xref: /freebsd/sys/net80211/ieee80211_freebsd.c (revision e3514747256465c52c3b2aedc9795f52c0d3efe9)
1 /*-
2  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11 support (FreeBSD-specific code)
31  */
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/eventhandler.h>
37 #include <sys/kernel.h>
38 #include <sys/linker.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/proc.h>
43 #include <sys/sysctl.h>
44 
45 #include <sys/socket.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_dl.h>
51 #include <net/if_clone.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/ethernet.h>
55 #include <net/route.h>
56 #include <net/vnet.h>
57 
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_input.h>
60 
61 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
62 
63 #ifdef IEEE80211_DEBUG
64 static int	ieee80211_debug = 0;
65 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
66 	    0, "debugging printfs");
67 #endif
68 
69 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
70 
71 static const char wlanname[] = "wlan";
72 static struct if_clone *wlan_cloner;
73 
74 static int
75 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
76 {
77 	struct ieee80211_clone_params cp;
78 	struct ieee80211vap *vap;
79 	struct ieee80211com *ic;
80 	int error;
81 
82 	error = copyin(params, &cp, sizeof(cp));
83 	if (error)
84 		return error;
85 	ic = ieee80211_find_com(cp.icp_parent);
86 	if (ic == NULL)
87 		return ENXIO;
88 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
89 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
90 		    cp.icp_opmode);
91 		return EINVAL;
92 	}
93 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
94 		ic_printf(ic, "%s mode not supported\n",
95 		    ieee80211_opmode_name[cp.icp_opmode]);
96 		return EOPNOTSUPP;
97 	}
98 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
99 #ifdef IEEE80211_SUPPORT_TDMA
100 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
101 #else
102 	    (1)
103 #endif
104 	) {
105 		ic_printf(ic, "TDMA not supported\n");
106 		return EOPNOTSUPP;
107 	}
108 	vap = ic->ic_vap_create(ic, wlanname, unit,
109 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
110 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
111 			    cp.icp_macaddr : ic->ic_macaddr);
112 
113 	return (vap == NULL ? EIO : 0);
114 }
115 
116 static void
117 wlan_clone_destroy(struct ifnet *ifp)
118 {
119 	struct ieee80211vap *vap = ifp->if_softc;
120 	struct ieee80211com *ic = vap->iv_ic;
121 
122 	ic->ic_vap_delete(vap);
123 }
124 
125 void
126 ieee80211_vap_destroy(struct ieee80211vap *vap)
127 {
128 	CURVNET_SET(vap->iv_ifp->if_vnet);
129 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
130 	CURVNET_RESTORE();
131 }
132 
133 int
134 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
135 {
136 	int msecs = ticks_to_msecs(*(int *)arg1);
137 	int error, t;
138 
139 	error = sysctl_handle_int(oidp, &msecs, 0, req);
140 	if (error || !req->newptr)
141 		return error;
142 	t = msecs_to_ticks(msecs);
143 	*(int *)arg1 = (t < 1) ? 1 : t;
144 	return 0;
145 }
146 
147 static int
148 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
149 {
150 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
151 	int error;
152 
153 	error = sysctl_handle_int(oidp, &inact, 0, req);
154 	if (error || !req->newptr)
155 		return error;
156 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
157 	return 0;
158 }
159 
160 static int
161 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
162 {
163 	struct ieee80211com *ic = arg1;
164 
165 	return SYSCTL_OUT_STR(req, ic->ic_name);
166 }
167 
168 static int
169 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
170 {
171 	struct ieee80211com *ic = arg1;
172 	int t = 0, error;
173 
174 	error = sysctl_handle_int(oidp, &t, 0, req);
175 	if (error || !req->newptr)
176 		return error;
177 	IEEE80211_LOCK(ic);
178 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
179 	IEEE80211_UNLOCK(ic);
180 	return 0;
181 }
182 
183 /*
184  * For now, just restart everything.
185  *
186  * Later on, it'd be nice to have a separate VAP restart to
187  * full-device restart.
188  */
189 static int
190 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
191 {
192 	struct ieee80211vap *vap = arg1;
193 	int t = 0, error;
194 
195 	error = sysctl_handle_int(oidp, &t, 0, req);
196 	if (error || !req->newptr)
197 		return error;
198 
199 	ieee80211_restart_all(vap->iv_ic);
200 	return 0;
201 }
202 
203 void
204 ieee80211_sysctl_attach(struct ieee80211com *ic)
205 {
206 }
207 
208 void
209 ieee80211_sysctl_detach(struct ieee80211com *ic)
210 {
211 }
212 
213 void
214 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
215 {
216 	struct ifnet *ifp = vap->iv_ifp;
217 	struct sysctl_ctx_list *ctx;
218 	struct sysctl_oid *oid;
219 	char num[14];			/* sufficient for 32 bits */
220 
221 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
222 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
223 	if (ctx == NULL) {
224 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
225 			__func__);
226 		return;
227 	}
228 	sysctl_ctx_init(ctx);
229 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
230 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
231 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
232 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
233 		"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
234 		ieee80211_sysctl_parent, "A", "parent device");
235 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
236 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
237 		"driver capabilities");
238 #ifdef IEEE80211_DEBUG
239 	vap->iv_debug = ieee80211_debug;
240 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
241 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
242 		"control debugging printfs");
243 #endif
244 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
245 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
246 		"consecutive beacon misses before scanning");
247 	/* XXX inherit from tunables */
248 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
249 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
250 		ieee80211_sysctl_inact, "I",
251 		"station inactivity timeout (sec)");
252 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
253 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
254 		ieee80211_sysctl_inact, "I",
255 		"station inactivity probe timeout (sec)");
256 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
257 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
258 		ieee80211_sysctl_inact, "I",
259 		"station authentication timeout (sec)");
260 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
261 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
262 		ieee80211_sysctl_inact, "I",
263 		"station initial state timeout (sec)");
264 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
265 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
266 			"ampdu_mintraffic_bk", CTLFLAG_RW,
267 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
268 			"BK traffic tx aggr threshold (pps)");
269 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
270 			"ampdu_mintraffic_be", CTLFLAG_RW,
271 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
272 			"BE traffic tx aggr threshold (pps)");
273 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
274 			"ampdu_mintraffic_vo", CTLFLAG_RW,
275 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
276 			"VO traffic tx aggr threshold (pps)");
277 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
278 			"ampdu_mintraffic_vi", CTLFLAG_RW,
279 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
280 			"VI traffic tx aggr threshold (pps)");
281 	}
282 
283 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
284 		"force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0,
285 		ieee80211_sysctl_vap_restart, "I",
286 		"force a VAP restart");
287 
288 	if (vap->iv_caps & IEEE80211_C_DFS) {
289 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
290 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
291 			ieee80211_sysctl_radar, "I", "simulate radar event");
292 	}
293 	vap->iv_sysctl = ctx;
294 	vap->iv_oid = oid;
295 }
296 
297 void
298 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
299 {
300 
301 	if (vap->iv_sysctl != NULL) {
302 		sysctl_ctx_free(vap->iv_sysctl);
303 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
304 		vap->iv_sysctl = NULL;
305 	}
306 }
307 
308 int
309 ieee80211_node_dectestref(struct ieee80211_node *ni)
310 {
311 	/* XXX need equivalent of atomic_dec_and_test */
312 	atomic_subtract_int(&ni->ni_refcnt, 1);
313 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
314 }
315 
316 void
317 ieee80211_drain_ifq(struct ifqueue *ifq)
318 {
319 	struct ieee80211_node *ni;
320 	struct mbuf *m;
321 
322 	for (;;) {
323 		IF_DEQUEUE(ifq, m);
324 		if (m == NULL)
325 			break;
326 
327 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
328 		KASSERT(ni != NULL, ("frame w/o node"));
329 		ieee80211_free_node(ni);
330 		m->m_pkthdr.rcvif = NULL;
331 
332 		m_freem(m);
333 	}
334 }
335 
336 void
337 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
338 {
339 	struct ieee80211_node *ni;
340 	struct mbuf *m, **mprev;
341 
342 	IF_LOCK(ifq);
343 	mprev = &ifq->ifq_head;
344 	while ((m = *mprev) != NULL) {
345 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
346 		if (ni != NULL && ni->ni_vap == vap) {
347 			*mprev = m->m_nextpkt;		/* remove from list */
348 			ifq->ifq_len--;
349 
350 			m_freem(m);
351 			ieee80211_free_node(ni);	/* reclaim ref */
352 		} else
353 			mprev = &m->m_nextpkt;
354 	}
355 	/* recalculate tail ptr */
356 	m = ifq->ifq_head;
357 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
358 		;
359 	ifq->ifq_tail = m;
360 	IF_UNLOCK(ifq);
361 }
362 
363 /*
364  * As above, for mbufs allocated with m_gethdr/MGETHDR
365  * or initialized by M_COPY_PKTHDR.
366  */
367 #define	MC_ALIGN(m, len)						\
368 do {									\
369 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
370 } while (/* CONSTCOND */ 0)
371 
372 /*
373  * Allocate and setup a management frame of the specified
374  * size.  We return the mbuf and a pointer to the start
375  * of the contiguous data area that's been reserved based
376  * on the packet length.  The data area is forced to 32-bit
377  * alignment and the buffer length to a multiple of 4 bytes.
378  * This is done mainly so beacon frames (that require this)
379  * can use this interface too.
380  */
381 struct mbuf *
382 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
383 {
384 	struct mbuf *m;
385 	u_int len;
386 
387 	/*
388 	 * NB: we know the mbuf routines will align the data area
389 	 *     so we don't need to do anything special.
390 	 */
391 	len = roundup2(headroom + pktlen, 4);
392 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
393 	if (len < MINCLSIZE) {
394 		m = m_gethdr(M_NOWAIT, MT_DATA);
395 		/*
396 		 * Align the data in case additional headers are added.
397 		 * This should only happen when a WEP header is added
398 		 * which only happens for shared key authentication mgt
399 		 * frames which all fit in MHLEN.
400 		 */
401 		if (m != NULL)
402 			M_ALIGN(m, len);
403 	} else {
404 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
405 		if (m != NULL)
406 			MC_ALIGN(m, len);
407 	}
408 	if (m != NULL) {
409 		m->m_data += headroom;
410 		*frm = m->m_data;
411 	}
412 	return m;
413 }
414 
415 #ifndef __NO_STRICT_ALIGNMENT
416 /*
417  * Re-align the payload in the mbuf.  This is mainly used (right now)
418  * to handle IP header alignment requirements on certain architectures.
419  */
420 struct mbuf *
421 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
422 {
423 	int pktlen, space;
424 	struct mbuf *n;
425 
426 	pktlen = m->m_pkthdr.len;
427 	space = pktlen + align;
428 	if (space < MINCLSIZE)
429 		n = m_gethdr(M_NOWAIT, MT_DATA);
430 	else {
431 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
432 		    space <= MCLBYTES ?     MCLBYTES :
433 #if MJUMPAGESIZE != MCLBYTES
434 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
435 #endif
436 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
437 	}
438 	if (__predict_true(n != NULL)) {
439 		m_move_pkthdr(n, m);
440 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
441 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
442 		n->m_len = pktlen;
443 	} else {
444 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
445 		    mtod(m, const struct ieee80211_frame *), NULL,
446 		    "%s", "no mbuf to realign");
447 		vap->iv_stats.is_rx_badalign++;
448 	}
449 	m_freem(m);
450 	return n;
451 }
452 #endif /* !__NO_STRICT_ALIGNMENT */
453 
454 int
455 ieee80211_add_callback(struct mbuf *m,
456 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
457 {
458 	struct m_tag *mtag;
459 	struct ieee80211_cb *cb;
460 
461 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
462 			sizeof(struct ieee80211_cb), M_NOWAIT);
463 	if (mtag == NULL)
464 		return 0;
465 
466 	cb = (struct ieee80211_cb *)(mtag+1);
467 	cb->func = func;
468 	cb->arg = arg;
469 	m_tag_prepend(m, mtag);
470 	m->m_flags |= M_TXCB;
471 	return 1;
472 }
473 
474 int
475 ieee80211_add_xmit_params(struct mbuf *m,
476     const struct ieee80211_bpf_params *params)
477 {
478 	struct m_tag *mtag;
479 	struct ieee80211_tx_params *tx;
480 
481 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
482 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
483 	if (mtag == NULL)
484 		return (0);
485 
486 	tx = (struct ieee80211_tx_params *)(mtag+1);
487 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
488 	m_tag_prepend(m, mtag);
489 	return (1);
490 }
491 
492 int
493 ieee80211_get_xmit_params(struct mbuf *m,
494     struct ieee80211_bpf_params *params)
495 {
496 	struct m_tag *mtag;
497 	struct ieee80211_tx_params *tx;
498 
499 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
500 	    NULL);
501 	if (mtag == NULL)
502 		return (-1);
503 	tx = (struct ieee80211_tx_params *)(mtag + 1);
504 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
505 	return (0);
506 }
507 
508 void
509 ieee80211_process_callback(struct ieee80211_node *ni,
510 	struct mbuf *m, int status)
511 {
512 	struct m_tag *mtag;
513 
514 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
515 	if (mtag != NULL) {
516 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
517 		cb->func(ni, cb->arg, status);
518 	}
519 }
520 
521 /*
522  * Add RX parameters to the given mbuf.
523  *
524  * Returns 1 if OK, 0 on error.
525  */
526 int
527 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
528 {
529 	struct m_tag *mtag;
530 	struct ieee80211_rx_params *rx;
531 
532 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
533 	    sizeof(struct ieee80211_rx_stats), M_NOWAIT);
534 	if (mtag == NULL)
535 		return (0);
536 
537 	rx = (struct ieee80211_rx_params *)(mtag + 1);
538 	memcpy(&rx->params, rxs, sizeof(*rxs));
539 	m_tag_prepend(m, mtag);
540 	return (1);
541 }
542 
543 int
544 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
545 {
546 	struct m_tag *mtag;
547 	struct ieee80211_rx_params *rx;
548 
549 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
550 	    NULL);
551 	if (mtag == NULL)
552 		return (-1);
553 	rx = (struct ieee80211_rx_params *)(mtag + 1);
554 	memcpy(rxs, &rx->params, sizeof(*rxs));
555 	return (0);
556 }
557 
558 const struct ieee80211_rx_stats *
559 ieee80211_get_rx_params_ptr(struct mbuf *m)
560 {
561 	struct m_tag *mtag;
562 	struct ieee80211_rx_params *rx;
563 
564 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
565 	    NULL);
566 	if (mtag == NULL)
567 		return (NULL);
568 	rx = (struct ieee80211_rx_params *)(mtag + 1);
569 	return (&rx->params);
570 }
571 
572 
573 /*
574  * Add TOA parameters to the given mbuf.
575  */
576 int
577 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
578 {
579 	struct m_tag *mtag;
580 	struct ieee80211_toa_params *rp;
581 
582 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
583 	    sizeof(struct ieee80211_toa_params), M_NOWAIT);
584 	if (mtag == NULL)
585 		return (0);
586 
587 	rp = (struct ieee80211_toa_params *)(mtag + 1);
588 	memcpy(rp, p, sizeof(*rp));
589 	m_tag_prepend(m, mtag);
590 	return (1);
591 }
592 
593 int
594 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
595 {
596 	struct m_tag *mtag;
597 	struct ieee80211_toa_params *rp;
598 
599 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
600 	    NULL);
601 	if (mtag == NULL)
602 		return (0);
603 	rp = (struct ieee80211_toa_params *)(mtag + 1);
604 	if (p != NULL)
605 		memcpy(p, rp, sizeof(*p));
606 	return (1);
607 }
608 
609 /*
610  * Transmit a frame to the parent interface.
611  */
612 int
613 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
614 {
615 	int error;
616 
617 	/*
618 	 * Assert the IC TX lock is held - this enforces the
619 	 * processing -> queuing order is maintained
620 	 */
621 	IEEE80211_TX_LOCK_ASSERT(ic);
622 	error = ic->ic_transmit(ic, m);
623 	if (error) {
624 		struct ieee80211_node *ni;
625 
626 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
627 
628 		/* XXX number of fragments */
629 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
630 		ieee80211_free_node(ni);
631 		ieee80211_free_mbuf(m);
632 	}
633 	return (error);
634 }
635 
636 /*
637  * Transmit a frame to the VAP interface.
638  */
639 int
640 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
641 {
642 	struct ifnet *ifp = vap->iv_ifp;
643 
644 	/*
645 	 * When transmitting via the VAP, we shouldn't hold
646 	 * any IC TX lock as the VAP TX path will acquire it.
647 	 */
648 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
649 
650 	return (ifp->if_transmit(ifp, m));
651 
652 }
653 
654 #include <sys/libkern.h>
655 
656 void
657 get_random_bytes(void *p, size_t n)
658 {
659 	uint8_t *dp = p;
660 
661 	while (n > 0) {
662 		uint32_t v = arc4random();
663 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
664 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
665 		dp += sizeof(uint32_t), n -= nb;
666 	}
667 }
668 
669 /*
670  * Helper function for events that pass just a single mac address.
671  */
672 static void
673 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
674 {
675 	struct ieee80211_join_event iev;
676 
677 	CURVNET_SET(ifp->if_vnet);
678 	memset(&iev, 0, sizeof(iev));
679 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
680 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
681 	CURVNET_RESTORE();
682 }
683 
684 void
685 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
686 {
687 	struct ieee80211vap *vap = ni->ni_vap;
688 	struct ifnet *ifp = vap->iv_ifp;
689 
690 	CURVNET_SET_QUIET(ifp->if_vnet);
691 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
692 	    (ni == vap->iv_bss) ? "bss " : "");
693 
694 	if (ni == vap->iv_bss) {
695 		notify_macaddr(ifp, newassoc ?
696 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
697 		if_link_state_change(ifp, LINK_STATE_UP);
698 	} else {
699 		notify_macaddr(ifp, newassoc ?
700 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
701 	}
702 	CURVNET_RESTORE();
703 }
704 
705 void
706 ieee80211_notify_node_leave(struct ieee80211_node *ni)
707 {
708 	struct ieee80211vap *vap = ni->ni_vap;
709 	struct ifnet *ifp = vap->iv_ifp;
710 
711 	CURVNET_SET_QUIET(ifp->if_vnet);
712 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
713 	    (ni == vap->iv_bss) ? "bss " : "");
714 
715 	if (ni == vap->iv_bss) {
716 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
717 		if_link_state_change(ifp, LINK_STATE_DOWN);
718 	} else {
719 		/* fire off wireless event station leaving */
720 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
721 	}
722 	CURVNET_RESTORE();
723 }
724 
725 void
726 ieee80211_notify_scan_done(struct ieee80211vap *vap)
727 {
728 	struct ifnet *ifp = vap->iv_ifp;
729 
730 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
731 
732 	/* dispatch wireless event indicating scan completed */
733 	CURVNET_SET(ifp->if_vnet);
734 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
735 	CURVNET_RESTORE();
736 }
737 
738 void
739 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
740 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
741 	u_int64_t rsc, int tid)
742 {
743 	struct ifnet *ifp = vap->iv_ifp;
744 
745 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
746 	    "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
747 	    k->wk_cipher->ic_name, tid, (intmax_t) rsc,
748 	    (intmax_t) k->wk_keyrsc[tid],
749 	    k->wk_keyix, k->wk_rxkeyix);
750 
751 	if (ifp != NULL) {		/* NB: for cipher test modules */
752 		struct ieee80211_replay_event iev;
753 
754 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
755 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
756 		iev.iev_cipher = k->wk_cipher->ic_cipher;
757 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
758 			iev.iev_keyix = k->wk_rxkeyix;
759 		else
760 			iev.iev_keyix = k->wk_keyix;
761 		iev.iev_keyrsc = k->wk_keyrsc[tid];
762 		iev.iev_rsc = rsc;
763 		CURVNET_SET(ifp->if_vnet);
764 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
765 		CURVNET_RESTORE();
766 	}
767 }
768 
769 void
770 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
771 	const struct ieee80211_frame *wh, u_int keyix)
772 {
773 	struct ifnet *ifp = vap->iv_ifp;
774 
775 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
776 	    "michael MIC verification failed <keyix %u>", keyix);
777 	vap->iv_stats.is_rx_tkipmic++;
778 
779 	if (ifp != NULL) {		/* NB: for cipher test modules */
780 		struct ieee80211_michael_event iev;
781 
782 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
783 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
784 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
785 		iev.iev_keyix = keyix;
786 		CURVNET_SET(ifp->if_vnet);
787 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
788 		CURVNET_RESTORE();
789 	}
790 }
791 
792 void
793 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
794 {
795 	struct ieee80211vap *vap = ni->ni_vap;
796 	struct ifnet *ifp = vap->iv_ifp;
797 
798 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
799 }
800 
801 void
802 ieee80211_notify_csa(struct ieee80211com *ic,
803 	const struct ieee80211_channel *c, int mode, int count)
804 {
805 	struct ieee80211_csa_event iev;
806 	struct ieee80211vap *vap;
807 	struct ifnet *ifp;
808 
809 	memset(&iev, 0, sizeof(iev));
810 	iev.iev_flags = c->ic_flags;
811 	iev.iev_freq = c->ic_freq;
812 	iev.iev_ieee = c->ic_ieee;
813 	iev.iev_mode = mode;
814 	iev.iev_count = count;
815 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
816 		ifp = vap->iv_ifp;
817 		CURVNET_SET(ifp->if_vnet);
818 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
819 		CURVNET_RESTORE();
820 	}
821 }
822 
823 void
824 ieee80211_notify_radar(struct ieee80211com *ic,
825 	const struct ieee80211_channel *c)
826 {
827 	struct ieee80211_radar_event iev;
828 	struct ieee80211vap *vap;
829 	struct ifnet *ifp;
830 
831 	memset(&iev, 0, sizeof(iev));
832 	iev.iev_flags = c->ic_flags;
833 	iev.iev_freq = c->ic_freq;
834 	iev.iev_ieee = c->ic_ieee;
835 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
836 		ifp = vap->iv_ifp;
837 		CURVNET_SET(ifp->if_vnet);
838 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
839 		CURVNET_RESTORE();
840 	}
841 }
842 
843 void
844 ieee80211_notify_cac(struct ieee80211com *ic,
845 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
846 {
847 	struct ieee80211_cac_event iev;
848 	struct ieee80211vap *vap;
849 	struct ifnet *ifp;
850 
851 	memset(&iev, 0, sizeof(iev));
852 	iev.iev_flags = c->ic_flags;
853 	iev.iev_freq = c->ic_freq;
854 	iev.iev_ieee = c->ic_ieee;
855 	iev.iev_type = type;
856 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
857 		ifp = vap->iv_ifp;
858 		CURVNET_SET(ifp->if_vnet);
859 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
860 		CURVNET_RESTORE();
861 	}
862 }
863 
864 void
865 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
866 {
867 	struct ieee80211vap *vap = ni->ni_vap;
868 	struct ifnet *ifp = vap->iv_ifp;
869 
870 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
871 
872 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
873 }
874 
875 void
876 ieee80211_notify_node_auth(struct ieee80211_node *ni)
877 {
878 	struct ieee80211vap *vap = ni->ni_vap;
879 	struct ifnet *ifp = vap->iv_ifp;
880 
881 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
882 
883 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
884 }
885 
886 void
887 ieee80211_notify_country(struct ieee80211vap *vap,
888 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
889 {
890 	struct ifnet *ifp = vap->iv_ifp;
891 	struct ieee80211_country_event iev;
892 
893 	memset(&iev, 0, sizeof(iev));
894 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
895 	iev.iev_cc[0] = cc[0];
896 	iev.iev_cc[1] = cc[1];
897 	CURVNET_SET(ifp->if_vnet);
898 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
899 	CURVNET_RESTORE();
900 }
901 
902 void
903 ieee80211_notify_radio(struct ieee80211com *ic, int state)
904 {
905 	struct ieee80211_radio_event iev;
906 	struct ieee80211vap *vap;
907 	struct ifnet *ifp;
908 
909 	memset(&iev, 0, sizeof(iev));
910 	iev.iev_state = state;
911 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
912 		ifp = vap->iv_ifp;
913 		CURVNET_SET(ifp->if_vnet);
914 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
915 		CURVNET_RESTORE();
916 	}
917 }
918 
919 void
920 ieee80211_load_module(const char *modname)
921 {
922 
923 #ifdef notyet
924 	(void)kern_kldload(curthread, modname, NULL);
925 #else
926 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
927 #endif
928 }
929 
930 static eventhandler_tag wlan_bpfevent;
931 static eventhandler_tag wlan_ifllevent;
932 
933 static void
934 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
935 {
936 	/* NB: identify vap's by if_init */
937 	if (dlt == DLT_IEEE802_11_RADIO &&
938 	    ifp->if_init == ieee80211_init) {
939 		struct ieee80211vap *vap = ifp->if_softc;
940 		/*
941 		 * Track bpf radiotap listener state.  We mark the vap
942 		 * to indicate if any listener is present and the com
943 		 * to indicate if any listener exists on any associated
944 		 * vap.  This flag is used by drivers to prepare radiotap
945 		 * state only when needed.
946 		 */
947 		if (attach) {
948 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
949 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
950 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
951 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
952 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
953 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
954 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
955 		}
956 	}
957 }
958 
959 /*
960  * Change MAC address on the vap (if was not started).
961  */
962 static void
963 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
964 {
965 	/* NB: identify vap's by if_init */
966 	if (ifp->if_init == ieee80211_init &&
967 	    (ifp->if_flags & IFF_UP) == 0) {
968 		struct ieee80211vap *vap = ifp->if_softc;
969 
970 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
971 	}
972 }
973 
974 /*
975  * Module glue.
976  *
977  * NB: the module name is "wlan" for compatibility with NetBSD.
978  */
979 static int
980 wlan_modevent(module_t mod, int type, void *unused)
981 {
982 	switch (type) {
983 	case MOD_LOAD:
984 		if (bootverbose)
985 			printf("wlan: <802.11 Link Layer>\n");
986 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
987 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
988 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
989 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
990 		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
991 		    wlan_clone_destroy, 0);
992 		return 0;
993 	case MOD_UNLOAD:
994 		if_clone_detach(wlan_cloner);
995 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
996 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
997 		return 0;
998 	}
999 	return EINVAL;
1000 }
1001 
1002 static moduledata_t wlan_mod = {
1003 	wlanname,
1004 	wlan_modevent,
1005 	0
1006 };
1007 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1008 MODULE_VERSION(wlan, 1);
1009 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1010 #ifdef	IEEE80211_ALQ
1011 MODULE_DEPEND(wlan, alq, 1, 1, 1);
1012 #endif	/* IEEE80211_ALQ */
1013 
1014