xref: /freebsd/sys/net80211/ieee80211_freebsd.c (revision f4b37ed0f8b307b1f3f0f630ca725d68f1dff30d)
1 /*-
2  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11 support (FreeBSD-specific code)
31  */
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/systm.h>
37 #include <sys/linker.h>
38 #include <sys/mbuf.h>
39 #include <sys/module.h>
40 #include <sys/proc.h>
41 #include <sys/sysctl.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_dl.h>
49 #include <net/if_clone.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 #include <net/ethernet.h>
53 #include <net/route.h>
54 #include <net/vnet.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_input.h>
58 
59 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
60 
61 #ifdef IEEE80211_DEBUG
62 int	ieee80211_debug = 0;
63 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
64 	    0, "debugging printfs");
65 #endif
66 
67 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
68 
69 static const char wlanname[] = "wlan";
70 static struct if_clone *wlan_cloner;
71 
72 /*
73  * Allocate/free com structure in conjunction with ifnet;
74  * these routines are registered with if_register_com_alloc
75  * below and are called automatically by the ifnet code
76  * when the ifnet of the parent device is created.
77  */
78 static void *
79 wlan_alloc(u_char type, struct ifnet *ifp)
80 {
81 	struct ieee80211com *ic;
82 
83 	ic = IEEE80211_MALLOC(sizeof(struct ieee80211com), M_80211_COM,
84 	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
85 	ic->ic_ifp = ifp;
86 
87 	return (ic);
88 }
89 
90 static void
91 wlan_free(void *ic, u_char type)
92 {
93 	IEEE80211_FREE(ic, M_80211_COM);
94 }
95 
96 static int
97 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
98 {
99 	struct ieee80211_clone_params cp;
100 	struct ieee80211vap *vap;
101 	struct ieee80211com *ic;
102 	struct ifnet *ifp;
103 	int error;
104 
105 	error = copyin(params, &cp, sizeof(cp));
106 	if (error)
107 		return error;
108 	ifp = ifunit(cp.icp_parent);
109 	if (ifp == NULL)
110 		return ENXIO;
111 	/* XXX move printfs to DIAGNOSTIC before release */
112 	if (ifp->if_type != IFT_IEEE80211) {
113 		if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__);
114 		return ENXIO;
115 	}
116 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
117 		if_printf(ifp, "%s: invalid opmode %d\n",
118 		    __func__, cp.icp_opmode);
119 		return EINVAL;
120 	}
121 	ic = ifp->if_l2com;
122 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
123 		if_printf(ifp, "%s mode not supported\n",
124 		    ieee80211_opmode_name[cp.icp_opmode]);
125 		return EOPNOTSUPP;
126 	}
127 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
128 #ifdef IEEE80211_SUPPORT_TDMA
129 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
130 #else
131 	    (1)
132 #endif
133 	) {
134 		if_printf(ifp, "TDMA not supported\n");
135 		return EOPNOTSUPP;
136 	}
137 	vap = ic->ic_vap_create(ic, wlanname, unit,
138 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
139 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
140 			    cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
141 
142 	return (vap == NULL ? EIO : 0);
143 }
144 
145 static void
146 wlan_clone_destroy(struct ifnet *ifp)
147 {
148 	struct ieee80211vap *vap = ifp->if_softc;
149 	struct ieee80211com *ic = vap->iv_ic;
150 
151 	ic->ic_vap_delete(vap);
152 }
153 
154 void
155 ieee80211_vap_destroy(struct ieee80211vap *vap)
156 {
157 	CURVNET_SET(vap->iv_ifp->if_vnet);
158 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
159 	CURVNET_RESTORE();
160 }
161 
162 int
163 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
164 {
165 	int msecs = ticks_to_msecs(*(int *)arg1);
166 	int error, t;
167 
168 	error = sysctl_handle_int(oidp, &msecs, 0, req);
169 	if (error || !req->newptr)
170 		return error;
171 	t = msecs_to_ticks(msecs);
172 	*(int *)arg1 = (t < 1) ? 1 : t;
173 	return 0;
174 }
175 
176 static int
177 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
178 {
179 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
180 	int error;
181 
182 	error = sysctl_handle_int(oidp, &inact, 0, req);
183 	if (error || !req->newptr)
184 		return error;
185 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
186 	return 0;
187 }
188 
189 static int
190 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
191 {
192 	struct ieee80211com *ic = arg1;
193 
194 	return SYSCTL_OUT_STR(req, ic->ic_name);
195 }
196 
197 static int
198 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
199 {
200 	struct ieee80211com *ic = arg1;
201 	int t = 0, error;
202 
203 	error = sysctl_handle_int(oidp, &t, 0, req);
204 	if (error || !req->newptr)
205 		return error;
206 	IEEE80211_LOCK(ic);
207 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
208 	IEEE80211_UNLOCK(ic);
209 	return 0;
210 }
211 
212 void
213 ieee80211_sysctl_attach(struct ieee80211com *ic)
214 {
215 }
216 
217 void
218 ieee80211_sysctl_detach(struct ieee80211com *ic)
219 {
220 }
221 
222 void
223 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
224 {
225 	struct ifnet *ifp = vap->iv_ifp;
226 	struct sysctl_ctx_list *ctx;
227 	struct sysctl_oid *oid;
228 	char num[14];			/* sufficient for 32 bits */
229 
230 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
231 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
232 	if (ctx == NULL) {
233 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
234 			__func__);
235 		return;
236 	}
237 	sysctl_ctx_init(ctx);
238 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
239 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
240 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
241 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
242 		"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
243 		ieee80211_sysctl_parent, "A", "parent device");
244 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
245 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
246 		"driver capabilities");
247 #ifdef IEEE80211_DEBUG
248 	vap->iv_debug = ieee80211_debug;
249 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
250 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
251 		"control debugging printfs");
252 #endif
253 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
254 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
255 		"consecutive beacon misses before scanning");
256 	/* XXX inherit from tunables */
257 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
258 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
259 		ieee80211_sysctl_inact, "I",
260 		"station inactivity timeout (sec)");
261 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
262 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
263 		ieee80211_sysctl_inact, "I",
264 		"station inactivity probe timeout (sec)");
265 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
266 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
267 		ieee80211_sysctl_inact, "I",
268 		"station authentication timeout (sec)");
269 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
270 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
271 		ieee80211_sysctl_inact, "I",
272 		"station initial state timeout (sec)");
273 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
274 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
275 			"ampdu_mintraffic_bk", CTLFLAG_RW,
276 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
277 			"BK traffic tx aggr threshold (pps)");
278 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
279 			"ampdu_mintraffic_be", CTLFLAG_RW,
280 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
281 			"BE traffic tx aggr threshold (pps)");
282 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
283 			"ampdu_mintraffic_vo", CTLFLAG_RW,
284 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
285 			"VO traffic tx aggr threshold (pps)");
286 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
287 			"ampdu_mintraffic_vi", CTLFLAG_RW,
288 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
289 			"VI traffic tx aggr threshold (pps)");
290 	}
291 	if (vap->iv_caps & IEEE80211_C_DFS) {
292 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
293 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
294 			ieee80211_sysctl_radar, "I", "simulate radar event");
295 	}
296 	vap->iv_sysctl = ctx;
297 	vap->iv_oid = oid;
298 }
299 
300 void
301 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
302 {
303 
304 	if (vap->iv_sysctl != NULL) {
305 		sysctl_ctx_free(vap->iv_sysctl);
306 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
307 		vap->iv_sysctl = NULL;
308 	}
309 }
310 
311 int
312 ieee80211_node_dectestref(struct ieee80211_node *ni)
313 {
314 	/* XXX need equivalent of atomic_dec_and_test */
315 	atomic_subtract_int(&ni->ni_refcnt, 1);
316 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
317 }
318 
319 void
320 ieee80211_drain_ifq(struct ifqueue *ifq)
321 {
322 	struct ieee80211_node *ni;
323 	struct mbuf *m;
324 
325 	for (;;) {
326 		IF_DEQUEUE(ifq, m);
327 		if (m == NULL)
328 			break;
329 
330 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
331 		KASSERT(ni != NULL, ("frame w/o node"));
332 		ieee80211_free_node(ni);
333 		m->m_pkthdr.rcvif = NULL;
334 
335 		m_freem(m);
336 	}
337 }
338 
339 void
340 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
341 {
342 	struct ieee80211_node *ni;
343 	struct mbuf *m, **mprev;
344 
345 	IF_LOCK(ifq);
346 	mprev = &ifq->ifq_head;
347 	while ((m = *mprev) != NULL) {
348 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
349 		if (ni != NULL && ni->ni_vap == vap) {
350 			*mprev = m->m_nextpkt;		/* remove from list */
351 			ifq->ifq_len--;
352 
353 			m_freem(m);
354 			ieee80211_free_node(ni);	/* reclaim ref */
355 		} else
356 			mprev = &m->m_nextpkt;
357 	}
358 	/* recalculate tail ptr */
359 	m = ifq->ifq_head;
360 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
361 		;
362 	ifq->ifq_tail = m;
363 	IF_UNLOCK(ifq);
364 }
365 
366 /*
367  * As above, for mbufs allocated with m_gethdr/MGETHDR
368  * or initialized by M_COPY_PKTHDR.
369  */
370 #define	MC_ALIGN(m, len)						\
371 do {									\
372 	(m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1);	\
373 } while (/* CONSTCOND */ 0)
374 
375 /*
376  * Allocate and setup a management frame of the specified
377  * size.  We return the mbuf and a pointer to the start
378  * of the contiguous data area that's been reserved based
379  * on the packet length.  The data area is forced to 32-bit
380  * alignment and the buffer length to a multiple of 4 bytes.
381  * This is done mainly so beacon frames (that require this)
382  * can use this interface too.
383  */
384 struct mbuf *
385 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
386 {
387 	struct mbuf *m;
388 	u_int len;
389 
390 	/*
391 	 * NB: we know the mbuf routines will align the data area
392 	 *     so we don't need to do anything special.
393 	 */
394 	len = roundup2(headroom + pktlen, 4);
395 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
396 	if (len < MINCLSIZE) {
397 		m = m_gethdr(M_NOWAIT, MT_DATA);
398 		/*
399 		 * Align the data in case additional headers are added.
400 		 * This should only happen when a WEP header is added
401 		 * which only happens for shared key authentication mgt
402 		 * frames which all fit in MHLEN.
403 		 */
404 		if (m != NULL)
405 			M_ALIGN(m, len);
406 	} else {
407 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
408 		if (m != NULL)
409 			MC_ALIGN(m, len);
410 	}
411 	if (m != NULL) {
412 		m->m_data += headroom;
413 		*frm = m->m_data;
414 	}
415 	return m;
416 }
417 
418 #ifndef __NO_STRICT_ALIGNMENT
419 /*
420  * Re-align the payload in the mbuf.  This is mainly used (right now)
421  * to handle IP header alignment requirements on certain architectures.
422  */
423 struct mbuf *
424 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
425 {
426 	int pktlen, space;
427 	struct mbuf *n;
428 
429 	pktlen = m->m_pkthdr.len;
430 	space = pktlen + align;
431 	if (space < MINCLSIZE)
432 		n = m_gethdr(M_NOWAIT, MT_DATA);
433 	else {
434 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
435 		    space <= MCLBYTES ?     MCLBYTES :
436 #if MJUMPAGESIZE != MCLBYTES
437 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
438 #endif
439 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
440 	}
441 	if (__predict_true(n != NULL)) {
442 		m_move_pkthdr(n, m);
443 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
444 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
445 		n->m_len = pktlen;
446 	} else {
447 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
448 		    mtod(m, const struct ieee80211_frame *), NULL,
449 		    "%s", "no mbuf to realign");
450 		vap->iv_stats.is_rx_badalign++;
451 	}
452 	m_freem(m);
453 	return n;
454 }
455 #endif /* !__NO_STRICT_ALIGNMENT */
456 
457 int
458 ieee80211_add_callback(struct mbuf *m,
459 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
460 {
461 	struct m_tag *mtag;
462 	struct ieee80211_cb *cb;
463 
464 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
465 			sizeof(struct ieee80211_cb), M_NOWAIT);
466 	if (mtag == NULL)
467 		return 0;
468 
469 	cb = (struct ieee80211_cb *)(mtag+1);
470 	cb->func = func;
471 	cb->arg = arg;
472 	m_tag_prepend(m, mtag);
473 	m->m_flags |= M_TXCB;
474 	return 1;
475 }
476 
477 int
478 ieee80211_add_xmit_params(struct mbuf *m,
479     const struct ieee80211_bpf_params *params)
480 {
481 	struct m_tag *mtag;
482 	struct ieee80211_tx_params *tx;
483 
484 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
485 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
486 	if (mtag == NULL)
487 		return (0);
488 
489 	tx = (struct ieee80211_tx_params *)(mtag+1);
490 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
491 	m_tag_prepend(m, mtag);
492 	return (1);
493 }
494 
495 int
496 ieee80211_get_xmit_params(struct mbuf *m,
497     struct ieee80211_bpf_params *params)
498 {
499 	struct m_tag *mtag;
500 	struct ieee80211_tx_params *tx;
501 
502 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
503 	    NULL);
504 	if (mtag == NULL)
505 		return (-1);
506 	tx = (struct ieee80211_tx_params *)(mtag + 1);
507 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
508 	return (0);
509 }
510 
511 void
512 ieee80211_process_callback(struct ieee80211_node *ni,
513 	struct mbuf *m, int status)
514 {
515 	struct m_tag *mtag;
516 
517 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
518 	if (mtag != NULL) {
519 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
520 		cb->func(ni, cb->arg, status);
521 	}
522 }
523 
524 /*
525  * Transmit a frame to the parent interface.
526  *
527  * TODO: if the transmission fails, make sure the parent node is freed
528  *   (the callers will first need modifying.)
529  */
530 int
531 ieee80211_parent_xmitpkt(struct ieee80211com *ic,
532 	struct mbuf *m)
533 {
534 	struct ifnet *parent = ic->ic_ifp;
535 	/*
536 	 * Assert the IC TX lock is held - this enforces the
537 	 * processing -> queuing order is maintained
538 	 */
539 	IEEE80211_TX_LOCK_ASSERT(ic);
540 
541 	return (parent->if_transmit(parent, m));
542 }
543 
544 /*
545  * Transmit a frame to the VAP interface.
546  */
547 int
548 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
549 {
550 	struct ifnet *ifp = vap->iv_ifp;
551 
552 	/*
553 	 * When transmitting via the VAP, we shouldn't hold
554 	 * any IC TX lock as the VAP TX path will acquire it.
555 	 */
556 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
557 
558 	return (ifp->if_transmit(ifp, m));
559 
560 }
561 
562 #include <sys/libkern.h>
563 
564 void
565 get_random_bytes(void *p, size_t n)
566 {
567 	uint8_t *dp = p;
568 
569 	while (n > 0) {
570 		uint32_t v = arc4random();
571 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
572 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
573 		dp += sizeof(uint32_t), n -= nb;
574 	}
575 }
576 
577 /*
578  * Helper function for events that pass just a single mac address.
579  */
580 static void
581 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
582 {
583 	struct ieee80211_join_event iev;
584 
585 	CURVNET_SET(ifp->if_vnet);
586 	memset(&iev, 0, sizeof(iev));
587 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
588 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
589 	CURVNET_RESTORE();
590 }
591 
592 void
593 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
594 {
595 	struct ieee80211vap *vap = ni->ni_vap;
596 	struct ifnet *ifp = vap->iv_ifp;
597 
598 	CURVNET_SET_QUIET(ifp->if_vnet);
599 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
600 	    (ni == vap->iv_bss) ? "bss " : "");
601 
602 	if (ni == vap->iv_bss) {
603 		notify_macaddr(ifp, newassoc ?
604 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
605 		if_link_state_change(ifp, LINK_STATE_UP);
606 	} else {
607 		notify_macaddr(ifp, newassoc ?
608 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
609 	}
610 	CURVNET_RESTORE();
611 }
612 
613 void
614 ieee80211_notify_node_leave(struct ieee80211_node *ni)
615 {
616 	struct ieee80211vap *vap = ni->ni_vap;
617 	struct ifnet *ifp = vap->iv_ifp;
618 
619 	CURVNET_SET_QUIET(ifp->if_vnet);
620 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
621 	    (ni == vap->iv_bss) ? "bss " : "");
622 
623 	if (ni == vap->iv_bss) {
624 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
625 		if_link_state_change(ifp, LINK_STATE_DOWN);
626 	} else {
627 		/* fire off wireless event station leaving */
628 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
629 	}
630 	CURVNET_RESTORE();
631 }
632 
633 void
634 ieee80211_notify_scan_done(struct ieee80211vap *vap)
635 {
636 	struct ifnet *ifp = vap->iv_ifp;
637 
638 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
639 
640 	/* dispatch wireless event indicating scan completed */
641 	CURVNET_SET(ifp->if_vnet);
642 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
643 	CURVNET_RESTORE();
644 }
645 
646 void
647 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
648 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
649 	u_int64_t rsc, int tid)
650 {
651 	struct ifnet *ifp = vap->iv_ifp;
652 
653 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
654 	    "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
655 	    k->wk_cipher->ic_name, tid, (intmax_t) rsc,
656 	    (intmax_t) k->wk_keyrsc[tid],
657 	    k->wk_keyix, k->wk_rxkeyix);
658 
659 	if (ifp != NULL) {		/* NB: for cipher test modules */
660 		struct ieee80211_replay_event iev;
661 
662 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
663 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
664 		iev.iev_cipher = k->wk_cipher->ic_cipher;
665 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
666 			iev.iev_keyix = k->wk_rxkeyix;
667 		else
668 			iev.iev_keyix = k->wk_keyix;
669 		iev.iev_keyrsc = k->wk_keyrsc[tid];
670 		iev.iev_rsc = rsc;
671 		CURVNET_SET(ifp->if_vnet);
672 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
673 		CURVNET_RESTORE();
674 	}
675 }
676 
677 void
678 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
679 	const struct ieee80211_frame *wh, u_int keyix)
680 {
681 	struct ifnet *ifp = vap->iv_ifp;
682 
683 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
684 	    "michael MIC verification failed <keyix %u>", keyix);
685 	vap->iv_stats.is_rx_tkipmic++;
686 
687 	if (ifp != NULL) {		/* NB: for cipher test modules */
688 		struct ieee80211_michael_event iev;
689 
690 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
691 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
692 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
693 		iev.iev_keyix = keyix;
694 		CURVNET_SET(ifp->if_vnet);
695 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
696 		CURVNET_RESTORE();
697 	}
698 }
699 
700 void
701 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
702 {
703 	struct ieee80211vap *vap = ni->ni_vap;
704 	struct ifnet *ifp = vap->iv_ifp;
705 
706 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
707 }
708 
709 void
710 ieee80211_notify_csa(struct ieee80211com *ic,
711 	const struct ieee80211_channel *c, int mode, int count)
712 {
713 	struct ieee80211_csa_event iev;
714 	struct ieee80211vap *vap;
715 	struct ifnet *ifp;
716 
717 	memset(&iev, 0, sizeof(iev));
718 	iev.iev_flags = c->ic_flags;
719 	iev.iev_freq = c->ic_freq;
720 	iev.iev_ieee = c->ic_ieee;
721 	iev.iev_mode = mode;
722 	iev.iev_count = count;
723 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
724 		ifp = vap->iv_ifp;
725 		CURVNET_SET(ifp->if_vnet);
726 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
727 		CURVNET_RESTORE();
728 	}
729 }
730 
731 void
732 ieee80211_notify_radar(struct ieee80211com *ic,
733 	const struct ieee80211_channel *c)
734 {
735 	struct ieee80211_radar_event iev;
736 	struct ieee80211vap *vap;
737 	struct ifnet *ifp;
738 
739 	memset(&iev, 0, sizeof(iev));
740 	iev.iev_flags = c->ic_flags;
741 	iev.iev_freq = c->ic_freq;
742 	iev.iev_ieee = c->ic_ieee;
743 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
744 		ifp = vap->iv_ifp;
745 		CURVNET_SET(ifp->if_vnet);
746 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
747 		CURVNET_RESTORE();
748 	}
749 }
750 
751 void
752 ieee80211_notify_cac(struct ieee80211com *ic,
753 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
754 {
755 	struct ieee80211_cac_event iev;
756 	struct ieee80211vap *vap;
757 	struct ifnet *ifp;
758 
759 	memset(&iev, 0, sizeof(iev));
760 	iev.iev_flags = c->ic_flags;
761 	iev.iev_freq = c->ic_freq;
762 	iev.iev_ieee = c->ic_ieee;
763 	iev.iev_type = type;
764 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
765 		ifp = vap->iv_ifp;
766 		CURVNET_SET(ifp->if_vnet);
767 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
768 		CURVNET_RESTORE();
769 	}
770 }
771 
772 void
773 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
774 {
775 	struct ieee80211vap *vap = ni->ni_vap;
776 	struct ifnet *ifp = vap->iv_ifp;
777 
778 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
779 
780 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
781 }
782 
783 void
784 ieee80211_notify_node_auth(struct ieee80211_node *ni)
785 {
786 	struct ieee80211vap *vap = ni->ni_vap;
787 	struct ifnet *ifp = vap->iv_ifp;
788 
789 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
790 
791 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
792 }
793 
794 void
795 ieee80211_notify_country(struct ieee80211vap *vap,
796 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
797 {
798 	struct ifnet *ifp = vap->iv_ifp;
799 	struct ieee80211_country_event iev;
800 
801 	memset(&iev, 0, sizeof(iev));
802 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
803 	iev.iev_cc[0] = cc[0];
804 	iev.iev_cc[1] = cc[1];
805 	CURVNET_SET(ifp->if_vnet);
806 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
807 	CURVNET_RESTORE();
808 }
809 
810 void
811 ieee80211_notify_radio(struct ieee80211com *ic, int state)
812 {
813 	struct ieee80211_radio_event iev;
814 	struct ieee80211vap *vap;
815 	struct ifnet *ifp;
816 
817 	memset(&iev, 0, sizeof(iev));
818 	iev.iev_state = state;
819 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
820 		ifp = vap->iv_ifp;
821 		CURVNET_SET(ifp->if_vnet);
822 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
823 		CURVNET_RESTORE();
824 	}
825 }
826 
827 void
828 ieee80211_load_module(const char *modname)
829 {
830 
831 #ifdef notyet
832 	(void)kern_kldload(curthread, modname, NULL);
833 #else
834 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
835 #endif
836 }
837 
838 static eventhandler_tag wlan_bpfevent;
839 static eventhandler_tag wlan_ifllevent;
840 
841 static void
842 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
843 {
844 	/* NB: identify vap's by if_init */
845 	if (dlt == DLT_IEEE802_11_RADIO &&
846 	    ifp->if_init == ieee80211_init) {
847 		struct ieee80211vap *vap = ifp->if_softc;
848 		/*
849 		 * Track bpf radiotap listener state.  We mark the vap
850 		 * to indicate if any listener is present and the com
851 		 * to indicate if any listener exists on any associated
852 		 * vap.  This flag is used by drivers to prepare radiotap
853 		 * state only when needed.
854 		 */
855 		if (attach) {
856 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
857 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
858 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
859 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
860 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
861 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
862 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
863 		}
864 	}
865 }
866 
867 static void
868 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
869 {
870 	struct ieee80211com *ic = ifp->if_l2com;
871 	struct ieee80211vap *vap, *next;
872 
873 	if (ifp->if_type != IFT_IEEE80211 || ic == NULL)
874 		return;
875 
876 	IEEE80211_LOCK(ic);
877 	TAILQ_FOREACH_SAFE(vap, &ic->ic_vaps, iv_next, next) {
878 		/*
879 		 * If the MAC address has changed on the parent and it was
880 		 * copied to the vap on creation then re-sync.
881 		 */
882 		if (vap->iv_ic == ic &&
883 		    (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) {
884 			IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
885 			IEEE80211_UNLOCK(ic);
886 			if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp),
887 			    IEEE80211_ADDR_LEN);
888 			IEEE80211_LOCK(ic);
889 		}
890 	}
891 	IEEE80211_UNLOCK(ic);
892 }
893 
894 /*
895  * Module glue.
896  *
897  * NB: the module name is "wlan" for compatibility with NetBSD.
898  */
899 static int
900 wlan_modevent(module_t mod, int type, void *unused)
901 {
902 	switch (type) {
903 	case MOD_LOAD:
904 		if (bootverbose)
905 			printf("wlan: <802.11 Link Layer>\n");
906 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
907 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
908 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
909 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
910 		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
911 		    wlan_clone_destroy, 0);
912 		if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free);
913 		return 0;
914 	case MOD_UNLOAD:
915 		if_deregister_com_alloc(IFT_IEEE80211);
916 		if_clone_detach(wlan_cloner);
917 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
918 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
919 		return 0;
920 	}
921 	return EINVAL;
922 }
923 
924 static moduledata_t wlan_mod = {
925 	wlanname,
926 	wlan_modevent,
927 	0
928 };
929 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
930 MODULE_VERSION(wlan, 1);
931 MODULE_DEPEND(wlan, ether, 1, 1, 1);
932 #ifdef	IEEE80211_ALQ
933 MODULE_DEPEND(wlan, alq, 1, 1, 1);
934 #endif	/* IEEE80211_ALQ */
935 
936