1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * IEEE 802.11 support (FreeBSD-specific code) 33 */ 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/eventhandler.h> 39 #include <sys/kernel.h> 40 #include <sys/linker.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/module.h> 44 #include <sys/proc.h> 45 #include <sys/sysctl.h> 46 47 #include <sys/socket.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_dl.h> 53 #include <net/if_clone.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/ethernet.h> 57 #include <net/route.h> 58 #include <net/vnet.h> 59 60 #include <net80211/ieee80211_var.h> 61 #include <net80211/ieee80211_input.h> 62 63 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters"); 64 65 #ifdef IEEE80211_DEBUG 66 static int ieee80211_debug = 0; 67 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 68 0, "debugging printfs"); 69 #endif 70 71 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state"); 72 73 static const char wlanname[] = "wlan"; 74 static struct if_clone *wlan_cloner; 75 76 static int 77 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) 78 { 79 struct ieee80211_clone_params cp; 80 struct ieee80211vap *vap; 81 struct ieee80211com *ic; 82 int error; 83 84 error = copyin(params, &cp, sizeof(cp)); 85 if (error) 86 return error; 87 ic = ieee80211_find_com(cp.icp_parent); 88 if (ic == NULL) 89 return ENXIO; 90 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { 91 ic_printf(ic, "%s: invalid opmode %d\n", __func__, 92 cp.icp_opmode); 93 return EINVAL; 94 } 95 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { 96 ic_printf(ic, "%s mode not supported\n", 97 ieee80211_opmode_name[cp.icp_opmode]); 98 return EOPNOTSUPP; 99 } 100 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && 101 #ifdef IEEE80211_SUPPORT_TDMA 102 (ic->ic_caps & IEEE80211_C_TDMA) == 0 103 #else 104 (1) 105 #endif 106 ) { 107 ic_printf(ic, "TDMA not supported\n"); 108 return EOPNOTSUPP; 109 } 110 vap = ic->ic_vap_create(ic, wlanname, unit, 111 cp.icp_opmode, cp.icp_flags, cp.icp_bssid, 112 cp.icp_flags & IEEE80211_CLONE_MACADDR ? 113 cp.icp_macaddr : ic->ic_macaddr); 114 115 return (vap == NULL ? EIO : 0); 116 } 117 118 static void 119 wlan_clone_destroy(struct ifnet *ifp) 120 { 121 struct ieee80211vap *vap = ifp->if_softc; 122 struct ieee80211com *ic = vap->iv_ic; 123 124 ic->ic_vap_delete(vap); 125 } 126 127 void 128 ieee80211_vap_destroy(struct ieee80211vap *vap) 129 { 130 CURVNET_SET(vap->iv_ifp->if_vnet); 131 if_clone_destroyif(wlan_cloner, vap->iv_ifp); 132 CURVNET_RESTORE(); 133 } 134 135 int 136 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) 137 { 138 int msecs = ticks_to_msecs(*(int *)arg1); 139 int error, t; 140 141 error = sysctl_handle_int(oidp, &msecs, 0, req); 142 if (error || !req->newptr) 143 return error; 144 t = msecs_to_ticks(msecs); 145 *(int *)arg1 = (t < 1) ? 1 : t; 146 return 0; 147 } 148 149 static int 150 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) 151 { 152 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; 153 int error; 154 155 error = sysctl_handle_int(oidp, &inact, 0, req); 156 if (error || !req->newptr) 157 return error; 158 *(int *)arg1 = inact / IEEE80211_INACT_WAIT; 159 return 0; 160 } 161 162 static int 163 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) 164 { 165 struct ieee80211com *ic = arg1; 166 167 return SYSCTL_OUT_STR(req, ic->ic_name); 168 } 169 170 static int 171 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) 172 { 173 struct ieee80211com *ic = arg1; 174 int t = 0, error; 175 176 error = sysctl_handle_int(oidp, &t, 0, req); 177 if (error || !req->newptr) 178 return error; 179 IEEE80211_LOCK(ic); 180 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 181 IEEE80211_UNLOCK(ic); 182 return 0; 183 } 184 185 /* 186 * For now, just restart everything. 187 * 188 * Later on, it'd be nice to have a separate VAP restart to 189 * full-device restart. 190 */ 191 static int 192 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS) 193 { 194 struct ieee80211vap *vap = arg1; 195 int t = 0, error; 196 197 error = sysctl_handle_int(oidp, &t, 0, req); 198 if (error || !req->newptr) 199 return error; 200 201 ieee80211_restart_all(vap->iv_ic); 202 return 0; 203 } 204 205 void 206 ieee80211_sysctl_attach(struct ieee80211com *ic) 207 { 208 } 209 210 void 211 ieee80211_sysctl_detach(struct ieee80211com *ic) 212 { 213 } 214 215 void 216 ieee80211_sysctl_vattach(struct ieee80211vap *vap) 217 { 218 struct ifnet *ifp = vap->iv_ifp; 219 struct sysctl_ctx_list *ctx; 220 struct sysctl_oid *oid; 221 char num[14]; /* sufficient for 32 bits */ 222 223 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), 224 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 225 if (ctx == NULL) { 226 if_printf(ifp, "%s: cannot allocate sysctl context!\n", 227 __func__); 228 return; 229 } 230 sysctl_ctx_init(ctx); 231 snprintf(num, sizeof(num), "%u", ifp->if_dunit); 232 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), 233 OID_AUTO, num, CTLFLAG_RD, NULL, ""); 234 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 235 "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0, 236 ieee80211_sysctl_parent, "A", "parent device"); 237 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 238 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, 239 "driver capabilities"); 240 #ifdef IEEE80211_DEBUG 241 vap->iv_debug = ieee80211_debug; 242 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 243 "debug", CTLFLAG_RW, &vap->iv_debug, 0, 244 "control debugging printfs"); 245 #endif 246 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 247 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, 248 "consecutive beacon misses before scanning"); 249 /* XXX inherit from tunables */ 250 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 251 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0, 252 ieee80211_sysctl_inact, "I", 253 "station inactivity timeout (sec)"); 254 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 255 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0, 256 ieee80211_sysctl_inact, "I", 257 "station inactivity probe timeout (sec)"); 258 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 259 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0, 260 ieee80211_sysctl_inact, "I", 261 "station authentication timeout (sec)"); 262 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 263 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0, 264 ieee80211_sysctl_inact, "I", 265 "station initial state timeout (sec)"); 266 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 267 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 268 "ampdu_mintraffic_bk", CTLFLAG_RW, 269 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, 270 "BK traffic tx aggr threshold (pps)"); 271 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 272 "ampdu_mintraffic_be", CTLFLAG_RW, 273 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, 274 "BE traffic tx aggr threshold (pps)"); 275 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 276 "ampdu_mintraffic_vo", CTLFLAG_RW, 277 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, 278 "VO traffic tx aggr threshold (pps)"); 279 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 280 "ampdu_mintraffic_vi", CTLFLAG_RW, 281 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, 282 "VI traffic tx aggr threshold (pps)"); 283 } 284 285 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 286 "force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0, 287 ieee80211_sysctl_vap_restart, "I", 288 "force a VAP restart"); 289 290 if (vap->iv_caps & IEEE80211_C_DFS) { 291 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 292 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0, 293 ieee80211_sysctl_radar, "I", "simulate radar event"); 294 } 295 vap->iv_sysctl = ctx; 296 vap->iv_oid = oid; 297 } 298 299 void 300 ieee80211_sysctl_vdetach(struct ieee80211vap *vap) 301 { 302 303 if (vap->iv_sysctl != NULL) { 304 sysctl_ctx_free(vap->iv_sysctl); 305 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); 306 vap->iv_sysctl = NULL; 307 } 308 } 309 310 int 311 ieee80211_node_dectestref(struct ieee80211_node *ni) 312 { 313 /* XXX need equivalent of atomic_dec_and_test */ 314 atomic_subtract_int(&ni->ni_refcnt, 1); 315 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); 316 } 317 318 void 319 ieee80211_drain_ifq(struct ifqueue *ifq) 320 { 321 struct ieee80211_node *ni; 322 struct mbuf *m; 323 324 for (;;) { 325 IF_DEQUEUE(ifq, m); 326 if (m == NULL) 327 break; 328 329 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 330 KASSERT(ni != NULL, ("frame w/o node")); 331 ieee80211_free_node(ni); 332 m->m_pkthdr.rcvif = NULL; 333 334 m_freem(m); 335 } 336 } 337 338 void 339 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) 340 { 341 struct ieee80211_node *ni; 342 struct mbuf *m, **mprev; 343 344 IF_LOCK(ifq); 345 mprev = &ifq->ifq_head; 346 while ((m = *mprev) != NULL) { 347 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 348 if (ni != NULL && ni->ni_vap == vap) { 349 *mprev = m->m_nextpkt; /* remove from list */ 350 ifq->ifq_len--; 351 352 m_freem(m); 353 ieee80211_free_node(ni); /* reclaim ref */ 354 } else 355 mprev = &m->m_nextpkt; 356 } 357 /* recalculate tail ptr */ 358 m = ifq->ifq_head; 359 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) 360 ; 361 ifq->ifq_tail = m; 362 IF_UNLOCK(ifq); 363 } 364 365 /* 366 * As above, for mbufs allocated with m_gethdr/MGETHDR 367 * or initialized by M_COPY_PKTHDR. 368 */ 369 #define MC_ALIGN(m, len) \ 370 do { \ 371 (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \ 372 } while (/* CONSTCOND */ 0) 373 374 /* 375 * Allocate and setup a management frame of the specified 376 * size. We return the mbuf and a pointer to the start 377 * of the contiguous data area that's been reserved based 378 * on the packet length. The data area is forced to 32-bit 379 * alignment and the buffer length to a multiple of 4 bytes. 380 * This is done mainly so beacon frames (that require this) 381 * can use this interface too. 382 */ 383 struct mbuf * 384 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) 385 { 386 struct mbuf *m; 387 u_int len; 388 389 /* 390 * NB: we know the mbuf routines will align the data area 391 * so we don't need to do anything special. 392 */ 393 len = roundup2(headroom + pktlen, 4); 394 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); 395 if (len < MINCLSIZE) { 396 m = m_gethdr(M_NOWAIT, MT_DATA); 397 /* 398 * Align the data in case additional headers are added. 399 * This should only happen when a WEP header is added 400 * which only happens for shared key authentication mgt 401 * frames which all fit in MHLEN. 402 */ 403 if (m != NULL) 404 M_ALIGN(m, len); 405 } else { 406 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 407 if (m != NULL) 408 MC_ALIGN(m, len); 409 } 410 if (m != NULL) { 411 m->m_data += headroom; 412 *frm = m->m_data; 413 } 414 return m; 415 } 416 417 #ifndef __NO_STRICT_ALIGNMENT 418 /* 419 * Re-align the payload in the mbuf. This is mainly used (right now) 420 * to handle IP header alignment requirements on certain architectures. 421 */ 422 struct mbuf * 423 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) 424 { 425 int pktlen, space; 426 struct mbuf *n; 427 428 pktlen = m->m_pkthdr.len; 429 space = pktlen + align; 430 if (space < MINCLSIZE) 431 n = m_gethdr(M_NOWAIT, MT_DATA); 432 else { 433 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 434 space <= MCLBYTES ? MCLBYTES : 435 #if MJUMPAGESIZE != MCLBYTES 436 space <= MJUMPAGESIZE ? MJUMPAGESIZE : 437 #endif 438 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); 439 } 440 if (__predict_true(n != NULL)) { 441 m_move_pkthdr(n, m); 442 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); 443 m_copydata(m, 0, pktlen, mtod(n, caddr_t)); 444 n->m_len = pktlen; 445 } else { 446 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, 447 mtod(m, const struct ieee80211_frame *), NULL, 448 "%s", "no mbuf to realign"); 449 vap->iv_stats.is_rx_badalign++; 450 } 451 m_freem(m); 452 return n; 453 } 454 #endif /* !__NO_STRICT_ALIGNMENT */ 455 456 int 457 ieee80211_add_callback(struct mbuf *m, 458 void (*func)(struct ieee80211_node *, void *, int), void *arg) 459 { 460 struct m_tag *mtag; 461 struct ieee80211_cb *cb; 462 463 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, 464 sizeof(struct ieee80211_cb), M_NOWAIT); 465 if (mtag == NULL) 466 return 0; 467 468 cb = (struct ieee80211_cb *)(mtag+1); 469 cb->func = func; 470 cb->arg = arg; 471 m_tag_prepend(m, mtag); 472 m->m_flags |= M_TXCB; 473 return 1; 474 } 475 476 int 477 ieee80211_add_xmit_params(struct mbuf *m, 478 const struct ieee80211_bpf_params *params) 479 { 480 struct m_tag *mtag; 481 struct ieee80211_tx_params *tx; 482 483 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 484 sizeof(struct ieee80211_tx_params), M_NOWAIT); 485 if (mtag == NULL) 486 return (0); 487 488 tx = (struct ieee80211_tx_params *)(mtag+1); 489 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); 490 m_tag_prepend(m, mtag); 491 return (1); 492 } 493 494 int 495 ieee80211_get_xmit_params(struct mbuf *m, 496 struct ieee80211_bpf_params *params) 497 { 498 struct m_tag *mtag; 499 struct ieee80211_tx_params *tx; 500 501 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 502 NULL); 503 if (mtag == NULL) 504 return (-1); 505 tx = (struct ieee80211_tx_params *)(mtag + 1); 506 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); 507 return (0); 508 } 509 510 void 511 ieee80211_process_callback(struct ieee80211_node *ni, 512 struct mbuf *m, int status) 513 { 514 struct m_tag *mtag; 515 516 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); 517 if (mtag != NULL) { 518 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); 519 cb->func(ni, cb->arg, status); 520 } 521 } 522 523 /* 524 * Add RX parameters to the given mbuf. 525 * 526 * Returns 1 if OK, 0 on error. 527 */ 528 int 529 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) 530 { 531 struct m_tag *mtag; 532 struct ieee80211_rx_params *rx; 533 534 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 535 sizeof(struct ieee80211_rx_stats), M_NOWAIT); 536 if (mtag == NULL) 537 return (0); 538 539 rx = (struct ieee80211_rx_params *)(mtag + 1); 540 memcpy(&rx->params, rxs, sizeof(*rxs)); 541 m_tag_prepend(m, mtag); 542 return (1); 543 } 544 545 int 546 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) 547 { 548 struct m_tag *mtag; 549 struct ieee80211_rx_params *rx; 550 551 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 552 NULL); 553 if (mtag == NULL) 554 return (-1); 555 rx = (struct ieee80211_rx_params *)(mtag + 1); 556 memcpy(rxs, &rx->params, sizeof(*rxs)); 557 return (0); 558 } 559 560 const struct ieee80211_rx_stats * 561 ieee80211_get_rx_params_ptr(struct mbuf *m) 562 { 563 struct m_tag *mtag; 564 struct ieee80211_rx_params *rx; 565 566 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 567 NULL); 568 if (mtag == NULL) 569 return (NULL); 570 rx = (struct ieee80211_rx_params *)(mtag + 1); 571 return (&rx->params); 572 } 573 574 575 /* 576 * Add TOA parameters to the given mbuf. 577 */ 578 int 579 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p) 580 { 581 struct m_tag *mtag; 582 struct ieee80211_toa_params *rp; 583 584 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 585 sizeof(struct ieee80211_toa_params), M_NOWAIT); 586 if (mtag == NULL) 587 return (0); 588 589 rp = (struct ieee80211_toa_params *)(mtag + 1); 590 memcpy(rp, p, sizeof(*rp)); 591 m_tag_prepend(m, mtag); 592 return (1); 593 } 594 595 int 596 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p) 597 { 598 struct m_tag *mtag; 599 struct ieee80211_toa_params *rp; 600 601 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 602 NULL); 603 if (mtag == NULL) 604 return (0); 605 rp = (struct ieee80211_toa_params *)(mtag + 1); 606 if (p != NULL) 607 memcpy(p, rp, sizeof(*p)); 608 return (1); 609 } 610 611 /* 612 * Transmit a frame to the parent interface. 613 */ 614 int 615 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) 616 { 617 int error; 618 619 /* 620 * Assert the IC TX lock is held - this enforces the 621 * processing -> queuing order is maintained 622 */ 623 IEEE80211_TX_LOCK_ASSERT(ic); 624 error = ic->ic_transmit(ic, m); 625 if (error) { 626 struct ieee80211_node *ni; 627 628 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 629 630 /* XXX number of fragments */ 631 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 632 ieee80211_free_node(ni); 633 ieee80211_free_mbuf(m); 634 } 635 return (error); 636 } 637 638 /* 639 * Transmit a frame to the VAP interface. 640 */ 641 int 642 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) 643 { 644 struct ifnet *ifp = vap->iv_ifp; 645 646 /* 647 * When transmitting via the VAP, we shouldn't hold 648 * any IC TX lock as the VAP TX path will acquire it. 649 */ 650 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); 651 652 return (ifp->if_transmit(ifp, m)); 653 654 } 655 656 #include <sys/libkern.h> 657 658 void 659 get_random_bytes(void *p, size_t n) 660 { 661 uint8_t *dp = p; 662 663 while (n > 0) { 664 uint32_t v = arc4random(); 665 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; 666 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); 667 dp += sizeof(uint32_t), n -= nb; 668 } 669 } 670 671 /* 672 * Helper function for events that pass just a single mac address. 673 */ 674 static void 675 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) 676 { 677 struct ieee80211_join_event iev; 678 679 CURVNET_SET(ifp->if_vnet); 680 memset(&iev, 0, sizeof(iev)); 681 IEEE80211_ADDR_COPY(iev.iev_addr, mac); 682 rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); 683 CURVNET_RESTORE(); 684 } 685 686 void 687 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) 688 { 689 struct ieee80211vap *vap = ni->ni_vap; 690 struct ifnet *ifp = vap->iv_ifp; 691 692 CURVNET_SET_QUIET(ifp->if_vnet); 693 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", 694 (ni == vap->iv_bss) ? "bss " : ""); 695 696 if (ni == vap->iv_bss) { 697 notify_macaddr(ifp, newassoc ? 698 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); 699 if_link_state_change(ifp, LINK_STATE_UP); 700 } else { 701 notify_macaddr(ifp, newassoc ? 702 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); 703 } 704 CURVNET_RESTORE(); 705 } 706 707 void 708 ieee80211_notify_node_leave(struct ieee80211_node *ni) 709 { 710 struct ieee80211vap *vap = ni->ni_vap; 711 struct ifnet *ifp = vap->iv_ifp; 712 713 CURVNET_SET_QUIET(ifp->if_vnet); 714 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", 715 (ni == vap->iv_bss) ? "bss " : ""); 716 717 if (ni == vap->iv_bss) { 718 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); 719 if_link_state_change(ifp, LINK_STATE_DOWN); 720 } else { 721 /* fire off wireless event station leaving */ 722 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); 723 } 724 CURVNET_RESTORE(); 725 } 726 727 void 728 ieee80211_notify_scan_done(struct ieee80211vap *vap) 729 { 730 struct ifnet *ifp = vap->iv_ifp; 731 732 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); 733 734 /* dispatch wireless event indicating scan completed */ 735 CURVNET_SET(ifp->if_vnet); 736 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); 737 CURVNET_RESTORE(); 738 } 739 740 void 741 ieee80211_notify_replay_failure(struct ieee80211vap *vap, 742 const struct ieee80211_frame *wh, const struct ieee80211_key *k, 743 u_int64_t rsc, int tid) 744 { 745 struct ifnet *ifp = vap->iv_ifp; 746 747 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 748 "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>", 749 k->wk_cipher->ic_name, tid, (intmax_t) rsc, 750 (intmax_t) k->wk_keyrsc[tid], 751 k->wk_keyix, k->wk_rxkeyix); 752 753 if (ifp != NULL) { /* NB: for cipher test modules */ 754 struct ieee80211_replay_event iev; 755 756 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 757 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 758 iev.iev_cipher = k->wk_cipher->ic_cipher; 759 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) 760 iev.iev_keyix = k->wk_rxkeyix; 761 else 762 iev.iev_keyix = k->wk_keyix; 763 iev.iev_keyrsc = k->wk_keyrsc[tid]; 764 iev.iev_rsc = rsc; 765 CURVNET_SET(ifp->if_vnet); 766 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); 767 CURVNET_RESTORE(); 768 } 769 } 770 771 void 772 ieee80211_notify_michael_failure(struct ieee80211vap *vap, 773 const struct ieee80211_frame *wh, u_int keyix) 774 { 775 struct ifnet *ifp = vap->iv_ifp; 776 777 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 778 "michael MIC verification failed <keyix %u>", keyix); 779 vap->iv_stats.is_rx_tkipmic++; 780 781 if (ifp != NULL) { /* NB: for cipher test modules */ 782 struct ieee80211_michael_event iev; 783 784 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 785 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 786 iev.iev_cipher = IEEE80211_CIPHER_TKIP; 787 iev.iev_keyix = keyix; 788 CURVNET_SET(ifp->if_vnet); 789 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); 790 CURVNET_RESTORE(); 791 } 792 } 793 794 void 795 ieee80211_notify_wds_discover(struct ieee80211_node *ni) 796 { 797 struct ieee80211vap *vap = ni->ni_vap; 798 struct ifnet *ifp = vap->iv_ifp; 799 800 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); 801 } 802 803 void 804 ieee80211_notify_csa(struct ieee80211com *ic, 805 const struct ieee80211_channel *c, int mode, int count) 806 { 807 struct ieee80211_csa_event iev; 808 struct ieee80211vap *vap; 809 struct ifnet *ifp; 810 811 memset(&iev, 0, sizeof(iev)); 812 iev.iev_flags = c->ic_flags; 813 iev.iev_freq = c->ic_freq; 814 iev.iev_ieee = c->ic_ieee; 815 iev.iev_mode = mode; 816 iev.iev_count = count; 817 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 818 ifp = vap->iv_ifp; 819 CURVNET_SET(ifp->if_vnet); 820 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); 821 CURVNET_RESTORE(); 822 } 823 } 824 825 void 826 ieee80211_notify_radar(struct ieee80211com *ic, 827 const struct ieee80211_channel *c) 828 { 829 struct ieee80211_radar_event iev; 830 struct ieee80211vap *vap; 831 struct ifnet *ifp; 832 833 memset(&iev, 0, sizeof(iev)); 834 iev.iev_flags = c->ic_flags; 835 iev.iev_freq = c->ic_freq; 836 iev.iev_ieee = c->ic_ieee; 837 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 838 ifp = vap->iv_ifp; 839 CURVNET_SET(ifp->if_vnet); 840 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); 841 CURVNET_RESTORE(); 842 } 843 } 844 845 void 846 ieee80211_notify_cac(struct ieee80211com *ic, 847 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) 848 { 849 struct ieee80211_cac_event iev; 850 struct ieee80211vap *vap; 851 struct ifnet *ifp; 852 853 memset(&iev, 0, sizeof(iev)); 854 iev.iev_flags = c->ic_flags; 855 iev.iev_freq = c->ic_freq; 856 iev.iev_ieee = c->ic_ieee; 857 iev.iev_type = type; 858 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 859 ifp = vap->iv_ifp; 860 CURVNET_SET(ifp->if_vnet); 861 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); 862 CURVNET_RESTORE(); 863 } 864 } 865 866 void 867 ieee80211_notify_node_deauth(struct ieee80211_node *ni) 868 { 869 struct ieee80211vap *vap = ni->ni_vap; 870 struct ifnet *ifp = vap->iv_ifp; 871 872 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); 873 874 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); 875 } 876 877 void 878 ieee80211_notify_node_auth(struct ieee80211_node *ni) 879 { 880 struct ieee80211vap *vap = ni->ni_vap; 881 struct ifnet *ifp = vap->iv_ifp; 882 883 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); 884 885 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); 886 } 887 888 void 889 ieee80211_notify_country(struct ieee80211vap *vap, 890 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) 891 { 892 struct ifnet *ifp = vap->iv_ifp; 893 struct ieee80211_country_event iev; 894 895 memset(&iev, 0, sizeof(iev)); 896 IEEE80211_ADDR_COPY(iev.iev_addr, bssid); 897 iev.iev_cc[0] = cc[0]; 898 iev.iev_cc[1] = cc[1]; 899 CURVNET_SET(ifp->if_vnet); 900 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); 901 CURVNET_RESTORE(); 902 } 903 904 void 905 ieee80211_notify_radio(struct ieee80211com *ic, int state) 906 { 907 struct ieee80211_radio_event iev; 908 struct ieee80211vap *vap; 909 struct ifnet *ifp; 910 911 memset(&iev, 0, sizeof(iev)); 912 iev.iev_state = state; 913 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 914 ifp = vap->iv_ifp; 915 CURVNET_SET(ifp->if_vnet); 916 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); 917 CURVNET_RESTORE(); 918 } 919 } 920 921 void 922 ieee80211_load_module(const char *modname) 923 { 924 925 #ifdef notyet 926 (void)kern_kldload(curthread, modname, NULL); 927 #else 928 printf("%s: load the %s module by hand for now.\n", __func__, modname); 929 #endif 930 } 931 932 static eventhandler_tag wlan_bpfevent; 933 static eventhandler_tag wlan_ifllevent; 934 935 static void 936 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) 937 { 938 /* NB: identify vap's by if_init */ 939 if (dlt == DLT_IEEE802_11_RADIO && 940 ifp->if_init == ieee80211_init) { 941 struct ieee80211vap *vap = ifp->if_softc; 942 /* 943 * Track bpf radiotap listener state. We mark the vap 944 * to indicate if any listener is present and the com 945 * to indicate if any listener exists on any associated 946 * vap. This flag is used by drivers to prepare radiotap 947 * state only when needed. 948 */ 949 if (attach) { 950 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); 951 if (vap->iv_opmode == IEEE80211_M_MONITOR) 952 atomic_add_int(&vap->iv_ic->ic_montaps, 1); 953 } else if (!bpf_peers_present(vap->iv_rawbpf)) { 954 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); 955 if (vap->iv_opmode == IEEE80211_M_MONITOR) 956 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); 957 } 958 } 959 } 960 961 /* 962 * Change MAC address on the vap (if was not started). 963 */ 964 static void 965 wlan_iflladdr(void *arg __unused, struct ifnet *ifp) 966 { 967 /* NB: identify vap's by if_init */ 968 if (ifp->if_init == ieee80211_init && 969 (ifp->if_flags & IFF_UP) == 0) { 970 struct ieee80211vap *vap = ifp->if_softc; 971 972 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 973 } 974 } 975 976 /* 977 * Module glue. 978 * 979 * NB: the module name is "wlan" for compatibility with NetBSD. 980 */ 981 static int 982 wlan_modevent(module_t mod, int type, void *unused) 983 { 984 switch (type) { 985 case MOD_LOAD: 986 if (bootverbose) 987 printf("wlan: <802.11 Link Layer>\n"); 988 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, 989 bpf_track, 0, EVENTHANDLER_PRI_ANY); 990 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, 991 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 992 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create, 993 wlan_clone_destroy, 0); 994 return 0; 995 case MOD_UNLOAD: 996 if_clone_detach(wlan_cloner); 997 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 998 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); 999 return 0; 1000 } 1001 return EINVAL; 1002 } 1003 1004 static moduledata_t wlan_mod = { 1005 wlanname, 1006 wlan_modevent, 1007 0 1008 }; 1009 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 1010 MODULE_VERSION(wlan, 1); 1011 MODULE_DEPEND(wlan, ether, 1, 1, 1); 1012 #ifdef IEEE80211_ALQ 1013 MODULE_DEPEND(wlan, alq, 1, 1, 1); 1014 #endif /* IEEE80211_ALQ */ 1015 1016