xref: /freebsd/sys/net80211/ieee80211_ht.c (revision 06e8e46410776c1d2a28c89004cda266402a8e69)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 #ifdef __FreeBSD__
28 __FBSDID("$FreeBSD$");
29 #endif
30 
31 /*
32  * IEEE 802.11n protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/systm.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/if.h>
46 #include <net/if_media.h>
47 #include <net/ethernet.h>
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_action.h>
51 #include <net80211/ieee80211_input.h>
52 
53 /* define here, used throughout file */
54 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
55 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
56 
57 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
58 	{  13,  14,   27,   30 },	/* MCS 0 */
59 	{  26,  29,   54,   60 },	/* MCS 1 */
60 	{  39,  43,   81,   90 },	/* MCS 2 */
61 	{  52,  58,  108,  120 },	/* MCS 3 */
62 	{  78,  87,  162,  180 },	/* MCS 4 */
63 	{ 104, 116,  216,  240 },	/* MCS 5 */
64 	{ 117, 130,  243,  270 },	/* MCS 6 */
65 	{ 130, 144,  270,  300 },	/* MCS 7 */
66 	{  26,  29,   54,   60 },	/* MCS 8 */
67 	{  52,  58,  108,  120 },	/* MCS 9 */
68 	{  78,  87,  162,  180 },	/* MCS 10 */
69 	{ 104, 116,  216,  240 },	/* MCS 11 */
70 	{ 156, 173,  324,  360 },	/* MCS 12 */
71 	{ 208, 231,  432,  480 },	/* MCS 13 */
72 	{ 234, 260,  486,  540 },	/* MCS 14 */
73 	{ 260, 289,  540,  600 },	/* MCS 15 */
74 	{  39,  43,   81,   90 },	/* MCS 16 */
75 	{  78,  87,  162,  180 },	/* MCS 17 */
76 	{ 117, 130,  243,  270 },	/* MCS 18 */
77 	{ 156, 173,  324,  360 },	/* MCS 19 */
78 	{ 234, 260,  486,  540 },	/* MCS 20 */
79 	{ 312, 347,  648,  720 },	/* MCS 21 */
80 	{ 351, 390,  729,  810 },	/* MCS 22 */
81 	{ 390, 433,  810,  900 },	/* MCS 23 */
82 	{  52,  58,  108,  120 },	/* MCS 24 */
83 	{ 104, 116,  216,  240 },	/* MCS 25 */
84 	{ 156, 173,  324,  360 },	/* MCS 26 */
85 	{ 208, 231,  432,  480 },	/* MCS 27 */
86 	{ 312, 347,  648,  720 },	/* MCS 28 */
87 	{ 416, 462,  864,  960 },	/* MCS 29 */
88 	{ 468, 520,  972, 1080 },	/* MCS 30 */
89 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
90 	{   0,   0,   12,   13 },	/* MCS 32 */
91 	{  78,  87,  162,  180 },	/* MCS 33 */
92 	{ 104, 116,  216,  240 },	/* MCS 34 */
93 	{ 130, 144,  270,  300 },	/* MCS 35 */
94 	{ 117, 130,  243,  270 },	/* MCS 36 */
95 	{ 156, 173,  324,  360 },	/* MCS 37 */
96 	{ 195, 217,  405,  450 },	/* MCS 38 */
97 	{ 104, 116,  216,  240 },	/* MCS 39 */
98 	{ 130, 144,  270,  300 },	/* MCS 40 */
99 	{ 130, 144,  270,  300 },	/* MCS 41 */
100 	{ 156, 173,  324,  360 },	/* MCS 42 */
101 	{ 182, 202,  378,  420 },	/* MCS 43 */
102 	{ 182, 202,  378,  420 },	/* MCS 44 */
103 	{ 208, 231,  432,  480 },	/* MCS 45 */
104 	{ 156, 173,  324,  360 },	/* MCS 46 */
105 	{ 195, 217,  405,  450 },	/* MCS 47 */
106 	{ 195, 217,  405,  450 },	/* MCS 48 */
107 	{ 234, 260,  486,  540 },	/* MCS 49 */
108 	{ 273, 303,  567,  630 },	/* MCS 50 */
109 	{ 273, 303,  567,  630 },	/* MCS 51 */
110 	{ 312, 347,  648,  720 },	/* MCS 52 */
111 	{ 130, 144,  270,  300 },	/* MCS 53 */
112 	{ 156, 173,  324,  360 },	/* MCS 54 */
113 	{ 182, 202,  378,  420 },	/* MCS 55 */
114 	{ 156, 173,  324,  360 },	/* MCS 56 */
115 	{ 182, 202,  378,  420 },	/* MCS 57 */
116 	{ 208, 231,  432,  480 },	/* MCS 58 */
117 	{ 234, 260,  486,  540 },	/* MCS 59 */
118 	{ 208, 231,  432,  480 },	/* MCS 60 */
119 	{ 234, 260,  486,  540 },	/* MCS 61 */
120 	{ 260, 289,  540,  600 },	/* MCS 62 */
121 	{ 260, 289,  540,  600 },	/* MCS 63 */
122 	{ 286, 318,  594,  660 },	/* MCS 64 */
123 	{ 195, 217,  405,  450 },	/* MCS 65 */
124 	{ 234, 260,  486,  540 },	/* MCS 66 */
125 	{ 273, 303,  567,  630 },	/* MCS 67 */
126 	{ 234, 260,  486,  540 },	/* MCS 68 */
127 	{ 273, 303,  567,  630 },	/* MCS 69 */
128 	{ 312, 347,  648,  720 },	/* MCS 70 */
129 	{ 351, 390,  729,  810 },	/* MCS 71 */
130 	{ 312, 347,  648,  720 },	/* MCS 72 */
131 	{ 351, 390,  729,  810 },	/* MCS 73 */
132 	{ 390, 433,  810,  900 },	/* MCS 74 */
133 	{ 390, 433,  810,  900 },	/* MCS 75 */
134 	{ 429, 477,  891,  990 },	/* MCS 76 */
135 };
136 
137 #ifdef IEEE80211_AMPDU_AGE
138 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
139 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW,
140 	&ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
141 	"AMPDU max reorder age (ms)");
142 #endif
143 
144 static	int ieee80211_recv_bar_ena = 1;
145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
146 	    0, "BAR frame processing (ena/dis)");
147 
148 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW,
150 	&ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
151 	"ADDBA request timeout (ms)");
152 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW,
154 	&ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
155 	"ADDBA request backoff (ms)");
156 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLTYPE_INT | CTLFLAG_RW,
158 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
159 
160 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
161 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
162 
163 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
164 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
165 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
166 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
167 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
168 
169 static	ieee80211_send_action_func ht_send_action_ba_addba;
170 static	ieee80211_send_action_func ht_send_action_ba_delba;
171 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
172 
173 static void
174 ieee80211_ht_init(void)
175 {
176 	/*
177 	 * Setup HT parameters that depends on the clock frequency.
178 	 */
179 #ifdef IEEE80211_AMPDU_AGE
180 	ieee80211_ampdu_age = msecs_to_ticks(500);
181 #endif
182 	ieee80211_addba_timeout = msecs_to_ticks(250);
183 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
184 	ieee80211_bar_timeout = msecs_to_ticks(250);
185 	/*
186 	 * Register action frame handlers.
187 	 */
188 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
189 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
190 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
191 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
192 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
193 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
194 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
195 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
196 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
197 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
198 
199 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
200 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
201 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
202 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
203 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
204 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
205 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
206 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
207 }
208 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
209 
210 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
211 	struct ieee80211_tx_ampdu *tap);
212 static int ieee80211_addba_request(struct ieee80211_node *ni,
213 	struct ieee80211_tx_ampdu *tap,
214 	int dialogtoken, int baparamset, int batimeout);
215 static int ieee80211_addba_response(struct ieee80211_node *ni,
216 	struct ieee80211_tx_ampdu *tap,
217 	int code, int baparamset, int batimeout);
218 static void ieee80211_addba_stop(struct ieee80211_node *ni,
219 	struct ieee80211_tx_ampdu *tap);
220 static void null_addba_response_timeout(struct ieee80211_node *ni,
221 	struct ieee80211_tx_ampdu *tap);
222 
223 static void ieee80211_bar_response(struct ieee80211_node *ni,
224 	struct ieee80211_tx_ampdu *tap, int status);
225 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
226 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
227 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
228 	int baparamset, int batimeout, int baseqctl);
229 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
230 
231 void
232 ieee80211_ht_attach(struct ieee80211com *ic)
233 {
234 	/* setup default aggregation policy */
235 	ic->ic_recv_action = ieee80211_recv_action;
236 	ic->ic_send_action = ieee80211_send_action;
237 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
238 	ic->ic_addba_request = ieee80211_addba_request;
239 	ic->ic_addba_response = ieee80211_addba_response;
240 	ic->ic_addba_response_timeout = null_addba_response_timeout;
241 	ic->ic_addba_stop = ieee80211_addba_stop;
242 	ic->ic_bar_response = ieee80211_bar_response;
243 	ic->ic_ampdu_rx_start = ampdu_rx_start;
244 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
245 
246 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
247 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
248 }
249 
250 void
251 ieee80211_ht_detach(struct ieee80211com *ic)
252 {
253 }
254 
255 void
256 ieee80211_ht_vattach(struct ieee80211vap *vap)
257 {
258 
259 	/* driver can override defaults */
260 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
261 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
262 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
263 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
264 	/* tx aggregation traffic thresholds */
265 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
266 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
267 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
268 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
269 
270 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
271 		/*
272 		 * Device is HT capable; enable all HT-related
273 		 * facilities by default.
274 		 * XXX these choices may be too aggressive.
275 		 */
276 		vap->iv_flags_ht |= IEEE80211_FHT_HT
277 				 |  IEEE80211_FHT_HTCOMPAT
278 				 ;
279 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
280 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
281 		/* XXX infer from channel list? */
282 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
283 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
284 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
285 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
286 		}
287 		/* enable RIFS if capable */
288 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
289 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
290 
291 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
292 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
293 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
294 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
295 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
296 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
297 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
298 	}
299 	/* NB: disable default legacy WDS, too many issues right now */
300 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
301 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
302 }
303 
304 void
305 ieee80211_ht_vdetach(struct ieee80211vap *vap)
306 {
307 }
308 
309 static int
310 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
311     int ratetype)
312 {
313 	int mword, rate;
314 
315 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
316 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
317 		return (0);
318 	switch (ratetype) {
319 	case 0:
320 		rate = ieee80211_htrates[index].ht20_rate_800ns;
321 		break;
322 	case 1:
323 		rate = ieee80211_htrates[index].ht20_rate_400ns;
324 		break;
325 	case 2:
326 		rate = ieee80211_htrates[index].ht40_rate_800ns;
327 		break;
328 	default:
329 		rate = ieee80211_htrates[index].ht40_rate_400ns;
330 		break;
331 	}
332 	return (rate);
333 }
334 
335 static struct printranges {
336 	int	minmcs;
337 	int	maxmcs;
338 	int	txstream;
339 	int	ratetype;
340 	int	htcapflags;
341 } ranges[] = {
342 	{  0,  7, 1, 0, 0 },
343 	{  8, 15, 2, 0, 0 },
344 	{ 16, 23, 3, 0, 0 },
345 	{ 24, 31, 4, 0, 0 },
346 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
347 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
348 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
349 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
350 	{  0,  0, 0, 0, 0 },
351 };
352 
353 static void
354 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
355 {
356 	struct ifnet *ifp = ic->ic_ifp;
357 	int minrate, maxrate;
358 	struct printranges *range;
359 
360 	for (range = ranges; range->txstream != 0; range++) {
361 		if (ic->ic_txstream < range->txstream)
362 			continue;
363 		if (range->htcapflags &&
364 		    (ic->ic_htcaps & range->htcapflags) == 0)
365 			continue;
366 		if (ratetype < range->ratetype)
367 			continue;
368 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
369 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
370 		if (range->maxmcs) {
371 			if_printf(ifp, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
372 			    range->minmcs, range->maxmcs,
373 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
374 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
375 		} else {
376 			if_printf(ifp, "MCS %d: %d%sMbps\n", range->minmcs,
377 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
378 		}
379 	}
380 }
381 
382 static void
383 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
384 {
385 	struct ifnet *ifp = ic->ic_ifp;
386 	const char *modestr = ieee80211_phymode_name[mode];
387 
388 	if_printf(ifp, "%s MCS 20MHz\n", modestr);
389 	ht_rateprint(ic, mode, 0);
390 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
391 		if_printf(ifp, "%s MCS 20MHz SGI\n", modestr);
392 		ht_rateprint(ic, mode, 1);
393 	}
394 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
395 		if_printf(ifp, "%s MCS 40MHz:\n", modestr);
396 		ht_rateprint(ic, mode, 2);
397 	}
398 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
399 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
400 		if_printf(ifp, "%s MCS 40MHz SGI:\n", modestr);
401 		ht_rateprint(ic, mode, 3);
402 	}
403 }
404 
405 void
406 ieee80211_ht_announce(struct ieee80211com *ic)
407 {
408 	struct ifnet *ifp = ic->ic_ifp;
409 
410 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
411 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
412 		if_printf(ifp, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
413 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
414 		ht_announce(ic, IEEE80211_MODE_11NA);
415 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
416 		ht_announce(ic, IEEE80211_MODE_11NG);
417 }
418 
419 static struct ieee80211_htrateset htrateset;
420 
421 const struct ieee80211_htrateset *
422 ieee80211_get_suphtrates(struct ieee80211com *ic,
423     const struct ieee80211_channel *c)
424 {
425 #define	ADDRATE(x)	do {						\
426 	htrateset.rs_rates[htrateset.rs_nrates] = x;			\
427 	htrateset.rs_nrates++;						\
428 } while (0)
429 	int i;
430 
431 	memset(&htrateset, 0, sizeof(struct ieee80211_htrateset));
432 	for (i = 0; i < ic->ic_txstream * 8; i++)
433 		ADDRATE(i);
434 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
435 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
436 		ADDRATE(32);
437 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
438 		if (ic->ic_txstream >= 2) {
439 			 for (i = 33; i <= 38; i++)
440 				ADDRATE(i);
441 		}
442 		if (ic->ic_txstream >= 3) {
443 			for (i = 39; i <= 52; i++)
444 				ADDRATE(i);
445 		}
446 		if (ic->ic_txstream == 4) {
447 			for (i = 53; i <= 76; i++)
448 				ADDRATE(i);
449 		}
450 	}
451 	return &htrateset;
452 #undef	ADDRATE
453 }
454 
455 /*
456  * Receive processing.
457  */
458 
459 /*
460  * Decap the encapsulated A-MSDU frames and dispatch all but
461  * the last for delivery.  The last frame is returned for
462  * delivery via the normal path.
463  */
464 struct mbuf *
465 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
466 {
467 	struct ieee80211vap *vap = ni->ni_vap;
468 	int framelen;
469 	struct mbuf *n;
470 
471 	/* discard 802.3 header inserted by ieee80211_decap */
472 	m_adj(m, sizeof(struct ether_header));
473 
474 	vap->iv_stats.is_amsdu_decap++;
475 
476 	for (;;) {
477 		/*
478 		 * Decap the first frame, bust it apart from the
479 		 * remainder and deliver.  We leave the last frame
480 		 * delivery to the caller (for consistency with other
481 		 * code paths, could also do it here).
482 		 */
483 		m = ieee80211_decap1(m, &framelen);
484 		if (m == NULL) {
485 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
486 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
487 			vap->iv_stats.is_amsdu_tooshort++;
488 			return NULL;
489 		}
490 		if (m->m_pkthdr.len == framelen)
491 			break;
492 		n = m_split(m, framelen, M_NOWAIT);
493 		if (n == NULL) {
494 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
495 			    ni->ni_macaddr, "a-msdu",
496 			    "%s", "unable to split encapsulated frames");
497 			vap->iv_stats.is_amsdu_split++;
498 			m_freem(m);			/* NB: must reclaim */
499 			return NULL;
500 		}
501 		vap->iv_deliver_data(vap, ni, m);
502 
503 		/*
504 		 * Remove frame contents; each intermediate frame
505 		 * is required to be aligned to a 4-byte boundary.
506 		 */
507 		m = n;
508 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
509 	}
510 	return m;				/* last delivered by caller */
511 }
512 
513 /*
514  * Purge all frames in the A-MPDU re-order queue.
515  */
516 static void
517 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
518 {
519 	struct mbuf *m;
520 	int i;
521 
522 	for (i = 0; i < rap->rxa_wnd; i++) {
523 		m = rap->rxa_m[i];
524 		if (m != NULL) {
525 			rap->rxa_m[i] = NULL;
526 			rap->rxa_qbytes -= m->m_pkthdr.len;
527 			m_freem(m);
528 			if (--rap->rxa_qframes == 0)
529 				break;
530 		}
531 	}
532 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
533 	    ("lost %u data, %u frames on ampdu rx q",
534 	    rap->rxa_qbytes, rap->rxa_qframes));
535 }
536 
537 /*
538  * Start A-MPDU rx/re-order processing for the specified TID.
539  */
540 static int
541 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
542 	int baparamset, int batimeout, int baseqctl)
543 {
544 	int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
545 
546 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
547 		/*
548 		 * AMPDU previously setup and not terminated with a DELBA,
549 		 * flush the reorder q's in case anything remains.
550 		 */
551 		ampdu_rx_purge(rap);
552 	}
553 	memset(rap, 0, sizeof(*rap));
554 	rap->rxa_wnd = (bufsiz == 0) ?
555 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
556 	rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START);
557 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
558 
559 	return 0;
560 }
561 
562 /*
563  * Stop A-MPDU rx processing for the specified TID.
564  */
565 static void
566 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
567 {
568 
569 	ampdu_rx_purge(rap);
570 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND);
571 }
572 
573 /*
574  * Dispatch a frame from the A-MPDU reorder queue.  The
575  * frame is fed back into ieee80211_input marked with an
576  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
577  * permits ieee80211_input to optimize re-processing).
578  */
579 static __inline void
580 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
581 {
582 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
583 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
584 	(void) ieee80211_input(ni, m, 0, 0);
585 }
586 
587 /*
588  * Dispatch as many frames as possible from the re-order queue.
589  * Frames will always be "at the front"; we process all frames
590  * up to the first empty slot in the window.  On completion we
591  * cleanup state if there are still pending frames in the current
592  * BA window.  We assume the frame at slot 0 is already handled
593  * by the caller; we always start at slot 1.
594  */
595 static void
596 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
597 {
598 	struct ieee80211vap *vap = ni->ni_vap;
599 	struct mbuf *m;
600 	int i;
601 
602 	/* flush run of frames */
603 	for (i = 1; i < rap->rxa_wnd; i++) {
604 		m = rap->rxa_m[i];
605 		if (m == NULL)
606 			break;
607 		rap->rxa_m[i] = NULL;
608 		rap->rxa_qbytes -= m->m_pkthdr.len;
609 		rap->rxa_qframes--;
610 
611 		ampdu_dispatch(ni, m);
612 	}
613 	/*
614 	 * If frames remain, copy the mbuf pointers down so
615 	 * they correspond to the offsets in the new window.
616 	 */
617 	if (rap->rxa_qframes != 0) {
618 		int n = rap->rxa_qframes, j;
619 		for (j = i+1; j < rap->rxa_wnd; j++) {
620 			if (rap->rxa_m[j] != NULL) {
621 				rap->rxa_m[j-i] = rap->rxa_m[j];
622 				rap->rxa_m[j] = NULL;
623 				if (--n == 0)
624 					break;
625 			}
626 		}
627 		KASSERT(n == 0, ("lost %d frames", n));
628 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
629 	}
630 	/*
631 	 * Adjust the start of the BA window to
632 	 * reflect the frames just dispatched.
633 	 */
634 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
635 	vap->iv_stats.is_ampdu_rx_oor += i;
636 }
637 
638 #ifdef IEEE80211_AMPDU_AGE
639 /*
640  * Dispatch all frames in the A-MPDU re-order queue.
641  */
642 static void
643 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
644 {
645 	struct ieee80211vap *vap = ni->ni_vap;
646 	struct mbuf *m;
647 	int i;
648 
649 	for (i = 0; i < rap->rxa_wnd; i++) {
650 		m = rap->rxa_m[i];
651 		if (m == NULL)
652 			continue;
653 		rap->rxa_m[i] = NULL;
654 		rap->rxa_qbytes -= m->m_pkthdr.len;
655 		rap->rxa_qframes--;
656 		vap->iv_stats.is_ampdu_rx_oor++;
657 
658 		ampdu_dispatch(ni, m);
659 		if (rap->rxa_qframes == 0)
660 			break;
661 	}
662 }
663 #endif /* IEEE80211_AMPDU_AGE */
664 
665 /*
666  * Dispatch all frames in the A-MPDU re-order queue
667  * preceding the specified sequence number.  This logic
668  * handles window moves due to a received MSDU or BAR.
669  */
670 static void
671 ampdu_rx_flush_upto(struct ieee80211_node *ni,
672 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
673 {
674 	struct ieee80211vap *vap = ni->ni_vap;
675 	struct mbuf *m;
676 	ieee80211_seq seqno;
677 	int i;
678 
679 	/*
680 	 * Flush any complete MSDU's with a sequence number lower
681 	 * than winstart.  Gaps may exist.  Note that we may actually
682 	 * dispatch frames past winstart if a run continues; this is
683 	 * an optimization that avoids having to do a separate pass
684 	 * to dispatch frames after moving the BA window start.
685 	 */
686 	seqno = rap->rxa_start;
687 	for (i = 0; i < rap->rxa_wnd; i++) {
688 		m = rap->rxa_m[i];
689 		if (m != NULL) {
690 			rap->rxa_m[i] = NULL;
691 			rap->rxa_qbytes -= m->m_pkthdr.len;
692 			rap->rxa_qframes--;
693 			vap->iv_stats.is_ampdu_rx_oor++;
694 
695 			ampdu_dispatch(ni, m);
696 		} else {
697 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
698 				break;
699 		}
700 		seqno = IEEE80211_SEQ_INC(seqno);
701 	}
702 	/*
703 	 * If frames remain, copy the mbuf pointers down so
704 	 * they correspond to the offsets in the new window.
705 	 */
706 	if (rap->rxa_qframes != 0) {
707 		int n = rap->rxa_qframes, j;
708 
709 		/* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */
710 		KASSERT(rap->rxa_m[0] == NULL,
711 		    ("%s: BA window slot 0 occupied", __func__));
712 		for (j = i+1; j < rap->rxa_wnd; j++) {
713 			if (rap->rxa_m[j] != NULL) {
714 				rap->rxa_m[j-i] = rap->rxa_m[j];
715 				rap->rxa_m[j] = NULL;
716 				if (--n == 0)
717 					break;
718 			}
719 		}
720 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
721 		    "BA win <%d:%d> winstart %d",
722 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
723 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
724 		    winstart));
725 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
726 	}
727 	/*
728 	 * Move the start of the BA window; we use the
729 	 * sequence number of the last MSDU that was
730 	 * passed up the stack+1 or winstart if stopped on
731 	 * a gap in the reorder buffer.
732 	 */
733 	rap->rxa_start = seqno;
734 }
735 
736 /*
737  * Process a received QoS data frame for an HT station.  Handle
738  * A-MPDU reordering: if this frame is received out of order
739  * and falls within the BA window hold onto it.  Otherwise if
740  * this frame completes a run, flush any pending frames.  We
741  * return 1 if the frame is consumed.  A 0 is returned if
742  * the frame should be processed normally by the caller.
743  */
744 int
745 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m)
746 {
747 #define	IEEE80211_FC0_QOSDATA \
748 	(IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0)
749 #define	PROCESS		0	/* caller should process frame */
750 #define	CONSUMED	1	/* frame consumed, caller does nothing */
751 	struct ieee80211vap *vap = ni->ni_vap;
752 	struct ieee80211_qosframe *wh;
753 	struct ieee80211_rx_ampdu *rap;
754 	ieee80211_seq rxseq;
755 	uint8_t tid;
756 	int off;
757 
758 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
759 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
760 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
761 
762 	/* NB: m_len known to be sufficient */
763 	wh = mtod(m, struct ieee80211_qosframe *);
764 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
765 		/*
766 		 * Not QoS data, shouldn't get here but just
767 		 * return it to the caller for processing.
768 		 */
769 		return PROCESS;
770 	}
771 	if (IEEE80211_IS_DSTODS(wh))
772 		tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0];
773 	else
774 		tid = wh->i_qos[0];
775 	tid &= IEEE80211_QOS_TID;
776 	rap = &ni->ni_rx_ampdu[tid];
777 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
778 		/*
779 		 * No ADDBA request yet, don't touch.
780 		 */
781 		return PROCESS;
782 	}
783 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
784 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
785 		/*
786 		 * Fragments are not allowed; toss.
787 		 */
788 		IEEE80211_DISCARD_MAC(vap,
789 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
790 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
791 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
792 		vap->iv_stats.is_ampdu_rx_drop++;
793 		IEEE80211_NODE_STAT(ni, rx_drop);
794 		m_freem(m);
795 		return CONSUMED;
796 	}
797 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
798 	rap->rxa_nframes++;
799 again:
800 	if (rxseq == rap->rxa_start) {
801 		/*
802 		 * First frame in window.
803 		 */
804 		if (rap->rxa_qframes != 0) {
805 			/*
806 			 * Dispatch as many packets as we can.
807 			 */
808 			KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup"));
809 			ampdu_dispatch(ni, m);
810 			ampdu_rx_dispatch(rap, ni);
811 			return CONSUMED;
812 		} else {
813 			/*
814 			 * In order; advance window and notify
815 			 * caller to dispatch directly.
816 			 */
817 			rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
818 			return PROCESS;
819 		}
820 	}
821 	/*
822 	 * Frame is out of order; store if in the BA window.
823 	 */
824 	/* calculate offset in BA window */
825 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
826 	if (off < rap->rxa_wnd) {
827 		/*
828 		 * Common case (hopefully): in the BA window.
829 		 * Sec 9.10.7.6.2 a) (p.137)
830 		 */
831 #ifdef IEEE80211_AMPDU_AGE
832 		/*
833 		 * Check for frames sitting too long in the reorder queue.
834 		 * This should only ever happen if frames are not delivered
835 		 * without the sender otherwise notifying us (e.g. with a
836 		 * BAR to move the window).  Typically this happens because
837 		 * of vendor bugs that cause the sequence number to jump.
838 		 * When this happens we get a gap in the reorder queue that
839 		 * leaves frame sitting on the queue until they get pushed
840 		 * out due to window moves.  When the vendor does not send
841 		 * BAR this move only happens due to explicit packet sends
842 		 *
843 		 * NB: we only track the time of the oldest frame in the
844 		 * reorder q; this means that if we flush we might push
845 		 * frames that still "new"; if this happens then subsequent
846 		 * frames will result in BA window moves which cost something
847 		 * but is still better than a big throughput dip.
848 		 */
849 		if (rap->rxa_qframes != 0) {
850 			/* XXX honor batimeout? */
851 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
852 				/*
853 				 * Too long since we received the first
854 				 * frame; flush the reorder buffer.
855 				 */
856 				if (rap->rxa_qframes != 0) {
857 					vap->iv_stats.is_ampdu_rx_age +=
858 					    rap->rxa_qframes;
859 					ampdu_rx_flush(ni, rap);
860 				}
861 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
862 				return PROCESS;
863 			}
864 		} else {
865 			/*
866 			 * First frame, start aging timer.
867 			 */
868 			rap->rxa_age = ticks;
869 		}
870 #endif /* IEEE80211_AMPDU_AGE */
871 		/* save packet */
872 		if (rap->rxa_m[off] == NULL) {
873 			rap->rxa_m[off] = m;
874 			rap->rxa_qframes++;
875 			rap->rxa_qbytes += m->m_pkthdr.len;
876 			vap->iv_stats.is_ampdu_rx_reorder++;
877 		} else {
878 			IEEE80211_DISCARD_MAC(vap,
879 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
880 			    ni->ni_macaddr, "a-mpdu duplicate",
881 			    "seqno %u tid %u BA win <%u:%u>",
882 			    rxseq, tid, rap->rxa_start,
883 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
884 			vap->iv_stats.is_rx_dup++;
885 			IEEE80211_NODE_STAT(ni, rx_dup);
886 			m_freem(m);
887 		}
888 		return CONSUMED;
889 	}
890 	if (off < IEEE80211_SEQ_BA_RANGE) {
891 		/*
892 		 * Outside the BA window, but within range;
893 		 * flush the reorder q and move the window.
894 		 * Sec 9.10.7.6.2 b) (p.138)
895 		 */
896 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
897 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
898 		    rap->rxa_start,
899 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
900 		    rap->rxa_qframes, rxseq, tid);
901 		vap->iv_stats.is_ampdu_rx_move++;
902 
903 		/*
904 		 * The spec says to flush frames up to but not including:
905 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
906 		 * Then insert the frame or notify the caller to process
907 		 * it immediately.  We can safely do this by just starting
908 		 * over again because we know the frame will now be within
909 		 * the BA window.
910 		 */
911 		/* NB: rxa_wnd known to be >0 */
912 		ampdu_rx_flush_upto(ni, rap,
913 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
914 		goto again;
915 	} else {
916 		/*
917 		 * Outside the BA window and out of range; toss.
918 		 * Sec 9.10.7.6.2 c) (p.138)
919 		 */
920 		IEEE80211_DISCARD_MAC(vap,
921 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
922 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
923 		    rap->rxa_start,
924 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
925 		    rap->rxa_qframes, rxseq, tid,
926 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
927 		vap->iv_stats.is_ampdu_rx_drop++;
928 		IEEE80211_NODE_STAT(ni, rx_drop);
929 		m_freem(m);
930 		return CONSUMED;
931 	}
932 #undef CONSUMED
933 #undef PROCESS
934 #undef IEEE80211_FC0_QOSDATA
935 }
936 
937 /*
938  * Process a BAR ctl frame.  Dispatch all frames up to
939  * the sequence number of the frame.  If this frame is
940  * out of range it's discarded.
941  */
942 void
943 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
944 {
945 	struct ieee80211vap *vap = ni->ni_vap;
946 	struct ieee80211_frame_bar *wh;
947 	struct ieee80211_rx_ampdu *rap;
948 	ieee80211_seq rxseq;
949 	int tid, off;
950 
951 	if (!ieee80211_recv_bar_ena) {
952 #if 0
953 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
954 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
955 #endif
956 		vap->iv_stats.is_ampdu_bar_bad++;
957 		return;
958 	}
959 	wh = mtod(m0, struct ieee80211_frame_bar *);
960 	/* XXX check basic BAR */
961 	tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
962 	rap = &ni->ni_rx_ampdu[tid];
963 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
964 		/*
965 		 * No ADDBA request yet, don't touch.
966 		 */
967 		IEEE80211_DISCARD_MAC(vap,
968 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
969 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
970 		vap->iv_stats.is_ampdu_bar_bad++;
971 		return;
972 	}
973 	vap->iv_stats.is_ampdu_bar_rx++;
974 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
975 	if (rxseq == rap->rxa_start)
976 		return;
977 	/* calculate offset in BA window */
978 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
979 	if (off < IEEE80211_SEQ_BA_RANGE) {
980 		/*
981 		 * Flush the reorder q up to rxseq and move the window.
982 		 * Sec 9.10.7.6.3 a) (p.138)
983 		 */
984 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
985 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
986 		    rap->rxa_start,
987 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
988 		    rap->rxa_qframes, rxseq, tid);
989 		vap->iv_stats.is_ampdu_bar_move++;
990 
991 		ampdu_rx_flush_upto(ni, rap, rxseq);
992 		if (off >= rap->rxa_wnd) {
993 			/*
994 			 * BAR specifies a window start to the right of BA
995 			 * window; we must move it explicitly since
996 			 * ampdu_rx_flush_upto will not.
997 			 */
998 			rap->rxa_start = rxseq;
999 		}
1000 	} else {
1001 		/*
1002 		 * Out of range; toss.
1003 		 * Sec 9.10.7.6.3 b) (p.138)
1004 		 */
1005 		IEEE80211_DISCARD_MAC(vap,
1006 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1007 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1008 		    rap->rxa_start,
1009 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1010 		    rap->rxa_qframes, rxseq, tid,
1011 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1012 		vap->iv_stats.is_ampdu_bar_oow++;
1013 		IEEE80211_NODE_STAT(ni, rx_drop);
1014 	}
1015 }
1016 
1017 /*
1018  * Setup HT-specific state in a node.  Called only
1019  * when HT use is negotiated so we don't do extra
1020  * work for temporary and/or legacy sta's.
1021  */
1022 void
1023 ieee80211_ht_node_init(struct ieee80211_node *ni)
1024 {
1025 	struct ieee80211_tx_ampdu *tap;
1026 	int tid;
1027 
1028 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1029 	    ni,
1030 	    "%s: called",
1031 	    __func__);
1032 
1033 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1034 		/*
1035 		 * Clean AMPDU state on re-associate.  This handles the case
1036 		 * where a station leaves w/o notifying us and then returns
1037 		 * before node is reaped for inactivity.
1038 		 */
1039 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1040 		    ni,
1041 		    "%s: calling cleanup",
1042 		    __func__);
1043 		ieee80211_ht_node_cleanup(ni);
1044 	}
1045 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1046 		tap = &ni->ni_tx_ampdu[tid];
1047 		tap->txa_tid = tid;
1048 		tap->txa_ni = ni;
1049 		/* NB: further initialization deferred */
1050 	}
1051 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1052 }
1053 
1054 /*
1055  * Cleanup HT-specific state in a node.  Called only
1056  * when HT use has been marked.
1057  */
1058 void
1059 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1060 {
1061 	struct ieee80211com *ic = ni->ni_ic;
1062 	int i;
1063 
1064 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1065 	    ni,
1066 	    "%s: called",
1067 	    __func__);
1068 
1069 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1070 
1071 	/* XXX optimize this */
1072 	for (i = 0; i < WME_NUM_TID; i++) {
1073 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1074 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1075 			ampdu_tx_stop(tap);
1076 	}
1077 	for (i = 0; i < WME_NUM_TID; i++)
1078 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1079 
1080 	ni->ni_htcap = 0;
1081 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1082 }
1083 
1084 /*
1085  * Age out HT resources for a station.
1086  */
1087 void
1088 ieee80211_ht_node_age(struct ieee80211_node *ni)
1089 {
1090 #ifdef IEEE80211_AMPDU_AGE
1091 	struct ieee80211vap *vap = ni->ni_vap;
1092 	uint8_t tid;
1093 #endif
1094 
1095 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1096 
1097 #ifdef IEEE80211_AMPDU_AGE
1098 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1099 		struct ieee80211_rx_ampdu *rap;
1100 
1101 		rap = &ni->ni_rx_ampdu[tid];
1102 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1103 			continue;
1104 		if (rap->rxa_qframes == 0)
1105 			continue;
1106 		/*
1107 		 * Check for frames sitting too long in the reorder queue.
1108 		 * See above for more details on what's happening here.
1109 		 */
1110 		/* XXX honor batimeout? */
1111 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1112 			/*
1113 			 * Too long since we received the first
1114 			 * frame; flush the reorder buffer.
1115 			 */
1116 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1117 			ampdu_rx_flush(ni, rap);
1118 		}
1119 	}
1120 #endif /* IEEE80211_AMPDU_AGE */
1121 }
1122 
1123 static struct ieee80211_channel *
1124 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1125 {
1126 	return ieee80211_find_channel(ic, c->ic_freq,
1127 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1128 }
1129 
1130 /*
1131  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1132  */
1133 struct ieee80211_channel *
1134 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1135 	struct ieee80211_channel *chan, int flags)
1136 {
1137 	struct ieee80211_channel *c;
1138 
1139 	if (flags & IEEE80211_FHT_HT) {
1140 		/* promote to HT if possible */
1141 		if (flags & IEEE80211_FHT_USEHT40) {
1142 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1143 				/* NB: arbitrarily pick ht40+ over ht40- */
1144 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1145 				if (c == NULL)
1146 					c = findhtchan(ic, chan,
1147 						IEEE80211_CHAN_HT40D);
1148 				if (c == NULL)
1149 					c = findhtchan(ic, chan,
1150 						IEEE80211_CHAN_HT20);
1151 				if (c != NULL)
1152 					chan = c;
1153 			}
1154 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1155 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1156 			if (c != NULL)
1157 				chan = c;
1158 		}
1159 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1160 		/* demote to legacy, HT use is disabled */
1161 		c = ieee80211_find_channel(ic, chan->ic_freq,
1162 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1163 		if (c != NULL)
1164 			chan = c;
1165 	}
1166 	return chan;
1167 }
1168 
1169 /*
1170  * Setup HT-specific state for a legacy WDS peer.
1171  */
1172 void
1173 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1174 {
1175 	struct ieee80211vap *vap = ni->ni_vap;
1176 	struct ieee80211_tx_ampdu *tap;
1177 	int tid;
1178 
1179 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1180 
1181 	/* XXX check scan cache in case peer has an ap and we have info */
1182 	/*
1183 	 * If setup with a legacy channel; locate an HT channel.
1184 	 * Otherwise if the inherited channel (from a companion
1185 	 * AP) is suitable use it so we use the same location
1186 	 * for the extension channel).
1187 	 */
1188 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1189 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1190 
1191 	ni->ni_htcap = 0;
1192 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1193 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1194 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1195 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1196 		ni->ni_chw = 40;
1197 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1198 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1199 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1200 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1201 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1202 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1203 	} else {
1204 		ni->ni_chw = 20;
1205 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1206 	}
1207 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1208 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1209 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1210 	/* XXX does it make sense to enable SMPS? */
1211 
1212 	ni->ni_htopmode = 0;		/* XXX need protection state */
1213 	ni->ni_htstbc = 0;		/* XXX need info */
1214 
1215 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1216 		tap = &ni->ni_tx_ampdu[tid];
1217 		tap->txa_tid = tid;
1218 	}
1219 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1220 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1221 }
1222 
1223 /*
1224  * Notify hostap vaps of a change in the HTINFO ie.
1225  */
1226 static void
1227 htinfo_notify(struct ieee80211com *ic)
1228 {
1229 	struct ieee80211vap *vap;
1230 	int first = 1;
1231 
1232 	IEEE80211_LOCK_ASSERT(ic);
1233 
1234 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1235 		if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1236 			continue;
1237 		if (vap->iv_state != IEEE80211_S_RUN ||
1238 		    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1239 			continue;
1240 		if (first) {
1241 			IEEE80211_NOTE(vap,
1242 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1243 			    vap->iv_bss,
1244 			    "HT bss occupancy change: %d sta, %d ht, "
1245 			    "%d ht40%s, HT protmode now 0x%x"
1246 			    , ic->ic_sta_assoc
1247 			    , ic->ic_ht_sta_assoc
1248 			    , ic->ic_ht40_sta_assoc
1249 			    , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1250 				 ", non-HT sta present" : ""
1251 			    , ic->ic_curhtprotmode);
1252 			first = 0;
1253 		}
1254 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1255 	}
1256 }
1257 
1258 /*
1259  * Calculate HT protection mode from current
1260  * state and handle updates.
1261  */
1262 static void
1263 htinfo_update(struct ieee80211com *ic)
1264 {
1265 	uint8_t protmode;
1266 
1267 	if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) {
1268 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1269 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1270 	} else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) {
1271 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1272 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1273 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1274 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1275 	    ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) {
1276 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1277 	} else {
1278 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1279 	}
1280 	if (protmode != ic->ic_curhtprotmode) {
1281 		ic->ic_curhtprotmode = protmode;
1282 		htinfo_notify(ic);
1283 	}
1284 }
1285 
1286 /*
1287  * Handle an HT station joining a BSS.
1288  */
1289 void
1290 ieee80211_ht_node_join(struct ieee80211_node *ni)
1291 {
1292 	struct ieee80211com *ic = ni->ni_ic;
1293 
1294 	IEEE80211_LOCK_ASSERT(ic);
1295 
1296 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1297 		ic->ic_ht_sta_assoc++;
1298 		if (ni->ni_chw == 40)
1299 			ic->ic_ht40_sta_assoc++;
1300 	}
1301 	htinfo_update(ic);
1302 }
1303 
1304 /*
1305  * Handle an HT station leaving a BSS.
1306  */
1307 void
1308 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1309 {
1310 	struct ieee80211com *ic = ni->ni_ic;
1311 
1312 	IEEE80211_LOCK_ASSERT(ic);
1313 
1314 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1315 		ic->ic_ht_sta_assoc--;
1316 		if (ni->ni_chw == 40)
1317 			ic->ic_ht40_sta_assoc--;
1318 	}
1319 	htinfo_update(ic);
1320 }
1321 
1322 /*
1323  * Public version of htinfo_update; used for processing
1324  * beacon frames from overlapping bss.
1325  *
1326  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1327  * (on receipt of a beacon that advertises MIXED) or
1328  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1329  * from an overlapping legacy bss).  We treat MIXED with
1330  * a higher precedence than PROTOPT (i.e. we will not change
1331  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1332  * corresponds to how we handle things in htinfo_update.
1333  */
1334 void
1335 ieee80211_htprot_update(struct ieee80211com *ic, int protmode)
1336 {
1337 #define	OPMODE(x)	SM(x, IEEE80211_HTINFO_OPMODE)
1338 	IEEE80211_LOCK(ic);
1339 
1340 	/* track non-HT station presence */
1341 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1342 	    ("protmode 0x%x", protmode));
1343 	ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1344 	ic->ic_lastnonht = ticks;
1345 
1346 	if (protmode != ic->ic_curhtprotmode &&
1347 	    (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1348 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1349 		/* push beacon update */
1350 		ic->ic_curhtprotmode = protmode;
1351 		htinfo_notify(ic);
1352 	}
1353 	IEEE80211_UNLOCK(ic);
1354 #undef OPMODE
1355 }
1356 
1357 /*
1358  * Time out presence of an overlapping bss with non-HT
1359  * stations.  When operating in hostap mode we listen for
1360  * beacons from other stations and if we identify a non-HT
1361  * station is present we update the opmode field of the
1362  * HTINFO ie.  To identify when all non-HT stations are
1363  * gone we time out this condition.
1364  */
1365 void
1366 ieee80211_ht_timeout(struct ieee80211com *ic)
1367 {
1368 	IEEE80211_LOCK_ASSERT(ic);
1369 
1370 	if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1371 	    time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1372 #if 0
1373 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1374 		    "%s", "time out non-HT STA present on channel");
1375 #endif
1376 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1377 		htinfo_update(ic);
1378 	}
1379 }
1380 
1381 /* unalligned little endian access */
1382 #define LE_READ_2(p)					\
1383 	((uint16_t)					\
1384 	 ((((const uint8_t *)(p))[0]      ) |		\
1385 	  (((const uint8_t *)(p))[1] <<  8)))
1386 
1387 /*
1388  * Process an 802.11n HT capabilities ie.
1389  */
1390 void
1391 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1392 {
1393 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1394 		/*
1395 		 * Station used Vendor OUI ie to associate;
1396 		 * mark the node so when we respond we'll use
1397 		 * the Vendor OUI's and not the standard ie's.
1398 		 */
1399 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1400 		ie += 4;
1401 	} else
1402 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1403 
1404 	ni->ni_htcap = LE_READ_2(ie +
1405 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1406 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1407 }
1408 
1409 static void
1410 htinfo_parse(struct ieee80211_node *ni,
1411 	const struct ieee80211_ie_htinfo *htinfo)
1412 {
1413 	uint16_t w;
1414 
1415 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1416 	ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN);
1417 	w = LE_READ_2(&htinfo->hi_byte2);
1418 	ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE);
1419 	w = LE_READ_2(&htinfo->hi_byte45);
1420 	ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1421 }
1422 
1423 /*
1424  * Parse an 802.11n HT info ie and save useful information
1425  * to the node state.  Note this does not effect any state
1426  * changes such as for channel width change.
1427  */
1428 void
1429 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1430 {
1431 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1432 		ie += 4;
1433 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1434 }
1435 
1436 /*
1437  * Handle 11n channel switch.  Use the received HT ie's to
1438  * identify the right channel to use.  If we cannot locate it
1439  * in the channel table then fallback to legacy operation.
1440  * Note that we use this information to identify the node's
1441  * channel only; the caller is responsible for insuring any
1442  * required channel change is done (e.g. in sta mode when
1443  * parsing the contents of a beacon frame).
1444  */
1445 static int
1446 htinfo_update_chw(struct ieee80211_node *ni, int htflags)
1447 {
1448 	struct ieee80211com *ic = ni->ni_ic;
1449 	struct ieee80211_channel *c;
1450 	int chanflags;
1451 	int ret = 0;
1452 
1453 	chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags;
1454 	if (chanflags != ni->ni_chan->ic_flags) {
1455 		/* XXX not right for ht40- */
1456 		c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1457 		if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1458 			/*
1459 			 * No HT40 channel entry in our table; fall back
1460 			 * to HT20 operation.  This should not happen.
1461 			 */
1462 			c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1463 #if 0
1464 			IEEE80211_NOTE(ni->ni_vap,
1465 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1466 			    "no HT40 channel (freq %u), falling back to HT20",
1467 			    ni->ni_chan->ic_freq);
1468 #endif
1469 			/* XXX stat */
1470 		}
1471 		if (c != NULL && c != ni->ni_chan) {
1472 			IEEE80211_NOTE(ni->ni_vap,
1473 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1474 			    "switch station to HT%d channel %u/0x%x",
1475 			    IEEE80211_IS_CHAN_HT40(c) ? 40 : 20,
1476 			    c->ic_freq, c->ic_flags);
1477 			ni->ni_chan = c;
1478 			ret = 1;
1479 		}
1480 		/* NB: caller responsible for forcing any channel change */
1481 	}
1482 	/* update node's tx channel width */
1483 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1484 	return (ret);
1485 }
1486 
1487 /*
1488  * Update 11n MIMO PS state according to received htcap.
1489  */
1490 static __inline int
1491 htcap_update_mimo_ps(struct ieee80211_node *ni)
1492 {
1493 	uint16_t oflags = ni->ni_flags;
1494 
1495 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1496 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1497 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1498 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1499 		break;
1500 	case IEEE80211_HTCAP_SMPS_ENA:
1501 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1502 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1503 		break;
1504 	case IEEE80211_HTCAP_SMPS_OFF:
1505 	default:		/* disable on rx of reserved value */
1506 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1507 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1508 		break;
1509 	}
1510 	return (oflags ^ ni->ni_flags);
1511 }
1512 
1513 /*
1514  * Update short GI state according to received htcap
1515  * and local settings.
1516  */
1517 static __inline void
1518 htcap_update_shortgi(struct ieee80211_node *ni)
1519 {
1520 	struct ieee80211vap *vap = ni->ni_vap;
1521 
1522 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1523 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1524 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1525 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1526 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1527 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1528 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1529 }
1530 
1531 /*
1532  * Parse and update HT-related state extracted from
1533  * the HT cap and info ie's.
1534  */
1535 int
1536 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1537 	const uint8_t *htcapie, const uint8_t *htinfoie)
1538 {
1539 	struct ieee80211vap *vap = ni->ni_vap;
1540 	const struct ieee80211_ie_htinfo *htinfo;
1541 	int htflags;
1542 	int ret = 0;
1543 
1544 	ieee80211_parse_htcap(ni, htcapie);
1545 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1546 		htcap_update_mimo_ps(ni);
1547 	htcap_update_shortgi(ni);
1548 
1549 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1550 		htinfoie += 4;
1551 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1552 	htinfo_parse(ni, htinfo);
1553 
1554 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1555 	    IEEE80211_CHAN_HT20 : 0;
1556 	/* NB: honor operating mode constraint */
1557 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
1558 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1559 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
1560 			htflags = IEEE80211_CHAN_HT40U;
1561 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
1562 			htflags = IEEE80211_CHAN_HT40D;
1563 	}
1564 	if (htinfo_update_chw(ni, htflags))
1565 		ret = 1;
1566 
1567 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1568 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1569 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1570 	else
1571 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1572 
1573 	return (ret);
1574 }
1575 
1576 /*
1577  * Parse and update HT-related state extracted from the HT cap ie
1578  * for a station joining an HT BSS.
1579  */
1580 void
1581 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
1582 {
1583 	struct ieee80211vap *vap = ni->ni_vap;
1584 	int htflags;
1585 
1586 	ieee80211_parse_htcap(ni, htcapie);
1587 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1588 		htcap_update_mimo_ps(ni);
1589 	htcap_update_shortgi(ni);
1590 
1591 	/* NB: honor operating mode constraint */
1592 	/* XXX 40 MHz intolerant */
1593 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1594 	    IEEE80211_CHAN_HT20 : 0;
1595 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
1596 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1597 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
1598 			htflags = IEEE80211_CHAN_HT40U;
1599 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
1600 			htflags = IEEE80211_CHAN_HT40D;
1601 	}
1602 	(void) htinfo_update_chw(ni, htflags);
1603 }
1604 
1605 /*
1606  * Install received HT rate set by parsing the HT cap ie.
1607  */
1608 int
1609 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
1610 {
1611 	struct ieee80211com *ic = ni->ni_ic;
1612 	struct ieee80211vap *vap = ni->ni_vap;
1613 	const struct ieee80211_ie_htcap *htcap;
1614 	struct ieee80211_htrateset *rs;
1615 	int i, maxequalmcs, maxunequalmcs;
1616 
1617 	maxequalmcs = ic->ic_txstream * 8 - 1;
1618 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
1619 		if (ic->ic_txstream >= 2)
1620 			maxunequalmcs = 38;
1621 		if (ic->ic_txstream >= 3)
1622 			maxunequalmcs = 52;
1623 		if (ic->ic_txstream >= 4)
1624 			maxunequalmcs = 76;
1625 	} else
1626 		maxunequalmcs = 0;
1627 
1628 	rs = &ni->ni_htrates;
1629 	memset(rs, 0, sizeof(*rs));
1630 	if (ie != NULL) {
1631 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
1632 			ie += 4;
1633 		htcap = (const struct ieee80211_ie_htcap *) ie;
1634 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1635 			if (isclr(htcap->hc_mcsset, i))
1636 				continue;
1637 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
1638 				IEEE80211_NOTE(vap,
1639 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1640 				    "WARNING, HT rate set too large; only "
1641 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
1642 				vap->iv_stats.is_rx_rstoobig++;
1643 				break;
1644 			}
1645 			if (i <= 31 && i > maxequalmcs)
1646 				continue;
1647 			if (i == 32 &&
1648 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
1649 				continue;
1650 			if (i > 32 && i > maxunequalmcs)
1651 				continue;
1652 			rs->rs_rates[rs->rs_nrates++] = i;
1653 		}
1654 	}
1655 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
1656 }
1657 
1658 /*
1659  * Mark rates in a node's HT rate set as basic according
1660  * to the information in the supplied HT info ie.
1661  */
1662 void
1663 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
1664 {
1665 	const struct ieee80211_ie_htinfo *htinfo;
1666 	struct ieee80211_htrateset *rs;
1667 	int i, j;
1668 
1669 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1670 		ie += 4;
1671 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
1672 	rs = &ni->ni_htrates;
1673 	if (rs->rs_nrates == 0) {
1674 		IEEE80211_NOTE(ni->ni_vap,
1675 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1676 		    "%s", "WARNING, empty HT rate set");
1677 		return;
1678 	}
1679 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1680 		if (isclr(htinfo->hi_basicmcsset, i))
1681 			continue;
1682 		for (j = 0; j < rs->rs_nrates; j++)
1683 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
1684 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
1685 	}
1686 }
1687 
1688 static void
1689 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
1690 {
1691 	callout_init(&tap->txa_timer, CALLOUT_MPSAFE);
1692 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
1693 }
1694 
1695 static void
1696 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
1697 {
1698 	struct ieee80211_node *ni = tap->txa_ni;
1699 	struct ieee80211com *ic = ni->ni_ic;
1700 
1701 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
1702 	    tap->txa_ni,
1703 	    "%s: called",
1704 	    __func__);
1705 
1706 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
1707 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
1708 	    TID_TO_WME_AC(tap->txa_tid)));
1709 
1710 	/*
1711 	 * Stop BA stream if setup so driver has a chance
1712 	 * to reclaim any resources it might have allocated.
1713 	 */
1714 	ic->ic_addba_stop(ni, tap);
1715 	/*
1716 	 * Stop any pending BAR transmit.
1717 	 */
1718 	bar_stop_timer(tap);
1719 
1720 	tap->txa_lastsample = 0;
1721 	tap->txa_avgpps = 0;
1722 	/* NB: clearing NAK means we may re-send ADDBA */
1723 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
1724 }
1725 
1726 /*
1727  * ADDBA response timeout.
1728  *
1729  * If software aggregation and per-TID queue management was done here,
1730  * that queue would be unpaused after the ADDBA timeout occurs.
1731  */
1732 static void
1733 addba_timeout(void *arg)
1734 {
1735 	struct ieee80211_tx_ampdu *tap = arg;
1736 	struct ieee80211_node *ni = tap->txa_ni;
1737 	struct ieee80211com *ic = ni->ni_ic;
1738 
1739 	/* XXX ? */
1740 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1741 	tap->txa_attempts++;
1742 	ic->ic_addba_response_timeout(ni, tap);
1743 }
1744 
1745 static void
1746 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
1747 {
1748 	/* XXX use CALLOUT_PENDING instead? */
1749 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
1750 	    addba_timeout, tap);
1751 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
1752 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
1753 }
1754 
1755 static void
1756 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
1757 {
1758 	/* XXX use CALLOUT_PENDING instead? */
1759 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
1760 		callout_stop(&tap->txa_timer);
1761 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1762 	}
1763 }
1764 
1765 static void
1766 null_addba_response_timeout(struct ieee80211_node *ni,
1767     struct ieee80211_tx_ampdu *tap)
1768 {
1769 }
1770 
1771 /*
1772  * Default method for requesting A-MPDU tx aggregation.
1773  * We setup the specified state block and start a timer
1774  * to wait for an ADDBA response frame.
1775  */
1776 static int
1777 ieee80211_addba_request(struct ieee80211_node *ni,
1778 	struct ieee80211_tx_ampdu *tap,
1779 	int dialogtoken, int baparamset, int batimeout)
1780 {
1781 	int bufsiz;
1782 
1783 	/* XXX locking */
1784 	tap->txa_token = dialogtoken;
1785 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
1786 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1787 	tap->txa_wnd = (bufsiz == 0) ?
1788 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1789 	addba_start_timeout(tap);
1790 	return 1;
1791 }
1792 
1793 /*
1794  * Default method for processing an A-MPDU tx aggregation
1795  * response.  We shutdown any pending timer and update the
1796  * state block according to the reply.
1797  */
1798 static int
1799 ieee80211_addba_response(struct ieee80211_node *ni,
1800 	struct ieee80211_tx_ampdu *tap,
1801 	int status, int baparamset, int batimeout)
1802 {
1803 	int bufsiz, tid;
1804 
1805 	/* XXX locking */
1806 	addba_stop_timeout(tap);
1807 	if (status == IEEE80211_STATUS_SUCCESS) {
1808 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1809 		/* XXX override our request? */
1810 		tap->txa_wnd = (bufsiz == 0) ?
1811 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1812 		/* XXX AC/TID */
1813 		tid = MS(baparamset, IEEE80211_BAPS_TID);
1814 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1815 		tap->txa_attempts = 0;
1816 	} else {
1817 		/* mark tid so we don't try again */
1818 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1819 	}
1820 	return 1;
1821 }
1822 
1823 /*
1824  * Default method for stopping A-MPDU tx aggregation.
1825  * Any timer is cleared and we drain any pending frames.
1826  */
1827 static void
1828 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
1829 {
1830 	/* XXX locking */
1831 	addba_stop_timeout(tap);
1832 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
1833 		/* XXX clear aggregation queue */
1834 		tap->txa_flags &= ~IEEE80211_AGGR_RUNNING;
1835 	}
1836 	tap->txa_attempts = 0;
1837 }
1838 
1839 /*
1840  * Process a received action frame using the default aggregation
1841  * policy.  We intercept ADDBA-related frames and use them to
1842  * update our aggregation state.  All other frames are passed up
1843  * for processing by ieee80211_recv_action.
1844  */
1845 static int
1846 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
1847 	const struct ieee80211_frame *wh,
1848 	const uint8_t *frm, const uint8_t *efrm)
1849 {
1850 	struct ieee80211com *ic = ni->ni_ic;
1851 	struct ieee80211vap *vap = ni->ni_vap;
1852 	struct ieee80211_rx_ampdu *rap;
1853 	uint8_t dialogtoken;
1854 	uint16_t baparamset, batimeout, baseqctl;
1855 	uint16_t args[5];
1856 	int tid;
1857 
1858 	dialogtoken = frm[2];
1859 	baparamset = LE_READ_2(frm+3);
1860 	batimeout = LE_READ_2(frm+5);
1861 	baseqctl = LE_READ_2(frm+7);
1862 
1863 	tid = MS(baparamset, IEEE80211_BAPS_TID);
1864 
1865 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1866 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
1867 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d",
1868 	    dialogtoken, baparamset,
1869 	    tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ),
1870 	    batimeout,
1871 	    MS(baseqctl, IEEE80211_BASEQ_START),
1872 	    MS(baseqctl, IEEE80211_BASEQ_FRAG));
1873 
1874 	rap = &ni->ni_rx_ampdu[tid];
1875 
1876 	/* Send ADDBA response */
1877 	args[0] = dialogtoken;
1878 	/*
1879 	 * NB: We ack only if the sta associated with HT and
1880 	 * the ap is configured to do AMPDU rx (the latter
1881 	 * violates the 11n spec and is mostly for testing).
1882 	 */
1883 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
1884 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
1885 		/* XXX handle ampdu_rx_start failure */
1886 		ic->ic_ampdu_rx_start(ni, rap,
1887 		    baparamset, batimeout, baseqctl);
1888 
1889 		args[1] = IEEE80211_STATUS_SUCCESS;
1890 	} else {
1891 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1892 		    ni, "reject ADDBA request: %s",
1893 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
1894 		       "administratively disabled" :
1895 		       "not negotiated for station");
1896 		vap->iv_stats.is_addba_reject++;
1897 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
1898 	}
1899 	/* XXX honor rap flags? */
1900 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
1901 		| SM(tid, IEEE80211_BAPS_TID)
1902 		| SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
1903 		;
1904 	args[3] = 0;
1905 	args[4] = 0;
1906 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
1907 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
1908 	return 0;
1909 }
1910 
1911 static int
1912 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
1913 	const struct ieee80211_frame *wh,
1914 	const uint8_t *frm, const uint8_t *efrm)
1915 {
1916 	struct ieee80211com *ic = ni->ni_ic;
1917 	struct ieee80211vap *vap = ni->ni_vap;
1918 	struct ieee80211_tx_ampdu *tap;
1919 	uint8_t dialogtoken, policy;
1920 	uint16_t baparamset, batimeout, code;
1921 	int tid, bufsiz;
1922 
1923 	dialogtoken = frm[2];
1924 	code = LE_READ_2(frm+3);
1925 	baparamset = LE_READ_2(frm+5);
1926 	tid = MS(baparamset, IEEE80211_BAPS_TID);
1927 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1928 	policy = MS(baparamset, IEEE80211_BAPS_POLICY);
1929 	batimeout = LE_READ_2(frm+7);
1930 
1931 	tap = &ni->ni_tx_ampdu[tid];
1932 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1933 		IEEE80211_DISCARD_MAC(vap,
1934 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1935 		    ni->ni_macaddr, "ADDBA response",
1936 		    "no pending ADDBA, tid %d dialogtoken %u "
1937 		    "code %d", tid, dialogtoken, code);
1938 		vap->iv_stats.is_addba_norequest++;
1939 		return 0;
1940 	}
1941 	if (dialogtoken != tap->txa_token) {
1942 		IEEE80211_DISCARD_MAC(vap,
1943 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1944 		    ni->ni_macaddr, "ADDBA response",
1945 		    "dialogtoken mismatch: waiting for %d, "
1946 		    "received %d, tid %d code %d",
1947 		    tap->txa_token, dialogtoken, tid, code);
1948 		vap->iv_stats.is_addba_badtoken++;
1949 		return 0;
1950 	}
1951 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
1952 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
1953 		IEEE80211_DISCARD_MAC(vap,
1954 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1955 		    ni->ni_macaddr, "ADDBA response",
1956 		    "policy mismatch: expecting %s, "
1957 		    "received %s, tid %d code %d",
1958 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
1959 		    policy, tid, code);
1960 		vap->iv_stats.is_addba_badpolicy++;
1961 		return 0;
1962 	}
1963 #if 0
1964 	/* XXX we take MIN in ieee80211_addba_response */
1965 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
1966 		IEEE80211_DISCARD_MAC(vap,
1967 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1968 		    ni->ni_macaddr, "ADDBA response",
1969 		    "BA window too large: max %d, "
1970 		    "received %d, tid %d code %d",
1971 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
1972 		vap->iv_stats.is_addba_badbawinsize++;
1973 		return 0;
1974 	}
1975 #endif
1976 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1977 	    "recv ADDBA response: dialogtoken %u code %d "
1978 	    "baparamset 0x%x (tid %d bufsiz %d) batimeout %d",
1979 	    dialogtoken, code, baparamset, tid, bufsiz,
1980 	    batimeout);
1981 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
1982 	return 0;
1983 }
1984 
1985 static int
1986 ht_recv_action_ba_delba(struct ieee80211_node *ni,
1987 	const struct ieee80211_frame *wh,
1988 	const uint8_t *frm, const uint8_t *efrm)
1989 {
1990 	struct ieee80211com *ic = ni->ni_ic;
1991 	struct ieee80211_rx_ampdu *rap;
1992 	struct ieee80211_tx_ampdu *tap;
1993 	uint16_t baparamset, code;
1994 	int tid;
1995 
1996 	baparamset = LE_READ_2(frm+2);
1997 	code = LE_READ_2(frm+4);
1998 
1999 	tid = MS(baparamset, IEEE80211_DELBAPS_TID);
2000 
2001 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2002 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2003 	    "code %d", baparamset, tid,
2004 	    MS(baparamset, IEEE80211_DELBAPS_INIT), code);
2005 
2006 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2007 		tap = &ni->ni_tx_ampdu[tid];
2008 		ic->ic_addba_stop(ni, tap);
2009 	} else {
2010 		rap = &ni->ni_rx_ampdu[tid];
2011 		ic->ic_ampdu_rx_stop(ni, rap);
2012 	}
2013 	return 0;
2014 }
2015 
2016 static int
2017 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2018 	const struct ieee80211_frame *wh,
2019 	const uint8_t *frm, const uint8_t *efrm)
2020 {
2021 	int chw;
2022 
2023 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2024 
2025 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2026 	    "%s: HT txchwidth, width %d%s",
2027 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2028 	if (chw != ni->ni_chw) {
2029 		ni->ni_chw = chw;
2030 		/* XXX notify on change */
2031 	}
2032 	return 0;
2033 }
2034 
2035 static int
2036 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2037 	const struct ieee80211_frame *wh,
2038 	const uint8_t *frm, const uint8_t *efrm)
2039 {
2040 	const struct ieee80211_action_ht_mimopowersave *mps =
2041 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2042 
2043 	/* XXX check iv_htcaps */
2044 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2045 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2046 	else
2047 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2048 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2049 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2050 	else
2051 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2052 	/* XXX notify on change */
2053 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2054 	    "%s: HT MIMO PS (%s%s)", __func__,
2055 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2056 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2057 	);
2058 	return 0;
2059 }
2060 
2061 /*
2062  * Transmit processing.
2063  */
2064 
2065 /*
2066  * Check if A-MPDU should be requested/enabled for a stream.
2067  * We require a traffic rate above a per-AC threshold and we
2068  * also handle backoff from previous failed attempts.
2069  *
2070  * Drivers may override this method to bring in information
2071  * such as link state conditions in making the decision.
2072  */
2073 static int
2074 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2075 	struct ieee80211_tx_ampdu *tap)
2076 {
2077 	struct ieee80211vap *vap = ni->ni_vap;
2078 
2079 	if (tap->txa_avgpps <
2080 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2081 		return 0;
2082 	/* XXX check rssi? */
2083 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2084 	    ticks < tap->txa_nextrequest) {
2085 		/*
2086 		 * Don't retry too often; txa_nextrequest is set
2087 		 * to the minimum interval we'll retry after
2088 		 * ieee80211_addba_maxtries failed attempts are made.
2089 		 */
2090 		return 0;
2091 	}
2092 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2093 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d",
2094 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2095 	    tap->txa_avgpps, tap->txa_pkts);
2096 	return 1;
2097 }
2098 
2099 /*
2100  * Request A-MPDU tx aggregation.  Setup local state and
2101  * issue an ADDBA request.  BA use will only happen after
2102  * the other end replies with ADDBA response.
2103  */
2104 int
2105 ieee80211_ampdu_request(struct ieee80211_node *ni,
2106 	struct ieee80211_tx_ampdu *tap)
2107 {
2108 	struct ieee80211com *ic = ni->ni_ic;
2109 	uint16_t args[5];
2110 	int tid, dialogtoken;
2111 	static int tokens = 0;	/* XXX */
2112 
2113 	/* XXX locking */
2114 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2115 		/* do deferred setup of state */
2116 		ampdu_tx_setup(tap);
2117 	}
2118 	/* XXX hack for not doing proper locking */
2119 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2120 
2121 	dialogtoken = (tokens+1) % 63;		/* XXX */
2122 	tid = tap->txa_tid;
2123 	tap->txa_start = ni->ni_txseqs[tid];
2124 
2125 	args[0] = dialogtoken;
2126 	args[1] = 0;	/* NB: status code not used */
2127 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2128 		| SM(tid, IEEE80211_BAPS_TID)
2129 		| SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ)
2130 		;
2131 	args[3] = 0;	/* batimeout */
2132 	/* NB: do first so there's no race against reply */
2133 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2134 		/* unable to setup state, don't make request */
2135 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2136 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2137 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2138 		/* defer next try so we don't slam the driver with requests */
2139 		tap->txa_attempts = ieee80211_addba_maxtries;
2140 		/* NB: check in case driver wants to override */
2141 		if (tap->txa_nextrequest <= ticks)
2142 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2143 		return 0;
2144 	}
2145 	tokens = dialogtoken;			/* allocate token */
2146 	/* NB: after calling ic_addba_request so driver can set txa_start */
2147 	args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START)
2148 		| SM(0, IEEE80211_BASEQ_FRAG)
2149 		;
2150 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2151 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2152 }
2153 
2154 /*
2155  * Terminate an AMPDU tx stream.  State is reclaimed
2156  * and the peer notified with a DelBA Action frame.
2157  */
2158 void
2159 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2160 	int reason)
2161 {
2162 	struct ieee80211com *ic = ni->ni_ic;
2163 	struct ieee80211vap *vap = ni->ni_vap;
2164 	uint16_t args[4];
2165 
2166 	/* XXX locking */
2167 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2168 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2169 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2170 		    ni, "%s: stop BA stream for TID %d (reason %d)",
2171 		    __func__, tap->txa_tid, reason);
2172 		vap->iv_stats.is_ampdu_stop++;
2173 
2174 		ic->ic_addba_stop(ni, tap);
2175 		args[0] = tap->txa_tid;
2176 		args[1] = IEEE80211_DELBAPS_INIT;
2177 		args[2] = reason;			/* XXX reason code */
2178 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2179 			IEEE80211_ACTION_BA_DELBA, args);
2180 	} else {
2181 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2182 		    ni, "%s: BA stream for TID %d not running (reason %d)",
2183 		    __func__, tap->txa_tid, reason);
2184 		vap->iv_stats.is_ampdu_stop_failed++;
2185 	}
2186 }
2187 
2188 /* XXX */
2189 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2190 
2191 static void
2192 bar_timeout(void *arg)
2193 {
2194 	struct ieee80211_tx_ampdu *tap = arg;
2195 	struct ieee80211_node *ni = tap->txa_ni;
2196 
2197 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2198 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2199 
2200 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2201 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2202 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2203 
2204 	/* guard against race with bar_tx_complete */
2205 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2206 		return;
2207 	/* XXX ? */
2208 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2209 		struct ieee80211com *ic = ni->ni_ic;
2210 
2211 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2212 		/*
2213 		 * If (at least) the last BAR TX timeout was due to
2214 		 * an ieee80211_send_bar() failures, then we need
2215 		 * to make sure we notify the driver that a BAR
2216 		 * TX did occur and fail.  This gives the driver
2217 		 * a chance to undo any queue pause that may
2218 		 * have occured.
2219 		 */
2220 		ic->ic_bar_response(ni, tap, 1);
2221 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2222 	} else {
2223 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2224 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2225 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2226 			    ni, "%s: failed to TX, starting timer\n",
2227 			    __func__);
2228 			/*
2229 			 * If ieee80211_send_bar() fails here, the
2230 			 * timer may have stopped and/or the pending
2231 			 * flag may be clear.  Because of this,
2232 			 * fake the BARPEND and reset the timer.
2233 			 * A retransmission attempt will then occur
2234 			 * during the next timeout.
2235 			 */
2236 			/* XXX locking */
2237 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2238 			bar_start_timer(tap);
2239 		}
2240 	}
2241 }
2242 
2243 static void
2244 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2245 {
2246 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2247 	    tap->txa_ni,
2248 	    "%s: called",
2249 	    __func__);
2250 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2251 }
2252 
2253 static void
2254 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2255 {
2256 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2257 	    tap->txa_ni,
2258 	    "%s: called",
2259 	    __func__);
2260 	callout_stop(&tap->txa_timer);
2261 }
2262 
2263 static void
2264 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2265 {
2266 	struct ieee80211_tx_ampdu *tap = arg;
2267 
2268 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2269 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2270 	    __func__, tap->txa_tid, tap->txa_flags,
2271 	    callout_pending(&tap->txa_timer), status);
2272 
2273 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2274 	/* XXX locking */
2275 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2276 	    callout_pending(&tap->txa_timer)) {
2277 		struct ieee80211com *ic = ni->ni_ic;
2278 
2279 		if (status == 0)		/* ACK'd */
2280 			bar_stop_timer(tap);
2281 		ic->ic_bar_response(ni, tap, status);
2282 		/* NB: just let timer expire so we pace requests */
2283 	}
2284 }
2285 
2286 static void
2287 ieee80211_bar_response(struct ieee80211_node *ni,
2288 	struct ieee80211_tx_ampdu *tap, int status)
2289 {
2290 
2291 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2292 	    tap->txa_ni,
2293 	    "%s: called",
2294 	    __func__);
2295 	if (status == 0) {		/* got ACK */
2296 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2297 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2298 		    tap->txa_start,
2299 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2300 		    tap->txa_qframes, tap->txa_seqpending,
2301 		    tap->txa_tid);
2302 
2303 		/* NB: timer already stopped in bar_tx_complete */
2304 		tap->txa_start = tap->txa_seqpending;
2305 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2306 	}
2307 }
2308 
2309 /*
2310  * Transmit a BAR frame to the specified node.  The
2311  * BAR contents are drawn from the supplied aggregation
2312  * state associated with the node.
2313  *
2314  * NB: we only handle immediate ACK w/ compressed bitmap.
2315  */
2316 int
2317 ieee80211_send_bar(struct ieee80211_node *ni,
2318 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2319 {
2320 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2321 	struct ieee80211vap *vap = ni->ni_vap;
2322 	struct ieee80211com *ic = ni->ni_ic;
2323 	struct ieee80211_frame_bar *bar;
2324 	struct mbuf *m;
2325 	uint16_t barctl, barseqctl;
2326 	uint8_t *frm;
2327 	int tid, ret;
2328 
2329 
2330 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2331 	    tap->txa_ni,
2332 	    "%s: called",
2333 	    __func__);
2334 
2335 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2336 		/* no ADDBA response, should not happen */
2337 		/* XXX stat+msg */
2338 		return EINVAL;
2339 	}
2340 	/* XXX locking */
2341 	bar_stop_timer(tap);
2342 
2343 	ieee80211_ref_node(ni);
2344 
2345 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2346 	if (m == NULL)
2347 		senderr(ENOMEM, is_tx_nobuf);
2348 
2349 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2350 		m_freem(m);
2351 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2352 		/* NOTREACHED */
2353 	}
2354 
2355 	bar = mtod(m, struct ieee80211_frame_bar *);
2356 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2357 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2358 	bar->i_fc[1] = 0;
2359 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2360 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2361 
2362 	tid = tap->txa_tid;
2363 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2364 			0 : IEEE80211_BAR_NOACK)
2365 		| IEEE80211_BAR_COMP
2366 		| SM(tid, IEEE80211_BAR_TID)
2367 		;
2368 	barseqctl = SM(seq, IEEE80211_BAR_SEQ_START);
2369 	/* NB: known to have proper alignment */
2370 	bar->i_ctl = htole16(barctl);
2371 	bar->i_seq = htole16(barseqctl);
2372 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2373 
2374 	M_WME_SETAC(m, WME_AC_VO);
2375 
2376 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2377 
2378 	/* XXX locking */
2379 	/* init/bump attempts counter */
2380 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2381 		tap->txa_attempts = 1;
2382 	else
2383 		tap->txa_attempts++;
2384 	tap->txa_seqpending = seq;
2385 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2386 
2387 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2388 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2389 	    tid, barctl, seq, tap->txa_attempts);
2390 
2391 	/*
2392 	 * ic_raw_xmit will free the node reference
2393 	 * regardless of queue/TX success or failure.
2394 	 */
2395 	IEEE80211_TX_LOCK(ic);
2396 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2397 	IEEE80211_TX_UNLOCK(ic);
2398 	if (ret != 0) {
2399 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2400 		    ni, "send BAR: failed: (ret = %d)\n",
2401 		    ret);
2402 		/* xmit failed, clear state flag */
2403 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2404 		vap->iv_stats.is_ampdu_bar_tx_fail++;
2405 		return ret;
2406 	}
2407 	/* XXX hack against tx complete happening before timer is started */
2408 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
2409 		bar_start_timer(tap);
2410 	return 0;
2411 bad:
2412 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2413 	    tap->txa_ni,
2414 	    "%s: bad! ret=%d",
2415 	    __func__, ret);
2416 	vap->iv_stats.is_ampdu_bar_tx_fail++;
2417 	ieee80211_free_node(ni);
2418 	return ret;
2419 #undef senderr
2420 }
2421 
2422 static int
2423 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
2424 {
2425 	struct ieee80211_bpf_params params;
2426 
2427 	memset(&params, 0, sizeof(params));
2428 	params.ibp_pri = WME_AC_VO;
2429 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
2430 	/* NB: we know all frames are unicast */
2431 	params.ibp_try0 = ni->ni_txparms->maxretry;
2432 	params.ibp_power = ni->ni_txpower;
2433 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
2434 	     &params);
2435 }
2436 
2437 #define	ADDSHORT(frm, v) do {			\
2438 	frm[0] = (v) & 0xff;			\
2439 	frm[1] = (v) >> 8;			\
2440 	frm += 2;				\
2441 } while (0)
2442 
2443 /*
2444  * Send an action management frame.  The arguments are stuff
2445  * into a frame without inspection; the caller is assumed to
2446  * prepare them carefully (e.g. based on the aggregation state).
2447  */
2448 static int
2449 ht_send_action_ba_addba(struct ieee80211_node *ni,
2450 	int category, int action, void *arg0)
2451 {
2452 	struct ieee80211vap *vap = ni->ni_vap;
2453 	struct ieee80211com *ic = ni->ni_ic;
2454 	uint16_t *args = arg0;
2455 	struct mbuf *m;
2456 	uint8_t *frm;
2457 
2458 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2459 	    "send ADDBA %s: dialogtoken %d status %d "
2460 	    "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x",
2461 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
2462 		"request" : "response",
2463 	    args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID),
2464 	    args[3], args[4]);
2465 
2466 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2467 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2468 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2469 	ieee80211_ref_node(ni);
2470 
2471 	m = ieee80211_getmgtframe(&frm,
2472 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2473 	    sizeof(uint16_t)	/* action+category */
2474 	    /* XXX may action payload */
2475 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2476 	);
2477 	if (m != NULL) {
2478 		*frm++ = category;
2479 		*frm++ = action;
2480 		*frm++ = args[0];		/* dialog token */
2481 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
2482 			ADDSHORT(frm, args[1]);	/* status code */
2483 		ADDSHORT(frm, args[2]);		/* baparamset */
2484 		ADDSHORT(frm, args[3]);		/* batimeout */
2485 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
2486 			ADDSHORT(frm, args[4]);	/* baseqctl */
2487 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2488 		return ht_action_output(ni, m);
2489 	} else {
2490 		vap->iv_stats.is_tx_nobuf++;
2491 		ieee80211_free_node(ni);
2492 		return ENOMEM;
2493 	}
2494 }
2495 
2496 static int
2497 ht_send_action_ba_delba(struct ieee80211_node *ni,
2498 	int category, int action, void *arg0)
2499 {
2500 	struct ieee80211vap *vap = ni->ni_vap;
2501 	struct ieee80211com *ic = ni->ni_ic;
2502 	uint16_t *args = arg0;
2503 	struct mbuf *m;
2504 	uint16_t baparamset;
2505 	uint8_t *frm;
2506 
2507 	baparamset = SM(args[0], IEEE80211_DELBAPS_TID)
2508 		   | args[1]
2509 		   ;
2510 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2511 	    "send DELBA action: tid %d, initiator %d reason %d",
2512 	    args[0], args[1], args[2]);
2513 
2514 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2515 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2516 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2517 	ieee80211_ref_node(ni);
2518 
2519 	m = ieee80211_getmgtframe(&frm,
2520 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2521 	    sizeof(uint16_t)	/* action+category */
2522 	    /* XXX may action payload */
2523 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2524 	);
2525 	if (m != NULL) {
2526 		*frm++ = category;
2527 		*frm++ = action;
2528 		ADDSHORT(frm, baparamset);
2529 		ADDSHORT(frm, args[2]);		/* reason code */
2530 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2531 		return ht_action_output(ni, m);
2532 	} else {
2533 		vap->iv_stats.is_tx_nobuf++;
2534 		ieee80211_free_node(ni);
2535 		return ENOMEM;
2536 	}
2537 }
2538 
2539 static int
2540 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
2541 	int category, int action, void *arg0)
2542 {
2543 	struct ieee80211vap *vap = ni->ni_vap;
2544 	struct ieee80211com *ic = ni->ni_ic;
2545 	struct mbuf *m;
2546 	uint8_t *frm;
2547 
2548 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2549 	    "send HT txchwidth: width %d",
2550 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
2551 
2552 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2553 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2554 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2555 	ieee80211_ref_node(ni);
2556 
2557 	m = ieee80211_getmgtframe(&frm,
2558 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2559 	    sizeof(uint16_t)	/* action+category */
2560 	    /* XXX may action payload */
2561 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2562 	);
2563 	if (m != NULL) {
2564 		*frm++ = category;
2565 		*frm++ = action;
2566 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
2567 			IEEE80211_A_HT_TXCHWIDTH_2040 :
2568 			IEEE80211_A_HT_TXCHWIDTH_20;
2569 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2570 		return ht_action_output(ni, m);
2571 	} else {
2572 		vap->iv_stats.is_tx_nobuf++;
2573 		ieee80211_free_node(ni);
2574 		return ENOMEM;
2575 	}
2576 }
2577 #undef ADDSHORT
2578 
2579 /*
2580  * Construct the MCS bit mask for inclusion in an HT capabilities
2581  * information element.
2582  */
2583 static void
2584 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
2585 {
2586 	int i;
2587 	uint8_t txparams;
2588 
2589 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
2590 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
2591 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
2592 	    ("ic_txstream %d out of range", ic->ic_txstream));
2593 
2594 	for (i = 0; i < ic->ic_rxstream * 8; i++)
2595 		setbit(frm, i);
2596 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2597 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
2598 		setbit(frm, 32);
2599 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
2600 		if (ic->ic_rxstream >= 2) {
2601 			for (i = 33; i <= 38; i++)
2602 				setbit(frm, i);
2603 		}
2604 		if (ic->ic_rxstream >= 3) {
2605 			for (i = 39; i <= 52; i++)
2606 				setbit(frm, i);
2607 		}
2608 		if (ic->ic_txstream >= 4) {
2609 			for (i = 53; i <= 76; i++)
2610 				setbit(frm, i);
2611 		}
2612 	}
2613 
2614 	if (ic->ic_rxstream != ic->ic_txstream) {
2615 		txparams = 0x1;			/* TX MCS set defined */
2616 		txparams |= 0x2;		/* TX RX MCS not equal */
2617 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
2618 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
2619 			txparams |= 0x16;	/* TX unequal modulation sup */
2620 	} else
2621 		txparams = 0;
2622 	frm[12] = txparams;
2623 }
2624 
2625 /*
2626  * Add body of an HTCAP information element.
2627  */
2628 static uint8_t *
2629 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
2630 {
2631 #define	ADDSHORT(frm, v) do {			\
2632 	frm[0] = (v) & 0xff;			\
2633 	frm[1] = (v) >> 8;			\
2634 	frm += 2;				\
2635 } while (0)
2636 	struct ieee80211com *ic = ni->ni_ic;
2637 	struct ieee80211vap *vap = ni->ni_vap;
2638 	uint16_t caps, extcaps;
2639 	int rxmax, density;
2640 
2641 	/* HT capabilities */
2642 	caps = vap->iv_htcaps & 0xffff;
2643 	/*
2644 	 * Note channel width depends on whether we are operating as
2645 	 * a sta or not.  When operating as a sta we are generating
2646 	 * a request based on our desired configuration.  Otherwise
2647 	 * we are operational and the channel attributes identify
2648 	 * how we've been setup (which might be different if a fixed
2649 	 * channel is specified).
2650 	 */
2651 	if (vap->iv_opmode == IEEE80211_M_STA) {
2652 		/* override 20/40 use based on config */
2653 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
2654 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2655 		else
2656 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2657 		/* use advertised setting (XXX locally constraint) */
2658 		rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
2659 		density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
2660 
2661 		/*
2662 		 * NB: Hardware might support HT40 on some but not all
2663 		 * channels. We can't determine this earlier because only
2664 		 * after association the channel is upgraded to HT based
2665 		 * on the negotiated capabilities.
2666 		 */
2667 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
2668 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
2669 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
2670 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2671 	} else {
2672 		/* override 20/40 use based on current channel */
2673 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2674 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2675 		else
2676 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2677 		rxmax = vap->iv_ampdu_rxmax;
2678 		density = vap->iv_ampdu_density;
2679 	}
2680 	/* adjust short GI based on channel and config */
2681 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
2682 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
2683 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
2684 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
2685 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
2686 	ADDSHORT(frm, caps);
2687 
2688 	/* HT parameters */
2689 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
2690 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
2691 	     ;
2692 	frm++;
2693 
2694 	/* pre-zero remainder of ie */
2695 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
2696 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
2697 
2698 	/* supported MCS set */
2699 	/*
2700 	 * XXX: For sta mode the rate set should be restricted based
2701 	 * on the AP's capabilities, but ni_htrates isn't setup when
2702 	 * we're called to form an AssocReq frame so for now we're
2703 	 * restricted to the device capabilities.
2704 	 */
2705 	ieee80211_set_mcsset(ni->ni_ic, frm);
2706 
2707 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
2708 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
2709 
2710 	/* HT extended capabilities */
2711 	extcaps = vap->iv_htextcaps & 0xffff;
2712 
2713 	ADDSHORT(frm, extcaps);
2714 
2715 	frm += sizeof(struct ieee80211_ie_htcap) -
2716 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
2717 
2718 	return frm;
2719 #undef ADDSHORT
2720 }
2721 
2722 /*
2723  * Add 802.11n HT capabilities information element
2724  */
2725 uint8_t *
2726 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
2727 {
2728 	frm[0] = IEEE80211_ELEMID_HTCAP;
2729 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
2730 	return ieee80211_add_htcap_body(frm + 2, ni);
2731 }
2732 
2733 /*
2734  * Add Broadcom OUI wrapped standard HTCAP ie; this is
2735  * used for compatibility w/ pre-draft implementations.
2736  */
2737 uint8_t *
2738 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
2739 {
2740 	frm[0] = IEEE80211_ELEMID_VENDOR;
2741 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
2742 	frm[2] = (BCM_OUI >> 0) & 0xff;
2743 	frm[3] = (BCM_OUI >> 8) & 0xff;
2744 	frm[4] = (BCM_OUI >> 16) & 0xff;
2745 	frm[5] = BCM_OUI_HTCAP;
2746 	return ieee80211_add_htcap_body(frm + 6, ni);
2747 }
2748 
2749 /*
2750  * Construct the MCS bit mask of basic rates
2751  * for inclusion in an HT information element.
2752  */
2753 static void
2754 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
2755 {
2756 	int i;
2757 
2758 	for (i = 0; i < rs->rs_nrates; i++) {
2759 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2760 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
2761 		    r < IEEE80211_HTRATE_MAXSIZE) {
2762 			/* NB: this assumes a particular implementation */
2763 			setbit(frm, r);
2764 		}
2765 	}
2766 }
2767 
2768 /*
2769  * Update the HTINFO ie for a beacon frame.
2770  */
2771 void
2772 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
2773 	struct ieee80211_beacon_offsets *bo)
2774 {
2775 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
2776 	struct ieee80211_node *ni;
2777 	const struct ieee80211_channel *bsschan;
2778 	struct ieee80211com *ic = vap->iv_ic;
2779 	struct ieee80211_ie_htinfo *ht =
2780 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
2781 
2782 	ni = ieee80211_ref_node(vap->iv_bss);
2783 	bsschan = ni->ni_chan;
2784 
2785 	/* XXX only update on channel change */
2786 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
2787 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2788 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
2789 	else
2790 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
2791 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
2792 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2793 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
2794 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2795 	else
2796 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
2797 	if (IEEE80211_IS_CHAN_HT40(bsschan))
2798 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
2799 
2800 	/* protection mode */
2801 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
2802 
2803 	ieee80211_free_node(ni);
2804 
2805 	/* XXX propagate to vendor ie's */
2806 #undef PROTMODE
2807 }
2808 
2809 /*
2810  * Add body of an HTINFO information element.
2811  *
2812  * NB: We don't use struct ieee80211_ie_htinfo because we can
2813  * be called to fillin both a standard ie and a compat ie that
2814  * has a vendor OUI at the front.
2815  */
2816 static uint8_t *
2817 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
2818 {
2819 	struct ieee80211vap *vap = ni->ni_vap;
2820 	struct ieee80211com *ic = ni->ni_ic;
2821 
2822 	/* pre-zero remainder of ie */
2823 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
2824 
2825 	/* primary/control channel center */
2826 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2827 
2828 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2829 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
2830 	else
2831 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
2832 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
2833 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2834 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
2835 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2836 	else
2837 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
2838 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2839 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
2840 
2841 	frm[1] = ic->ic_curhtprotmode;
2842 
2843 	frm += 5;
2844 
2845 	/* basic MCS set */
2846 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
2847 	frm += sizeof(struct ieee80211_ie_htinfo) -
2848 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
2849 	return frm;
2850 }
2851 
2852 /*
2853  * Add 802.11n HT information information element.
2854  */
2855 uint8_t *
2856 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
2857 {
2858 	frm[0] = IEEE80211_ELEMID_HTINFO;
2859 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
2860 	return ieee80211_add_htinfo_body(frm + 2, ni);
2861 }
2862 
2863 /*
2864  * Add Broadcom OUI wrapped standard HTINFO ie; this is
2865  * used for compatibility w/ pre-draft implementations.
2866  */
2867 uint8_t *
2868 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
2869 {
2870 	frm[0] = IEEE80211_ELEMID_VENDOR;
2871 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
2872 	frm[2] = (BCM_OUI >> 0) & 0xff;
2873 	frm[3] = (BCM_OUI >> 8) & 0xff;
2874 	frm[4] = (BCM_OUI >> 16) & 0xff;
2875 	frm[5] = BCM_OUI_HTINFO;
2876 	return ieee80211_add_htinfo_body(frm + 6, ni);
2877 }
2878