xref: /freebsd/sys/net80211/ieee80211_ht.c (revision 036d2e814bf0f5d88ffb4b24c159320894541757)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #ifdef __FreeBSD__
30 __FBSDID("$FreeBSD$");
31 #endif
32 
33 /*
34  * IEEE 802.11n protocol support.
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_wlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/systm.h>
44 #include <sys/endian.h>
45 
46 #include <sys/socket.h>
47 
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_media.h>
51 #include <net/ethernet.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_action.h>
55 #include <net80211/ieee80211_input.h>
56 
57 /* define here, used throughout file */
58 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
59 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
60 
61 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
62 	{  13,  14,   27,   30 },	/* MCS 0 */
63 	{  26,  29,   54,   60 },	/* MCS 1 */
64 	{  39,  43,   81,   90 },	/* MCS 2 */
65 	{  52,  58,  108,  120 },	/* MCS 3 */
66 	{  78,  87,  162,  180 },	/* MCS 4 */
67 	{ 104, 116,  216,  240 },	/* MCS 5 */
68 	{ 117, 130,  243,  270 },	/* MCS 6 */
69 	{ 130, 144,  270,  300 },	/* MCS 7 */
70 	{  26,  29,   54,   60 },	/* MCS 8 */
71 	{  52,  58,  108,  120 },	/* MCS 9 */
72 	{  78,  87,  162,  180 },	/* MCS 10 */
73 	{ 104, 116,  216,  240 },	/* MCS 11 */
74 	{ 156, 173,  324,  360 },	/* MCS 12 */
75 	{ 208, 231,  432,  480 },	/* MCS 13 */
76 	{ 234, 260,  486,  540 },	/* MCS 14 */
77 	{ 260, 289,  540,  600 },	/* MCS 15 */
78 	{  39,  43,   81,   90 },	/* MCS 16 */
79 	{  78,  87,  162,  180 },	/* MCS 17 */
80 	{ 117, 130,  243,  270 },	/* MCS 18 */
81 	{ 156, 173,  324,  360 },	/* MCS 19 */
82 	{ 234, 260,  486,  540 },	/* MCS 20 */
83 	{ 312, 347,  648,  720 },	/* MCS 21 */
84 	{ 351, 390,  729,  810 },	/* MCS 22 */
85 	{ 390, 433,  810,  900 },	/* MCS 23 */
86 	{  52,  58,  108,  120 },	/* MCS 24 */
87 	{ 104, 116,  216,  240 },	/* MCS 25 */
88 	{ 156, 173,  324,  360 },	/* MCS 26 */
89 	{ 208, 231,  432,  480 },	/* MCS 27 */
90 	{ 312, 347,  648,  720 },	/* MCS 28 */
91 	{ 416, 462,  864,  960 },	/* MCS 29 */
92 	{ 468, 520,  972, 1080 },	/* MCS 30 */
93 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
94 	{   0,   0,   12,   13 },	/* MCS 32 */
95 	{  78,  87,  162,  180 },	/* MCS 33 */
96 	{ 104, 116,  216,  240 },	/* MCS 34 */
97 	{ 130, 144,  270,  300 },	/* MCS 35 */
98 	{ 117, 130,  243,  270 },	/* MCS 36 */
99 	{ 156, 173,  324,  360 },	/* MCS 37 */
100 	{ 195, 217,  405,  450 },	/* MCS 38 */
101 	{ 104, 116,  216,  240 },	/* MCS 39 */
102 	{ 130, 144,  270,  300 },	/* MCS 40 */
103 	{ 130, 144,  270,  300 },	/* MCS 41 */
104 	{ 156, 173,  324,  360 },	/* MCS 42 */
105 	{ 182, 202,  378,  420 },	/* MCS 43 */
106 	{ 182, 202,  378,  420 },	/* MCS 44 */
107 	{ 208, 231,  432,  480 },	/* MCS 45 */
108 	{ 156, 173,  324,  360 },	/* MCS 46 */
109 	{ 195, 217,  405,  450 },	/* MCS 47 */
110 	{ 195, 217,  405,  450 },	/* MCS 48 */
111 	{ 234, 260,  486,  540 },	/* MCS 49 */
112 	{ 273, 303,  567,  630 },	/* MCS 50 */
113 	{ 273, 303,  567,  630 },	/* MCS 51 */
114 	{ 312, 347,  648,  720 },	/* MCS 52 */
115 	{ 130, 144,  270,  300 },	/* MCS 53 */
116 	{ 156, 173,  324,  360 },	/* MCS 54 */
117 	{ 182, 202,  378,  420 },	/* MCS 55 */
118 	{ 156, 173,  324,  360 },	/* MCS 56 */
119 	{ 182, 202,  378,  420 },	/* MCS 57 */
120 	{ 208, 231,  432,  480 },	/* MCS 58 */
121 	{ 234, 260,  486,  540 },	/* MCS 59 */
122 	{ 208, 231,  432,  480 },	/* MCS 60 */
123 	{ 234, 260,  486,  540 },	/* MCS 61 */
124 	{ 260, 289,  540,  600 },	/* MCS 62 */
125 	{ 260, 289,  540,  600 },	/* MCS 63 */
126 	{ 286, 318,  594,  660 },	/* MCS 64 */
127 	{ 195, 217,  405,  450 },	/* MCS 65 */
128 	{ 234, 260,  486,  540 },	/* MCS 66 */
129 	{ 273, 303,  567,  630 },	/* MCS 67 */
130 	{ 234, 260,  486,  540 },	/* MCS 68 */
131 	{ 273, 303,  567,  630 },	/* MCS 69 */
132 	{ 312, 347,  648,  720 },	/* MCS 70 */
133 	{ 351, 390,  729,  810 },	/* MCS 71 */
134 	{ 312, 347,  648,  720 },	/* MCS 72 */
135 	{ 351, 390,  729,  810 },	/* MCS 73 */
136 	{ 390, 433,  810,  900 },	/* MCS 74 */
137 	{ 390, 433,  810,  900 },	/* MCS 75 */
138 	{ 429, 477,  891,  990 },	/* MCS 76 */
139 };
140 
141 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
142 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW,
143 	&ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
144 	"AMPDU max reorder age (ms)");
145 
146 static	int ieee80211_recv_bar_ena = 1;
147 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
148 	    0, "BAR frame processing (ena/dis)");
149 
150 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
151 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW,
152 	&ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
153 	"ADDBA request timeout (ms)");
154 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
155 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW,
156 	&ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
157 	"ADDBA request backoff (ms)");
158 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
159 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
160 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
161 
162 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
163 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
164 
165 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
166 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
167 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
168 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
169 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
170 
171 static	ieee80211_send_action_func ht_send_action_ba_addba;
172 static	ieee80211_send_action_func ht_send_action_ba_delba;
173 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
174 
175 static void
176 ieee80211_ht_init(void)
177 {
178 	/*
179 	 * Setup HT parameters that depends on the clock frequency.
180 	 */
181 	ieee80211_ampdu_age = msecs_to_ticks(500);
182 	ieee80211_addba_timeout = msecs_to_ticks(250);
183 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
184 	ieee80211_bar_timeout = msecs_to_ticks(250);
185 	/*
186 	 * Register action frame handlers.
187 	 */
188 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
189 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
190 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
191 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
192 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
193 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
194 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
195 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
196 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
197 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
198 
199 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
200 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
201 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
202 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
203 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
204 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
205 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
206 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
207 }
208 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
209 
210 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
211 	struct ieee80211_tx_ampdu *tap);
212 static int ieee80211_addba_request(struct ieee80211_node *ni,
213 	struct ieee80211_tx_ampdu *tap,
214 	int dialogtoken, int baparamset, int batimeout);
215 static int ieee80211_addba_response(struct ieee80211_node *ni,
216 	struct ieee80211_tx_ampdu *tap,
217 	int code, int baparamset, int batimeout);
218 static void ieee80211_addba_stop(struct ieee80211_node *ni,
219 	struct ieee80211_tx_ampdu *tap);
220 static void null_addba_response_timeout(struct ieee80211_node *ni,
221 	struct ieee80211_tx_ampdu *tap);
222 
223 static void ieee80211_bar_response(struct ieee80211_node *ni,
224 	struct ieee80211_tx_ampdu *tap, int status);
225 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
226 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
227 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
228 	int baparamset, int batimeout, int baseqctl);
229 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
230 
231 void
232 ieee80211_ht_attach(struct ieee80211com *ic)
233 {
234 	/* setup default aggregation policy */
235 	ic->ic_recv_action = ieee80211_recv_action;
236 	ic->ic_send_action = ieee80211_send_action;
237 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
238 	ic->ic_addba_request = ieee80211_addba_request;
239 	ic->ic_addba_response = ieee80211_addba_response;
240 	ic->ic_addba_response_timeout = null_addba_response_timeout;
241 	ic->ic_addba_stop = ieee80211_addba_stop;
242 	ic->ic_bar_response = ieee80211_bar_response;
243 	ic->ic_ampdu_rx_start = ampdu_rx_start;
244 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
245 
246 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
247 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
248 }
249 
250 void
251 ieee80211_ht_detach(struct ieee80211com *ic)
252 {
253 }
254 
255 void
256 ieee80211_ht_vattach(struct ieee80211vap *vap)
257 {
258 
259 	/* driver can override defaults */
260 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
261 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
262 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
263 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
264 	/* tx aggregation traffic thresholds */
265 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
266 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
267 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
268 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
269 
270 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
271 		/*
272 		 * Device is HT capable; enable all HT-related
273 		 * facilities by default.
274 		 * XXX these choices may be too aggressive.
275 		 */
276 		vap->iv_flags_ht |= IEEE80211_FHT_HT
277 				 |  IEEE80211_FHT_HTCOMPAT
278 				 ;
279 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
280 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
281 		/* XXX infer from channel list? */
282 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
283 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
284 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
285 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
286 		}
287 		/* enable RIFS if capable */
288 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
289 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
290 
291 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
292 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
293 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
294 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
295 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
296 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
297 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
298 
299 		if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC)
300 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX;
301 		if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC)
302 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX;
303 
304 		if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC)
305 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX;
306 		if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC)
307 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX;
308 	}
309 	/* NB: disable default legacy WDS, too many issues right now */
310 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
311 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
312 }
313 
314 void
315 ieee80211_ht_vdetach(struct ieee80211vap *vap)
316 {
317 }
318 
319 static int
320 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
321     int ratetype)
322 {
323 	int mword, rate;
324 
325 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
326 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
327 		return (0);
328 	switch (ratetype) {
329 	case 0:
330 		rate = ieee80211_htrates[index].ht20_rate_800ns;
331 		break;
332 	case 1:
333 		rate = ieee80211_htrates[index].ht20_rate_400ns;
334 		break;
335 	case 2:
336 		rate = ieee80211_htrates[index].ht40_rate_800ns;
337 		break;
338 	default:
339 		rate = ieee80211_htrates[index].ht40_rate_400ns;
340 		break;
341 	}
342 	return (rate);
343 }
344 
345 static struct printranges {
346 	int	minmcs;
347 	int	maxmcs;
348 	int	txstream;
349 	int	ratetype;
350 	int	htcapflags;
351 } ranges[] = {
352 	{  0,  7, 1, 0, 0 },
353 	{  8, 15, 2, 0, 0 },
354 	{ 16, 23, 3, 0, 0 },
355 	{ 24, 31, 4, 0, 0 },
356 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
357 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
358 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
359 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
360 	{  0,  0, 0, 0, 0 },
361 };
362 
363 static void
364 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
365 {
366 	int minrate, maxrate;
367 	struct printranges *range;
368 
369 	for (range = ranges; range->txstream != 0; range++) {
370 		if (ic->ic_txstream < range->txstream)
371 			continue;
372 		if (range->htcapflags &&
373 		    (ic->ic_htcaps & range->htcapflags) == 0)
374 			continue;
375 		if (ratetype < range->ratetype)
376 			continue;
377 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
378 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
379 		if (range->maxmcs) {
380 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
381 			    range->minmcs, range->maxmcs,
382 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
383 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
384 		} else {
385 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
386 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
387 		}
388 	}
389 }
390 
391 static void
392 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
393 {
394 	const char *modestr = ieee80211_phymode_name[mode];
395 
396 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
397 	ht_rateprint(ic, mode, 0);
398 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
399 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
400 		ht_rateprint(ic, mode, 1);
401 	}
402 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
403 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
404 		ht_rateprint(ic, mode, 2);
405 	}
406 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
407 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
408 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
409 		ht_rateprint(ic, mode, 3);
410 	}
411 }
412 
413 void
414 ieee80211_ht_announce(struct ieee80211com *ic)
415 {
416 
417 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
418 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
419 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
420 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
421 		ht_announce(ic, IEEE80211_MODE_11NA);
422 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
423 		ht_announce(ic, IEEE80211_MODE_11NG);
424 }
425 
426 void
427 ieee80211_init_suphtrates(struct ieee80211com *ic)
428 {
429 #define	ADDRATE(x)	do {						\
430 	htrateset->rs_rates[htrateset->rs_nrates] = x;			\
431 	htrateset->rs_nrates++;						\
432 } while (0)
433 	struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates;
434 	int i;
435 
436 	memset(htrateset, 0, sizeof(struct ieee80211_htrateset));
437 	for (i = 0; i < ic->ic_txstream * 8; i++)
438 		ADDRATE(i);
439 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
440 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
441 		ADDRATE(32);
442 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
443 		if (ic->ic_txstream >= 2) {
444 			 for (i = 33; i <= 38; i++)
445 				ADDRATE(i);
446 		}
447 		if (ic->ic_txstream >= 3) {
448 			for (i = 39; i <= 52; i++)
449 				ADDRATE(i);
450 		}
451 		if (ic->ic_txstream == 4) {
452 			for (i = 53; i <= 76; i++)
453 				ADDRATE(i);
454 		}
455 	}
456 #undef	ADDRATE
457 }
458 
459 /*
460  * Receive processing.
461  */
462 
463 /*
464  * Decap the encapsulated A-MSDU frames and dispatch all but
465  * the last for delivery.  The last frame is returned for
466  * delivery via the normal path.
467  */
468 struct mbuf *
469 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
470 {
471 	struct ieee80211vap *vap = ni->ni_vap;
472 	int framelen;
473 	struct mbuf *n;
474 
475 	/* discard 802.3 header inserted by ieee80211_decap */
476 	m_adj(m, sizeof(struct ether_header));
477 
478 	vap->iv_stats.is_amsdu_decap++;
479 
480 	for (;;) {
481 		/*
482 		 * Decap the first frame, bust it apart from the
483 		 * remainder and deliver.  We leave the last frame
484 		 * delivery to the caller (for consistency with other
485 		 * code paths, could also do it here).
486 		 */
487 		m = ieee80211_decap1(m, &framelen);
488 		if (m == NULL) {
489 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
490 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
491 			vap->iv_stats.is_amsdu_tooshort++;
492 			return NULL;
493 		}
494 		if (m->m_pkthdr.len == framelen)
495 			break;
496 		n = m_split(m, framelen, M_NOWAIT);
497 		if (n == NULL) {
498 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
499 			    ni->ni_macaddr, "a-msdu",
500 			    "%s", "unable to split encapsulated frames");
501 			vap->iv_stats.is_amsdu_split++;
502 			m_freem(m);			/* NB: must reclaim */
503 			return NULL;
504 		}
505 		vap->iv_deliver_data(vap, ni, m);
506 
507 		/*
508 		 * Remove frame contents; each intermediate frame
509 		 * is required to be aligned to a 4-byte boundary.
510 		 */
511 		m = n;
512 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
513 	}
514 	return m;				/* last delivered by caller */
515 }
516 
517 /*
518  * Add the given frame to the current RX reorder slot.
519  *
520  * For future offloaded A-MSDU handling where multiple frames with
521  * the same sequence number show up here, this routine will append
522  * those frames as long as they're appropriately tagged.
523  */
524 static int
525 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid,
526     ieee80211_seq rxseq,
527     struct ieee80211_node *ni,
528     struct mbuf *m)
529 {
530 	struct ieee80211vap *vap = ni->ni_vap;
531 
532 	if (rap->rxa_m[off] == NULL) {
533 		rap->rxa_m[off] = m;
534 		rap->rxa_qframes++;
535 		rap->rxa_qbytes += m->m_pkthdr.len;
536 		vap->iv_stats.is_ampdu_rx_reorder++;
537 		return (0);
538 	} else {
539 		IEEE80211_DISCARD_MAC(vap,
540 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
541 		    ni->ni_macaddr, "a-mpdu duplicate",
542 		    "seqno %u tid %u BA win <%u:%u>",
543 		    rxseq, tid, rap->rxa_start,
544 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
545 		vap->iv_stats.is_rx_dup++;
546 		IEEE80211_NODE_STAT(ni, rx_dup);
547 		m_freem(m);
548 		return (-1);
549 	}
550 }
551 
552 static void
553 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i)
554 {
555 	struct mbuf *m;
556 
557 	m = rap->rxa_m[i];
558 	if (m == NULL)
559 		return;
560 
561 	rap->rxa_m[i] = NULL;
562 	rap->rxa_qbytes -= m->m_pkthdr.len;
563 	rap->rxa_qframes--;
564 	m_freem(m);
565 }
566 
567 /*
568  * Purge all frames in the A-MPDU re-order queue.
569  */
570 static void
571 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
572 {
573 	int i;
574 
575 	for (i = 0; i < rap->rxa_wnd; i++) {
576 		ampdu_rx_purge_slot(rap, i);
577 		if (rap->rxa_qframes == 0)
578 			break;
579 	}
580 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
581 	    ("lost %u data, %u frames on ampdu rx q",
582 	    rap->rxa_qbytes, rap->rxa_qframes));
583 }
584 
585 /*
586  * Start A-MPDU rx/re-order processing for the specified TID.
587  */
588 static int
589 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
590 	int baparamset, int batimeout, int baseqctl)
591 {
592 	int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
593 
594 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
595 		/*
596 		 * AMPDU previously setup and not terminated with a DELBA,
597 		 * flush the reorder q's in case anything remains.
598 		 */
599 		ampdu_rx_purge(rap);
600 	}
601 	memset(rap, 0, sizeof(*rap));
602 	rap->rxa_wnd = (bufsiz == 0) ?
603 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
604 	rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START);
605 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
606 
607 	return 0;
608 }
609 
610 /*
611  * Public function; manually setup the RX ampdu state.
612  */
613 int
614 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
615 {
616 	struct ieee80211_rx_ampdu *rap;
617 
618 	/* XXX TODO: sanity check tid, seq, baw */
619 
620 	rap = &ni->ni_rx_ampdu[tid];
621 
622 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
623 		/*
624 		 * AMPDU previously setup and not terminated with a DELBA,
625 		 * flush the reorder q's in case anything remains.
626 		 */
627 		ampdu_rx_purge(rap);
628 	}
629 
630 	memset(rap, 0, sizeof(*rap));
631 	rap->rxa_wnd = (baw== 0) ?
632 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
633 	if (seq == -1) {
634 		/* Wait for the first RX frame, use that as BAW */
635 		rap->rxa_start = 0;
636 		rap->rxa_flags |= IEEE80211_AGGR_WAITRX;
637 	} else {
638 		rap->rxa_start = seq;
639 	}
640 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
641 
642 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
643 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x",
644 	    __func__,
645 	    tid,
646 	    seq,
647 	    rap->rxa_wnd,
648 	    rap->rxa_flags);
649 
650 	return 0;
651 }
652 
653 /*
654  * Public function; manually stop the RX AMPDU state.
655  */
656 void
657 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid)
658 {
659 	struct ieee80211_rx_ampdu *rap;
660 
661 	/* XXX TODO: sanity check tid, seq, baw */
662 	rap = &ni->ni_rx_ampdu[tid];
663 	ampdu_rx_stop(ni, rap);
664 }
665 
666 /*
667  * Stop A-MPDU rx processing for the specified TID.
668  */
669 static void
670 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
671 {
672 
673 	ampdu_rx_purge(rap);
674 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING
675 	    | IEEE80211_AGGR_XCHGPEND
676 	    | IEEE80211_AGGR_WAITRX);
677 }
678 
679 /*
680  * Dispatch a frame from the A-MPDU reorder queue.  The
681  * frame is fed back into ieee80211_input marked with an
682  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
683  * permits ieee80211_input to optimize re-processing).
684  */
685 static __inline void
686 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
687 {
688 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
689 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
690 	(void) ieee80211_input(ni, m, 0, 0);
691 }
692 
693 static int
694 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni,
695     int i)
696 {
697 	struct mbuf *m;
698 
699 	if (rap->rxa_m[i] == NULL)
700 		return (0);
701 
702 	m = rap->rxa_m[i];
703 	rap->rxa_m[i] = NULL;
704 	rap->rxa_qbytes -= m->m_pkthdr.len;
705 	rap->rxa_qframes--;
706 
707 	ampdu_dispatch(ni, m);
708 
709 	return (1);
710 }
711 
712 static void
713 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni,
714     int i, int winstart)
715 {
716 	struct ieee80211vap *vap = ni->ni_vap;
717 
718 	if (rap->rxa_qframes != 0) {
719 		int n = rap->rxa_qframes, j;
720 
721 		if (winstart != -1) {
722 			/*
723 			 * NB: in window-sliding mode, loop assumes i > 0
724 			 * and/or rxa_m[0] is NULL
725 			 */
726 			KASSERT(rap->rxa_m[0] == NULL,
727 			    ("%s: BA window slot 0 occupied", __func__));
728 		}
729 		for (j = i+1; j < rap->rxa_wnd; j++) {
730 			if (rap->rxa_m[j] != NULL) {
731 				rap->rxa_m[j-i] = rap->rxa_m[j];
732 				rap->rxa_m[j] = NULL;
733 				if (--n == 0)
734 					break;
735 			}
736 		}
737 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
738 		    "BA win <%d:%d> winstart %d",
739 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
740 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
741 		    winstart));
742 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
743 	}
744 }
745 
746 /*
747  * Dispatch as many frames as possible from the re-order queue.
748  * Frames will always be "at the front"; we process all frames
749  * up to the first empty slot in the window.  On completion we
750  * cleanup state if there are still pending frames in the current
751  * BA window.  We assume the frame at slot 0 is already handled
752  * by the caller; we always start at slot 1.
753  */
754 static void
755 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
756 {
757 	struct ieee80211vap *vap = ni->ni_vap;
758 	int i;
759 
760 	/* flush run of frames */
761 	for (i = 1; i < rap->rxa_wnd; i++) {
762 		if (ampdu_dispatch_slot(rap, ni, i) == 0)
763 			break;
764 	}
765 
766 	/*
767 	 * If frames remain, copy the mbuf pointers down so
768 	 * they correspond to the offsets in the new window.
769 	 */
770 	ampdu_rx_moveup(rap, ni, i, -1);
771 
772 	/*
773 	 * Adjust the start of the BA window to
774 	 * reflect the frames just dispatched.
775 	 */
776 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
777 	vap->iv_stats.is_ampdu_rx_oor += i;
778 }
779 
780 /*
781  * Dispatch all frames in the A-MPDU re-order queue.
782  */
783 static void
784 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
785 {
786 	struct ieee80211vap *vap = ni->ni_vap;
787 	int i, r;
788 
789 	for (i = 0; i < rap->rxa_wnd; i++) {
790 		r = ampdu_dispatch_slot(rap, ni, i);
791 		if (r == 0)
792 			continue;
793 		vap->iv_stats.is_ampdu_rx_oor += r;
794 
795 		if (rap->rxa_qframes == 0)
796 			break;
797 	}
798 }
799 
800 /*
801  * Dispatch all frames in the A-MPDU re-order queue
802  * preceding the specified sequence number.  This logic
803  * handles window moves due to a received MSDU or BAR.
804  */
805 static void
806 ampdu_rx_flush_upto(struct ieee80211_node *ni,
807 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
808 {
809 	struct ieee80211vap *vap = ni->ni_vap;
810 	ieee80211_seq seqno;
811 	int i, r;
812 
813 	/*
814 	 * Flush any complete MSDU's with a sequence number lower
815 	 * than winstart.  Gaps may exist.  Note that we may actually
816 	 * dispatch frames past winstart if a run continues; this is
817 	 * an optimization that avoids having to do a separate pass
818 	 * to dispatch frames after moving the BA window start.
819 	 */
820 	seqno = rap->rxa_start;
821 	for (i = 0; i < rap->rxa_wnd; i++) {
822 		r = ampdu_dispatch_slot(rap, ni, i);
823 		if (r == 0) {
824 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
825 				break;
826 		}
827 		vap->iv_stats.is_ampdu_rx_oor += r;
828 		seqno = IEEE80211_SEQ_INC(seqno);
829 	}
830 	/*
831 	 * If frames remain, copy the mbuf pointers down so
832 	 * they correspond to the offsets in the new window.
833 	 */
834 	ampdu_rx_moveup(rap, ni, i, winstart);
835 
836 	/*
837 	 * Move the start of the BA window; we use the
838 	 * sequence number of the last MSDU that was
839 	 * passed up the stack+1 or winstart if stopped on
840 	 * a gap in the reorder buffer.
841 	 */
842 	rap->rxa_start = seqno;
843 }
844 
845 /*
846  * Process a received QoS data frame for an HT station.  Handle
847  * A-MPDU reordering: if this frame is received out of order
848  * and falls within the BA window hold onto it.  Otherwise if
849  * this frame completes a run, flush any pending frames.  We
850  * return 1 if the frame is consumed.  A 0 is returned if
851  * the frame should be processed normally by the caller.
852  */
853 int
854 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m,
855     const struct ieee80211_rx_stats *rxs)
856 {
857 #define	PROCESS		0	/* caller should process frame */
858 #define	CONSUMED	1	/* frame consumed, caller does nothing */
859 	struct ieee80211vap *vap = ni->ni_vap;
860 	struct ieee80211_qosframe *wh;
861 	struct ieee80211_rx_ampdu *rap;
862 	ieee80211_seq rxseq;
863 	uint8_t tid;
864 	int off;
865 
866 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
867 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
868 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
869 
870 	/* NB: m_len known to be sufficient */
871 	wh = mtod(m, struct ieee80211_qosframe *);
872 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
873 		/*
874 		 * Not QoS data, shouldn't get here but just
875 		 * return it to the caller for processing.
876 		 */
877 		return PROCESS;
878 	}
879 
880 	/*
881 	 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery.
882 	 *
883 	 * Multicast QoS data frames are checked against a different
884 	 * counter, not the per-TID counter.
885 	 */
886 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
887 		return PROCESS;
888 
889 	tid = ieee80211_getqos(wh)[0];
890 	tid &= IEEE80211_QOS_TID;
891 	rap = &ni->ni_rx_ampdu[tid];
892 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
893 		/*
894 		 * No ADDBA request yet, don't touch.
895 		 */
896 		return PROCESS;
897 	}
898 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
899 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
900 		/*
901 		 * Fragments are not allowed; toss.
902 		 */
903 		IEEE80211_DISCARD_MAC(vap,
904 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
905 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
906 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
907 		vap->iv_stats.is_ampdu_rx_drop++;
908 		IEEE80211_NODE_STAT(ni, rx_drop);
909 		m_freem(m);
910 		return CONSUMED;
911 	}
912 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
913 	rap->rxa_nframes++;
914 
915 	/*
916 	 * Handle waiting for the first frame to define the BAW.
917 	 * Some firmware doesn't provide the RX of the starting point
918 	 * of the BAW and we have to cope.
919 	 */
920 	if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) {
921 		rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX;
922 		rap->rxa_start = rxseq;
923 	}
924 again:
925 	if (rxseq == rap->rxa_start) {
926 		/*
927 		 * First frame in window.
928 		 */
929 		if (rap->rxa_qframes != 0) {
930 			/*
931 			 * Dispatch as many packets as we can.
932 			 */
933 			KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup"));
934 			ampdu_dispatch(ni, m);
935 			ampdu_rx_dispatch(rap, ni);
936 			return CONSUMED;
937 		} else {
938 			/*
939 			 * In order; advance window and notify
940 			 * caller to dispatch directly.
941 			 */
942 			rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
943 			return PROCESS;
944 		}
945 	}
946 	/*
947 	 * Frame is out of order; store if in the BA window.
948 	 */
949 	/* calculate offset in BA window */
950 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
951 	if (off < rap->rxa_wnd) {
952 		/*
953 		 * Common case (hopefully): in the BA window.
954 		 * Sec 9.10.7.6.2 a) (p.137)
955 		 */
956 
957 		/*
958 		 * Check for frames sitting too long in the reorder queue.
959 		 * This should only ever happen if frames are not delivered
960 		 * without the sender otherwise notifying us (e.g. with a
961 		 * BAR to move the window).  Typically this happens because
962 		 * of vendor bugs that cause the sequence number to jump.
963 		 * When this happens we get a gap in the reorder queue that
964 		 * leaves frame sitting on the queue until they get pushed
965 		 * out due to window moves.  When the vendor does not send
966 		 * BAR this move only happens due to explicit packet sends
967 		 *
968 		 * NB: we only track the time of the oldest frame in the
969 		 * reorder q; this means that if we flush we might push
970 		 * frames that still "new"; if this happens then subsequent
971 		 * frames will result in BA window moves which cost something
972 		 * but is still better than a big throughput dip.
973 		 */
974 		if (rap->rxa_qframes != 0) {
975 			/* XXX honor batimeout? */
976 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
977 				/*
978 				 * Too long since we received the first
979 				 * frame; flush the reorder buffer.
980 				 */
981 				if (rap->rxa_qframes != 0) {
982 					vap->iv_stats.is_ampdu_rx_age +=
983 					    rap->rxa_qframes;
984 					ampdu_rx_flush(ni, rap);
985 				}
986 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
987 				return PROCESS;
988 			}
989 		} else {
990 			/*
991 			 * First frame, start aging timer.
992 			 */
993 			rap->rxa_age = ticks;
994 		}
995 
996 		/* save packet - this consumes, no matter what */
997 		ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m);
998 
999 		return CONSUMED;
1000 	}
1001 	if (off < IEEE80211_SEQ_BA_RANGE) {
1002 		/*
1003 		 * Outside the BA window, but within range;
1004 		 * flush the reorder q and move the window.
1005 		 * Sec 9.10.7.6.2 b) (p.138)
1006 		 */
1007 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1008 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
1009 		    rap->rxa_start,
1010 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1011 		    rap->rxa_qframes, rxseq, tid);
1012 		vap->iv_stats.is_ampdu_rx_move++;
1013 
1014 		/*
1015 		 * The spec says to flush frames up to but not including:
1016 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
1017 		 * Then insert the frame or notify the caller to process
1018 		 * it immediately.  We can safely do this by just starting
1019 		 * over again because we know the frame will now be within
1020 		 * the BA window.
1021 		 */
1022 		/* NB: rxa_wnd known to be >0 */
1023 		ampdu_rx_flush_upto(ni, rap,
1024 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
1025 		goto again;
1026 	} else {
1027 		/*
1028 		 * Outside the BA window and out of range; toss.
1029 		 * Sec 9.10.7.6.2 c) (p.138)
1030 		 */
1031 		IEEE80211_DISCARD_MAC(vap,
1032 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1033 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1034 		    rap->rxa_start,
1035 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1036 		    rap->rxa_qframes, rxseq, tid,
1037 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1038 		vap->iv_stats.is_ampdu_rx_drop++;
1039 		IEEE80211_NODE_STAT(ni, rx_drop);
1040 		m_freem(m);
1041 		return CONSUMED;
1042 	}
1043 #undef CONSUMED
1044 #undef PROCESS
1045 }
1046 
1047 /*
1048  * Process a BAR ctl frame.  Dispatch all frames up to
1049  * the sequence number of the frame.  If this frame is
1050  * out of range it's discarded.
1051  */
1052 void
1053 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
1054 {
1055 	struct ieee80211vap *vap = ni->ni_vap;
1056 	struct ieee80211_frame_bar *wh;
1057 	struct ieee80211_rx_ampdu *rap;
1058 	ieee80211_seq rxseq;
1059 	int tid, off;
1060 
1061 	if (!ieee80211_recv_bar_ena) {
1062 #if 0
1063 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
1064 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
1065 #endif
1066 		vap->iv_stats.is_ampdu_bar_bad++;
1067 		return;
1068 	}
1069 	wh = mtod(m0, struct ieee80211_frame_bar *);
1070 	/* XXX check basic BAR */
1071 	tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
1072 	rap = &ni->ni_rx_ampdu[tid];
1073 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1074 		/*
1075 		 * No ADDBA request yet, don't touch.
1076 		 */
1077 		IEEE80211_DISCARD_MAC(vap,
1078 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1079 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1080 		vap->iv_stats.is_ampdu_bar_bad++;
1081 		return;
1082 	}
1083 	vap->iv_stats.is_ampdu_bar_rx++;
1084 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1085 	if (rxseq == rap->rxa_start)
1086 		return;
1087 	/* calculate offset in BA window */
1088 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1089 	if (off < IEEE80211_SEQ_BA_RANGE) {
1090 		/*
1091 		 * Flush the reorder q up to rxseq and move the window.
1092 		 * Sec 9.10.7.6.3 a) (p.138)
1093 		 */
1094 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1095 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1096 		    rap->rxa_start,
1097 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1098 		    rap->rxa_qframes, rxseq, tid);
1099 		vap->iv_stats.is_ampdu_bar_move++;
1100 
1101 		ampdu_rx_flush_upto(ni, rap, rxseq);
1102 		if (off >= rap->rxa_wnd) {
1103 			/*
1104 			 * BAR specifies a window start to the right of BA
1105 			 * window; we must move it explicitly since
1106 			 * ampdu_rx_flush_upto will not.
1107 			 */
1108 			rap->rxa_start = rxseq;
1109 		}
1110 	} else {
1111 		/*
1112 		 * Out of range; toss.
1113 		 * Sec 9.10.7.6.3 b) (p.138)
1114 		 */
1115 		IEEE80211_DISCARD_MAC(vap,
1116 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1117 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1118 		    rap->rxa_start,
1119 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1120 		    rap->rxa_qframes, rxseq, tid,
1121 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1122 		vap->iv_stats.is_ampdu_bar_oow++;
1123 		IEEE80211_NODE_STAT(ni, rx_drop);
1124 	}
1125 }
1126 
1127 /*
1128  * Setup HT-specific state in a node.  Called only
1129  * when HT use is negotiated so we don't do extra
1130  * work for temporary and/or legacy sta's.
1131  */
1132 void
1133 ieee80211_ht_node_init(struct ieee80211_node *ni)
1134 {
1135 	struct ieee80211_tx_ampdu *tap;
1136 	int tid;
1137 
1138 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1139 	    ni,
1140 	    "%s: called (%p)",
1141 	    __func__,
1142 	    ni);
1143 
1144 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1145 		/*
1146 		 * Clean AMPDU state on re-associate.  This handles the case
1147 		 * where a station leaves w/o notifying us and then returns
1148 		 * before node is reaped for inactivity.
1149 		 */
1150 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1151 		    ni,
1152 		    "%s: calling cleanup (%p)",
1153 		    __func__, ni);
1154 		ieee80211_ht_node_cleanup(ni);
1155 	}
1156 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1157 		tap = &ni->ni_tx_ampdu[tid];
1158 		tap->txa_tid = tid;
1159 		tap->txa_ni = ni;
1160 		ieee80211_txampdu_init_pps(tap);
1161 		/* NB: further initialization deferred */
1162 	}
1163 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1164 }
1165 
1166 /*
1167  * Cleanup HT-specific state in a node.  Called only
1168  * when HT use has been marked.
1169  */
1170 void
1171 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1172 {
1173 	struct ieee80211com *ic = ni->ni_ic;
1174 	int i;
1175 
1176 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1177 	    ni,
1178 	    "%s: called (%p)",
1179 	    __func__, ni);
1180 
1181 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1182 
1183 	/* XXX optimize this */
1184 	for (i = 0; i < WME_NUM_TID; i++) {
1185 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1186 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1187 			ampdu_tx_stop(tap);
1188 	}
1189 	for (i = 0; i < WME_NUM_TID; i++)
1190 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1191 
1192 	ni->ni_htcap = 0;
1193 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1194 }
1195 
1196 /*
1197  * Age out HT resources for a station.
1198  */
1199 void
1200 ieee80211_ht_node_age(struct ieee80211_node *ni)
1201 {
1202 	struct ieee80211vap *vap = ni->ni_vap;
1203 	uint8_t tid;
1204 
1205 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1206 
1207 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1208 		struct ieee80211_rx_ampdu *rap;
1209 
1210 		rap = &ni->ni_rx_ampdu[tid];
1211 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1212 			continue;
1213 		if (rap->rxa_qframes == 0)
1214 			continue;
1215 		/*
1216 		 * Check for frames sitting too long in the reorder queue.
1217 		 * See above for more details on what's happening here.
1218 		 */
1219 		/* XXX honor batimeout? */
1220 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1221 			/*
1222 			 * Too long since we received the first
1223 			 * frame; flush the reorder buffer.
1224 			 */
1225 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1226 			ampdu_rx_flush(ni, rap);
1227 		}
1228 	}
1229 }
1230 
1231 static struct ieee80211_channel *
1232 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1233 {
1234 	return ieee80211_find_channel(ic, c->ic_freq,
1235 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1236 }
1237 
1238 /*
1239  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1240  */
1241 struct ieee80211_channel *
1242 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1243 	struct ieee80211_channel *chan, int flags)
1244 {
1245 	struct ieee80211_channel *c;
1246 
1247 	if (flags & IEEE80211_FHT_HT) {
1248 		/* promote to HT if possible */
1249 		if (flags & IEEE80211_FHT_USEHT40) {
1250 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1251 				/* NB: arbitrarily pick ht40+ over ht40- */
1252 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1253 				if (c == NULL)
1254 					c = findhtchan(ic, chan,
1255 						IEEE80211_CHAN_HT40D);
1256 				if (c == NULL)
1257 					c = findhtchan(ic, chan,
1258 						IEEE80211_CHAN_HT20);
1259 				if (c != NULL)
1260 					chan = c;
1261 			}
1262 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1263 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1264 			if (c != NULL)
1265 				chan = c;
1266 		}
1267 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1268 		/* demote to legacy, HT use is disabled */
1269 		c = ieee80211_find_channel(ic, chan->ic_freq,
1270 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1271 		if (c != NULL)
1272 			chan = c;
1273 	}
1274 	return chan;
1275 }
1276 
1277 /*
1278  * Setup HT-specific state for a legacy WDS peer.
1279  */
1280 void
1281 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1282 {
1283 	struct ieee80211vap *vap = ni->ni_vap;
1284 	struct ieee80211_tx_ampdu *tap;
1285 	int tid;
1286 
1287 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1288 
1289 	/* XXX check scan cache in case peer has an ap and we have info */
1290 	/*
1291 	 * If setup with a legacy channel; locate an HT channel.
1292 	 * Otherwise if the inherited channel (from a companion
1293 	 * AP) is suitable use it so we use the same location
1294 	 * for the extension channel).
1295 	 */
1296 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1297 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1298 
1299 	ni->ni_htcap = 0;
1300 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1301 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1302 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1303 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1304 		ni->ni_chw = 40;
1305 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1306 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1307 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1308 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1309 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1310 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1311 	} else {
1312 		ni->ni_chw = 20;
1313 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1314 	}
1315 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1316 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1317 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1318 	/* XXX does it make sense to enable SMPS? */
1319 
1320 	ni->ni_htopmode = 0;		/* XXX need protection state */
1321 	ni->ni_htstbc = 0;		/* XXX need info */
1322 
1323 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1324 		tap = &ni->ni_tx_ampdu[tid];
1325 		tap->txa_tid = tid;
1326 		ieee80211_txampdu_init_pps(tap);
1327 	}
1328 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1329 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1330 }
1331 
1332 /*
1333  * Notify hostap vaps of a change in the HTINFO ie.
1334  */
1335 static void
1336 htinfo_notify(struct ieee80211com *ic)
1337 {
1338 	struct ieee80211vap *vap;
1339 	int first = 1;
1340 
1341 	IEEE80211_LOCK_ASSERT(ic);
1342 
1343 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1344 		if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1345 			continue;
1346 		if (vap->iv_state != IEEE80211_S_RUN ||
1347 		    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1348 			continue;
1349 		if (first) {
1350 			IEEE80211_NOTE(vap,
1351 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1352 			    vap->iv_bss,
1353 			    "HT bss occupancy change: %d sta, %d ht, "
1354 			    "%d ht40%s, HT protmode now 0x%x"
1355 			    , ic->ic_sta_assoc
1356 			    , ic->ic_ht_sta_assoc
1357 			    , ic->ic_ht40_sta_assoc
1358 			    , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1359 				 ", non-HT sta present" : ""
1360 			    , ic->ic_curhtprotmode);
1361 			first = 0;
1362 		}
1363 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1364 	}
1365 }
1366 
1367 /*
1368  * Calculate HT protection mode from current
1369  * state and handle updates.
1370  */
1371 static void
1372 htinfo_update(struct ieee80211com *ic)
1373 {
1374 	uint8_t protmode;
1375 
1376 	if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) {
1377 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1378 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1379 	} else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) {
1380 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1381 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1382 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1383 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1384 	    ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) {
1385 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1386 	} else {
1387 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1388 	}
1389 	if (protmode != ic->ic_curhtprotmode) {
1390 		ic->ic_curhtprotmode = protmode;
1391 		htinfo_notify(ic);
1392 	}
1393 }
1394 
1395 /*
1396  * Handle an HT station joining a BSS.
1397  */
1398 void
1399 ieee80211_ht_node_join(struct ieee80211_node *ni)
1400 {
1401 	struct ieee80211com *ic = ni->ni_ic;
1402 
1403 	IEEE80211_LOCK_ASSERT(ic);
1404 
1405 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1406 		ic->ic_ht_sta_assoc++;
1407 		if (ni->ni_chw == 40)
1408 			ic->ic_ht40_sta_assoc++;
1409 	}
1410 	htinfo_update(ic);
1411 }
1412 
1413 /*
1414  * Handle an HT station leaving a BSS.
1415  */
1416 void
1417 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1418 {
1419 	struct ieee80211com *ic = ni->ni_ic;
1420 
1421 	IEEE80211_LOCK_ASSERT(ic);
1422 
1423 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1424 		ic->ic_ht_sta_assoc--;
1425 		if (ni->ni_chw == 40)
1426 			ic->ic_ht40_sta_assoc--;
1427 	}
1428 	htinfo_update(ic);
1429 }
1430 
1431 /*
1432  * Public version of htinfo_update; used for processing
1433  * beacon frames from overlapping bss.
1434  *
1435  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1436  * (on receipt of a beacon that advertises MIXED) or
1437  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1438  * from an overlapping legacy bss).  We treat MIXED with
1439  * a higher precedence than PROTOPT (i.e. we will not change
1440  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1441  * corresponds to how we handle things in htinfo_update.
1442  */
1443 void
1444 ieee80211_htprot_update(struct ieee80211com *ic, int protmode)
1445 {
1446 #define	OPMODE(x)	SM(x, IEEE80211_HTINFO_OPMODE)
1447 	IEEE80211_LOCK(ic);
1448 
1449 	/* track non-HT station presence */
1450 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1451 	    ("protmode 0x%x", protmode));
1452 	ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1453 	ic->ic_lastnonht = ticks;
1454 
1455 	if (protmode != ic->ic_curhtprotmode &&
1456 	    (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1457 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1458 		/* push beacon update */
1459 		ic->ic_curhtprotmode = protmode;
1460 		htinfo_notify(ic);
1461 	}
1462 	IEEE80211_UNLOCK(ic);
1463 #undef OPMODE
1464 }
1465 
1466 /*
1467  * Time out presence of an overlapping bss with non-HT
1468  * stations.  When operating in hostap mode we listen for
1469  * beacons from other stations and if we identify a non-HT
1470  * station is present we update the opmode field of the
1471  * HTINFO ie.  To identify when all non-HT stations are
1472  * gone we time out this condition.
1473  */
1474 void
1475 ieee80211_ht_timeout(struct ieee80211com *ic)
1476 {
1477 	IEEE80211_LOCK_ASSERT(ic);
1478 
1479 	if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1480 	    ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1481 #if 0
1482 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1483 		    "%s", "time out non-HT STA present on channel");
1484 #endif
1485 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1486 		htinfo_update(ic);
1487 	}
1488 }
1489 
1490 /*
1491  * Process an 802.11n HT capabilities ie.
1492  */
1493 void
1494 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1495 {
1496 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1497 		/*
1498 		 * Station used Vendor OUI ie to associate;
1499 		 * mark the node so when we respond we'll use
1500 		 * the Vendor OUI's and not the standard ie's.
1501 		 */
1502 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1503 		ie += 4;
1504 	} else
1505 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1506 
1507 	ni->ni_htcap = le16dec(ie +
1508 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1509 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1510 }
1511 
1512 static void
1513 htinfo_parse(struct ieee80211_node *ni,
1514 	const struct ieee80211_ie_htinfo *htinfo)
1515 {
1516 	uint16_t w;
1517 
1518 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1519 	ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN);
1520 	w = le16dec(&htinfo->hi_byte2);
1521 	ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE);
1522 	w = le16dec(&htinfo->hi_byte45);
1523 	ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1524 }
1525 
1526 /*
1527  * Parse an 802.11n HT info ie and save useful information
1528  * to the node state.  Note this does not effect any state
1529  * changes such as for channel width change.
1530  */
1531 void
1532 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1533 {
1534 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1535 		ie += 4;
1536 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1537 }
1538 
1539 /*
1540  * Handle 11n/11ac channel switch.
1541  *
1542  * Use the received HT/VHT ie's to identify the right channel to use.
1543  * If we cannot locate it in the channel table then fallback to
1544  * legacy operation.
1545  *
1546  * Note that we use this information to identify the node's
1547  * channel only; the caller is responsible for insuring any
1548  * required channel change is done (e.g. in sta mode when
1549  * parsing the contents of a beacon frame).
1550  */
1551 static int
1552 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags)
1553 {
1554 	struct ieee80211com *ic = ni->ni_ic;
1555 	struct ieee80211_channel *c;
1556 	int chanflags;
1557 	int ret = 0;
1558 
1559 	/*
1560 	 * First step - do HT/VHT only channel lookup based on operating mode
1561 	 * flags.  This involves masking out the VHT flags as well.
1562 	 * Otherwise we end up doing the full channel walk each time
1563 	 * we trigger this, which is expensive.
1564 	 */
1565 	chanflags = (ni->ni_chan->ic_flags &~
1566 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags;
1567 
1568 	if (chanflags == ni->ni_chan->ic_flags)
1569 		goto done;
1570 
1571 	/*
1572 	 * If HT /or/ VHT flags have changed then check both.
1573 	 * We need to start by picking a HT channel anyway.
1574 	 */
1575 
1576 	c = NULL;
1577 	chanflags = (ni->ni_chan->ic_flags &~
1578 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags;
1579 	/* XXX not right for ht40- */
1580 	c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1581 	if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1582 		/*
1583 		 * No HT40 channel entry in our table; fall back
1584 		 * to HT20 operation.  This should not happen.
1585 		 */
1586 		c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1587 #if 0
1588 		IEEE80211_NOTE(ni->ni_vap,
1589 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1590 		    "no HT40 channel (freq %u), falling back to HT20",
1591 		    ni->ni_chan->ic_freq);
1592 #endif
1593 		/* XXX stat */
1594 	}
1595 
1596 	/* Nothing found - leave it alone; move onto VHT */
1597 	if (c == NULL)
1598 		c = ni->ni_chan;
1599 
1600 	/*
1601 	 * If it's non-HT, then bail out now.
1602 	 */
1603 	if (! IEEE80211_IS_CHAN_HT(c)) {
1604 		IEEE80211_NOTE(ni->ni_vap,
1605 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1606 		    "not HT; skipping VHT check (%u/0x%x)",
1607 		    c->ic_freq, c->ic_flags);
1608 		goto done;
1609 	}
1610 
1611 	/*
1612 	 * Next step - look at the current VHT flags and determine
1613 	 * if we need to upgrade.  Mask out the VHT and HT flags since
1614 	 * the vhtflags field will already have the correct HT
1615 	 * flags to use.
1616 	 */
1617 	if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) {
1618 		chanflags = (c->ic_flags
1619 		    &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT))
1620 		    | vhtflags;
1621 		IEEE80211_NOTE(ni->ni_vap,
1622 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1623 		    ni,
1624 		    "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x",
1625 		    __func__, ni->ni_vht_chanwidth, vhtflags);
1626 
1627 		IEEE80211_NOTE(ni->ni_vap,
1628 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1629 		    ni,
1630 		    "%s: VHT; trying lookup for %d/0x%08x",
1631 		    __func__, c->ic_freq, chanflags);
1632 		c = ieee80211_find_channel(ic, c->ic_freq, chanflags);
1633 	}
1634 
1635 	/* Finally, if it's changed */
1636 	if (c != NULL && c != ni->ni_chan) {
1637 		IEEE80211_NOTE(ni->ni_vap,
1638 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1639 		    "switch station to %s%d channel %u/0x%x",
1640 		    IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT",
1641 		    IEEE80211_IS_CHAN_VHT80(c) ? 80 :
1642 		      (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20),
1643 		    c->ic_freq, c->ic_flags);
1644 		ni->ni_chan = c;
1645 		ret = 1;
1646 	}
1647 	/* NB: caller responsible for forcing any channel change */
1648 
1649 done:
1650 	/* update node's (11n) tx channel width */
1651 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1652 	return (ret);
1653 }
1654 
1655 /*
1656  * Update 11n MIMO PS state according to received htcap.
1657  */
1658 static __inline int
1659 htcap_update_mimo_ps(struct ieee80211_node *ni)
1660 {
1661 	uint16_t oflags = ni->ni_flags;
1662 
1663 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1664 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1665 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1666 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1667 		break;
1668 	case IEEE80211_HTCAP_SMPS_ENA:
1669 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1670 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1671 		break;
1672 	case IEEE80211_HTCAP_SMPS_OFF:
1673 	default:		/* disable on rx of reserved value */
1674 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1675 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1676 		break;
1677 	}
1678 	return (oflags ^ ni->ni_flags);
1679 }
1680 
1681 /*
1682  * Update short GI state according to received htcap
1683  * and local settings.
1684  */
1685 static __inline void
1686 htcap_update_shortgi(struct ieee80211_node *ni)
1687 {
1688 	struct ieee80211vap *vap = ni->ni_vap;
1689 
1690 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1691 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1692 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1693 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1694 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1695 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1696 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1697 }
1698 
1699 /*
1700  * Update LDPC state according to received htcap
1701  * and local settings.
1702  */
1703 static __inline void
1704 htcap_update_ldpc(struct ieee80211_node *ni)
1705 {
1706 	struct ieee80211vap *vap = ni->ni_vap;
1707 
1708 	if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) &&
1709 	    (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX))
1710 		ni->ni_flags |= IEEE80211_NODE_LDPC;
1711 }
1712 
1713 /*
1714  * Parse and update HT-related state extracted from
1715  * the HT cap and info ie's.
1716  *
1717  * This is called from the STA management path and
1718  * the ieee80211_node_join() path.  It will take into
1719  * account the IEs discovered during scanning and
1720  * adjust things accordingly.
1721  */
1722 void
1723 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1724 	const uint8_t *htcapie, const uint8_t *htinfoie)
1725 {
1726 	struct ieee80211vap *vap = ni->ni_vap;
1727 	const struct ieee80211_ie_htinfo *htinfo;
1728 
1729 	ieee80211_parse_htcap(ni, htcapie);
1730 	if (vap->iv_htcaps & IEEE80211_HTC_SMPS)
1731 		htcap_update_mimo_ps(ni);
1732 	htcap_update_shortgi(ni);
1733 	htcap_update_ldpc(ni);
1734 
1735 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1736 		htinfoie += 4;
1737 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1738 	htinfo_parse(ni, htinfo);
1739 
1740 	/*
1741 	 * Defer the node channel change; we need to now
1742 	 * update VHT parameters before we do it.
1743 	 */
1744 
1745 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1746 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1747 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1748 	else
1749 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1750 }
1751 
1752 static uint32_t
1753 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags)
1754 {
1755 	struct ieee80211vap *vap = ni->ni_vap;
1756 	uint32_t vhtflags = 0;
1757 
1758 	vhtflags = 0;
1759 	if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
1760 		if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) &&
1761 		    /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */
1762 		    (MS(vap->iv_vhtcaps,
1763 		     IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) &&
1764 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) {
1765 			vhtflags = IEEE80211_CHAN_VHT160;
1766 			/* Mirror the HT40 flags */
1767 			if (htflags == IEEE80211_CHAN_HT40U) {
1768 				vhtflags |= IEEE80211_CHAN_HT40U;
1769 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1770 				vhtflags |= IEEE80211_CHAN_HT40D;
1771 			}
1772 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) &&
1773 		    /* XXX 2 means "160MHz and 80+80MHz" */
1774 		    (MS(vap->iv_vhtcaps,
1775 		     IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) &&
1776 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) {
1777 			vhtflags = IEEE80211_CHAN_VHT80_80;
1778 			/* Mirror the HT40 flags */
1779 			if (htflags == IEEE80211_CHAN_HT40U) {
1780 				vhtflags |= IEEE80211_CHAN_HT40U;
1781 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1782 				vhtflags |= IEEE80211_CHAN_HT40D;
1783 			}
1784 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) &&
1785 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) {
1786 			vhtflags = IEEE80211_CHAN_VHT80;
1787 			/* Mirror the HT40 flags */
1788 			if (htflags == IEEE80211_CHAN_HT40U) {
1789 				vhtflags |= IEEE80211_CHAN_HT40U;
1790 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1791 				vhtflags |= IEEE80211_CHAN_HT40D;
1792 			}
1793 		} else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) {
1794 			/* Mirror the HT40 flags */
1795 			/*
1796 			 * XXX TODO: if ht40 is disabled, but vht40 isn't
1797 			 * disabled then this logic will get very, very sad.
1798 			 * It's quite possible the only sane thing to do is
1799 			 * to not have vht40 as an option, and just obey
1800 			 * 'ht40' as that flag.
1801 			 */
1802 			if ((htflags == IEEE80211_CHAN_HT40U) &&
1803 			    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) {
1804 				vhtflags = IEEE80211_CHAN_VHT40U
1805 				    | IEEE80211_CHAN_HT40U;
1806 			} else if (htflags == IEEE80211_CHAN_HT40D &&
1807 			    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) {
1808 				vhtflags = IEEE80211_CHAN_VHT40D
1809 				    | IEEE80211_CHAN_HT40D;
1810 			} else if (htflags == IEEE80211_CHAN_HT20) {
1811 				vhtflags = IEEE80211_CHAN_VHT20
1812 				    | IEEE80211_CHAN_HT20;
1813 			}
1814 		} else {
1815 			vhtflags = IEEE80211_CHAN_VHT20;
1816 		}
1817 	}
1818 	return (vhtflags);
1819 }
1820 
1821 /*
1822  * Final part of updating the HT parameters.
1823  *
1824  * This is called from the STA management path and
1825  * the ieee80211_node_join() path.  It will take into
1826  * account the IEs discovered during scanning and
1827  * adjust things accordingly.
1828  *
1829  * This is done after a call to ieee80211_ht_updateparams()
1830  * because it (and the upcoming VHT version of updateparams)
1831  * needs to ensure everything is parsed before htinfo_update_chw()
1832  * is called - which will change the channel config for the
1833  * node for us.
1834  */
1835 int
1836 ieee80211_ht_updateparams_final(struct ieee80211_node *ni,
1837 	const uint8_t *htcapie, const uint8_t *htinfoie)
1838 {
1839 	struct ieee80211vap *vap = ni->ni_vap;
1840 	const struct ieee80211_ie_htinfo *htinfo;
1841 	int htflags, vhtflags;
1842 	int ret = 0;
1843 
1844 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1845 
1846 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1847 	    IEEE80211_CHAN_HT20 : 0;
1848 
1849 	/* NB: honor operating mode constraint */
1850 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
1851 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1852 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
1853 			htflags = IEEE80211_CHAN_HT40U;
1854 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
1855 			htflags = IEEE80211_CHAN_HT40D;
1856 	}
1857 
1858 	/*
1859 	 * VHT flags - do much the same; check whether VHT is available
1860 	 * and if so, what our ideal channel use would be based on our
1861 	 * capabilities and the (pre-parsed) VHT info IE.
1862 	 */
1863 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
1864 
1865 	if (htinfo_update_chw(ni, htflags, vhtflags))
1866 		ret = 1;
1867 
1868 	return (ret);
1869 }
1870 
1871 /*
1872  * Parse and update HT-related state extracted from the HT cap ie
1873  * for a station joining an HT BSS.
1874  *
1875  * This is called from the hostap path for each station.
1876  */
1877 void
1878 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
1879 {
1880 	struct ieee80211vap *vap = ni->ni_vap;
1881 
1882 	ieee80211_parse_htcap(ni, htcapie);
1883 	if (vap->iv_htcaps & IEEE80211_HTC_SMPS)
1884 		htcap_update_mimo_ps(ni);
1885 	htcap_update_shortgi(ni);
1886 	htcap_update_ldpc(ni);
1887 }
1888 
1889 /*
1890  * Called once HT and VHT capabilities are parsed in hostap mode -
1891  * this will adjust the channel configuration of the given node
1892  * based on the configuration and capabilities.
1893  */
1894 void
1895 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni)
1896 {
1897 	struct ieee80211vap *vap = ni->ni_vap;
1898 	int htflags;
1899 	int vhtflags;
1900 
1901 	/* NB: honor operating mode constraint */
1902 	/* XXX 40 MHz intolerant */
1903 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1904 	    IEEE80211_CHAN_HT20 : 0;
1905 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
1906 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1907 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
1908 			htflags = IEEE80211_CHAN_HT40U;
1909 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
1910 			htflags = IEEE80211_CHAN_HT40D;
1911 	}
1912 	/*
1913 	 * VHT flags - do much the same; check whether VHT is available
1914 	 * and if so, what our ideal channel use would be based on our
1915 	 * capabilities and the (pre-parsed) VHT info IE.
1916 	 */
1917 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
1918 
1919 	(void) htinfo_update_chw(ni, htflags, vhtflags);
1920 }
1921 
1922 /*
1923  * Install received HT rate set by parsing the HT cap ie.
1924  */
1925 int
1926 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
1927 {
1928 	struct ieee80211com *ic = ni->ni_ic;
1929 	struct ieee80211vap *vap = ni->ni_vap;
1930 	const struct ieee80211_ie_htcap *htcap;
1931 	struct ieee80211_htrateset *rs;
1932 	int i, maxequalmcs, maxunequalmcs;
1933 
1934 	maxequalmcs = ic->ic_txstream * 8 - 1;
1935 	maxunequalmcs = 0;
1936 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
1937 		if (ic->ic_txstream >= 2)
1938 			maxunequalmcs = 38;
1939 		if (ic->ic_txstream >= 3)
1940 			maxunequalmcs = 52;
1941 		if (ic->ic_txstream >= 4)
1942 			maxunequalmcs = 76;
1943 	}
1944 
1945 	rs = &ni->ni_htrates;
1946 	memset(rs, 0, sizeof(*rs));
1947 	if (ie != NULL) {
1948 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
1949 			ie += 4;
1950 		htcap = (const struct ieee80211_ie_htcap *) ie;
1951 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1952 			if (isclr(htcap->hc_mcsset, i))
1953 				continue;
1954 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
1955 				IEEE80211_NOTE(vap,
1956 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1957 				    "WARNING, HT rate set too large; only "
1958 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
1959 				vap->iv_stats.is_rx_rstoobig++;
1960 				break;
1961 			}
1962 			if (i <= 31 && i > maxequalmcs)
1963 				continue;
1964 			if (i == 32 &&
1965 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
1966 				continue;
1967 			if (i > 32 && i > maxunequalmcs)
1968 				continue;
1969 			rs->rs_rates[rs->rs_nrates++] = i;
1970 		}
1971 	}
1972 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
1973 }
1974 
1975 /*
1976  * Mark rates in a node's HT rate set as basic according
1977  * to the information in the supplied HT info ie.
1978  */
1979 void
1980 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
1981 {
1982 	const struct ieee80211_ie_htinfo *htinfo;
1983 	struct ieee80211_htrateset *rs;
1984 	int i, j;
1985 
1986 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1987 		ie += 4;
1988 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
1989 	rs = &ni->ni_htrates;
1990 	if (rs->rs_nrates == 0) {
1991 		IEEE80211_NOTE(ni->ni_vap,
1992 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1993 		    "%s", "WARNING, empty HT rate set");
1994 		return;
1995 	}
1996 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1997 		if (isclr(htinfo->hi_basicmcsset, i))
1998 			continue;
1999 		for (j = 0; j < rs->rs_nrates; j++)
2000 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
2001 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
2002 	}
2003 }
2004 
2005 static void
2006 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
2007 {
2008 	callout_init(&tap->txa_timer, 1);
2009 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
2010 	tap->txa_lastsample = ticks;
2011 }
2012 
2013 static void
2014 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
2015 {
2016 	struct ieee80211_node *ni = tap->txa_ni;
2017 	struct ieee80211com *ic = ni->ni_ic;
2018 
2019 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2020 	    tap->txa_ni,
2021 	    "%s: called",
2022 	    __func__);
2023 
2024 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
2025 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
2026 	    TID_TO_WME_AC(tap->txa_tid)));
2027 
2028 	/*
2029 	 * Stop BA stream if setup so driver has a chance
2030 	 * to reclaim any resources it might have allocated.
2031 	 */
2032 	ic->ic_addba_stop(ni, tap);
2033 	/*
2034 	 * Stop any pending BAR transmit.
2035 	 */
2036 	bar_stop_timer(tap);
2037 
2038 	/*
2039 	 * Reset packet estimate.
2040 	 */
2041 	ieee80211_txampdu_init_pps(tap);
2042 
2043 	/* NB: clearing NAK means we may re-send ADDBA */
2044 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
2045 }
2046 
2047 /*
2048  * ADDBA response timeout.
2049  *
2050  * If software aggregation and per-TID queue management was done here,
2051  * that queue would be unpaused after the ADDBA timeout occurs.
2052  */
2053 static void
2054 addba_timeout(void *arg)
2055 {
2056 	struct ieee80211_tx_ampdu *tap = arg;
2057 	struct ieee80211_node *ni = tap->txa_ni;
2058 	struct ieee80211com *ic = ni->ni_ic;
2059 
2060 	/* XXX ? */
2061 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2062 	tap->txa_attempts++;
2063 	ic->ic_addba_response_timeout(ni, tap);
2064 }
2065 
2066 static void
2067 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
2068 {
2069 	/* XXX use CALLOUT_PENDING instead? */
2070 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
2071 	    addba_timeout, tap);
2072 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
2073 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
2074 }
2075 
2076 static void
2077 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
2078 {
2079 	/* XXX use CALLOUT_PENDING instead? */
2080 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
2081 		callout_stop(&tap->txa_timer);
2082 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2083 	}
2084 }
2085 
2086 static void
2087 null_addba_response_timeout(struct ieee80211_node *ni,
2088     struct ieee80211_tx_ampdu *tap)
2089 {
2090 }
2091 
2092 /*
2093  * Default method for requesting A-MPDU tx aggregation.
2094  * We setup the specified state block and start a timer
2095  * to wait for an ADDBA response frame.
2096  */
2097 static int
2098 ieee80211_addba_request(struct ieee80211_node *ni,
2099 	struct ieee80211_tx_ampdu *tap,
2100 	int dialogtoken, int baparamset, int batimeout)
2101 {
2102 	int bufsiz;
2103 
2104 	/* XXX locking */
2105 	tap->txa_token = dialogtoken;
2106 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
2107 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2108 	tap->txa_wnd = (bufsiz == 0) ?
2109 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2110 	addba_start_timeout(tap);
2111 	return 1;
2112 }
2113 
2114 /*
2115  * Called by drivers that wish to request an ADDBA session be
2116  * setup.  This brings it up and starts the request timer.
2117  */
2118 int
2119 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
2120 {
2121 	struct ieee80211_tx_ampdu *tap;
2122 
2123 	if (tid < 0 || tid > 15)
2124 		return (0);
2125 	tap = &ni->ni_tx_ampdu[tid];
2126 
2127 	/* XXX locking */
2128 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2129 		/* do deferred setup of state */
2130 		ampdu_tx_setup(tap);
2131 	}
2132 	/* XXX hack for not doing proper locking */
2133 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2134 	addba_start_timeout(tap);
2135 	return (1);
2136 }
2137 
2138 /*
2139  * Called by drivers that have marked a session as active.
2140  */
2141 int
2142 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
2143     int status)
2144 {
2145 	struct ieee80211_tx_ampdu *tap;
2146 
2147 	if (tid < 0 || tid > 15)
2148 		return (0);
2149 	tap = &ni->ni_tx_ampdu[tid];
2150 
2151 	/* XXX locking */
2152 	addba_stop_timeout(tap);
2153 	if (status == 1) {
2154 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2155 		tap->txa_attempts = 0;
2156 	} else {
2157 		/* mark tid so we don't try again */
2158 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2159 	}
2160 	return (1);
2161 }
2162 
2163 /*
2164  * Default method for processing an A-MPDU tx aggregation
2165  * response.  We shutdown any pending timer and update the
2166  * state block according to the reply.
2167  */
2168 static int
2169 ieee80211_addba_response(struct ieee80211_node *ni,
2170 	struct ieee80211_tx_ampdu *tap,
2171 	int status, int baparamset, int batimeout)
2172 {
2173 	int bufsiz, tid;
2174 
2175 	/* XXX locking */
2176 	addba_stop_timeout(tap);
2177 	if (status == IEEE80211_STATUS_SUCCESS) {
2178 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2179 		/* XXX override our request? */
2180 		tap->txa_wnd = (bufsiz == 0) ?
2181 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2182 		/* XXX AC/TID */
2183 		tid = MS(baparamset, IEEE80211_BAPS_TID);
2184 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2185 		tap->txa_attempts = 0;
2186 	} else {
2187 		/* mark tid so we don't try again */
2188 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2189 	}
2190 	return 1;
2191 }
2192 
2193 /*
2194  * Default method for stopping A-MPDU tx aggregation.
2195  * Any timer is cleared and we drain any pending frames.
2196  */
2197 static void
2198 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
2199 {
2200 	/* XXX locking */
2201 	addba_stop_timeout(tap);
2202 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
2203 		/* XXX clear aggregation queue */
2204 		tap->txa_flags &= ~IEEE80211_AGGR_RUNNING;
2205 	}
2206 	tap->txa_attempts = 0;
2207 }
2208 
2209 /*
2210  * Process a received action frame using the default aggregation
2211  * policy.  We intercept ADDBA-related frames and use them to
2212  * update our aggregation state.  All other frames are passed up
2213  * for processing by ieee80211_recv_action.
2214  */
2215 static int
2216 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
2217 	const struct ieee80211_frame *wh,
2218 	const uint8_t *frm, const uint8_t *efrm)
2219 {
2220 	struct ieee80211com *ic = ni->ni_ic;
2221 	struct ieee80211vap *vap = ni->ni_vap;
2222 	struct ieee80211_rx_ampdu *rap;
2223 	uint8_t dialogtoken;
2224 	uint16_t baparamset, batimeout, baseqctl;
2225 	uint16_t args[5];
2226 	int tid;
2227 
2228 	dialogtoken = frm[2];
2229 	baparamset = le16dec(frm+3);
2230 	batimeout = le16dec(frm+5);
2231 	baseqctl = le16dec(frm+7);
2232 
2233 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2234 
2235 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2236 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
2237 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d",
2238 	    dialogtoken, baparamset,
2239 	    tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ),
2240 	    batimeout,
2241 	    MS(baseqctl, IEEE80211_BASEQ_START),
2242 	    MS(baseqctl, IEEE80211_BASEQ_FRAG));
2243 
2244 	rap = &ni->ni_rx_ampdu[tid];
2245 
2246 	/* Send ADDBA response */
2247 	args[0] = dialogtoken;
2248 	/*
2249 	 * NB: We ack only if the sta associated with HT and
2250 	 * the ap is configured to do AMPDU rx (the latter
2251 	 * violates the 11n spec and is mostly for testing).
2252 	 */
2253 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
2254 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
2255 		/* XXX handle ampdu_rx_start failure */
2256 		ic->ic_ampdu_rx_start(ni, rap,
2257 		    baparamset, batimeout, baseqctl);
2258 
2259 		args[1] = IEEE80211_STATUS_SUCCESS;
2260 	} else {
2261 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2262 		    ni, "reject ADDBA request: %s",
2263 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
2264 		       "administratively disabled" :
2265 		       "not negotiated for station");
2266 		vap->iv_stats.is_addba_reject++;
2267 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
2268 	}
2269 	/* XXX honor rap flags? */
2270 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
2271 		| SM(tid, IEEE80211_BAPS_TID)
2272 		| SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
2273 		;
2274 	args[3] = 0;
2275 	args[4] = 0;
2276 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2277 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
2278 	return 0;
2279 }
2280 
2281 static int
2282 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
2283 	const struct ieee80211_frame *wh,
2284 	const uint8_t *frm, const uint8_t *efrm)
2285 {
2286 	struct ieee80211com *ic = ni->ni_ic;
2287 	struct ieee80211vap *vap = ni->ni_vap;
2288 	struct ieee80211_tx_ampdu *tap;
2289 	uint8_t dialogtoken, policy;
2290 	uint16_t baparamset, batimeout, code;
2291 	int tid, bufsiz;
2292 
2293 	dialogtoken = frm[2];
2294 	code = le16dec(frm+3);
2295 	baparamset = le16dec(frm+5);
2296 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2297 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2298 	policy = MS(baparamset, IEEE80211_BAPS_POLICY);
2299 	batimeout = le16dec(frm+7);
2300 
2301 	tap = &ni->ni_tx_ampdu[tid];
2302 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2303 		IEEE80211_DISCARD_MAC(vap,
2304 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2305 		    ni->ni_macaddr, "ADDBA response",
2306 		    "no pending ADDBA, tid %d dialogtoken %u "
2307 		    "code %d", tid, dialogtoken, code);
2308 		vap->iv_stats.is_addba_norequest++;
2309 		return 0;
2310 	}
2311 	if (dialogtoken != tap->txa_token) {
2312 		IEEE80211_DISCARD_MAC(vap,
2313 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2314 		    ni->ni_macaddr, "ADDBA response",
2315 		    "dialogtoken mismatch: waiting for %d, "
2316 		    "received %d, tid %d code %d",
2317 		    tap->txa_token, dialogtoken, tid, code);
2318 		vap->iv_stats.is_addba_badtoken++;
2319 		return 0;
2320 	}
2321 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2322 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2323 		IEEE80211_DISCARD_MAC(vap,
2324 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2325 		    ni->ni_macaddr, "ADDBA response",
2326 		    "policy mismatch: expecting %s, "
2327 		    "received %s, tid %d code %d",
2328 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2329 		    policy, tid, code);
2330 		vap->iv_stats.is_addba_badpolicy++;
2331 		return 0;
2332 	}
2333 #if 0
2334 	/* XXX we take MIN in ieee80211_addba_response */
2335 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2336 		IEEE80211_DISCARD_MAC(vap,
2337 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2338 		    ni->ni_macaddr, "ADDBA response",
2339 		    "BA window too large: max %d, "
2340 		    "received %d, tid %d code %d",
2341 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2342 		vap->iv_stats.is_addba_badbawinsize++;
2343 		return 0;
2344 	}
2345 #endif
2346 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2347 	    "recv ADDBA response: dialogtoken %u code %d "
2348 	    "baparamset 0x%x (tid %d bufsiz %d) batimeout %d",
2349 	    dialogtoken, code, baparamset, tid, bufsiz,
2350 	    batimeout);
2351 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2352 	return 0;
2353 }
2354 
2355 static int
2356 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2357 	const struct ieee80211_frame *wh,
2358 	const uint8_t *frm, const uint8_t *efrm)
2359 {
2360 	struct ieee80211com *ic = ni->ni_ic;
2361 	struct ieee80211_rx_ampdu *rap;
2362 	struct ieee80211_tx_ampdu *tap;
2363 	uint16_t baparamset, code;
2364 	int tid;
2365 
2366 	baparamset = le16dec(frm+2);
2367 	code = le16dec(frm+4);
2368 
2369 	tid = MS(baparamset, IEEE80211_DELBAPS_TID);
2370 
2371 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2372 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2373 	    "code %d", baparamset, tid,
2374 	    MS(baparamset, IEEE80211_DELBAPS_INIT), code);
2375 
2376 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2377 		tap = &ni->ni_tx_ampdu[tid];
2378 		ic->ic_addba_stop(ni, tap);
2379 	} else {
2380 		rap = &ni->ni_rx_ampdu[tid];
2381 		ic->ic_ampdu_rx_stop(ni, rap);
2382 	}
2383 	return 0;
2384 }
2385 
2386 static int
2387 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2388 	const struct ieee80211_frame *wh,
2389 	const uint8_t *frm, const uint8_t *efrm)
2390 {
2391 	int chw;
2392 
2393 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2394 
2395 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2396 	    "%s: HT txchwidth, width %d%s",
2397 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2398 	if (chw != ni->ni_chw) {
2399 		/* XXX does this need to change the ht40 station count? */
2400 		ni->ni_chw = chw;
2401 		/* XXX notify on change */
2402 	}
2403 	return 0;
2404 }
2405 
2406 static int
2407 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2408 	const struct ieee80211_frame *wh,
2409 	const uint8_t *frm, const uint8_t *efrm)
2410 {
2411 	const struct ieee80211_action_ht_mimopowersave *mps =
2412 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2413 
2414 	/* XXX check iv_htcaps */
2415 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2416 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2417 	else
2418 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2419 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2420 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2421 	else
2422 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2423 	/* XXX notify on change */
2424 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2425 	    "%s: HT MIMO PS (%s%s)", __func__,
2426 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2427 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2428 	);
2429 	return 0;
2430 }
2431 
2432 /*
2433  * Transmit processing.
2434  */
2435 
2436 /*
2437  * Check if A-MPDU should be requested/enabled for a stream.
2438  * We require a traffic rate above a per-AC threshold and we
2439  * also handle backoff from previous failed attempts.
2440  *
2441  * Drivers may override this method to bring in information
2442  * such as link state conditions in making the decision.
2443  */
2444 static int
2445 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2446 	struct ieee80211_tx_ampdu *tap)
2447 {
2448 	struct ieee80211vap *vap = ni->ni_vap;
2449 
2450 	if (tap->txa_avgpps <
2451 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2452 		return 0;
2453 	/* XXX check rssi? */
2454 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2455 	    ieee80211_time_after(ticks, tap->txa_nextrequest)) {
2456 		/*
2457 		 * Don't retry too often; txa_nextrequest is set
2458 		 * to the minimum interval we'll retry after
2459 		 * ieee80211_addba_maxtries failed attempts are made.
2460 		 */
2461 		return 0;
2462 	}
2463 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2464 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d",
2465 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2466 	    tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts);
2467 	return 1;
2468 }
2469 
2470 /*
2471  * Request A-MPDU tx aggregation.  Setup local state and
2472  * issue an ADDBA request.  BA use will only happen after
2473  * the other end replies with ADDBA response.
2474  */
2475 int
2476 ieee80211_ampdu_request(struct ieee80211_node *ni,
2477 	struct ieee80211_tx_ampdu *tap)
2478 {
2479 	struct ieee80211com *ic = ni->ni_ic;
2480 	uint16_t args[5];
2481 	int tid, dialogtoken;
2482 	static int tokens = 0;	/* XXX */
2483 
2484 	/* XXX locking */
2485 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2486 		/* do deferred setup of state */
2487 		ampdu_tx_setup(tap);
2488 	}
2489 	/* XXX hack for not doing proper locking */
2490 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2491 
2492 	dialogtoken = (tokens+1) % 63;		/* XXX */
2493 	tid = tap->txa_tid;
2494 
2495 	/*
2496 	 * XXX TODO: This is racy with any other parallel TX going on. :(
2497 	 */
2498 	tap->txa_start = ni->ni_txseqs[tid];
2499 
2500 	args[0] = dialogtoken;
2501 	args[1] = 0;	/* NB: status code not used */
2502 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2503 		| SM(tid, IEEE80211_BAPS_TID)
2504 		| SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ)
2505 		;
2506 	args[3] = 0;	/* batimeout */
2507 	/* NB: do first so there's no race against reply */
2508 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2509 		/* unable to setup state, don't make request */
2510 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2511 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2512 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2513 		/* defer next try so we don't slam the driver with requests */
2514 		tap->txa_attempts = ieee80211_addba_maxtries;
2515 		/* NB: check in case driver wants to override */
2516 		if (tap->txa_nextrequest <= ticks)
2517 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2518 		return 0;
2519 	}
2520 	tokens = dialogtoken;			/* allocate token */
2521 	/* NB: after calling ic_addba_request so driver can set txa_start */
2522 	args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START)
2523 		| SM(0, IEEE80211_BASEQ_FRAG)
2524 		;
2525 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2526 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2527 }
2528 
2529 /*
2530  * Terminate an AMPDU tx stream.  State is reclaimed
2531  * and the peer notified with a DelBA Action frame.
2532  */
2533 void
2534 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2535 	int reason)
2536 {
2537 	struct ieee80211com *ic = ni->ni_ic;
2538 	struct ieee80211vap *vap = ni->ni_vap;
2539 	uint16_t args[4];
2540 
2541 	/* XXX locking */
2542 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2543 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2544 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2545 		    ni, "%s: stop BA stream for TID %d (reason: %d (%s))",
2546 		    __func__, tap->txa_tid, reason,
2547 		    ieee80211_reason_to_string(reason));
2548 		vap->iv_stats.is_ampdu_stop++;
2549 
2550 		ic->ic_addba_stop(ni, tap);
2551 		args[0] = tap->txa_tid;
2552 		args[1] = IEEE80211_DELBAPS_INIT;
2553 		args[2] = reason;			/* XXX reason code */
2554 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2555 			IEEE80211_ACTION_BA_DELBA, args);
2556 	} else {
2557 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2558 		    ni, "%s: BA stream for TID %d not running "
2559 		    "(reason: %d (%s))", __func__, tap->txa_tid, reason,
2560 		    ieee80211_reason_to_string(reason));
2561 		vap->iv_stats.is_ampdu_stop_failed++;
2562 	}
2563 }
2564 
2565 /* XXX */
2566 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2567 
2568 static void
2569 bar_timeout(void *arg)
2570 {
2571 	struct ieee80211_tx_ampdu *tap = arg;
2572 	struct ieee80211_node *ni = tap->txa_ni;
2573 
2574 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2575 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2576 
2577 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2578 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2579 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2580 
2581 	/* guard against race with bar_tx_complete */
2582 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2583 		return;
2584 	/* XXX ? */
2585 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2586 		struct ieee80211com *ic = ni->ni_ic;
2587 
2588 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2589 		/*
2590 		 * If (at least) the last BAR TX timeout was due to
2591 		 * an ieee80211_send_bar() failures, then we need
2592 		 * to make sure we notify the driver that a BAR
2593 		 * TX did occur and fail.  This gives the driver
2594 		 * a chance to undo any queue pause that may
2595 		 * have occurred.
2596 		 */
2597 		ic->ic_bar_response(ni, tap, 1);
2598 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2599 	} else {
2600 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2601 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2602 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2603 			    ni, "%s: failed to TX, starting timer\n",
2604 			    __func__);
2605 			/*
2606 			 * If ieee80211_send_bar() fails here, the
2607 			 * timer may have stopped and/or the pending
2608 			 * flag may be clear.  Because of this,
2609 			 * fake the BARPEND and reset the timer.
2610 			 * A retransmission attempt will then occur
2611 			 * during the next timeout.
2612 			 */
2613 			/* XXX locking */
2614 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2615 			bar_start_timer(tap);
2616 		}
2617 	}
2618 }
2619 
2620 static void
2621 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2622 {
2623 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2624 	    tap->txa_ni,
2625 	    "%s: called",
2626 	    __func__);
2627 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2628 }
2629 
2630 static void
2631 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2632 {
2633 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2634 	    tap->txa_ni,
2635 	    "%s: called",
2636 	    __func__);
2637 	callout_stop(&tap->txa_timer);
2638 }
2639 
2640 static void
2641 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2642 {
2643 	struct ieee80211_tx_ampdu *tap = arg;
2644 
2645 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2646 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2647 	    __func__, tap->txa_tid, tap->txa_flags,
2648 	    callout_pending(&tap->txa_timer), status);
2649 
2650 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2651 	/* XXX locking */
2652 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2653 	    callout_pending(&tap->txa_timer)) {
2654 		struct ieee80211com *ic = ni->ni_ic;
2655 
2656 		if (status == 0)		/* ACK'd */
2657 			bar_stop_timer(tap);
2658 		ic->ic_bar_response(ni, tap, status);
2659 		/* NB: just let timer expire so we pace requests */
2660 	}
2661 }
2662 
2663 static void
2664 ieee80211_bar_response(struct ieee80211_node *ni,
2665 	struct ieee80211_tx_ampdu *tap, int status)
2666 {
2667 
2668 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2669 	    tap->txa_ni,
2670 	    "%s: called",
2671 	    __func__);
2672 	if (status == 0) {		/* got ACK */
2673 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2674 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2675 		    tap->txa_start,
2676 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2677 		    tap->txa_qframes, tap->txa_seqpending,
2678 		    tap->txa_tid);
2679 
2680 		/* NB: timer already stopped in bar_tx_complete */
2681 		tap->txa_start = tap->txa_seqpending;
2682 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2683 	}
2684 }
2685 
2686 /*
2687  * Transmit a BAR frame to the specified node.  The
2688  * BAR contents are drawn from the supplied aggregation
2689  * state associated with the node.
2690  *
2691  * NB: we only handle immediate ACK w/ compressed bitmap.
2692  */
2693 int
2694 ieee80211_send_bar(struct ieee80211_node *ni,
2695 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2696 {
2697 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2698 	struct ieee80211vap *vap = ni->ni_vap;
2699 	struct ieee80211com *ic = ni->ni_ic;
2700 	struct ieee80211_frame_bar *bar;
2701 	struct mbuf *m;
2702 	uint16_t barctl, barseqctl;
2703 	uint8_t *frm;
2704 	int tid, ret;
2705 
2706 
2707 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2708 	    tap->txa_ni,
2709 	    "%s: called",
2710 	    __func__);
2711 
2712 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2713 		/* no ADDBA response, should not happen */
2714 		/* XXX stat+msg */
2715 		return EINVAL;
2716 	}
2717 	/* XXX locking */
2718 	bar_stop_timer(tap);
2719 
2720 	ieee80211_ref_node(ni);
2721 
2722 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2723 	if (m == NULL)
2724 		senderr(ENOMEM, is_tx_nobuf);
2725 
2726 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2727 		m_freem(m);
2728 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2729 		/* NOTREACHED */
2730 	}
2731 
2732 	bar = mtod(m, struct ieee80211_frame_bar *);
2733 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2734 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2735 	bar->i_fc[1] = 0;
2736 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2737 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2738 
2739 	tid = tap->txa_tid;
2740 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2741 			0 : IEEE80211_BAR_NOACK)
2742 		| IEEE80211_BAR_COMP
2743 		| SM(tid, IEEE80211_BAR_TID)
2744 		;
2745 	barseqctl = SM(seq, IEEE80211_BAR_SEQ_START);
2746 	/* NB: known to have proper alignment */
2747 	bar->i_ctl = htole16(barctl);
2748 	bar->i_seq = htole16(barseqctl);
2749 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2750 
2751 	M_WME_SETAC(m, WME_AC_VO);
2752 
2753 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2754 
2755 	/* XXX locking */
2756 	/* init/bump attempts counter */
2757 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2758 		tap->txa_attempts = 1;
2759 	else
2760 		tap->txa_attempts++;
2761 	tap->txa_seqpending = seq;
2762 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2763 
2764 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2765 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2766 	    tid, barctl, seq, tap->txa_attempts);
2767 
2768 	/*
2769 	 * ic_raw_xmit will free the node reference
2770 	 * regardless of queue/TX success or failure.
2771 	 */
2772 	IEEE80211_TX_LOCK(ic);
2773 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2774 	IEEE80211_TX_UNLOCK(ic);
2775 	if (ret != 0) {
2776 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2777 		    ni, "send BAR: failed: (ret = %d)\n",
2778 		    ret);
2779 		/* xmit failed, clear state flag */
2780 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2781 		vap->iv_stats.is_ampdu_bar_tx_fail++;
2782 		return ret;
2783 	}
2784 	/* XXX hack against tx complete happening before timer is started */
2785 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
2786 		bar_start_timer(tap);
2787 	return 0;
2788 bad:
2789 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2790 	    tap->txa_ni,
2791 	    "%s: bad! ret=%d",
2792 	    __func__, ret);
2793 	vap->iv_stats.is_ampdu_bar_tx_fail++;
2794 	ieee80211_free_node(ni);
2795 	return ret;
2796 #undef senderr
2797 }
2798 
2799 static int
2800 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
2801 {
2802 	struct ieee80211_bpf_params params;
2803 
2804 	memset(&params, 0, sizeof(params));
2805 	params.ibp_pri = WME_AC_VO;
2806 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
2807 	/* NB: we know all frames are unicast */
2808 	params.ibp_try0 = ni->ni_txparms->maxretry;
2809 	params.ibp_power = ni->ni_txpower;
2810 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
2811 	     &params);
2812 }
2813 
2814 #define	ADDSHORT(frm, v) do {			\
2815 	frm[0] = (v) & 0xff;			\
2816 	frm[1] = (v) >> 8;			\
2817 	frm += 2;				\
2818 } while (0)
2819 
2820 /*
2821  * Send an action management frame.  The arguments are stuff
2822  * into a frame without inspection; the caller is assumed to
2823  * prepare them carefully (e.g. based on the aggregation state).
2824  */
2825 static int
2826 ht_send_action_ba_addba(struct ieee80211_node *ni,
2827 	int category, int action, void *arg0)
2828 {
2829 	struct ieee80211vap *vap = ni->ni_vap;
2830 	struct ieee80211com *ic = ni->ni_ic;
2831 	uint16_t *args = arg0;
2832 	struct mbuf *m;
2833 	uint8_t *frm;
2834 
2835 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2836 	    "send ADDBA %s: dialogtoken %d status %d "
2837 	    "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x",
2838 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
2839 		"request" : "response",
2840 	    args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID),
2841 	    args[3], args[4]);
2842 
2843 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2844 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2845 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2846 	ieee80211_ref_node(ni);
2847 
2848 	m = ieee80211_getmgtframe(&frm,
2849 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2850 	    sizeof(uint16_t)	/* action+category */
2851 	    /* XXX may action payload */
2852 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2853 	);
2854 	if (m != NULL) {
2855 		*frm++ = category;
2856 		*frm++ = action;
2857 		*frm++ = args[0];		/* dialog token */
2858 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
2859 			ADDSHORT(frm, args[1]);	/* status code */
2860 		ADDSHORT(frm, args[2]);		/* baparamset */
2861 		ADDSHORT(frm, args[3]);		/* batimeout */
2862 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
2863 			ADDSHORT(frm, args[4]);	/* baseqctl */
2864 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2865 		return ht_action_output(ni, m);
2866 	} else {
2867 		vap->iv_stats.is_tx_nobuf++;
2868 		ieee80211_free_node(ni);
2869 		return ENOMEM;
2870 	}
2871 }
2872 
2873 static int
2874 ht_send_action_ba_delba(struct ieee80211_node *ni,
2875 	int category, int action, void *arg0)
2876 {
2877 	struct ieee80211vap *vap = ni->ni_vap;
2878 	struct ieee80211com *ic = ni->ni_ic;
2879 	uint16_t *args = arg0;
2880 	struct mbuf *m;
2881 	uint16_t baparamset;
2882 	uint8_t *frm;
2883 
2884 	baparamset = SM(args[0], IEEE80211_DELBAPS_TID)
2885 		   | args[1]
2886 		   ;
2887 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2888 	    "send DELBA action: tid %d, initiator %d reason %d (%s)",
2889 	    args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
2890 
2891 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2892 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2893 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2894 	ieee80211_ref_node(ni);
2895 
2896 	m = ieee80211_getmgtframe(&frm,
2897 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2898 	    sizeof(uint16_t)	/* action+category */
2899 	    /* XXX may action payload */
2900 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2901 	);
2902 	if (m != NULL) {
2903 		*frm++ = category;
2904 		*frm++ = action;
2905 		ADDSHORT(frm, baparamset);
2906 		ADDSHORT(frm, args[2]);		/* reason code */
2907 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2908 		return ht_action_output(ni, m);
2909 	} else {
2910 		vap->iv_stats.is_tx_nobuf++;
2911 		ieee80211_free_node(ni);
2912 		return ENOMEM;
2913 	}
2914 }
2915 
2916 static int
2917 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
2918 	int category, int action, void *arg0)
2919 {
2920 	struct ieee80211vap *vap = ni->ni_vap;
2921 	struct ieee80211com *ic = ni->ni_ic;
2922 	struct mbuf *m;
2923 	uint8_t *frm;
2924 
2925 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2926 	    "send HT txchwidth: width %d",
2927 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
2928 
2929 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2930 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2931 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2932 	ieee80211_ref_node(ni);
2933 
2934 	m = ieee80211_getmgtframe(&frm,
2935 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2936 	    sizeof(uint16_t)	/* action+category */
2937 	    /* XXX may action payload */
2938 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2939 	);
2940 	if (m != NULL) {
2941 		*frm++ = category;
2942 		*frm++ = action;
2943 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
2944 			IEEE80211_A_HT_TXCHWIDTH_2040 :
2945 			IEEE80211_A_HT_TXCHWIDTH_20;
2946 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2947 		return ht_action_output(ni, m);
2948 	} else {
2949 		vap->iv_stats.is_tx_nobuf++;
2950 		ieee80211_free_node(ni);
2951 		return ENOMEM;
2952 	}
2953 }
2954 #undef ADDSHORT
2955 
2956 /*
2957  * Construct the MCS bit mask for inclusion in an HT capabilities
2958  * information element.
2959  */
2960 static void
2961 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
2962 {
2963 	int i;
2964 	uint8_t txparams;
2965 
2966 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
2967 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
2968 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
2969 	    ("ic_txstream %d out of range", ic->ic_txstream));
2970 
2971 	for (i = 0; i < ic->ic_rxstream * 8; i++)
2972 		setbit(frm, i);
2973 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2974 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
2975 		setbit(frm, 32);
2976 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
2977 		if (ic->ic_rxstream >= 2) {
2978 			for (i = 33; i <= 38; i++)
2979 				setbit(frm, i);
2980 		}
2981 		if (ic->ic_rxstream >= 3) {
2982 			for (i = 39; i <= 52; i++)
2983 				setbit(frm, i);
2984 		}
2985 		if (ic->ic_txstream >= 4) {
2986 			for (i = 53; i <= 76; i++)
2987 				setbit(frm, i);
2988 		}
2989 	}
2990 
2991 	if (ic->ic_rxstream != ic->ic_txstream) {
2992 		txparams = 0x1;			/* TX MCS set defined */
2993 		txparams |= 0x2;		/* TX RX MCS not equal */
2994 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
2995 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
2996 			txparams |= 0x16;	/* TX unequal modulation sup */
2997 	} else
2998 		txparams = 0;
2999 	frm[12] = txparams;
3000 }
3001 
3002 /*
3003  * Add body of an HTCAP information element.
3004  */
3005 static uint8_t *
3006 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
3007 {
3008 #define	ADDSHORT(frm, v) do {			\
3009 	frm[0] = (v) & 0xff;			\
3010 	frm[1] = (v) >> 8;			\
3011 	frm += 2;				\
3012 } while (0)
3013 	struct ieee80211com *ic = ni->ni_ic;
3014 	struct ieee80211vap *vap = ni->ni_vap;
3015 	uint16_t caps, extcaps;
3016 	int rxmax, density;
3017 
3018 	/* HT capabilities */
3019 	caps = vap->iv_htcaps & 0xffff;
3020 	/*
3021 	 * Note channel width depends on whether we are operating as
3022 	 * a sta or not.  When operating as a sta we are generating
3023 	 * a request based on our desired configuration.  Otherwise
3024 	 * we are operational and the channel attributes identify
3025 	 * how we've been setup (which might be different if a fixed
3026 	 * channel is specified).
3027 	 */
3028 	if (vap->iv_opmode == IEEE80211_M_STA) {
3029 		/* override 20/40 use based on config */
3030 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
3031 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3032 		else
3033 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3034 
3035 		/* Start by using the advertised settings */
3036 		rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
3037 		density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
3038 
3039 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
3040 		    "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n",
3041 		    __func__,
3042 		    rxmax,
3043 		    density,
3044 		    vap->iv_ampdu_rxmax,
3045 		    vap->iv_ampdu_density);
3046 
3047 		/* Cap at VAP rxmax */
3048 		if (rxmax > vap->iv_ampdu_rxmax)
3049 			rxmax = vap->iv_ampdu_rxmax;
3050 
3051 		/*
3052 		 * If the VAP ampdu density value greater, use that.
3053 		 *
3054 		 * (Larger density value == larger minimum gap between A-MPDU
3055 		 * subframes.)
3056 		 */
3057 		if (vap->iv_ampdu_density > density)
3058 			density = vap->iv_ampdu_density;
3059 
3060 		/*
3061 		 * NB: Hardware might support HT40 on some but not all
3062 		 * channels. We can't determine this earlier because only
3063 		 * after association the channel is upgraded to HT based
3064 		 * on the negotiated capabilities.
3065 		 */
3066 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
3067 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
3068 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
3069 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3070 	} else {
3071 		/* override 20/40 use based on current channel */
3072 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3073 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3074 		else
3075 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3076 
3077 		/* XXX TODO should it start by using advertised settings? */
3078 		rxmax = vap->iv_ampdu_rxmax;
3079 		density = vap->iv_ampdu_density;
3080 	}
3081 
3082 	/* adjust short GI based on channel and config */
3083 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3084 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3085 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3086 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3087 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3088 
3089 	/* adjust STBC based on receive capabilities */
3090 	if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0)
3091 		caps &= ~IEEE80211_HTCAP_RXSTBC;
3092 
3093 	/* adjust LDPC based on receive capabilites */
3094 	if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0)
3095 		caps &= ~IEEE80211_HTCAP_LDPC;
3096 
3097 	ADDSHORT(frm, caps);
3098 
3099 	/* HT parameters */
3100 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3101 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
3102 	     ;
3103 	frm++;
3104 
3105 	/* pre-zero remainder of ie */
3106 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3107 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3108 
3109 	/* supported MCS set */
3110 	/*
3111 	 * XXX: For sta mode the rate set should be restricted based
3112 	 * on the AP's capabilities, but ni_htrates isn't setup when
3113 	 * we're called to form an AssocReq frame so for now we're
3114 	 * restricted to the device capabilities.
3115 	 */
3116 	ieee80211_set_mcsset(ni->ni_ic, frm);
3117 
3118 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3119 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3120 
3121 	/* HT extended capabilities */
3122 	extcaps = vap->iv_htextcaps & 0xffff;
3123 
3124 	ADDSHORT(frm, extcaps);
3125 
3126 	frm += sizeof(struct ieee80211_ie_htcap) -
3127 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3128 
3129 	return frm;
3130 #undef ADDSHORT
3131 }
3132 
3133 /*
3134  * Add 802.11n HT capabilities information element
3135  */
3136 uint8_t *
3137 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
3138 {
3139 	frm[0] = IEEE80211_ELEMID_HTCAP;
3140 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3141 	return ieee80211_add_htcap_body(frm + 2, ni);
3142 }
3143 
3144 /*
3145  * Non-associated probe request - add HT capabilities based on
3146  * the current channel configuration.
3147  */
3148 static uint8_t *
3149 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap,
3150     struct ieee80211_channel *c)
3151 {
3152 #define	ADDSHORT(frm, v) do {			\
3153 	frm[0] = (v) & 0xff;			\
3154 	frm[1] = (v) >> 8;			\
3155 	frm += 2;				\
3156 } while (0)
3157 	struct ieee80211com *ic = vap->iv_ic;
3158 	uint16_t caps, extcaps;
3159 	int rxmax, density;
3160 
3161 	/* HT capabilities */
3162 	caps = vap->iv_htcaps & 0xffff;
3163 
3164 	/*
3165 	 * We don't use this in STA mode; only in IBSS mode.
3166 	 * So in IBSS mode we base our HTCAP flags on the
3167 	 * given channel.
3168 	 */
3169 
3170 	/* override 20/40 use based on current channel */
3171 	if (IEEE80211_IS_CHAN_HT40(c))
3172 		caps |= IEEE80211_HTCAP_CHWIDTH40;
3173 	else
3174 		caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3175 
3176 	/* Use the currently configured values */
3177 	rxmax = vap->iv_ampdu_rxmax;
3178 	density = vap->iv_ampdu_density;
3179 
3180 	/* adjust short GI based on channel and config */
3181 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3182 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3183 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3184 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3185 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3186 	ADDSHORT(frm, caps);
3187 
3188 	/* HT parameters */
3189 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3190 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
3191 	     ;
3192 	frm++;
3193 
3194 	/* pre-zero remainder of ie */
3195 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3196 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3197 
3198 	/* supported MCS set */
3199 	/*
3200 	 * XXX: For sta mode the rate set should be restricted based
3201 	 * on the AP's capabilities, but ni_htrates isn't setup when
3202 	 * we're called to form an AssocReq frame so for now we're
3203 	 * restricted to the device capabilities.
3204 	 */
3205 	ieee80211_set_mcsset(ic, frm);
3206 
3207 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3208 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3209 
3210 	/* HT extended capabilities */
3211 	extcaps = vap->iv_htextcaps & 0xffff;
3212 
3213 	ADDSHORT(frm, extcaps);
3214 
3215 	frm += sizeof(struct ieee80211_ie_htcap) -
3216 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3217 
3218 	return frm;
3219 #undef ADDSHORT
3220 }
3221 
3222 /*
3223  * Add 802.11n HT capabilities information element
3224  */
3225 uint8_t *
3226 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap,
3227     struct ieee80211_channel *c)
3228 {
3229 	frm[0] = IEEE80211_ELEMID_HTCAP;
3230 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3231 	return ieee80211_add_htcap_body_ch(frm + 2, vap, c);
3232 }
3233 
3234 /*
3235  * Add Broadcom OUI wrapped standard HTCAP ie; this is
3236  * used for compatibility w/ pre-draft implementations.
3237  */
3238 uint8_t *
3239 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
3240 {
3241 	frm[0] = IEEE80211_ELEMID_VENDOR;
3242 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
3243 	frm[2] = (BCM_OUI >> 0) & 0xff;
3244 	frm[3] = (BCM_OUI >> 8) & 0xff;
3245 	frm[4] = (BCM_OUI >> 16) & 0xff;
3246 	frm[5] = BCM_OUI_HTCAP;
3247 	return ieee80211_add_htcap_body(frm + 6, ni);
3248 }
3249 
3250 /*
3251  * Construct the MCS bit mask of basic rates
3252  * for inclusion in an HT information element.
3253  */
3254 static void
3255 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
3256 {
3257 	int i;
3258 
3259 	for (i = 0; i < rs->rs_nrates; i++) {
3260 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
3261 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
3262 		    r < IEEE80211_HTRATE_MAXSIZE) {
3263 			/* NB: this assumes a particular implementation */
3264 			setbit(frm, r);
3265 		}
3266 	}
3267 }
3268 
3269 /*
3270  * Update the HTINFO ie for a beacon frame.
3271  */
3272 void
3273 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
3274 	struct ieee80211_beacon_offsets *bo)
3275 {
3276 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
3277 	struct ieee80211_node *ni;
3278 	const struct ieee80211_channel *bsschan;
3279 	struct ieee80211com *ic = vap->iv_ic;
3280 	struct ieee80211_ie_htinfo *ht =
3281 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
3282 
3283 	ni = ieee80211_ref_node(vap->iv_bss);
3284 	bsschan = ni->ni_chan;
3285 
3286 	/* XXX only update on channel change */
3287 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
3288 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3289 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
3290 	else
3291 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
3292 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
3293 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3294 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
3295 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3296 	else
3297 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
3298 	if (IEEE80211_IS_CHAN_HT40(bsschan))
3299 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
3300 
3301 	/* protection mode */
3302 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
3303 
3304 	ieee80211_free_node(ni);
3305 
3306 	/* XXX propagate to vendor ie's */
3307 #undef PROTMODE
3308 }
3309 
3310 /*
3311  * Add body of an HTINFO information element.
3312  *
3313  * NB: We don't use struct ieee80211_ie_htinfo because we can
3314  * be called to fillin both a standard ie and a compat ie that
3315  * has a vendor OUI at the front.
3316  */
3317 static uint8_t *
3318 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
3319 {
3320 	struct ieee80211vap *vap = ni->ni_vap;
3321 	struct ieee80211com *ic = ni->ni_ic;
3322 
3323 	/* pre-zero remainder of ie */
3324 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
3325 
3326 	/* primary/control channel center */
3327 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3328 
3329 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3330 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
3331 	else
3332 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
3333 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3334 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3335 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3336 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3337 	else
3338 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
3339 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3340 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
3341 
3342 	frm[1] = ic->ic_curhtprotmode;
3343 
3344 	frm += 5;
3345 
3346 	/* basic MCS set */
3347 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
3348 	frm += sizeof(struct ieee80211_ie_htinfo) -
3349 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
3350 	return frm;
3351 }
3352 
3353 /*
3354  * Add 802.11n HT information element.
3355  */
3356 uint8_t *
3357 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
3358 {
3359 	frm[0] = IEEE80211_ELEMID_HTINFO;
3360 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
3361 	return ieee80211_add_htinfo_body(frm + 2, ni);
3362 }
3363 
3364 /*
3365  * Add Broadcom OUI wrapped standard HTINFO ie; this is
3366  * used for compatibility w/ pre-draft implementations.
3367  */
3368 uint8_t *
3369 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
3370 {
3371 	frm[0] = IEEE80211_ELEMID_VENDOR;
3372 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
3373 	frm[2] = (BCM_OUI >> 0) & 0xff;
3374 	frm[3] = (BCM_OUI >> 8) & 0xff;
3375 	frm[4] = (BCM_OUI >> 16) & 0xff;
3376 	frm[5] = BCM_OUI_HTINFO;
3377 	return ieee80211_add_htinfo_body(frm + 6, ni);
3378 }
3379