1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * IEEE 802.11 support (FreeBSD-specific code) 33 */ 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/eventhandler.h> 39 #include <sys/kernel.h> 40 #include <sys/linker.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/module.h> 44 #include <sys/proc.h> 45 #include <sys/sysctl.h> 46 47 #include <sys/socket.h> 48 49 #include <net/bpf.h> 50 #include <net/debugnet.h> 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/if_dl.h> 54 #include <net/if_clone.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 #include <net/ethernet.h> 58 #include <net/route.h> 59 #include <net/vnet.h> 60 61 #include <net80211/ieee80211_var.h> 62 #include <net80211/ieee80211_input.h> 63 64 DEBUGNET_DEFINE(ieee80211); 65 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 66 "IEEE 80211 parameters"); 67 68 #ifdef IEEE80211_DEBUG 69 static int ieee80211_debug = 0; 70 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 71 0, "debugging printfs"); 72 #endif 73 74 static const char wlanname[] = "wlan"; 75 static struct if_clone *wlan_cloner; 76 77 static int 78 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) 79 { 80 struct ieee80211_clone_params cp; 81 struct ieee80211vap *vap; 82 struct ieee80211com *ic; 83 int error; 84 85 error = copyin(params, &cp, sizeof(cp)); 86 if (error) 87 return error; 88 ic = ieee80211_find_com(cp.icp_parent); 89 if (ic == NULL) 90 return ENXIO; 91 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { 92 ic_printf(ic, "%s: invalid opmode %d\n", __func__, 93 cp.icp_opmode); 94 return EINVAL; 95 } 96 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { 97 ic_printf(ic, "%s mode not supported\n", 98 ieee80211_opmode_name[cp.icp_opmode]); 99 return EOPNOTSUPP; 100 } 101 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && 102 #ifdef IEEE80211_SUPPORT_TDMA 103 (ic->ic_caps & IEEE80211_C_TDMA) == 0 104 #else 105 (1) 106 #endif 107 ) { 108 ic_printf(ic, "TDMA not supported\n"); 109 return EOPNOTSUPP; 110 } 111 vap = ic->ic_vap_create(ic, wlanname, unit, 112 cp.icp_opmode, cp.icp_flags, cp.icp_bssid, 113 cp.icp_flags & IEEE80211_CLONE_MACADDR ? 114 cp.icp_macaddr : ic->ic_macaddr); 115 116 if (vap == NULL) 117 return (EIO); 118 119 #ifdef DEBUGNET 120 if (ic->ic_debugnet_meth != NULL) 121 DEBUGNET_SET(vap->iv_ifp, ieee80211); 122 #endif 123 return (0); 124 } 125 126 static void 127 wlan_clone_destroy(struct ifnet *ifp) 128 { 129 struct ieee80211vap *vap = ifp->if_softc; 130 struct ieee80211com *ic = vap->iv_ic; 131 132 ic->ic_vap_delete(vap); 133 } 134 135 void 136 ieee80211_vap_destroy(struct ieee80211vap *vap) 137 { 138 CURVNET_SET(vap->iv_ifp->if_vnet); 139 if_clone_destroyif(wlan_cloner, vap->iv_ifp); 140 CURVNET_RESTORE(); 141 } 142 143 int 144 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) 145 { 146 int msecs = ticks_to_msecs(*(int *)arg1); 147 int error; 148 149 error = sysctl_handle_int(oidp, &msecs, 0, req); 150 if (error || !req->newptr) 151 return error; 152 *(int *)arg1 = msecs_to_ticks(msecs); 153 return 0; 154 } 155 156 static int 157 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) 158 { 159 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; 160 int error; 161 162 error = sysctl_handle_int(oidp, &inact, 0, req); 163 if (error || !req->newptr) 164 return error; 165 *(int *)arg1 = inact / IEEE80211_INACT_WAIT; 166 return 0; 167 } 168 169 static int 170 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) 171 { 172 struct ieee80211com *ic = arg1; 173 174 return SYSCTL_OUT_STR(req, ic->ic_name); 175 } 176 177 static int 178 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) 179 { 180 struct ieee80211com *ic = arg1; 181 int t = 0, error; 182 183 error = sysctl_handle_int(oidp, &t, 0, req); 184 if (error || !req->newptr) 185 return error; 186 IEEE80211_LOCK(ic); 187 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 188 IEEE80211_UNLOCK(ic); 189 return 0; 190 } 191 192 /* 193 * For now, just restart everything. 194 * 195 * Later on, it'd be nice to have a separate VAP restart to 196 * full-device restart. 197 */ 198 static int 199 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS) 200 { 201 struct ieee80211vap *vap = arg1; 202 int t = 0, error; 203 204 error = sysctl_handle_int(oidp, &t, 0, req); 205 if (error || !req->newptr) 206 return error; 207 208 ieee80211_restart_all(vap->iv_ic); 209 return 0; 210 } 211 212 void 213 ieee80211_sysctl_attach(struct ieee80211com *ic) 214 { 215 } 216 217 void 218 ieee80211_sysctl_detach(struct ieee80211com *ic) 219 { 220 } 221 222 void 223 ieee80211_sysctl_vattach(struct ieee80211vap *vap) 224 { 225 struct ifnet *ifp = vap->iv_ifp; 226 struct sysctl_ctx_list *ctx; 227 struct sysctl_oid *oid; 228 char num[14]; /* sufficient for 32 bits */ 229 230 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), 231 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 232 if (ctx == NULL) { 233 if_printf(ifp, "%s: cannot allocate sysctl context!\n", 234 __func__); 235 return; 236 } 237 sysctl_ctx_init(ctx); 238 snprintf(num, sizeof(num), "%u", ifp->if_dunit); 239 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), 240 OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 241 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 242 "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 243 vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device"); 244 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 245 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, 246 "driver capabilities"); 247 #ifdef IEEE80211_DEBUG 248 vap->iv_debug = ieee80211_debug; 249 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 250 "debug", CTLFLAG_RW, &vap->iv_debug, 0, 251 "control debugging printfs"); 252 #endif 253 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 254 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, 255 "consecutive beacon misses before scanning"); 256 /* XXX inherit from tunables */ 257 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 258 "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 259 &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I", 260 "station inactivity timeout (sec)"); 261 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 262 "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 263 &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I", 264 "station inactivity probe timeout (sec)"); 265 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 266 "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 267 &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I", 268 "station authentication timeout (sec)"); 269 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 270 "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 271 &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I", 272 "station initial state timeout (sec)"); 273 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 274 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 275 "ampdu_mintraffic_bk", CTLFLAG_RW, 276 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, 277 "BK traffic tx aggr threshold (pps)"); 278 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 279 "ampdu_mintraffic_be", CTLFLAG_RW, 280 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, 281 "BE traffic tx aggr threshold (pps)"); 282 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 283 "ampdu_mintraffic_vo", CTLFLAG_RW, 284 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, 285 "VO traffic tx aggr threshold (pps)"); 286 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 287 "ampdu_mintraffic_vi", CTLFLAG_RW, 288 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, 289 "VI traffic tx aggr threshold (pps)"); 290 } 291 292 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 293 "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 294 vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart"); 295 296 if (vap->iv_caps & IEEE80211_C_DFS) { 297 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 298 "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 299 vap->iv_ic, 0, ieee80211_sysctl_radar, "I", 300 "simulate radar event"); 301 } 302 vap->iv_sysctl = ctx; 303 vap->iv_oid = oid; 304 } 305 306 void 307 ieee80211_sysctl_vdetach(struct ieee80211vap *vap) 308 { 309 310 if (vap->iv_sysctl != NULL) { 311 sysctl_ctx_free(vap->iv_sysctl); 312 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); 313 vap->iv_sysctl = NULL; 314 } 315 } 316 317 #define MS(_v, _f) (((_v) & _f##_M) >> _f##_S) 318 int 319 ieee80211_com_vincref(struct ieee80211vap *vap) 320 { 321 uint32_t ostate; 322 323 ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); 324 325 if (ostate & IEEE80211_COM_DETACHED) { 326 atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); 327 return (ENETDOWN); 328 } 329 330 if (MS(ostate, IEEE80211_COM_REF) == IEEE80211_COM_REF_MAX) { 331 atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); 332 return (EOVERFLOW); 333 } 334 335 return (0); 336 } 337 338 void 339 ieee80211_com_vdecref(struct ieee80211vap *vap) 340 { 341 uint32_t ostate; 342 343 ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD); 344 345 KASSERT(MS(ostate, IEEE80211_COM_REF) != 0, 346 ("com reference counter underflow")); 347 348 (void) ostate; 349 } 350 351 void 352 ieee80211_com_vdetach(struct ieee80211vap *vap) 353 { 354 int sleep_time; 355 356 sleep_time = msecs_to_ticks(250); 357 atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED); 358 while (MS(atomic_load_32(&vap->iv_com_state), IEEE80211_COM_REF) != 0) 359 pause("comref", sleep_time); 360 } 361 #undef MS 362 363 int 364 ieee80211_node_dectestref(struct ieee80211_node *ni) 365 { 366 /* XXX need equivalent of atomic_dec_and_test */ 367 atomic_subtract_int(&ni->ni_refcnt, 1); 368 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); 369 } 370 371 void 372 ieee80211_drain_ifq(struct ifqueue *ifq) 373 { 374 struct ieee80211_node *ni; 375 struct mbuf *m; 376 377 for (;;) { 378 IF_DEQUEUE(ifq, m); 379 if (m == NULL) 380 break; 381 382 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 383 KASSERT(ni != NULL, ("frame w/o node")); 384 ieee80211_free_node(ni); 385 m->m_pkthdr.rcvif = NULL; 386 387 m_freem(m); 388 } 389 } 390 391 void 392 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) 393 { 394 struct ieee80211_node *ni; 395 struct mbuf *m, **mprev; 396 397 IF_LOCK(ifq); 398 mprev = &ifq->ifq_head; 399 while ((m = *mprev) != NULL) { 400 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 401 if (ni != NULL && ni->ni_vap == vap) { 402 *mprev = m->m_nextpkt; /* remove from list */ 403 ifq->ifq_len--; 404 405 m_freem(m); 406 ieee80211_free_node(ni); /* reclaim ref */ 407 } else 408 mprev = &m->m_nextpkt; 409 } 410 /* recalculate tail ptr */ 411 m = ifq->ifq_head; 412 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) 413 ; 414 ifq->ifq_tail = m; 415 IF_UNLOCK(ifq); 416 } 417 418 /* 419 * As above, for mbufs allocated with m_gethdr/MGETHDR 420 * or initialized by M_COPY_PKTHDR. 421 */ 422 #define MC_ALIGN(m, len) \ 423 do { \ 424 (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \ 425 } while (/* CONSTCOND */ 0) 426 427 /* 428 * Allocate and setup a management frame of the specified 429 * size. We return the mbuf and a pointer to the start 430 * of the contiguous data area that's been reserved based 431 * on the packet length. The data area is forced to 32-bit 432 * alignment and the buffer length to a multiple of 4 bytes. 433 * This is done mainly so beacon frames (that require this) 434 * can use this interface too. 435 */ 436 struct mbuf * 437 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) 438 { 439 struct mbuf *m; 440 u_int len; 441 442 /* 443 * NB: we know the mbuf routines will align the data area 444 * so we don't need to do anything special. 445 */ 446 len = roundup2(headroom + pktlen, 4); 447 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); 448 if (len < MINCLSIZE) { 449 m = m_gethdr(M_NOWAIT, MT_DATA); 450 /* 451 * Align the data in case additional headers are added. 452 * This should only happen when a WEP header is added 453 * which only happens for shared key authentication mgt 454 * frames which all fit in MHLEN. 455 */ 456 if (m != NULL) 457 M_ALIGN(m, len); 458 } else { 459 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 460 if (m != NULL) 461 MC_ALIGN(m, len); 462 } 463 if (m != NULL) { 464 m->m_data += headroom; 465 *frm = m->m_data; 466 } 467 return m; 468 } 469 470 #ifndef __NO_STRICT_ALIGNMENT 471 /* 472 * Re-align the payload in the mbuf. This is mainly used (right now) 473 * to handle IP header alignment requirements on certain architectures. 474 */ 475 struct mbuf * 476 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) 477 { 478 int pktlen, space; 479 struct mbuf *n; 480 481 pktlen = m->m_pkthdr.len; 482 space = pktlen + align; 483 if (space < MINCLSIZE) 484 n = m_gethdr(M_NOWAIT, MT_DATA); 485 else { 486 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 487 space <= MCLBYTES ? MCLBYTES : 488 #if MJUMPAGESIZE != MCLBYTES 489 space <= MJUMPAGESIZE ? MJUMPAGESIZE : 490 #endif 491 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); 492 } 493 if (__predict_true(n != NULL)) { 494 m_move_pkthdr(n, m); 495 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); 496 m_copydata(m, 0, pktlen, mtod(n, caddr_t)); 497 n->m_len = pktlen; 498 } else { 499 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, 500 mtod(m, const struct ieee80211_frame *), NULL, 501 "%s", "no mbuf to realign"); 502 vap->iv_stats.is_rx_badalign++; 503 } 504 m_freem(m); 505 return n; 506 } 507 #endif /* !__NO_STRICT_ALIGNMENT */ 508 509 int 510 ieee80211_add_callback(struct mbuf *m, 511 void (*func)(struct ieee80211_node *, void *, int), void *arg) 512 { 513 struct m_tag *mtag; 514 struct ieee80211_cb *cb; 515 516 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, 517 sizeof(struct ieee80211_cb), M_NOWAIT); 518 if (mtag == NULL) 519 return 0; 520 521 cb = (struct ieee80211_cb *)(mtag+1); 522 cb->func = func; 523 cb->arg = arg; 524 m_tag_prepend(m, mtag); 525 m->m_flags |= M_TXCB; 526 return 1; 527 } 528 529 int 530 ieee80211_add_xmit_params(struct mbuf *m, 531 const struct ieee80211_bpf_params *params) 532 { 533 struct m_tag *mtag; 534 struct ieee80211_tx_params *tx; 535 536 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 537 sizeof(struct ieee80211_tx_params), M_NOWAIT); 538 if (mtag == NULL) 539 return (0); 540 541 tx = (struct ieee80211_tx_params *)(mtag+1); 542 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); 543 m_tag_prepend(m, mtag); 544 return (1); 545 } 546 547 int 548 ieee80211_get_xmit_params(struct mbuf *m, 549 struct ieee80211_bpf_params *params) 550 { 551 struct m_tag *mtag; 552 struct ieee80211_tx_params *tx; 553 554 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 555 NULL); 556 if (mtag == NULL) 557 return (-1); 558 tx = (struct ieee80211_tx_params *)(mtag + 1); 559 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); 560 return (0); 561 } 562 563 void 564 ieee80211_process_callback(struct ieee80211_node *ni, 565 struct mbuf *m, int status) 566 { 567 struct m_tag *mtag; 568 569 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); 570 if (mtag != NULL) { 571 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); 572 cb->func(ni, cb->arg, status); 573 } 574 } 575 576 /* 577 * Add RX parameters to the given mbuf. 578 * 579 * Returns 1 if OK, 0 on error. 580 */ 581 int 582 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) 583 { 584 struct m_tag *mtag; 585 struct ieee80211_rx_params *rx; 586 587 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 588 sizeof(struct ieee80211_rx_stats), M_NOWAIT); 589 if (mtag == NULL) 590 return (0); 591 592 rx = (struct ieee80211_rx_params *)(mtag + 1); 593 memcpy(&rx->params, rxs, sizeof(*rxs)); 594 m_tag_prepend(m, mtag); 595 return (1); 596 } 597 598 int 599 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) 600 { 601 struct m_tag *mtag; 602 struct ieee80211_rx_params *rx; 603 604 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 605 NULL); 606 if (mtag == NULL) 607 return (-1); 608 rx = (struct ieee80211_rx_params *)(mtag + 1); 609 memcpy(rxs, &rx->params, sizeof(*rxs)); 610 return (0); 611 } 612 613 const struct ieee80211_rx_stats * 614 ieee80211_get_rx_params_ptr(struct mbuf *m) 615 { 616 struct m_tag *mtag; 617 struct ieee80211_rx_params *rx; 618 619 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 620 NULL); 621 if (mtag == NULL) 622 return (NULL); 623 rx = (struct ieee80211_rx_params *)(mtag + 1); 624 return (&rx->params); 625 } 626 627 628 /* 629 * Add TOA parameters to the given mbuf. 630 */ 631 int 632 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p) 633 { 634 struct m_tag *mtag; 635 struct ieee80211_toa_params *rp; 636 637 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 638 sizeof(struct ieee80211_toa_params), M_NOWAIT); 639 if (mtag == NULL) 640 return (0); 641 642 rp = (struct ieee80211_toa_params *)(mtag + 1); 643 memcpy(rp, p, sizeof(*rp)); 644 m_tag_prepend(m, mtag); 645 return (1); 646 } 647 648 int 649 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p) 650 { 651 struct m_tag *mtag; 652 struct ieee80211_toa_params *rp; 653 654 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 655 NULL); 656 if (mtag == NULL) 657 return (0); 658 rp = (struct ieee80211_toa_params *)(mtag + 1); 659 if (p != NULL) 660 memcpy(p, rp, sizeof(*p)); 661 return (1); 662 } 663 664 /* 665 * Transmit a frame to the parent interface. 666 */ 667 int 668 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) 669 { 670 int error; 671 672 /* 673 * Assert the IC TX lock is held - this enforces the 674 * processing -> queuing order is maintained 675 */ 676 IEEE80211_TX_LOCK_ASSERT(ic); 677 error = ic->ic_transmit(ic, m); 678 if (error) { 679 struct ieee80211_node *ni; 680 681 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 682 683 /* XXX number of fragments */ 684 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 685 ieee80211_free_node(ni); 686 ieee80211_free_mbuf(m); 687 } 688 return (error); 689 } 690 691 /* 692 * Transmit a frame to the VAP interface. 693 */ 694 int 695 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) 696 { 697 struct ifnet *ifp = vap->iv_ifp; 698 699 /* 700 * When transmitting via the VAP, we shouldn't hold 701 * any IC TX lock as the VAP TX path will acquire it. 702 */ 703 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); 704 705 return (ifp->if_transmit(ifp, m)); 706 707 } 708 709 #include <sys/libkern.h> 710 711 void 712 get_random_bytes(void *p, size_t n) 713 { 714 uint8_t *dp = p; 715 716 while (n > 0) { 717 uint32_t v = arc4random(); 718 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; 719 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); 720 dp += sizeof(uint32_t), n -= nb; 721 } 722 } 723 724 /* 725 * Helper function for events that pass just a single mac address. 726 */ 727 static void 728 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) 729 { 730 struct ieee80211_join_event iev; 731 732 CURVNET_SET(ifp->if_vnet); 733 memset(&iev, 0, sizeof(iev)); 734 IEEE80211_ADDR_COPY(iev.iev_addr, mac); 735 rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); 736 CURVNET_RESTORE(); 737 } 738 739 void 740 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) 741 { 742 struct ieee80211vap *vap = ni->ni_vap; 743 struct ifnet *ifp = vap->iv_ifp; 744 745 CURVNET_SET_QUIET(ifp->if_vnet); 746 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", 747 (ni == vap->iv_bss) ? "bss " : ""); 748 749 if (ni == vap->iv_bss) { 750 notify_macaddr(ifp, newassoc ? 751 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); 752 if_link_state_change(ifp, LINK_STATE_UP); 753 } else { 754 notify_macaddr(ifp, newassoc ? 755 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); 756 } 757 CURVNET_RESTORE(); 758 } 759 760 void 761 ieee80211_notify_node_leave(struct ieee80211_node *ni) 762 { 763 struct ieee80211vap *vap = ni->ni_vap; 764 struct ifnet *ifp = vap->iv_ifp; 765 766 CURVNET_SET_QUIET(ifp->if_vnet); 767 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", 768 (ni == vap->iv_bss) ? "bss " : ""); 769 770 if (ni == vap->iv_bss) { 771 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); 772 if_link_state_change(ifp, LINK_STATE_DOWN); 773 } else { 774 /* fire off wireless event station leaving */ 775 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); 776 } 777 CURVNET_RESTORE(); 778 } 779 780 void 781 ieee80211_notify_scan_done(struct ieee80211vap *vap) 782 { 783 struct ifnet *ifp = vap->iv_ifp; 784 785 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); 786 787 /* dispatch wireless event indicating scan completed */ 788 CURVNET_SET(ifp->if_vnet); 789 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); 790 CURVNET_RESTORE(); 791 } 792 793 void 794 ieee80211_notify_replay_failure(struct ieee80211vap *vap, 795 const struct ieee80211_frame *wh, const struct ieee80211_key *k, 796 u_int64_t rsc, int tid) 797 { 798 struct ifnet *ifp = vap->iv_ifp; 799 800 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 801 "%s replay detected tid %d <rsc %ju (%jx), csc %ju (%jx), keyix %u rxkeyix %u>", 802 k->wk_cipher->ic_name, tid, 803 (intmax_t) rsc, 804 (intmax_t) rsc, 805 (intmax_t) k->wk_keyrsc[tid], 806 (intmax_t) k->wk_keyrsc[tid], 807 k->wk_keyix, k->wk_rxkeyix); 808 809 if (ifp != NULL) { /* NB: for cipher test modules */ 810 struct ieee80211_replay_event iev; 811 812 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 813 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 814 iev.iev_cipher = k->wk_cipher->ic_cipher; 815 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) 816 iev.iev_keyix = k->wk_rxkeyix; 817 else 818 iev.iev_keyix = k->wk_keyix; 819 iev.iev_keyrsc = k->wk_keyrsc[tid]; 820 iev.iev_rsc = rsc; 821 CURVNET_SET(ifp->if_vnet); 822 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); 823 CURVNET_RESTORE(); 824 } 825 } 826 827 void 828 ieee80211_notify_michael_failure(struct ieee80211vap *vap, 829 const struct ieee80211_frame *wh, u_int keyix) 830 { 831 struct ifnet *ifp = vap->iv_ifp; 832 833 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 834 "michael MIC verification failed <keyix %u>", keyix); 835 vap->iv_stats.is_rx_tkipmic++; 836 837 if (ifp != NULL) { /* NB: for cipher test modules */ 838 struct ieee80211_michael_event iev; 839 840 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 841 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 842 iev.iev_cipher = IEEE80211_CIPHER_TKIP; 843 iev.iev_keyix = keyix; 844 CURVNET_SET(ifp->if_vnet); 845 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); 846 CURVNET_RESTORE(); 847 } 848 } 849 850 void 851 ieee80211_notify_wds_discover(struct ieee80211_node *ni) 852 { 853 struct ieee80211vap *vap = ni->ni_vap; 854 struct ifnet *ifp = vap->iv_ifp; 855 856 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); 857 } 858 859 void 860 ieee80211_notify_csa(struct ieee80211com *ic, 861 const struct ieee80211_channel *c, int mode, int count) 862 { 863 struct ieee80211_csa_event iev; 864 struct ieee80211vap *vap; 865 struct ifnet *ifp; 866 867 memset(&iev, 0, sizeof(iev)); 868 iev.iev_flags = c->ic_flags; 869 iev.iev_freq = c->ic_freq; 870 iev.iev_ieee = c->ic_ieee; 871 iev.iev_mode = mode; 872 iev.iev_count = count; 873 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 874 ifp = vap->iv_ifp; 875 CURVNET_SET(ifp->if_vnet); 876 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); 877 CURVNET_RESTORE(); 878 } 879 } 880 881 void 882 ieee80211_notify_radar(struct ieee80211com *ic, 883 const struct ieee80211_channel *c) 884 { 885 struct ieee80211_radar_event iev; 886 struct ieee80211vap *vap; 887 struct ifnet *ifp; 888 889 memset(&iev, 0, sizeof(iev)); 890 iev.iev_flags = c->ic_flags; 891 iev.iev_freq = c->ic_freq; 892 iev.iev_ieee = c->ic_ieee; 893 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 894 ifp = vap->iv_ifp; 895 CURVNET_SET(ifp->if_vnet); 896 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); 897 CURVNET_RESTORE(); 898 } 899 } 900 901 void 902 ieee80211_notify_cac(struct ieee80211com *ic, 903 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) 904 { 905 struct ieee80211_cac_event iev; 906 struct ieee80211vap *vap; 907 struct ifnet *ifp; 908 909 memset(&iev, 0, sizeof(iev)); 910 iev.iev_flags = c->ic_flags; 911 iev.iev_freq = c->ic_freq; 912 iev.iev_ieee = c->ic_ieee; 913 iev.iev_type = type; 914 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 915 ifp = vap->iv_ifp; 916 CURVNET_SET(ifp->if_vnet); 917 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); 918 CURVNET_RESTORE(); 919 } 920 } 921 922 void 923 ieee80211_notify_node_deauth(struct ieee80211_node *ni) 924 { 925 struct ieee80211vap *vap = ni->ni_vap; 926 struct ifnet *ifp = vap->iv_ifp; 927 928 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); 929 930 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); 931 } 932 933 void 934 ieee80211_notify_node_auth(struct ieee80211_node *ni) 935 { 936 struct ieee80211vap *vap = ni->ni_vap; 937 struct ifnet *ifp = vap->iv_ifp; 938 939 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); 940 941 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); 942 } 943 944 void 945 ieee80211_notify_country(struct ieee80211vap *vap, 946 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) 947 { 948 struct ifnet *ifp = vap->iv_ifp; 949 struct ieee80211_country_event iev; 950 951 memset(&iev, 0, sizeof(iev)); 952 IEEE80211_ADDR_COPY(iev.iev_addr, bssid); 953 iev.iev_cc[0] = cc[0]; 954 iev.iev_cc[1] = cc[1]; 955 CURVNET_SET(ifp->if_vnet); 956 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); 957 CURVNET_RESTORE(); 958 } 959 960 void 961 ieee80211_notify_radio(struct ieee80211com *ic, int state) 962 { 963 struct ieee80211_radio_event iev; 964 struct ieee80211vap *vap; 965 struct ifnet *ifp; 966 967 memset(&iev, 0, sizeof(iev)); 968 iev.iev_state = state; 969 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 970 ifp = vap->iv_ifp; 971 CURVNET_SET(ifp->if_vnet); 972 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); 973 CURVNET_RESTORE(); 974 } 975 } 976 977 void 978 ieee80211_notify_ifnet_change(struct ieee80211vap *vap) 979 { 980 struct ifnet *ifp = vap->iv_ifp; 981 982 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n", 983 "interface state change"); 984 985 CURVNET_SET(ifp->if_vnet); 986 rt_ifmsg(ifp); 987 CURVNET_RESTORE(); 988 } 989 990 void 991 ieee80211_load_module(const char *modname) 992 { 993 994 #ifdef notyet 995 (void)kern_kldload(curthread, modname, NULL); 996 #else 997 printf("%s: load the %s module by hand for now.\n", __func__, modname); 998 #endif 999 } 1000 1001 static eventhandler_tag wlan_bpfevent; 1002 static eventhandler_tag wlan_ifllevent; 1003 1004 static void 1005 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) 1006 { 1007 /* NB: identify vap's by if_init */ 1008 if (dlt == DLT_IEEE802_11_RADIO && 1009 ifp->if_init == ieee80211_init) { 1010 struct ieee80211vap *vap = ifp->if_softc; 1011 /* 1012 * Track bpf radiotap listener state. We mark the vap 1013 * to indicate if any listener is present and the com 1014 * to indicate if any listener exists on any associated 1015 * vap. This flag is used by drivers to prepare radiotap 1016 * state only when needed. 1017 */ 1018 if (attach) { 1019 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); 1020 if (vap->iv_opmode == IEEE80211_M_MONITOR) 1021 atomic_add_int(&vap->iv_ic->ic_montaps, 1); 1022 } else if (!bpf_peers_present(vap->iv_rawbpf)) { 1023 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); 1024 if (vap->iv_opmode == IEEE80211_M_MONITOR) 1025 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); 1026 } 1027 } 1028 } 1029 1030 /* 1031 * Change MAC address on the vap (if was not started). 1032 */ 1033 static void 1034 wlan_iflladdr(void *arg __unused, struct ifnet *ifp) 1035 { 1036 /* NB: identify vap's by if_init */ 1037 if (ifp->if_init == ieee80211_init && 1038 (ifp->if_flags & IFF_UP) == 0) { 1039 struct ieee80211vap *vap = ifp->if_softc; 1040 1041 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 1042 } 1043 } 1044 1045 /* 1046 * Fetch the VAP name. 1047 * 1048 * This returns a const char pointer suitable for debugging, 1049 * but don't expect it to stick around for much longer. 1050 */ 1051 const char * 1052 ieee80211_get_vap_ifname(struct ieee80211vap *vap) 1053 { 1054 if (vap->iv_ifp == NULL) 1055 return "(none)"; 1056 return vap->iv_ifp->if_xname; 1057 } 1058 1059 #ifdef DEBUGNET 1060 static void 1061 ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) 1062 { 1063 struct ieee80211vap *vap; 1064 struct ieee80211com *ic; 1065 1066 vap = if_getsoftc(ifp); 1067 ic = vap->iv_ic; 1068 1069 IEEE80211_LOCK(ic); 1070 ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize); 1071 IEEE80211_UNLOCK(ic); 1072 } 1073 1074 static void 1075 ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev) 1076 { 1077 struct ieee80211vap *vap; 1078 struct ieee80211com *ic; 1079 1080 vap = if_getsoftc(ifp); 1081 ic = vap->iv_ic; 1082 1083 IEEE80211_LOCK(ic); 1084 ic->ic_debugnet_meth->dn8_event(ic, ev); 1085 IEEE80211_UNLOCK(ic); 1086 } 1087 1088 static int 1089 ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) 1090 { 1091 return (ieee80211_vap_transmit(ifp, m)); 1092 } 1093 1094 static int 1095 ieee80211_debugnet_poll(struct ifnet *ifp, int count) 1096 { 1097 struct ieee80211vap *vap; 1098 struct ieee80211com *ic; 1099 1100 vap = if_getsoftc(ifp); 1101 ic = vap->iv_ic; 1102 1103 return (ic->ic_debugnet_meth->dn8_poll(ic, count)); 1104 } 1105 #endif 1106 1107 /* 1108 * Module glue. 1109 * 1110 * NB: the module name is "wlan" for compatibility with NetBSD. 1111 */ 1112 static int 1113 wlan_modevent(module_t mod, int type, void *unused) 1114 { 1115 switch (type) { 1116 case MOD_LOAD: 1117 if (bootverbose) 1118 printf("wlan: <802.11 Link Layer>\n"); 1119 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, 1120 bpf_track, 0, EVENTHANDLER_PRI_ANY); 1121 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, 1122 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 1123 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create, 1124 wlan_clone_destroy, 0); 1125 return 0; 1126 case MOD_UNLOAD: 1127 if_clone_detach(wlan_cloner); 1128 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 1129 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); 1130 return 0; 1131 } 1132 return EINVAL; 1133 } 1134 1135 static moduledata_t wlan_mod = { 1136 wlanname, 1137 wlan_modevent, 1138 0 1139 }; 1140 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 1141 MODULE_VERSION(wlan, 1); 1142 MODULE_DEPEND(wlan, ether, 1, 1, 1); 1143 #ifdef IEEE80211_ALQ 1144 MODULE_DEPEND(wlan, alq, 1, 1, 1); 1145 #endif /* IEEE80211_ALQ */ 1146 1147