1 /*- 2 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 /* 30 * IEEE 802.11 support (FreeBSD-specific code) 31 */ 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/eventhandler.h> 37 #include <sys/kernel.h> 38 #include <sys/linker.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/module.h> 42 #include <sys/proc.h> 43 #include <sys/sysctl.h> 44 45 #include <sys/socket.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_dl.h> 51 #include <net/if_clone.h> 52 #include <net/if_media.h> 53 #include <net/if_types.h> 54 #include <net/ethernet.h> 55 #include <net/route.h> 56 #include <net/vnet.h> 57 58 #include <net80211/ieee80211_var.h> 59 #include <net80211/ieee80211_input.h> 60 61 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters"); 62 63 #ifdef IEEE80211_DEBUG 64 static int ieee80211_debug = 0; 65 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 66 0, "debugging printfs"); 67 #endif 68 69 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state"); 70 71 static const char wlanname[] = "wlan"; 72 static struct if_clone *wlan_cloner; 73 74 static int 75 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) 76 { 77 struct ieee80211_clone_params cp; 78 struct ieee80211vap *vap; 79 struct ieee80211com *ic; 80 int error; 81 82 error = copyin(params, &cp, sizeof(cp)); 83 if (error) 84 return error; 85 ic = ieee80211_find_com(cp.icp_parent); 86 if (ic == NULL) 87 return ENXIO; 88 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { 89 ic_printf(ic, "%s: invalid opmode %d\n", __func__, 90 cp.icp_opmode); 91 return EINVAL; 92 } 93 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { 94 ic_printf(ic, "%s mode not supported\n", 95 ieee80211_opmode_name[cp.icp_opmode]); 96 return EOPNOTSUPP; 97 } 98 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && 99 #ifdef IEEE80211_SUPPORT_TDMA 100 (ic->ic_caps & IEEE80211_C_TDMA) == 0 101 #else 102 (1) 103 #endif 104 ) { 105 ic_printf(ic, "TDMA not supported\n"); 106 return EOPNOTSUPP; 107 } 108 vap = ic->ic_vap_create(ic, wlanname, unit, 109 cp.icp_opmode, cp.icp_flags, cp.icp_bssid, 110 cp.icp_flags & IEEE80211_CLONE_MACADDR ? 111 cp.icp_macaddr : ic->ic_macaddr); 112 113 return (vap == NULL ? EIO : 0); 114 } 115 116 static void 117 wlan_clone_destroy(struct ifnet *ifp) 118 { 119 struct ieee80211vap *vap = ifp->if_softc; 120 struct ieee80211com *ic = vap->iv_ic; 121 122 ic->ic_vap_delete(vap); 123 } 124 125 void 126 ieee80211_vap_destroy(struct ieee80211vap *vap) 127 { 128 CURVNET_SET(vap->iv_ifp->if_vnet); 129 if_clone_destroyif(wlan_cloner, vap->iv_ifp); 130 CURVNET_RESTORE(); 131 } 132 133 int 134 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) 135 { 136 int msecs = ticks_to_msecs(*(int *)arg1); 137 int error, t; 138 139 error = sysctl_handle_int(oidp, &msecs, 0, req); 140 if (error || !req->newptr) 141 return error; 142 t = msecs_to_ticks(msecs); 143 *(int *)arg1 = (t < 1) ? 1 : t; 144 return 0; 145 } 146 147 static int 148 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) 149 { 150 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; 151 int error; 152 153 error = sysctl_handle_int(oidp, &inact, 0, req); 154 if (error || !req->newptr) 155 return error; 156 *(int *)arg1 = inact / IEEE80211_INACT_WAIT; 157 return 0; 158 } 159 160 static int 161 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) 162 { 163 struct ieee80211com *ic = arg1; 164 165 return SYSCTL_OUT_STR(req, ic->ic_name); 166 } 167 168 static int 169 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) 170 { 171 struct ieee80211com *ic = arg1; 172 int t = 0, error; 173 174 error = sysctl_handle_int(oidp, &t, 0, req); 175 if (error || !req->newptr) 176 return error; 177 IEEE80211_LOCK(ic); 178 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 179 IEEE80211_UNLOCK(ic); 180 return 0; 181 } 182 183 void 184 ieee80211_sysctl_attach(struct ieee80211com *ic) 185 { 186 } 187 188 void 189 ieee80211_sysctl_detach(struct ieee80211com *ic) 190 { 191 } 192 193 void 194 ieee80211_sysctl_vattach(struct ieee80211vap *vap) 195 { 196 struct ifnet *ifp = vap->iv_ifp; 197 struct sysctl_ctx_list *ctx; 198 struct sysctl_oid *oid; 199 char num[14]; /* sufficient for 32 bits */ 200 201 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), 202 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 203 if (ctx == NULL) { 204 if_printf(ifp, "%s: cannot allocate sysctl context!\n", 205 __func__); 206 return; 207 } 208 sysctl_ctx_init(ctx); 209 snprintf(num, sizeof(num), "%u", ifp->if_dunit); 210 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), 211 OID_AUTO, num, CTLFLAG_RD, NULL, ""); 212 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 213 "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0, 214 ieee80211_sysctl_parent, "A", "parent device"); 215 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 216 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, 217 "driver capabilities"); 218 #ifdef IEEE80211_DEBUG 219 vap->iv_debug = ieee80211_debug; 220 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 221 "debug", CTLFLAG_RW, &vap->iv_debug, 0, 222 "control debugging printfs"); 223 #endif 224 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 225 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, 226 "consecutive beacon misses before scanning"); 227 /* XXX inherit from tunables */ 228 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 229 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0, 230 ieee80211_sysctl_inact, "I", 231 "station inactivity timeout (sec)"); 232 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 233 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0, 234 ieee80211_sysctl_inact, "I", 235 "station inactivity probe timeout (sec)"); 236 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 237 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0, 238 ieee80211_sysctl_inact, "I", 239 "station authentication timeout (sec)"); 240 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 241 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0, 242 ieee80211_sysctl_inact, "I", 243 "station initial state timeout (sec)"); 244 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 245 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 246 "ampdu_mintraffic_bk", CTLFLAG_RW, 247 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, 248 "BK traffic tx aggr threshold (pps)"); 249 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 250 "ampdu_mintraffic_be", CTLFLAG_RW, 251 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, 252 "BE traffic tx aggr threshold (pps)"); 253 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 254 "ampdu_mintraffic_vo", CTLFLAG_RW, 255 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, 256 "VO traffic tx aggr threshold (pps)"); 257 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 258 "ampdu_mintraffic_vi", CTLFLAG_RW, 259 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, 260 "VI traffic tx aggr threshold (pps)"); 261 } 262 if (vap->iv_caps & IEEE80211_C_DFS) { 263 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 264 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0, 265 ieee80211_sysctl_radar, "I", "simulate radar event"); 266 } 267 vap->iv_sysctl = ctx; 268 vap->iv_oid = oid; 269 } 270 271 void 272 ieee80211_sysctl_vdetach(struct ieee80211vap *vap) 273 { 274 275 if (vap->iv_sysctl != NULL) { 276 sysctl_ctx_free(vap->iv_sysctl); 277 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); 278 vap->iv_sysctl = NULL; 279 } 280 } 281 282 int 283 ieee80211_node_dectestref(struct ieee80211_node *ni) 284 { 285 /* XXX need equivalent of atomic_dec_and_test */ 286 atomic_subtract_int(&ni->ni_refcnt, 1); 287 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); 288 } 289 290 void 291 ieee80211_drain_ifq(struct ifqueue *ifq) 292 { 293 struct ieee80211_node *ni; 294 struct mbuf *m; 295 296 for (;;) { 297 IF_DEQUEUE(ifq, m); 298 if (m == NULL) 299 break; 300 301 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 302 KASSERT(ni != NULL, ("frame w/o node")); 303 ieee80211_free_node(ni); 304 m->m_pkthdr.rcvif = NULL; 305 306 m_freem(m); 307 } 308 } 309 310 void 311 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) 312 { 313 struct ieee80211_node *ni; 314 struct mbuf *m, **mprev; 315 316 IF_LOCK(ifq); 317 mprev = &ifq->ifq_head; 318 while ((m = *mprev) != NULL) { 319 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 320 if (ni != NULL && ni->ni_vap == vap) { 321 *mprev = m->m_nextpkt; /* remove from list */ 322 ifq->ifq_len--; 323 324 m_freem(m); 325 ieee80211_free_node(ni); /* reclaim ref */ 326 } else 327 mprev = &m->m_nextpkt; 328 } 329 /* recalculate tail ptr */ 330 m = ifq->ifq_head; 331 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) 332 ; 333 ifq->ifq_tail = m; 334 IF_UNLOCK(ifq); 335 } 336 337 /* 338 * As above, for mbufs allocated with m_gethdr/MGETHDR 339 * or initialized by M_COPY_PKTHDR. 340 */ 341 #define MC_ALIGN(m, len) \ 342 do { \ 343 (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \ 344 } while (/* CONSTCOND */ 0) 345 346 /* 347 * Allocate and setup a management frame of the specified 348 * size. We return the mbuf and a pointer to the start 349 * of the contiguous data area that's been reserved based 350 * on the packet length. The data area is forced to 32-bit 351 * alignment and the buffer length to a multiple of 4 bytes. 352 * This is done mainly so beacon frames (that require this) 353 * can use this interface too. 354 */ 355 struct mbuf * 356 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) 357 { 358 struct mbuf *m; 359 u_int len; 360 361 /* 362 * NB: we know the mbuf routines will align the data area 363 * so we don't need to do anything special. 364 */ 365 len = roundup2(headroom + pktlen, 4); 366 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); 367 if (len < MINCLSIZE) { 368 m = m_gethdr(M_NOWAIT, MT_DATA); 369 /* 370 * Align the data in case additional headers are added. 371 * This should only happen when a WEP header is added 372 * which only happens for shared key authentication mgt 373 * frames which all fit in MHLEN. 374 */ 375 if (m != NULL) 376 M_ALIGN(m, len); 377 } else { 378 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 379 if (m != NULL) 380 MC_ALIGN(m, len); 381 } 382 if (m != NULL) { 383 m->m_data += headroom; 384 *frm = m->m_data; 385 } 386 return m; 387 } 388 389 #ifndef __NO_STRICT_ALIGNMENT 390 /* 391 * Re-align the payload in the mbuf. This is mainly used (right now) 392 * to handle IP header alignment requirements on certain architectures. 393 */ 394 struct mbuf * 395 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) 396 { 397 int pktlen, space; 398 struct mbuf *n; 399 400 pktlen = m->m_pkthdr.len; 401 space = pktlen + align; 402 if (space < MINCLSIZE) 403 n = m_gethdr(M_NOWAIT, MT_DATA); 404 else { 405 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 406 space <= MCLBYTES ? MCLBYTES : 407 #if MJUMPAGESIZE != MCLBYTES 408 space <= MJUMPAGESIZE ? MJUMPAGESIZE : 409 #endif 410 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); 411 } 412 if (__predict_true(n != NULL)) { 413 m_move_pkthdr(n, m); 414 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); 415 m_copydata(m, 0, pktlen, mtod(n, caddr_t)); 416 n->m_len = pktlen; 417 } else { 418 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, 419 mtod(m, const struct ieee80211_frame *), NULL, 420 "%s", "no mbuf to realign"); 421 vap->iv_stats.is_rx_badalign++; 422 } 423 m_freem(m); 424 return n; 425 } 426 #endif /* !__NO_STRICT_ALIGNMENT */ 427 428 int 429 ieee80211_add_callback(struct mbuf *m, 430 void (*func)(struct ieee80211_node *, void *, int), void *arg) 431 { 432 struct m_tag *mtag; 433 struct ieee80211_cb *cb; 434 435 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, 436 sizeof(struct ieee80211_cb), M_NOWAIT); 437 if (mtag == NULL) 438 return 0; 439 440 cb = (struct ieee80211_cb *)(mtag+1); 441 cb->func = func; 442 cb->arg = arg; 443 m_tag_prepend(m, mtag); 444 m->m_flags |= M_TXCB; 445 return 1; 446 } 447 448 int 449 ieee80211_add_xmit_params(struct mbuf *m, 450 const struct ieee80211_bpf_params *params) 451 { 452 struct m_tag *mtag; 453 struct ieee80211_tx_params *tx; 454 455 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 456 sizeof(struct ieee80211_tx_params), M_NOWAIT); 457 if (mtag == NULL) 458 return (0); 459 460 tx = (struct ieee80211_tx_params *)(mtag+1); 461 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); 462 m_tag_prepend(m, mtag); 463 return (1); 464 } 465 466 int 467 ieee80211_get_xmit_params(struct mbuf *m, 468 struct ieee80211_bpf_params *params) 469 { 470 struct m_tag *mtag; 471 struct ieee80211_tx_params *tx; 472 473 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 474 NULL); 475 if (mtag == NULL) 476 return (-1); 477 tx = (struct ieee80211_tx_params *)(mtag + 1); 478 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); 479 return (0); 480 } 481 482 void 483 ieee80211_process_callback(struct ieee80211_node *ni, 484 struct mbuf *m, int status) 485 { 486 struct m_tag *mtag; 487 488 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); 489 if (mtag != NULL) { 490 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); 491 cb->func(ni, cb->arg, status); 492 } 493 } 494 495 /* 496 * Add RX parameters to the given mbuf. 497 * 498 * Returns 1 if OK, 0 on error. 499 */ 500 int 501 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) 502 { 503 struct m_tag *mtag; 504 struct ieee80211_rx_params *rx; 505 506 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 507 sizeof(struct ieee80211_rx_stats), M_NOWAIT); 508 if (mtag == NULL) 509 return (0); 510 511 rx = (struct ieee80211_rx_params *)(mtag + 1); 512 memcpy(&rx->params, rxs, sizeof(*rxs)); 513 m_tag_prepend(m, mtag); 514 return (1); 515 } 516 517 int 518 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) 519 { 520 struct m_tag *mtag; 521 struct ieee80211_rx_params *rx; 522 523 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 524 NULL); 525 if (mtag == NULL) 526 return (-1); 527 rx = (struct ieee80211_rx_params *)(mtag + 1); 528 memcpy(rxs, &rx->params, sizeof(*rxs)); 529 return (0); 530 } 531 532 /* 533 * Add TOA parameters to the given mbuf. 534 */ 535 int 536 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p) 537 { 538 struct m_tag *mtag; 539 struct ieee80211_toa_params *rp; 540 541 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 542 sizeof(struct ieee80211_toa_params), M_NOWAIT); 543 if (mtag == NULL) 544 return (0); 545 546 rp = (struct ieee80211_toa_params *)(mtag + 1); 547 memcpy(rp, p, sizeof(*rp)); 548 m_tag_prepend(m, mtag); 549 return (1); 550 } 551 552 int 553 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p) 554 { 555 struct m_tag *mtag; 556 struct ieee80211_toa_params *rp; 557 558 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 559 NULL); 560 if (mtag == NULL) 561 return (0); 562 rp = (struct ieee80211_toa_params *)(mtag + 1); 563 if (p != NULL) 564 memcpy(p, rp, sizeof(*p)); 565 return (1); 566 } 567 568 /* 569 * Transmit a frame to the parent interface. 570 */ 571 int 572 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) 573 { 574 int error; 575 576 /* 577 * Assert the IC TX lock is held - this enforces the 578 * processing -> queuing order is maintained 579 */ 580 IEEE80211_TX_LOCK_ASSERT(ic); 581 error = ic->ic_transmit(ic, m); 582 if (error) { 583 struct ieee80211_node *ni; 584 585 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 586 587 /* XXX number of fragments */ 588 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 589 ieee80211_free_node(ni); 590 ieee80211_free_mbuf(m); 591 } 592 return (error); 593 } 594 595 /* 596 * Transmit a frame to the VAP interface. 597 */ 598 int 599 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) 600 { 601 struct ifnet *ifp = vap->iv_ifp; 602 603 /* 604 * When transmitting via the VAP, we shouldn't hold 605 * any IC TX lock as the VAP TX path will acquire it. 606 */ 607 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); 608 609 return (ifp->if_transmit(ifp, m)); 610 611 } 612 613 #include <sys/libkern.h> 614 615 void 616 get_random_bytes(void *p, size_t n) 617 { 618 uint8_t *dp = p; 619 620 while (n > 0) { 621 uint32_t v = arc4random(); 622 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; 623 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); 624 dp += sizeof(uint32_t), n -= nb; 625 } 626 } 627 628 /* 629 * Helper function for events that pass just a single mac address. 630 */ 631 static void 632 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) 633 { 634 struct ieee80211_join_event iev; 635 636 CURVNET_SET(ifp->if_vnet); 637 memset(&iev, 0, sizeof(iev)); 638 IEEE80211_ADDR_COPY(iev.iev_addr, mac); 639 rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); 640 CURVNET_RESTORE(); 641 } 642 643 void 644 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) 645 { 646 struct ieee80211vap *vap = ni->ni_vap; 647 struct ifnet *ifp = vap->iv_ifp; 648 649 CURVNET_SET_QUIET(ifp->if_vnet); 650 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", 651 (ni == vap->iv_bss) ? "bss " : ""); 652 653 if (ni == vap->iv_bss) { 654 notify_macaddr(ifp, newassoc ? 655 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); 656 if_link_state_change(ifp, LINK_STATE_UP); 657 } else { 658 notify_macaddr(ifp, newassoc ? 659 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); 660 } 661 CURVNET_RESTORE(); 662 } 663 664 void 665 ieee80211_notify_node_leave(struct ieee80211_node *ni) 666 { 667 struct ieee80211vap *vap = ni->ni_vap; 668 struct ifnet *ifp = vap->iv_ifp; 669 670 CURVNET_SET_QUIET(ifp->if_vnet); 671 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", 672 (ni == vap->iv_bss) ? "bss " : ""); 673 674 if (ni == vap->iv_bss) { 675 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); 676 if_link_state_change(ifp, LINK_STATE_DOWN); 677 } else { 678 /* fire off wireless event station leaving */ 679 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); 680 } 681 CURVNET_RESTORE(); 682 } 683 684 void 685 ieee80211_notify_scan_done(struct ieee80211vap *vap) 686 { 687 struct ifnet *ifp = vap->iv_ifp; 688 689 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); 690 691 /* dispatch wireless event indicating scan completed */ 692 CURVNET_SET(ifp->if_vnet); 693 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); 694 CURVNET_RESTORE(); 695 } 696 697 void 698 ieee80211_notify_replay_failure(struct ieee80211vap *vap, 699 const struct ieee80211_frame *wh, const struct ieee80211_key *k, 700 u_int64_t rsc, int tid) 701 { 702 struct ifnet *ifp = vap->iv_ifp; 703 704 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 705 "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>", 706 k->wk_cipher->ic_name, tid, (intmax_t) rsc, 707 (intmax_t) k->wk_keyrsc[tid], 708 k->wk_keyix, k->wk_rxkeyix); 709 710 if (ifp != NULL) { /* NB: for cipher test modules */ 711 struct ieee80211_replay_event iev; 712 713 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 714 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 715 iev.iev_cipher = k->wk_cipher->ic_cipher; 716 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) 717 iev.iev_keyix = k->wk_rxkeyix; 718 else 719 iev.iev_keyix = k->wk_keyix; 720 iev.iev_keyrsc = k->wk_keyrsc[tid]; 721 iev.iev_rsc = rsc; 722 CURVNET_SET(ifp->if_vnet); 723 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); 724 CURVNET_RESTORE(); 725 } 726 } 727 728 void 729 ieee80211_notify_michael_failure(struct ieee80211vap *vap, 730 const struct ieee80211_frame *wh, u_int keyix) 731 { 732 struct ifnet *ifp = vap->iv_ifp; 733 734 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 735 "michael MIC verification failed <keyix %u>", keyix); 736 vap->iv_stats.is_rx_tkipmic++; 737 738 if (ifp != NULL) { /* NB: for cipher test modules */ 739 struct ieee80211_michael_event iev; 740 741 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 742 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 743 iev.iev_cipher = IEEE80211_CIPHER_TKIP; 744 iev.iev_keyix = keyix; 745 CURVNET_SET(ifp->if_vnet); 746 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); 747 CURVNET_RESTORE(); 748 } 749 } 750 751 void 752 ieee80211_notify_wds_discover(struct ieee80211_node *ni) 753 { 754 struct ieee80211vap *vap = ni->ni_vap; 755 struct ifnet *ifp = vap->iv_ifp; 756 757 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); 758 } 759 760 void 761 ieee80211_notify_csa(struct ieee80211com *ic, 762 const struct ieee80211_channel *c, int mode, int count) 763 { 764 struct ieee80211_csa_event iev; 765 struct ieee80211vap *vap; 766 struct ifnet *ifp; 767 768 memset(&iev, 0, sizeof(iev)); 769 iev.iev_flags = c->ic_flags; 770 iev.iev_freq = c->ic_freq; 771 iev.iev_ieee = c->ic_ieee; 772 iev.iev_mode = mode; 773 iev.iev_count = count; 774 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 775 ifp = vap->iv_ifp; 776 CURVNET_SET(ifp->if_vnet); 777 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); 778 CURVNET_RESTORE(); 779 } 780 } 781 782 void 783 ieee80211_notify_radar(struct ieee80211com *ic, 784 const struct ieee80211_channel *c) 785 { 786 struct ieee80211_radar_event iev; 787 struct ieee80211vap *vap; 788 struct ifnet *ifp; 789 790 memset(&iev, 0, sizeof(iev)); 791 iev.iev_flags = c->ic_flags; 792 iev.iev_freq = c->ic_freq; 793 iev.iev_ieee = c->ic_ieee; 794 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 795 ifp = vap->iv_ifp; 796 CURVNET_SET(ifp->if_vnet); 797 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); 798 CURVNET_RESTORE(); 799 } 800 } 801 802 void 803 ieee80211_notify_cac(struct ieee80211com *ic, 804 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) 805 { 806 struct ieee80211_cac_event iev; 807 struct ieee80211vap *vap; 808 struct ifnet *ifp; 809 810 memset(&iev, 0, sizeof(iev)); 811 iev.iev_flags = c->ic_flags; 812 iev.iev_freq = c->ic_freq; 813 iev.iev_ieee = c->ic_ieee; 814 iev.iev_type = type; 815 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 816 ifp = vap->iv_ifp; 817 CURVNET_SET(ifp->if_vnet); 818 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); 819 CURVNET_RESTORE(); 820 } 821 } 822 823 void 824 ieee80211_notify_node_deauth(struct ieee80211_node *ni) 825 { 826 struct ieee80211vap *vap = ni->ni_vap; 827 struct ifnet *ifp = vap->iv_ifp; 828 829 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); 830 831 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); 832 } 833 834 void 835 ieee80211_notify_node_auth(struct ieee80211_node *ni) 836 { 837 struct ieee80211vap *vap = ni->ni_vap; 838 struct ifnet *ifp = vap->iv_ifp; 839 840 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); 841 842 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); 843 } 844 845 void 846 ieee80211_notify_country(struct ieee80211vap *vap, 847 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) 848 { 849 struct ifnet *ifp = vap->iv_ifp; 850 struct ieee80211_country_event iev; 851 852 memset(&iev, 0, sizeof(iev)); 853 IEEE80211_ADDR_COPY(iev.iev_addr, bssid); 854 iev.iev_cc[0] = cc[0]; 855 iev.iev_cc[1] = cc[1]; 856 CURVNET_SET(ifp->if_vnet); 857 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); 858 CURVNET_RESTORE(); 859 } 860 861 void 862 ieee80211_notify_radio(struct ieee80211com *ic, int state) 863 { 864 struct ieee80211_radio_event iev; 865 struct ieee80211vap *vap; 866 struct ifnet *ifp; 867 868 memset(&iev, 0, sizeof(iev)); 869 iev.iev_state = state; 870 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 871 ifp = vap->iv_ifp; 872 CURVNET_SET(ifp->if_vnet); 873 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); 874 CURVNET_RESTORE(); 875 } 876 } 877 878 void 879 ieee80211_load_module(const char *modname) 880 { 881 882 #ifdef notyet 883 (void)kern_kldload(curthread, modname, NULL); 884 #else 885 printf("%s: load the %s module by hand for now.\n", __func__, modname); 886 #endif 887 } 888 889 static eventhandler_tag wlan_bpfevent; 890 static eventhandler_tag wlan_ifllevent; 891 892 static void 893 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) 894 { 895 /* NB: identify vap's by if_init */ 896 if (dlt == DLT_IEEE802_11_RADIO && 897 ifp->if_init == ieee80211_init) { 898 struct ieee80211vap *vap = ifp->if_softc; 899 /* 900 * Track bpf radiotap listener state. We mark the vap 901 * to indicate if any listener is present and the com 902 * to indicate if any listener exists on any associated 903 * vap. This flag is used by drivers to prepare radiotap 904 * state only when needed. 905 */ 906 if (attach) { 907 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); 908 if (vap->iv_opmode == IEEE80211_M_MONITOR) 909 atomic_add_int(&vap->iv_ic->ic_montaps, 1); 910 } else if (!bpf_peers_present(vap->iv_rawbpf)) { 911 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); 912 if (vap->iv_opmode == IEEE80211_M_MONITOR) 913 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); 914 } 915 } 916 } 917 918 /* 919 * Change MAC address on the vap (if was not started). 920 */ 921 static void 922 wlan_iflladdr(void *arg __unused, struct ifnet *ifp) 923 { 924 /* NB: identify vap's by if_init */ 925 if (ifp->if_init == ieee80211_init && 926 (ifp->if_flags & IFF_UP) == 0) { 927 struct ieee80211vap *vap = ifp->if_softc; 928 929 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 930 } 931 } 932 933 /* 934 * Module glue. 935 * 936 * NB: the module name is "wlan" for compatibility with NetBSD. 937 */ 938 static int 939 wlan_modevent(module_t mod, int type, void *unused) 940 { 941 switch (type) { 942 case MOD_LOAD: 943 if (bootverbose) 944 printf("wlan: <802.11 Link Layer>\n"); 945 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, 946 bpf_track, 0, EVENTHANDLER_PRI_ANY); 947 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, 948 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 949 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create, 950 wlan_clone_destroy, 0); 951 return 0; 952 case MOD_UNLOAD: 953 if_clone_detach(wlan_cloner); 954 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 955 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); 956 return 0; 957 } 958 return EINVAL; 959 } 960 961 static moduledata_t wlan_mod = { 962 wlanname, 963 wlan_modevent, 964 0 965 }; 966 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 967 MODULE_VERSION(wlan, 1); 968 MODULE_DEPEND(wlan, ether, 1, 1, 1); 969 #ifdef IEEE80211_ALQ 970 MODULE_DEPEND(wlan, alq, 1, 1, 1); 971 #endif /* IEEE80211_ALQ */ 972 973