1 /*- 2 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 /* 30 * IEEE 802.11 support (FreeBSD-specific code) 31 */ 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/systm.h> 37 #include <sys/linker.h> 38 #include <sys/mbuf.h> 39 #include <sys/module.h> 40 #include <sys/proc.h> 41 #include <sys/sysctl.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_clone.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 #include <net/ethernet.h> 53 #include <net/route.h> 54 #include <net/vnet.h> 55 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_input.h> 58 59 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters"); 60 61 #ifdef IEEE80211_DEBUG 62 int ieee80211_debug = 0; 63 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 64 0, "debugging printfs"); 65 #endif 66 67 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state"); 68 69 static const char wlanname[] = "wlan"; 70 static struct if_clone *wlan_cloner; 71 72 /* 73 * Allocate/free com structure in conjunction with ifnet; 74 * these routines are registered with if_register_com_alloc 75 * below and are called automatically by the ifnet code 76 * when the ifnet of the parent device is created. 77 */ 78 static void * 79 wlan_alloc(u_char type, struct ifnet *ifp) 80 { 81 struct ieee80211com *ic; 82 83 ic = IEEE80211_MALLOC(sizeof(struct ieee80211com), M_80211_COM, 84 IEEE80211_M_WAITOK | IEEE80211_M_ZERO); 85 ic->ic_ifp = ifp; 86 87 return (ic); 88 } 89 90 static void 91 wlan_free(void *ic, u_char type) 92 { 93 IEEE80211_FREE(ic, M_80211_COM); 94 } 95 96 static int 97 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) 98 { 99 struct ieee80211_clone_params cp; 100 struct ieee80211vap *vap; 101 struct ieee80211com *ic; 102 struct ifnet *ifp; 103 int error; 104 105 error = copyin(params, &cp, sizeof(cp)); 106 if (error) 107 return error; 108 ifp = ifunit(cp.icp_parent); 109 if (ifp == NULL) 110 return ENXIO; 111 /* XXX move printfs to DIAGNOSTIC before release */ 112 if (ifp->if_type != IFT_IEEE80211) { 113 if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__); 114 return ENXIO; 115 } 116 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { 117 if_printf(ifp, "%s: invalid opmode %d\n", 118 __func__, cp.icp_opmode); 119 return EINVAL; 120 } 121 ic = ifp->if_l2com; 122 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { 123 if_printf(ifp, "%s mode not supported\n", 124 ieee80211_opmode_name[cp.icp_opmode]); 125 return EOPNOTSUPP; 126 } 127 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && 128 #ifdef IEEE80211_SUPPORT_TDMA 129 (ic->ic_caps & IEEE80211_C_TDMA) == 0 130 #else 131 (1) 132 #endif 133 ) { 134 if_printf(ifp, "TDMA not supported\n"); 135 return EOPNOTSUPP; 136 } 137 vap = ic->ic_vap_create(ic, wlanname, unit, 138 cp.icp_opmode, cp.icp_flags, cp.icp_bssid, 139 cp.icp_flags & IEEE80211_CLONE_MACADDR ? 140 cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp)); 141 142 return (vap == NULL ? EIO : 0); 143 } 144 145 static void 146 wlan_clone_destroy(struct ifnet *ifp) 147 { 148 struct ieee80211vap *vap = ifp->if_softc; 149 struct ieee80211com *ic = vap->iv_ic; 150 151 ic->ic_vap_delete(vap); 152 } 153 154 void 155 ieee80211_vap_destroy(struct ieee80211vap *vap) 156 { 157 CURVNET_SET(vap->iv_ifp->if_vnet); 158 if_clone_destroyif(wlan_cloner, vap->iv_ifp); 159 CURVNET_RESTORE(); 160 } 161 162 int 163 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) 164 { 165 int msecs = ticks_to_msecs(*(int *)arg1); 166 int error, t; 167 168 error = sysctl_handle_int(oidp, &msecs, 0, req); 169 if (error || !req->newptr) 170 return error; 171 t = msecs_to_ticks(msecs); 172 *(int *)arg1 = (t < 1) ? 1 : t; 173 return 0; 174 } 175 176 static int 177 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) 178 { 179 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; 180 int error; 181 182 error = sysctl_handle_int(oidp, &inact, 0, req); 183 if (error || !req->newptr) 184 return error; 185 *(int *)arg1 = inact / IEEE80211_INACT_WAIT; 186 return 0; 187 } 188 189 static int 190 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) 191 { 192 struct ieee80211com *ic = arg1; 193 194 return SYSCTL_OUT_STR(req, ic->ic_name); 195 } 196 197 static int 198 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) 199 { 200 struct ieee80211com *ic = arg1; 201 int t = 0, error; 202 203 error = sysctl_handle_int(oidp, &t, 0, req); 204 if (error || !req->newptr) 205 return error; 206 IEEE80211_LOCK(ic); 207 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 208 IEEE80211_UNLOCK(ic); 209 return 0; 210 } 211 212 void 213 ieee80211_sysctl_attach(struct ieee80211com *ic) 214 { 215 } 216 217 void 218 ieee80211_sysctl_detach(struct ieee80211com *ic) 219 { 220 } 221 222 void 223 ieee80211_sysctl_vattach(struct ieee80211vap *vap) 224 { 225 struct ifnet *ifp = vap->iv_ifp; 226 struct sysctl_ctx_list *ctx; 227 struct sysctl_oid *oid; 228 char num[14]; /* sufficient for 32 bits */ 229 230 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), 231 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 232 if (ctx == NULL) { 233 if_printf(ifp, "%s: cannot allocate sysctl context!\n", 234 __func__); 235 return; 236 } 237 sysctl_ctx_init(ctx); 238 snprintf(num, sizeof(num), "%u", ifp->if_dunit); 239 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), 240 OID_AUTO, num, CTLFLAG_RD, NULL, ""); 241 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 242 "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0, 243 ieee80211_sysctl_parent, "A", "parent device"); 244 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 245 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, 246 "driver capabilities"); 247 #ifdef IEEE80211_DEBUG 248 vap->iv_debug = ieee80211_debug; 249 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 250 "debug", CTLFLAG_RW, &vap->iv_debug, 0, 251 "control debugging printfs"); 252 #endif 253 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 254 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, 255 "consecutive beacon misses before scanning"); 256 /* XXX inherit from tunables */ 257 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 258 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0, 259 ieee80211_sysctl_inact, "I", 260 "station inactivity timeout (sec)"); 261 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 262 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0, 263 ieee80211_sysctl_inact, "I", 264 "station inactivity probe timeout (sec)"); 265 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 266 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0, 267 ieee80211_sysctl_inact, "I", 268 "station authentication timeout (sec)"); 269 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 270 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0, 271 ieee80211_sysctl_inact, "I", 272 "station initial state timeout (sec)"); 273 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 274 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 275 "ampdu_mintraffic_bk", CTLFLAG_RW, 276 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, 277 "BK traffic tx aggr threshold (pps)"); 278 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 279 "ampdu_mintraffic_be", CTLFLAG_RW, 280 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, 281 "BE traffic tx aggr threshold (pps)"); 282 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 283 "ampdu_mintraffic_vo", CTLFLAG_RW, 284 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, 285 "VO traffic tx aggr threshold (pps)"); 286 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 287 "ampdu_mintraffic_vi", CTLFLAG_RW, 288 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, 289 "VI traffic tx aggr threshold (pps)"); 290 } 291 if (vap->iv_caps & IEEE80211_C_DFS) { 292 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 293 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0, 294 ieee80211_sysctl_radar, "I", "simulate radar event"); 295 } 296 vap->iv_sysctl = ctx; 297 vap->iv_oid = oid; 298 } 299 300 void 301 ieee80211_sysctl_vdetach(struct ieee80211vap *vap) 302 { 303 304 if (vap->iv_sysctl != NULL) { 305 sysctl_ctx_free(vap->iv_sysctl); 306 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); 307 vap->iv_sysctl = NULL; 308 } 309 } 310 311 int 312 ieee80211_node_dectestref(struct ieee80211_node *ni) 313 { 314 /* XXX need equivalent of atomic_dec_and_test */ 315 atomic_subtract_int(&ni->ni_refcnt, 1); 316 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); 317 } 318 319 void 320 ieee80211_drain_ifq(struct ifqueue *ifq) 321 { 322 struct ieee80211_node *ni; 323 struct mbuf *m; 324 325 for (;;) { 326 IF_DEQUEUE(ifq, m); 327 if (m == NULL) 328 break; 329 330 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 331 KASSERT(ni != NULL, ("frame w/o node")); 332 ieee80211_free_node(ni); 333 m->m_pkthdr.rcvif = NULL; 334 335 m_freem(m); 336 } 337 } 338 339 void 340 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) 341 { 342 struct ieee80211_node *ni; 343 struct mbuf *m, **mprev; 344 345 IF_LOCK(ifq); 346 mprev = &ifq->ifq_head; 347 while ((m = *mprev) != NULL) { 348 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 349 if (ni != NULL && ni->ni_vap == vap) { 350 *mprev = m->m_nextpkt; /* remove from list */ 351 ifq->ifq_len--; 352 353 m_freem(m); 354 ieee80211_free_node(ni); /* reclaim ref */ 355 } else 356 mprev = &m->m_nextpkt; 357 } 358 /* recalculate tail ptr */ 359 m = ifq->ifq_head; 360 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) 361 ; 362 ifq->ifq_tail = m; 363 IF_UNLOCK(ifq); 364 } 365 366 /* 367 * As above, for mbufs allocated with m_gethdr/MGETHDR 368 * or initialized by M_COPY_PKTHDR. 369 */ 370 #define MC_ALIGN(m, len) \ 371 do { \ 372 (m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1); \ 373 } while (/* CONSTCOND */ 0) 374 375 /* 376 * Allocate and setup a management frame of the specified 377 * size. We return the mbuf and a pointer to the start 378 * of the contiguous data area that's been reserved based 379 * on the packet length. The data area is forced to 32-bit 380 * alignment and the buffer length to a multiple of 4 bytes. 381 * This is done mainly so beacon frames (that require this) 382 * can use this interface too. 383 */ 384 struct mbuf * 385 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) 386 { 387 struct mbuf *m; 388 u_int len; 389 390 /* 391 * NB: we know the mbuf routines will align the data area 392 * so we don't need to do anything special. 393 */ 394 len = roundup2(headroom + pktlen, 4); 395 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); 396 if (len < MINCLSIZE) { 397 m = m_gethdr(M_NOWAIT, MT_DATA); 398 /* 399 * Align the data in case additional headers are added. 400 * This should only happen when a WEP header is added 401 * which only happens for shared key authentication mgt 402 * frames which all fit in MHLEN. 403 */ 404 if (m != NULL) 405 M_ALIGN(m, len); 406 } else { 407 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 408 if (m != NULL) 409 MC_ALIGN(m, len); 410 } 411 if (m != NULL) { 412 m->m_data += headroom; 413 *frm = m->m_data; 414 } 415 return m; 416 } 417 418 #ifndef __NO_STRICT_ALIGNMENT 419 /* 420 * Re-align the payload in the mbuf. This is mainly used (right now) 421 * to handle IP header alignment requirements on certain architectures. 422 */ 423 struct mbuf * 424 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) 425 { 426 int pktlen, space; 427 struct mbuf *n; 428 429 pktlen = m->m_pkthdr.len; 430 space = pktlen + align; 431 if (space < MINCLSIZE) 432 n = m_gethdr(M_NOWAIT, MT_DATA); 433 else { 434 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 435 space <= MCLBYTES ? MCLBYTES : 436 #if MJUMPAGESIZE != MCLBYTES 437 space <= MJUMPAGESIZE ? MJUMPAGESIZE : 438 #endif 439 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); 440 } 441 if (__predict_true(n != NULL)) { 442 m_move_pkthdr(n, m); 443 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); 444 m_copydata(m, 0, pktlen, mtod(n, caddr_t)); 445 n->m_len = pktlen; 446 } else { 447 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, 448 mtod(m, const struct ieee80211_frame *), NULL, 449 "%s", "no mbuf to realign"); 450 vap->iv_stats.is_rx_badalign++; 451 } 452 m_freem(m); 453 return n; 454 } 455 #endif /* !__NO_STRICT_ALIGNMENT */ 456 457 int 458 ieee80211_add_callback(struct mbuf *m, 459 void (*func)(struct ieee80211_node *, void *, int), void *arg) 460 { 461 struct m_tag *mtag; 462 struct ieee80211_cb *cb; 463 464 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, 465 sizeof(struct ieee80211_cb), M_NOWAIT); 466 if (mtag == NULL) 467 return 0; 468 469 cb = (struct ieee80211_cb *)(mtag+1); 470 cb->func = func; 471 cb->arg = arg; 472 m_tag_prepend(m, mtag); 473 m->m_flags |= M_TXCB; 474 return 1; 475 } 476 477 int 478 ieee80211_add_xmit_params(struct mbuf *m, 479 const struct ieee80211_bpf_params *params) 480 { 481 struct m_tag *mtag; 482 struct ieee80211_tx_params *tx; 483 484 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 485 sizeof(struct ieee80211_tx_params), M_NOWAIT); 486 if (mtag == NULL) 487 return (0); 488 489 tx = (struct ieee80211_tx_params *)(mtag+1); 490 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); 491 m_tag_prepend(m, mtag); 492 return (1); 493 } 494 495 int 496 ieee80211_get_xmit_params(struct mbuf *m, 497 struct ieee80211_bpf_params *params) 498 { 499 struct m_tag *mtag; 500 struct ieee80211_tx_params *tx; 501 502 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 503 NULL); 504 if (mtag == NULL) 505 return (-1); 506 tx = (struct ieee80211_tx_params *)(mtag + 1); 507 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); 508 return (0); 509 } 510 511 void 512 ieee80211_process_callback(struct ieee80211_node *ni, 513 struct mbuf *m, int status) 514 { 515 struct m_tag *mtag; 516 517 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); 518 if (mtag != NULL) { 519 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); 520 cb->func(ni, cb->arg, status); 521 } 522 } 523 524 /* 525 * Transmit a frame to the parent interface. 526 * 527 * TODO: if the transmission fails, make sure the parent node is freed 528 * (the callers will first need modifying.) 529 */ 530 int 531 ieee80211_parent_xmitpkt(struct ieee80211com *ic, 532 struct mbuf *m) 533 { 534 struct ifnet *parent = ic->ic_ifp; 535 /* 536 * Assert the IC TX lock is held - this enforces the 537 * processing -> queuing order is maintained 538 */ 539 IEEE80211_TX_LOCK_ASSERT(ic); 540 541 return (parent->if_transmit(parent, m)); 542 } 543 544 /* 545 * Transmit a frame to the VAP interface. 546 */ 547 int 548 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) 549 { 550 struct ifnet *ifp = vap->iv_ifp; 551 552 /* 553 * When transmitting via the VAP, we shouldn't hold 554 * any IC TX lock as the VAP TX path will acquire it. 555 */ 556 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); 557 558 return (ifp->if_transmit(ifp, m)); 559 560 } 561 562 #include <sys/libkern.h> 563 564 void 565 get_random_bytes(void *p, size_t n) 566 { 567 uint8_t *dp = p; 568 569 while (n > 0) { 570 uint32_t v = arc4random(); 571 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; 572 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); 573 dp += sizeof(uint32_t), n -= nb; 574 } 575 } 576 577 /* 578 * Helper function for events that pass just a single mac address. 579 */ 580 static void 581 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) 582 { 583 struct ieee80211_join_event iev; 584 585 CURVNET_SET(ifp->if_vnet); 586 memset(&iev, 0, sizeof(iev)); 587 IEEE80211_ADDR_COPY(iev.iev_addr, mac); 588 rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); 589 CURVNET_RESTORE(); 590 } 591 592 void 593 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) 594 { 595 struct ieee80211vap *vap = ni->ni_vap; 596 struct ifnet *ifp = vap->iv_ifp; 597 598 CURVNET_SET_QUIET(ifp->if_vnet); 599 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", 600 (ni == vap->iv_bss) ? "bss " : ""); 601 602 if (ni == vap->iv_bss) { 603 notify_macaddr(ifp, newassoc ? 604 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); 605 if_link_state_change(ifp, LINK_STATE_UP); 606 } else { 607 notify_macaddr(ifp, newassoc ? 608 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); 609 } 610 CURVNET_RESTORE(); 611 } 612 613 void 614 ieee80211_notify_node_leave(struct ieee80211_node *ni) 615 { 616 struct ieee80211vap *vap = ni->ni_vap; 617 struct ifnet *ifp = vap->iv_ifp; 618 619 CURVNET_SET_QUIET(ifp->if_vnet); 620 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", 621 (ni == vap->iv_bss) ? "bss " : ""); 622 623 if (ni == vap->iv_bss) { 624 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); 625 if_link_state_change(ifp, LINK_STATE_DOWN); 626 } else { 627 /* fire off wireless event station leaving */ 628 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); 629 } 630 CURVNET_RESTORE(); 631 } 632 633 void 634 ieee80211_notify_scan_done(struct ieee80211vap *vap) 635 { 636 struct ifnet *ifp = vap->iv_ifp; 637 638 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); 639 640 /* dispatch wireless event indicating scan completed */ 641 CURVNET_SET(ifp->if_vnet); 642 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); 643 CURVNET_RESTORE(); 644 } 645 646 void 647 ieee80211_notify_replay_failure(struct ieee80211vap *vap, 648 const struct ieee80211_frame *wh, const struct ieee80211_key *k, 649 u_int64_t rsc, int tid) 650 { 651 struct ifnet *ifp = vap->iv_ifp; 652 653 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 654 "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>", 655 k->wk_cipher->ic_name, tid, (intmax_t) rsc, 656 (intmax_t) k->wk_keyrsc[tid], 657 k->wk_keyix, k->wk_rxkeyix); 658 659 if (ifp != NULL) { /* NB: for cipher test modules */ 660 struct ieee80211_replay_event iev; 661 662 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 663 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 664 iev.iev_cipher = k->wk_cipher->ic_cipher; 665 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) 666 iev.iev_keyix = k->wk_rxkeyix; 667 else 668 iev.iev_keyix = k->wk_keyix; 669 iev.iev_keyrsc = k->wk_keyrsc[tid]; 670 iev.iev_rsc = rsc; 671 CURVNET_SET(ifp->if_vnet); 672 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); 673 CURVNET_RESTORE(); 674 } 675 } 676 677 void 678 ieee80211_notify_michael_failure(struct ieee80211vap *vap, 679 const struct ieee80211_frame *wh, u_int keyix) 680 { 681 struct ifnet *ifp = vap->iv_ifp; 682 683 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 684 "michael MIC verification failed <keyix %u>", keyix); 685 vap->iv_stats.is_rx_tkipmic++; 686 687 if (ifp != NULL) { /* NB: for cipher test modules */ 688 struct ieee80211_michael_event iev; 689 690 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 691 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 692 iev.iev_cipher = IEEE80211_CIPHER_TKIP; 693 iev.iev_keyix = keyix; 694 CURVNET_SET(ifp->if_vnet); 695 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); 696 CURVNET_RESTORE(); 697 } 698 } 699 700 void 701 ieee80211_notify_wds_discover(struct ieee80211_node *ni) 702 { 703 struct ieee80211vap *vap = ni->ni_vap; 704 struct ifnet *ifp = vap->iv_ifp; 705 706 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); 707 } 708 709 void 710 ieee80211_notify_csa(struct ieee80211com *ic, 711 const struct ieee80211_channel *c, int mode, int count) 712 { 713 struct ieee80211_csa_event iev; 714 struct ieee80211vap *vap; 715 struct ifnet *ifp; 716 717 memset(&iev, 0, sizeof(iev)); 718 iev.iev_flags = c->ic_flags; 719 iev.iev_freq = c->ic_freq; 720 iev.iev_ieee = c->ic_ieee; 721 iev.iev_mode = mode; 722 iev.iev_count = count; 723 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 724 ifp = vap->iv_ifp; 725 CURVNET_SET(ifp->if_vnet); 726 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); 727 CURVNET_RESTORE(); 728 } 729 } 730 731 void 732 ieee80211_notify_radar(struct ieee80211com *ic, 733 const struct ieee80211_channel *c) 734 { 735 struct ieee80211_radar_event iev; 736 struct ieee80211vap *vap; 737 struct ifnet *ifp; 738 739 memset(&iev, 0, sizeof(iev)); 740 iev.iev_flags = c->ic_flags; 741 iev.iev_freq = c->ic_freq; 742 iev.iev_ieee = c->ic_ieee; 743 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 744 ifp = vap->iv_ifp; 745 CURVNET_SET(ifp->if_vnet); 746 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); 747 CURVNET_RESTORE(); 748 } 749 } 750 751 void 752 ieee80211_notify_cac(struct ieee80211com *ic, 753 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) 754 { 755 struct ieee80211_cac_event iev; 756 struct ieee80211vap *vap; 757 struct ifnet *ifp; 758 759 memset(&iev, 0, sizeof(iev)); 760 iev.iev_flags = c->ic_flags; 761 iev.iev_freq = c->ic_freq; 762 iev.iev_ieee = c->ic_ieee; 763 iev.iev_type = type; 764 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 765 ifp = vap->iv_ifp; 766 CURVNET_SET(ifp->if_vnet); 767 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); 768 CURVNET_RESTORE(); 769 } 770 } 771 772 void 773 ieee80211_notify_node_deauth(struct ieee80211_node *ni) 774 { 775 struct ieee80211vap *vap = ni->ni_vap; 776 struct ifnet *ifp = vap->iv_ifp; 777 778 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); 779 780 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); 781 } 782 783 void 784 ieee80211_notify_node_auth(struct ieee80211_node *ni) 785 { 786 struct ieee80211vap *vap = ni->ni_vap; 787 struct ifnet *ifp = vap->iv_ifp; 788 789 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); 790 791 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); 792 } 793 794 void 795 ieee80211_notify_country(struct ieee80211vap *vap, 796 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) 797 { 798 struct ifnet *ifp = vap->iv_ifp; 799 struct ieee80211_country_event iev; 800 801 memset(&iev, 0, sizeof(iev)); 802 IEEE80211_ADDR_COPY(iev.iev_addr, bssid); 803 iev.iev_cc[0] = cc[0]; 804 iev.iev_cc[1] = cc[1]; 805 CURVNET_SET(ifp->if_vnet); 806 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); 807 CURVNET_RESTORE(); 808 } 809 810 void 811 ieee80211_notify_radio(struct ieee80211com *ic, int state) 812 { 813 struct ieee80211_radio_event iev; 814 struct ieee80211vap *vap; 815 struct ifnet *ifp; 816 817 memset(&iev, 0, sizeof(iev)); 818 iev.iev_state = state; 819 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 820 ifp = vap->iv_ifp; 821 CURVNET_SET(ifp->if_vnet); 822 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); 823 CURVNET_RESTORE(); 824 } 825 } 826 827 void 828 ieee80211_load_module(const char *modname) 829 { 830 831 #ifdef notyet 832 (void)kern_kldload(curthread, modname, NULL); 833 #else 834 printf("%s: load the %s module by hand for now.\n", __func__, modname); 835 #endif 836 } 837 838 static eventhandler_tag wlan_bpfevent; 839 static eventhandler_tag wlan_ifllevent; 840 841 static void 842 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) 843 { 844 /* NB: identify vap's by if_init */ 845 if (dlt == DLT_IEEE802_11_RADIO && 846 ifp->if_init == ieee80211_init) { 847 struct ieee80211vap *vap = ifp->if_softc; 848 /* 849 * Track bpf radiotap listener state. We mark the vap 850 * to indicate if any listener is present and the com 851 * to indicate if any listener exists on any associated 852 * vap. This flag is used by drivers to prepare radiotap 853 * state only when needed. 854 */ 855 if (attach) { 856 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); 857 if (vap->iv_opmode == IEEE80211_M_MONITOR) 858 atomic_add_int(&vap->iv_ic->ic_montaps, 1); 859 } else if (!bpf_peers_present(vap->iv_rawbpf)) { 860 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); 861 if (vap->iv_opmode == IEEE80211_M_MONITOR) 862 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); 863 } 864 } 865 } 866 867 static void 868 wlan_iflladdr(void *arg __unused, struct ifnet *ifp) 869 { 870 struct ieee80211com *ic = ifp->if_l2com; 871 struct ieee80211vap *vap, *next; 872 873 if (ifp->if_type != IFT_IEEE80211 || ic == NULL) 874 return; 875 876 IEEE80211_LOCK(ic); 877 TAILQ_FOREACH_SAFE(vap, &ic->ic_vaps, iv_next, next) { 878 /* 879 * If the MAC address has changed on the parent and it was 880 * copied to the vap on creation then re-sync. 881 */ 882 if (vap->iv_ic == ic && 883 (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) { 884 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 885 IEEE80211_UNLOCK(ic); 886 if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp), 887 IEEE80211_ADDR_LEN); 888 IEEE80211_LOCK(ic); 889 } 890 } 891 IEEE80211_UNLOCK(ic); 892 } 893 894 /* 895 * Module glue. 896 * 897 * NB: the module name is "wlan" for compatibility with NetBSD. 898 */ 899 static int 900 wlan_modevent(module_t mod, int type, void *unused) 901 { 902 switch (type) { 903 case MOD_LOAD: 904 if (bootverbose) 905 printf("wlan: <802.11 Link Layer>\n"); 906 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, 907 bpf_track, 0, EVENTHANDLER_PRI_ANY); 908 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, 909 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 910 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create, 911 wlan_clone_destroy, 0); 912 if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free); 913 return 0; 914 case MOD_UNLOAD: 915 if_deregister_com_alloc(IFT_IEEE80211); 916 if_clone_detach(wlan_cloner); 917 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 918 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); 919 return 0; 920 } 921 return EINVAL; 922 } 923 924 static moduledata_t wlan_mod = { 925 wlanname, 926 wlan_modevent, 927 0 928 }; 929 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 930 MODULE_VERSION(wlan, 1); 931 MODULE_DEPEND(wlan, ether, 1, 1, 1); 932 #ifdef IEEE80211_ALQ 933 MODULE_DEPEND(wlan, alq, 1, 1, 1); 934 #endif /* IEEE80211_ALQ */ 935 936