xref: /freebsd/sys/net80211/ieee80211_freebsd.c (revision eea7c61590ae8968b3f1f609cf0bc8633222a94f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * IEEE 802.11 support (FreeBSD-specific code)
33  */
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/eventhandler.h>
39 #include <sys/kernel.h>
40 #include <sys/linker.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/sysctl.h>
47 
48 #include <sys/socket.h>
49 
50 #include <net/bpf.h>
51 #include <net/debugnet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_dl.h>
55 #include <net/if_clone.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/ethernet.h>
59 #include <net/route.h>
60 #include <net/vnet.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_input.h>
64 
65 DEBUGNET_DEFINE(ieee80211);
66 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
67     "IEEE 80211 parameters");
68 
69 #ifdef IEEE80211_DEBUG
70 static int	ieee80211_debug = 0;
71 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
72 	    0, "debugging printfs");
73 #endif
74 
75 static const char wlanname[] = "wlan";
76 static struct if_clone *wlan_cloner;
77 
78 /*
79  * priv(9) NET80211 checks.
80  * Return 0 if operation is allowed, E* (usually EPERM) otherwise.
81  */
82 int
83 ieee80211_priv_check_vap_getkey(u_long cmd __unused,
84      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
85 {
86 
87 	return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY));
88 }
89 
90 int
91 ieee80211_priv_check_vap_manage(u_long cmd __unused,
92      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
93 {
94 
95 	return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE));
96 }
97 
98 int
99 ieee80211_priv_check_vap_setmac(u_long cmd __unused,
100      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
101 {
102 
103 	return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC));
104 }
105 
106 int
107 ieee80211_priv_check_create_vap(u_long cmd __unused,
108     struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
109 {
110 
111 	return (priv_check(curthread, PRIV_NET80211_CREATE_VAP));
112 }
113 
114 static int
115 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
116 {
117 	struct ieee80211_clone_params cp;
118 	struct ieee80211vap *vap;
119 	struct ieee80211com *ic;
120 	int error;
121 
122 	error = ieee80211_priv_check_create_vap(0, NULL, NULL);
123 	if (error)
124 		return error;
125 
126 	error = copyin(params, &cp, sizeof(cp));
127 	if (error)
128 		return error;
129 	ic = ieee80211_find_com(cp.icp_parent);
130 	if (ic == NULL)
131 		return ENXIO;
132 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
133 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
134 		    cp.icp_opmode);
135 		return EINVAL;
136 	}
137 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
138 		ic_printf(ic, "%s mode not supported\n",
139 		    ieee80211_opmode_name[cp.icp_opmode]);
140 		return EOPNOTSUPP;
141 	}
142 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
143 #ifdef IEEE80211_SUPPORT_TDMA
144 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
145 #else
146 	    (1)
147 #endif
148 	) {
149 		ic_printf(ic, "TDMA not supported\n");
150 		return EOPNOTSUPP;
151 	}
152 	vap = ic->ic_vap_create(ic, wlanname, unit,
153 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
154 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
155 			    cp.icp_macaddr : ic->ic_macaddr);
156 
157 	if (vap == NULL)
158 		return (EIO);
159 
160 #ifdef DEBUGNET
161 	if (ic->ic_debugnet_meth != NULL)
162 		DEBUGNET_SET(vap->iv_ifp, ieee80211);
163 #endif
164 	return (0);
165 }
166 
167 static void
168 wlan_clone_destroy(struct ifnet *ifp)
169 {
170 	struct ieee80211vap *vap = ifp->if_softc;
171 	struct ieee80211com *ic = vap->iv_ic;
172 
173 	ic->ic_vap_delete(vap);
174 }
175 
176 void
177 ieee80211_vap_destroy(struct ieee80211vap *vap)
178 {
179 	CURVNET_SET(vap->iv_ifp->if_vnet);
180 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
181 	CURVNET_RESTORE();
182 }
183 
184 int
185 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
186 {
187 	int msecs = ticks_to_msecs(*(int *)arg1);
188 	int error;
189 
190 	error = sysctl_handle_int(oidp, &msecs, 0, req);
191 	if (error || !req->newptr)
192 		return error;
193 	*(int *)arg1 = msecs_to_ticks(msecs);
194 	return 0;
195 }
196 
197 static int
198 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
199 {
200 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
201 	int error;
202 
203 	error = sysctl_handle_int(oidp, &inact, 0, req);
204 	if (error || !req->newptr)
205 		return error;
206 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
207 	return 0;
208 }
209 
210 static int
211 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
212 {
213 	struct ieee80211com *ic = arg1;
214 
215 	return SYSCTL_OUT_STR(req, ic->ic_name);
216 }
217 
218 static int
219 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
220 {
221 	struct ieee80211com *ic = arg1;
222 	int t = 0, error;
223 
224 	error = sysctl_handle_int(oidp, &t, 0, req);
225 	if (error || !req->newptr)
226 		return error;
227 	IEEE80211_LOCK(ic);
228 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
229 	IEEE80211_UNLOCK(ic);
230 	return 0;
231 }
232 
233 /*
234  * For now, just restart everything.
235  *
236  * Later on, it'd be nice to have a separate VAP restart to
237  * full-device restart.
238  */
239 static int
240 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
241 {
242 	struct ieee80211vap *vap = arg1;
243 	int t = 0, error;
244 
245 	error = sysctl_handle_int(oidp, &t, 0, req);
246 	if (error || !req->newptr)
247 		return error;
248 
249 	ieee80211_restart_all(vap->iv_ic);
250 	return 0;
251 }
252 
253 void
254 ieee80211_sysctl_attach(struct ieee80211com *ic)
255 {
256 }
257 
258 void
259 ieee80211_sysctl_detach(struct ieee80211com *ic)
260 {
261 }
262 
263 void
264 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
265 {
266 	struct ifnet *ifp = vap->iv_ifp;
267 	struct sysctl_ctx_list *ctx;
268 	struct sysctl_oid *oid;
269 	char num[14];			/* sufficient for 32 bits */
270 
271 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
272 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
273 	if (ctx == NULL) {
274 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
275 			__func__);
276 		return;
277 	}
278 	sysctl_ctx_init(ctx);
279 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
280 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
281 	    OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
282 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
283 	    "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
284 	    vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device");
285 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
286 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
287 		"driver capabilities");
288 #ifdef IEEE80211_DEBUG
289 	vap->iv_debug = ieee80211_debug;
290 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
291 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
292 		"control debugging printfs");
293 #endif
294 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
295 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
296 		"consecutive beacon misses before scanning");
297 	/* XXX inherit from tunables */
298 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
299 	    "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
300 	    &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I",
301 	    "station inactivity timeout (sec)");
302 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
303 	    "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
304 	    &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I",
305 	    "station inactivity probe timeout (sec)");
306 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
307 	    "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
308 	    &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I",
309 	    "station authentication timeout (sec)");
310 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
311 	    "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
312 	    &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I",
313 	    "station initial state timeout (sec)");
314 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
315 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
316 			"ampdu_mintraffic_bk", CTLFLAG_RW,
317 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
318 			"BK traffic tx aggr threshold (pps)");
319 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
320 			"ampdu_mintraffic_be", CTLFLAG_RW,
321 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
322 			"BE traffic tx aggr threshold (pps)");
323 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
324 			"ampdu_mintraffic_vo", CTLFLAG_RW,
325 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
326 			"VO traffic tx aggr threshold (pps)");
327 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
328 			"ampdu_mintraffic_vi", CTLFLAG_RW,
329 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
330 			"VI traffic tx aggr threshold (pps)");
331 	}
332 
333 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
334 	    "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
335 	    vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart");
336 
337 	if (vap->iv_caps & IEEE80211_C_DFS) {
338 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
339 		    "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
340 		    vap->iv_ic, 0, ieee80211_sysctl_radar, "I",
341 		    "simulate radar event");
342 	}
343 	vap->iv_sysctl = ctx;
344 	vap->iv_oid = oid;
345 }
346 
347 void
348 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
349 {
350 
351 	if (vap->iv_sysctl != NULL) {
352 		sysctl_ctx_free(vap->iv_sysctl);
353 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
354 		vap->iv_sysctl = NULL;
355 	}
356 }
357 
358 int
359 ieee80211_com_vincref(struct ieee80211vap *vap)
360 {
361 	uint32_t ostate;
362 
363 	ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
364 
365 	if (ostate & IEEE80211_COM_DETACHED) {
366 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
367 		return (ENETDOWN);
368 	}
369 
370 	if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) ==
371 	    IEEE80211_COM_REF_MAX) {
372 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
373 		return (EOVERFLOW);
374 	}
375 
376 	return (0);
377 }
378 
379 void
380 ieee80211_com_vdecref(struct ieee80211vap *vap)
381 {
382 	uint32_t ostate;
383 
384 	ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD);
385 
386 	KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0,
387 	    ("com reference counter underflow"));
388 
389 	(void) ostate;
390 }
391 
392 void
393 ieee80211_com_vdetach(struct ieee80211vap *vap)
394 {
395 	int sleep_time;
396 
397 	sleep_time = msecs_to_ticks(250);
398 	atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED);
399 	while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state),
400 	    IEEE80211_COM_REF) != 0)
401 		pause("comref", sleep_time);
402 }
403 
404 int
405 ieee80211_node_dectestref(struct ieee80211_node *ni)
406 {
407 	/* XXX need equivalent of atomic_dec_and_test */
408 	atomic_subtract_int(&ni->ni_refcnt, 1);
409 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
410 }
411 
412 void
413 ieee80211_drain_ifq(struct ifqueue *ifq)
414 {
415 	struct ieee80211_node *ni;
416 	struct mbuf *m;
417 
418 	for (;;) {
419 		IF_DEQUEUE(ifq, m);
420 		if (m == NULL)
421 			break;
422 
423 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
424 		KASSERT(ni != NULL, ("frame w/o node"));
425 		ieee80211_free_node(ni);
426 		m->m_pkthdr.rcvif = NULL;
427 
428 		m_freem(m);
429 	}
430 }
431 
432 void
433 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
434 {
435 	struct ieee80211_node *ni;
436 	struct mbuf *m, **mprev;
437 
438 	IF_LOCK(ifq);
439 	mprev = &ifq->ifq_head;
440 	while ((m = *mprev) != NULL) {
441 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
442 		if (ni != NULL && ni->ni_vap == vap) {
443 			*mprev = m->m_nextpkt;		/* remove from list */
444 			ifq->ifq_len--;
445 
446 			m_freem(m);
447 			ieee80211_free_node(ni);	/* reclaim ref */
448 		} else
449 			mprev = &m->m_nextpkt;
450 	}
451 	/* recalculate tail ptr */
452 	m = ifq->ifq_head;
453 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
454 		;
455 	ifq->ifq_tail = m;
456 	IF_UNLOCK(ifq);
457 }
458 
459 /*
460  * As above, for mbufs allocated with m_gethdr/MGETHDR
461  * or initialized by M_COPY_PKTHDR.
462  */
463 #define	MC_ALIGN(m, len)						\
464 do {									\
465 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
466 } while (/* CONSTCOND */ 0)
467 
468 /*
469  * Allocate and setup a management frame of the specified
470  * size.  We return the mbuf and a pointer to the start
471  * of the contiguous data area that's been reserved based
472  * on the packet length.  The data area is forced to 32-bit
473  * alignment and the buffer length to a multiple of 4 bytes.
474  * This is done mainly so beacon frames (that require this)
475  * can use this interface too.
476  */
477 struct mbuf *
478 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
479 {
480 	struct mbuf *m;
481 	u_int len;
482 
483 	/*
484 	 * NB: we know the mbuf routines will align the data area
485 	 *     so we don't need to do anything special.
486 	 */
487 	len = roundup2(headroom + pktlen, 4);
488 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
489 	if (len < MINCLSIZE) {
490 		m = m_gethdr(M_NOWAIT, MT_DATA);
491 		/*
492 		 * Align the data in case additional headers are added.
493 		 * This should only happen when a WEP header is added
494 		 * which only happens for shared key authentication mgt
495 		 * frames which all fit in MHLEN.
496 		 */
497 		if (m != NULL)
498 			M_ALIGN(m, len);
499 	} else {
500 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
501 		if (m != NULL)
502 			MC_ALIGN(m, len);
503 	}
504 	if (m != NULL) {
505 		m->m_data += headroom;
506 		*frm = m->m_data;
507 	}
508 	return m;
509 }
510 
511 #ifndef __NO_STRICT_ALIGNMENT
512 /*
513  * Re-align the payload in the mbuf.  This is mainly used (right now)
514  * to handle IP header alignment requirements on certain architectures.
515  */
516 struct mbuf *
517 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
518 {
519 	int pktlen, space;
520 	struct mbuf *n;
521 
522 	pktlen = m->m_pkthdr.len;
523 	space = pktlen + align;
524 	if (space < MINCLSIZE)
525 		n = m_gethdr(M_NOWAIT, MT_DATA);
526 	else {
527 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
528 		    space <= MCLBYTES ?     MCLBYTES :
529 #if MJUMPAGESIZE != MCLBYTES
530 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
531 #endif
532 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
533 	}
534 	if (__predict_true(n != NULL)) {
535 		m_move_pkthdr(n, m);
536 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
537 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
538 		n->m_len = pktlen;
539 	} else {
540 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
541 		    mtod(m, const struct ieee80211_frame *), NULL,
542 		    "%s", "no mbuf to realign");
543 		vap->iv_stats.is_rx_badalign++;
544 	}
545 	m_freem(m);
546 	return n;
547 }
548 #endif /* !__NO_STRICT_ALIGNMENT */
549 
550 int
551 ieee80211_add_callback(struct mbuf *m,
552 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
553 {
554 	struct m_tag *mtag;
555 	struct ieee80211_cb *cb;
556 
557 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
558 			sizeof(struct ieee80211_cb), M_NOWAIT);
559 	if (mtag == NULL)
560 		return 0;
561 
562 	cb = (struct ieee80211_cb *)(mtag+1);
563 	cb->func = func;
564 	cb->arg = arg;
565 	m_tag_prepend(m, mtag);
566 	m->m_flags |= M_TXCB;
567 	return 1;
568 }
569 
570 int
571 ieee80211_add_xmit_params(struct mbuf *m,
572     const struct ieee80211_bpf_params *params)
573 {
574 	struct m_tag *mtag;
575 	struct ieee80211_tx_params *tx;
576 
577 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
578 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
579 	if (mtag == NULL)
580 		return (0);
581 
582 	tx = (struct ieee80211_tx_params *)(mtag+1);
583 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
584 	m_tag_prepend(m, mtag);
585 	return (1);
586 }
587 
588 int
589 ieee80211_get_xmit_params(struct mbuf *m,
590     struct ieee80211_bpf_params *params)
591 {
592 	struct m_tag *mtag;
593 	struct ieee80211_tx_params *tx;
594 
595 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
596 	    NULL);
597 	if (mtag == NULL)
598 		return (-1);
599 	tx = (struct ieee80211_tx_params *)(mtag + 1);
600 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
601 	return (0);
602 }
603 
604 void
605 ieee80211_process_callback(struct ieee80211_node *ni,
606 	struct mbuf *m, int status)
607 {
608 	struct m_tag *mtag;
609 
610 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
611 	if (mtag != NULL) {
612 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
613 		cb->func(ni, cb->arg, status);
614 	}
615 }
616 
617 /*
618  * Add RX parameters to the given mbuf.
619  *
620  * Returns 1 if OK, 0 on error.
621  */
622 int
623 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
624 {
625 	struct m_tag *mtag;
626 	struct ieee80211_rx_params *rx;
627 
628 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
629 	    sizeof(struct ieee80211_rx_stats), M_NOWAIT);
630 	if (mtag == NULL)
631 		return (0);
632 
633 	rx = (struct ieee80211_rx_params *)(mtag + 1);
634 	memcpy(&rx->params, rxs, sizeof(*rxs));
635 	m_tag_prepend(m, mtag);
636 	return (1);
637 }
638 
639 int
640 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
641 {
642 	struct m_tag *mtag;
643 	struct ieee80211_rx_params *rx;
644 
645 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
646 	    NULL);
647 	if (mtag == NULL)
648 		return (-1);
649 	rx = (struct ieee80211_rx_params *)(mtag + 1);
650 	memcpy(rxs, &rx->params, sizeof(*rxs));
651 	return (0);
652 }
653 
654 const struct ieee80211_rx_stats *
655 ieee80211_get_rx_params_ptr(struct mbuf *m)
656 {
657 	struct m_tag *mtag;
658 	struct ieee80211_rx_params *rx;
659 
660 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
661 	    NULL);
662 	if (mtag == NULL)
663 		return (NULL);
664 	rx = (struct ieee80211_rx_params *)(mtag + 1);
665 	return (&rx->params);
666 }
667 
668 /*
669  * Add TOA parameters to the given mbuf.
670  */
671 int
672 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
673 {
674 	struct m_tag *mtag;
675 	struct ieee80211_toa_params *rp;
676 
677 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
678 	    sizeof(struct ieee80211_toa_params), M_NOWAIT);
679 	if (mtag == NULL)
680 		return (0);
681 
682 	rp = (struct ieee80211_toa_params *)(mtag + 1);
683 	memcpy(rp, p, sizeof(*rp));
684 	m_tag_prepend(m, mtag);
685 	return (1);
686 }
687 
688 int
689 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
690 {
691 	struct m_tag *mtag;
692 	struct ieee80211_toa_params *rp;
693 
694 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
695 	    NULL);
696 	if (mtag == NULL)
697 		return (0);
698 	rp = (struct ieee80211_toa_params *)(mtag + 1);
699 	if (p != NULL)
700 		memcpy(p, rp, sizeof(*p));
701 	return (1);
702 }
703 
704 /*
705  * Transmit a frame to the parent interface.
706  */
707 int
708 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
709 {
710 	int error;
711 
712 	/*
713 	 * Assert the IC TX lock is held - this enforces the
714 	 * processing -> queuing order is maintained
715 	 */
716 	IEEE80211_TX_LOCK_ASSERT(ic);
717 	error = ic->ic_transmit(ic, m);
718 	if (error) {
719 		struct ieee80211_node *ni;
720 
721 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
722 
723 		/* XXX number of fragments */
724 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
725 		ieee80211_free_node(ni);
726 		ieee80211_free_mbuf(m);
727 	}
728 	return (error);
729 }
730 
731 /*
732  * Transmit a frame to the VAP interface.
733  */
734 int
735 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
736 {
737 	struct ifnet *ifp = vap->iv_ifp;
738 
739 	/*
740 	 * When transmitting via the VAP, we shouldn't hold
741 	 * any IC TX lock as the VAP TX path will acquire it.
742 	 */
743 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
744 
745 	return (ifp->if_transmit(ifp, m));
746 
747 }
748 
749 #include <sys/libkern.h>
750 
751 void
752 net80211_get_random_bytes(void *p, size_t n)
753 {
754 	uint8_t *dp = p;
755 
756 	while (n > 0) {
757 		uint32_t v = arc4random();
758 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
759 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
760 		dp += sizeof(uint32_t), n -= nb;
761 	}
762 }
763 
764 /*
765  * Helper function for events that pass just a single mac address.
766  */
767 static void
768 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
769 {
770 	struct ieee80211_join_event iev;
771 
772 	CURVNET_SET(ifp->if_vnet);
773 	memset(&iev, 0, sizeof(iev));
774 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
775 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
776 	CURVNET_RESTORE();
777 }
778 
779 void
780 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
781 {
782 	struct ieee80211vap *vap = ni->ni_vap;
783 	struct ifnet *ifp = vap->iv_ifp;
784 
785 	CURVNET_SET_QUIET(ifp->if_vnet);
786 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
787 	    (ni == vap->iv_bss) ? "bss " : "");
788 
789 	if (ni == vap->iv_bss) {
790 		notify_macaddr(ifp, newassoc ?
791 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
792 		if_link_state_change(ifp, LINK_STATE_UP);
793 	} else {
794 		notify_macaddr(ifp, newassoc ?
795 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
796 	}
797 	CURVNET_RESTORE();
798 }
799 
800 void
801 ieee80211_notify_node_leave(struct ieee80211_node *ni)
802 {
803 	struct ieee80211vap *vap = ni->ni_vap;
804 	struct ifnet *ifp = vap->iv_ifp;
805 
806 	CURVNET_SET_QUIET(ifp->if_vnet);
807 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
808 	    (ni == vap->iv_bss) ? "bss " : "");
809 
810 	if (ni == vap->iv_bss) {
811 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
812 		if_link_state_change(ifp, LINK_STATE_DOWN);
813 	} else {
814 		/* fire off wireless event station leaving */
815 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
816 	}
817 	CURVNET_RESTORE();
818 }
819 
820 void
821 ieee80211_notify_scan_done(struct ieee80211vap *vap)
822 {
823 	struct ifnet *ifp = vap->iv_ifp;
824 
825 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
826 
827 	/* dispatch wireless event indicating scan completed */
828 	CURVNET_SET(ifp->if_vnet);
829 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
830 	CURVNET_RESTORE();
831 }
832 
833 void
834 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
835 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
836 	u_int64_t rsc, int tid)
837 {
838 	struct ifnet *ifp = vap->iv_ifp;
839 
840 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
841 	    "%s replay detected tid %d <rsc %ju (%jx), csc %ju (%jx), keyix %u rxkeyix %u>",
842 	    k->wk_cipher->ic_name, tid,
843 	    (intmax_t) rsc,
844 	    (intmax_t) rsc,
845 	    (intmax_t) k->wk_keyrsc[tid],
846 	    (intmax_t) k->wk_keyrsc[tid],
847 	    k->wk_keyix, k->wk_rxkeyix);
848 
849 	if (ifp != NULL) {		/* NB: for cipher test modules */
850 		struct ieee80211_replay_event iev;
851 
852 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
853 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
854 		iev.iev_cipher = k->wk_cipher->ic_cipher;
855 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
856 			iev.iev_keyix = k->wk_rxkeyix;
857 		else
858 			iev.iev_keyix = k->wk_keyix;
859 		iev.iev_keyrsc = k->wk_keyrsc[tid];
860 		iev.iev_rsc = rsc;
861 		CURVNET_SET(ifp->if_vnet);
862 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
863 		CURVNET_RESTORE();
864 	}
865 }
866 
867 void
868 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
869 	const struct ieee80211_frame *wh, u_int keyix)
870 {
871 	struct ifnet *ifp = vap->iv_ifp;
872 
873 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
874 	    "michael MIC verification failed <keyix %u>", keyix);
875 	vap->iv_stats.is_rx_tkipmic++;
876 
877 	if (ifp != NULL) {		/* NB: for cipher test modules */
878 		struct ieee80211_michael_event iev;
879 
880 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
881 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
882 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
883 		iev.iev_keyix = keyix;
884 		CURVNET_SET(ifp->if_vnet);
885 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
886 		CURVNET_RESTORE();
887 	}
888 }
889 
890 void
891 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
892 {
893 	struct ieee80211vap *vap = ni->ni_vap;
894 	struct ifnet *ifp = vap->iv_ifp;
895 
896 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
897 }
898 
899 void
900 ieee80211_notify_csa(struct ieee80211com *ic,
901 	const struct ieee80211_channel *c, int mode, int count)
902 {
903 	struct ieee80211_csa_event iev;
904 	struct ieee80211vap *vap;
905 	struct ifnet *ifp;
906 
907 	memset(&iev, 0, sizeof(iev));
908 	iev.iev_flags = c->ic_flags;
909 	iev.iev_freq = c->ic_freq;
910 	iev.iev_ieee = c->ic_ieee;
911 	iev.iev_mode = mode;
912 	iev.iev_count = count;
913 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
914 		ifp = vap->iv_ifp;
915 		CURVNET_SET(ifp->if_vnet);
916 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
917 		CURVNET_RESTORE();
918 	}
919 }
920 
921 void
922 ieee80211_notify_radar(struct ieee80211com *ic,
923 	const struct ieee80211_channel *c)
924 {
925 	struct ieee80211_radar_event iev;
926 	struct ieee80211vap *vap;
927 	struct ifnet *ifp;
928 
929 	memset(&iev, 0, sizeof(iev));
930 	iev.iev_flags = c->ic_flags;
931 	iev.iev_freq = c->ic_freq;
932 	iev.iev_ieee = c->ic_ieee;
933 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
934 		ifp = vap->iv_ifp;
935 		CURVNET_SET(ifp->if_vnet);
936 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
937 		CURVNET_RESTORE();
938 	}
939 }
940 
941 void
942 ieee80211_notify_cac(struct ieee80211com *ic,
943 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
944 {
945 	struct ieee80211_cac_event iev;
946 	struct ieee80211vap *vap;
947 	struct ifnet *ifp;
948 
949 	memset(&iev, 0, sizeof(iev));
950 	iev.iev_flags = c->ic_flags;
951 	iev.iev_freq = c->ic_freq;
952 	iev.iev_ieee = c->ic_ieee;
953 	iev.iev_type = type;
954 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
955 		ifp = vap->iv_ifp;
956 		CURVNET_SET(ifp->if_vnet);
957 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
958 		CURVNET_RESTORE();
959 	}
960 }
961 
962 void
963 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
964 {
965 	struct ieee80211vap *vap = ni->ni_vap;
966 	struct ifnet *ifp = vap->iv_ifp;
967 
968 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
969 
970 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
971 }
972 
973 void
974 ieee80211_notify_node_auth(struct ieee80211_node *ni)
975 {
976 	struct ieee80211vap *vap = ni->ni_vap;
977 	struct ifnet *ifp = vap->iv_ifp;
978 
979 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
980 
981 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
982 }
983 
984 void
985 ieee80211_notify_country(struct ieee80211vap *vap,
986 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
987 {
988 	struct ifnet *ifp = vap->iv_ifp;
989 	struct ieee80211_country_event iev;
990 
991 	memset(&iev, 0, sizeof(iev));
992 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
993 	iev.iev_cc[0] = cc[0];
994 	iev.iev_cc[1] = cc[1];
995 	CURVNET_SET(ifp->if_vnet);
996 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
997 	CURVNET_RESTORE();
998 }
999 
1000 void
1001 ieee80211_notify_radio(struct ieee80211com *ic, int state)
1002 {
1003 	struct ieee80211_radio_event iev;
1004 	struct ieee80211vap *vap;
1005 	struct ifnet *ifp;
1006 
1007 	memset(&iev, 0, sizeof(iev));
1008 	iev.iev_state = state;
1009 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1010 		ifp = vap->iv_ifp;
1011 		CURVNET_SET(ifp->if_vnet);
1012 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
1013 		CURVNET_RESTORE();
1014 	}
1015 }
1016 
1017 void
1018 ieee80211_notify_ifnet_change(struct ieee80211vap *vap)
1019 {
1020 	struct ifnet *ifp = vap->iv_ifp;
1021 
1022 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n",
1023 	    "interface state change");
1024 
1025 	CURVNET_SET(ifp->if_vnet);
1026 	rt_ifmsg(ifp);
1027 	CURVNET_RESTORE();
1028 }
1029 
1030 void
1031 ieee80211_load_module(const char *modname)
1032 {
1033 
1034 #ifdef notyet
1035 	(void)kern_kldload(curthread, modname, NULL);
1036 #else
1037 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
1038 #endif
1039 }
1040 
1041 static eventhandler_tag wlan_bpfevent;
1042 static eventhandler_tag wlan_ifllevent;
1043 
1044 static void
1045 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
1046 {
1047 	/* NB: identify vap's by if_init */
1048 	if (dlt == DLT_IEEE802_11_RADIO &&
1049 	    ifp->if_init == ieee80211_init) {
1050 		struct ieee80211vap *vap = ifp->if_softc;
1051 		/*
1052 		 * Track bpf radiotap listener state.  We mark the vap
1053 		 * to indicate if any listener is present and the com
1054 		 * to indicate if any listener exists on any associated
1055 		 * vap.  This flag is used by drivers to prepare radiotap
1056 		 * state only when needed.
1057 		 */
1058 		if (attach) {
1059 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1060 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1061 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1062 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
1063 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1064 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1065 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1066 		}
1067 	}
1068 }
1069 
1070 /*
1071  * Change MAC address on the vap (if was not started).
1072  */
1073 static void
1074 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
1075 {
1076 	/* NB: identify vap's by if_init */
1077 	if (ifp->if_init == ieee80211_init &&
1078 	    (ifp->if_flags & IFF_UP) == 0) {
1079 		struct ieee80211vap *vap = ifp->if_softc;
1080 
1081 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1082 	}
1083 }
1084 
1085 /*
1086  * Fetch the VAP name.
1087  *
1088  * This returns a const char pointer suitable for debugging,
1089  * but don't expect it to stick around for much longer.
1090  */
1091 const char *
1092 ieee80211_get_vap_ifname(struct ieee80211vap *vap)
1093 {
1094 	if (vap->iv_ifp == NULL)
1095 		return "(none)";
1096 	return vap->iv_ifp->if_xname;
1097 }
1098 
1099 #ifdef DEBUGNET
1100 static void
1101 ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
1102 {
1103 	struct ieee80211vap *vap;
1104 	struct ieee80211com *ic;
1105 
1106 	vap = if_getsoftc(ifp);
1107 	ic = vap->iv_ic;
1108 
1109 	IEEE80211_LOCK(ic);
1110 	ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize);
1111 	IEEE80211_UNLOCK(ic);
1112 }
1113 
1114 static void
1115 ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev)
1116 {
1117 	struct ieee80211vap *vap;
1118 	struct ieee80211com *ic;
1119 
1120 	vap = if_getsoftc(ifp);
1121 	ic = vap->iv_ic;
1122 
1123 	IEEE80211_LOCK(ic);
1124 	ic->ic_debugnet_meth->dn8_event(ic, ev);
1125 	IEEE80211_UNLOCK(ic);
1126 }
1127 
1128 static int
1129 ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
1130 {
1131 	return (ieee80211_vap_transmit(ifp, m));
1132 }
1133 
1134 static int
1135 ieee80211_debugnet_poll(struct ifnet *ifp, int count)
1136 {
1137 	struct ieee80211vap *vap;
1138 	struct ieee80211com *ic;
1139 
1140 	vap = if_getsoftc(ifp);
1141 	ic = vap->iv_ic;
1142 
1143 	return (ic->ic_debugnet_meth->dn8_poll(ic, count));
1144 }
1145 #endif
1146 
1147 /*
1148  * Module glue.
1149  *
1150  * NB: the module name is "wlan" for compatibility with NetBSD.
1151  */
1152 static int
1153 wlan_modevent(module_t mod, int type, void *unused)
1154 {
1155 	switch (type) {
1156 	case MOD_LOAD:
1157 		if (bootverbose)
1158 			printf("wlan: <802.11 Link Layer>\n");
1159 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1160 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
1161 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1162 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
1163 		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
1164 		    wlan_clone_destroy, 0);
1165 		return 0;
1166 	case MOD_UNLOAD:
1167 		if_clone_detach(wlan_cloner);
1168 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1169 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1170 		return 0;
1171 	}
1172 	return EINVAL;
1173 }
1174 
1175 static moduledata_t wlan_mod = {
1176 	wlanname,
1177 	wlan_modevent,
1178 	0
1179 };
1180 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1181 MODULE_VERSION(wlan, 1);
1182 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1183 #ifdef	IEEE80211_ALQ
1184 MODULE_DEPEND(wlan, alq, 1, 1, 1);
1185 #endif	/* IEEE80211_ALQ */
1186