 use based on config */ 2653 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2654 caps |= IEEE80211_HTCAP_CHWIDTH40; 2655 else 2656 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2657 /* use advertised setting (XXX locally constraint) */ 2658 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2659 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2660 2661 /* 2662 * NB: Hardware might support HT40 on some but not all 2663 * channels. We can't determine this earlier because only 2664 * after association the channel is upgraded to HT based 2665 * on the negotiated capabilities. 2666 */ 2667 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2668 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2669 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2670 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2671 } else { 2672 /* override 20/40 use based on current channel */ 2673 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2674 caps |= IEEE80211_HTCAP_CHWIDTH40; 2675 else 2676 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2677 rxmax = vap->iv_ampdu_rxmax; 2678 density = vap->iv_ampdu_density; 2679 } 2680 /* adjust short GI based on channel and config */ 2681 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2682 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2683 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2684 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2685 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2686 ADDSHORT(frm, caps); 2687 2688 /* HT parameters */ 2689 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2690 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2691 ; 2692 frm++; 2693 2694 /* pre-zero remainder of ie */ 2695 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2696 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2697 2698 /* supported MCS set */ 2699 /* 2700 * XXX: For sta mode the rate set should be restricted based 2701 * on the AP's capabilities, but ni_htrates isn't setup when 2702 * we're called to form an AssocReq frame so for now we're 2703 * restricted to the device capabilities. 2704 */ 2705 ieee80211_set_mcsset(ni->ni_ic, frm); 2706 2707 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2708 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2709 2710 /* HT extended capabilities */ 2711 extcaps = vap->iv_htextcaps & 0xffff; 2712 2713 ADDSHORT(frm, extcaps); 2714 2715 frm += sizeof(struct ieee80211_ie_htcap) - 2716 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2717 2718 return frm; 2719 #undef ADDSHORT 2720 } 2721 2722 /* 2723 * Add 802.11n HT capabilities information element 2724 */ 2725 uint8_t * 2726 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2727 { 2728 frm[0] = IEEE80211_ELEMID_HTCAP; 2729 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2730 return ieee80211_add_htcap_body(frm + 2, ni); 2731 } 2732 2733 /* 2734 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2735 * used for compatibility w/ pre-draft implementations. 2736 */ 2737 uint8_t * 2738 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2739 { 2740 frm[0] = IEEE80211_ELEMID_VENDOR; 2741 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2742 frm[2] = (BCM_OUI >> 0) & 0xff; 2743 frm[3] = (BCM_OUI >> 8) & 0xff; 2744 frm[4] = (BCM_OUI >> 16) & 0xff; 2745 frm[5] = BCM_OUI_HTCAP; 2746 return ieee80211_add_htcap_body(frm + 6, ni); 2747 } 2748 2749 /* 2750 * Construct the MCS bit mask of basic rates 2751 * for inclusion in an HT information element. 2752 */ 2753 static void 2754 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2755 { 2756 int i; 2757 2758 for (i = 0; i < rs->rs_nrates; i++) { 2759 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2760 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2761 r < IEEE80211_HTRATE_MAXSIZE) { 2762 /* NB: this assumes a particular implementation */ 2763 setbit(frm, r); 2764 } 2765 } 2766 } 2767 2768 /* 2769 * Update the HTINFO ie for a beacon frame. 2770 */ 2771 void 2772 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2773 struct ieee80211_beacon_offsets *bo) 2774 { 2775 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2776 struct ieee80211_node *ni; 2777 const struct ieee80211_channel *bsschan; 2778 struct ieee80211com *ic = vap->iv_ic; 2779 struct ieee80211_ie_htinfo *ht = 2780 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2781 2782 ni = ieee80211_ref_node(vap->iv_bss); 2783 bsschan = ni->ni_chan; 2784 2785 /* XXX only update on channel change */ 2786 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 2787 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2788 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 2789 else 2790 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 2791 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 2792 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2793 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 2794 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2795 else 2796 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 2797 if (IEEE80211_IS_CHAN_HT40(bsschan)) 2798 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 2799 2800 /* protection mode */ 2801 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 2802 2803 ieee80211_free_node(ni); 2804 2805 /* XXX propagate to vendor ie's */ 2806 #undef PROTMODE 2807 } 2808 2809 /* 2810 * Add body of an HTINFO information element. 2811 * 2812 * NB: We don't use struct ieee80211_ie_htinfo because we can 2813 * be called to fillin both a standard ie and a compat ie that 2814 * has a vendor OUI at the front. 2815 */ 2816 static uint8_t * 2817 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 2818 { 2819 struct ieee80211vap *vap = ni->ni_vap; 2820 struct ieee80211com *ic = ni->ni_ic; 2821 2822 /* pre-zero remainder of ie */ 2823 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 2824 2825 /* primary/control channel center */ 2826 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2827 2828 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2829 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 2830 else 2831 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 2832 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 2833 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2834 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 2835 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2836 else 2837 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 2838 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2839 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 2840 2841 frm[1] = ic->ic_curhtprotmode; 2842 2843 frm += 5; 2844 2845 /* basic MCS set */ 2846 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 2847 frm += sizeof(struct ieee80211_ie_htinfo) - 2848 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 2849 return frm; 2850 } 2851 2852 /* 2853 * Add 802.11n HT information information element. 2854 */ 2855 uint8_t * 2856 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 2857 { 2858 frm[0] = IEEE80211_ELEMID_HTINFO; 2859 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 2860 return ieee80211_add_htinfo_body(frm + 2, ni); 2861 } 2862 2863 /* 2864 * Add Broadcom OUI wrapped standard HTINFO ie; this is 2865 * used for compatibility w/ pre-draft implementations. 2866 */ 2867 uint8_t * 2868 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 2869 { 2870 frm[0] = IEEE80211_ELEMID_VENDOR; 2871 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 2872 frm[2] = (BCM_OUI >> 0) & 0xff; 2873 frm[3] = (BCM_OUI >> 8) & 0xff; 2874 frm[4] = (BCM_OUI >> 16) & 0xff; 2875 frm[5] = BCM_OUI_HTINFO; 2876 return ieee80211_add_htinfo_body(frm + 6, ni); 2877 } 2878