xref: /freebsd/sys/net80211/ieee80211_freebsd.c (revision c07d6445eb89d9dd3950361b065b7bd110e3a043)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * IEEE 802.11 support (FreeBSD-specific code)
33  */
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/eventhandler.h>
39 #include <sys/kernel.h>
40 #include <sys/linker.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/sysctl.h>
47 
48 #include <sys/socket.h>
49 
50 #include <net/bpf.h>
51 #include <net/debugnet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_dl.h>
55 #include <net/if_clone.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/ethernet.h>
59 #include <net/route.h>
60 #include <net/vnet.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_input.h>
64 
65 DEBUGNET_DEFINE(ieee80211);
66 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
67     "IEEE 80211 parameters");
68 
69 #ifdef IEEE80211_DEBUG
70 static int	ieee80211_debug = 0;
71 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
72 	    0, "debugging printfs");
73 #endif
74 
75 static const char wlanname[] = "wlan";
76 static struct if_clone *wlan_cloner;
77 
78 /*
79  * priv(9) NET80211 checks.
80  * Return 0 if operation is allowed, E* (usually EPERM) otherwise.
81  */
82 int
83 ieee80211_priv_check_vap_getkey(u_long cmd __unused,
84      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
85 {
86 
87 	return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY));
88 }
89 
90 int
91 ieee80211_priv_check_vap_manage(u_long cmd __unused,
92      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
93 {
94 
95 	return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE));
96 }
97 
98 int
99 ieee80211_priv_check_vap_setmac(u_long cmd __unused,
100      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
101 {
102 
103 	return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC));
104 }
105 
106 int
107 ieee80211_priv_check_create_vap(u_long cmd __unused,
108     struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
109 {
110 
111 	return (priv_check(curthread, PRIV_NET80211_CREATE_VAP));
112 }
113 
114 static int
115 wlan_clone_create(struct if_clone *ifc, char *name, size_t len,
116     struct ifc_data *ifd, struct ifnet **ifpp)
117 {
118 	struct ieee80211_clone_params cp;
119 	struct ieee80211vap *vap;
120 	struct ieee80211com *ic;
121 	int error;
122 
123 	error = ieee80211_priv_check_create_vap(0, NULL, NULL);
124 	if (error)
125 		return error;
126 
127 	error = ifc_copyin(ifd, &cp, sizeof(cp));
128 	if (error)
129 		return error;
130 	ic = ieee80211_find_com(cp.icp_parent);
131 	if (ic == NULL)
132 		return ENXIO;
133 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
134 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
135 		    cp.icp_opmode);
136 		return EINVAL;
137 	}
138 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
139 		ic_printf(ic, "%s mode not supported\n",
140 		    ieee80211_opmode_name[cp.icp_opmode]);
141 		return EOPNOTSUPP;
142 	}
143 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
144 #ifdef IEEE80211_SUPPORT_TDMA
145 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
146 #else
147 	    (1)
148 #endif
149 	) {
150 		ic_printf(ic, "TDMA not supported\n");
151 		return EOPNOTSUPP;
152 	}
153 	vap = ic->ic_vap_create(ic, wlanname, ifd->unit,
154 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
155 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
156 			    cp.icp_macaddr : ic->ic_macaddr);
157 
158 	if (vap == NULL)
159 		return (EIO);
160 
161 #ifdef DEBUGNET
162 	if (ic->ic_debugnet_meth != NULL)
163 		DEBUGNET_SET(vap->iv_ifp, ieee80211);
164 #endif
165 	*ifpp = vap->iv_ifp;
166 
167 	return (0);
168 }
169 
170 static int
171 wlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
172 {
173 	struct ieee80211vap *vap = ifp->if_softc;
174 	struct ieee80211com *ic = vap->iv_ic;
175 
176 	ic->ic_vap_delete(vap);
177 
178 	return (0);
179 }
180 
181 void
182 ieee80211_vap_destroy(struct ieee80211vap *vap)
183 {
184 	CURVNET_SET(vap->iv_ifp->if_vnet);
185 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
186 	CURVNET_RESTORE();
187 }
188 
189 int
190 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
191 {
192 	int msecs = ticks_to_msecs(*(int *)arg1);
193 	int error;
194 
195 	error = sysctl_handle_int(oidp, &msecs, 0, req);
196 	if (error || !req->newptr)
197 		return error;
198 	*(int *)arg1 = msecs_to_ticks(msecs);
199 	return 0;
200 }
201 
202 static int
203 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
204 {
205 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
206 	int error;
207 
208 	error = sysctl_handle_int(oidp, &inact, 0, req);
209 	if (error || !req->newptr)
210 		return error;
211 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
212 	return 0;
213 }
214 
215 static int
216 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
217 {
218 	struct ieee80211com *ic = arg1;
219 
220 	return SYSCTL_OUT_STR(req, ic->ic_name);
221 }
222 
223 static int
224 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
225 {
226 	struct ieee80211com *ic = arg1;
227 	int t = 0, error;
228 
229 	error = sysctl_handle_int(oidp, &t, 0, req);
230 	if (error || !req->newptr)
231 		return error;
232 	IEEE80211_LOCK(ic);
233 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
234 	IEEE80211_UNLOCK(ic);
235 	return 0;
236 }
237 
238 /*
239  * For now, just restart everything.
240  *
241  * Later on, it'd be nice to have a separate VAP restart to
242  * full-device restart.
243  */
244 static int
245 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
246 {
247 	struct ieee80211vap *vap = arg1;
248 	int t = 0, error;
249 
250 	error = sysctl_handle_int(oidp, &t, 0, req);
251 	if (error || !req->newptr)
252 		return error;
253 
254 	ieee80211_restart_all(vap->iv_ic);
255 	return 0;
256 }
257 
258 void
259 ieee80211_sysctl_attach(struct ieee80211com *ic)
260 {
261 }
262 
263 void
264 ieee80211_sysctl_detach(struct ieee80211com *ic)
265 {
266 }
267 
268 void
269 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
270 {
271 	struct ifnet *ifp = vap->iv_ifp;
272 	struct sysctl_ctx_list *ctx;
273 	struct sysctl_oid *oid;
274 	char num[14];			/* sufficient for 32 bits */
275 
276 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
277 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
278 	if (ctx == NULL) {
279 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
280 			__func__);
281 		return;
282 	}
283 	sysctl_ctx_init(ctx);
284 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
285 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
286 	    OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
287 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
288 	    "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
289 	    vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device");
290 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
291 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
292 		"driver capabilities");
293 #ifdef IEEE80211_DEBUG
294 	vap->iv_debug = ieee80211_debug;
295 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
296 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
297 		"control debugging printfs");
298 #endif
299 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
300 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
301 		"consecutive beacon misses before scanning");
302 	/* XXX inherit from tunables */
303 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
304 	    "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
305 	    &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I",
306 	    "station inactivity timeout (sec)");
307 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
308 	    "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
309 	    &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I",
310 	    "station inactivity probe timeout (sec)");
311 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
312 	    "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
313 	    &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I",
314 	    "station authentication timeout (sec)");
315 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
316 	    "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
317 	    &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I",
318 	    "station initial state timeout (sec)");
319 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
320 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
321 			"ampdu_mintraffic_bk", CTLFLAG_RW,
322 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
323 			"BK traffic tx aggr threshold (pps)");
324 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
325 			"ampdu_mintraffic_be", CTLFLAG_RW,
326 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
327 			"BE traffic tx aggr threshold (pps)");
328 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
329 			"ampdu_mintraffic_vo", CTLFLAG_RW,
330 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
331 			"VO traffic tx aggr threshold (pps)");
332 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
333 			"ampdu_mintraffic_vi", CTLFLAG_RW,
334 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
335 			"VI traffic tx aggr threshold (pps)");
336 	}
337 
338 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
339 	    "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
340 	    vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart");
341 
342 	if (vap->iv_caps & IEEE80211_C_DFS) {
343 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
344 		    "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
345 		    vap->iv_ic, 0, ieee80211_sysctl_radar, "I",
346 		    "simulate radar event");
347 	}
348 	vap->iv_sysctl = ctx;
349 	vap->iv_oid = oid;
350 }
351 
352 void
353 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
354 {
355 
356 	if (vap->iv_sysctl != NULL) {
357 		sysctl_ctx_free(vap->iv_sysctl);
358 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
359 		vap->iv_sysctl = NULL;
360 	}
361 }
362 
363 int
364 ieee80211_com_vincref(struct ieee80211vap *vap)
365 {
366 	uint32_t ostate;
367 
368 	ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
369 
370 	if (ostate & IEEE80211_COM_DETACHED) {
371 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
372 		return (ENETDOWN);
373 	}
374 
375 	if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) ==
376 	    IEEE80211_COM_REF_MAX) {
377 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
378 		return (EOVERFLOW);
379 	}
380 
381 	return (0);
382 }
383 
384 void
385 ieee80211_com_vdecref(struct ieee80211vap *vap)
386 {
387 	uint32_t ostate;
388 
389 	ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD);
390 
391 	KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0,
392 	    ("com reference counter underflow"));
393 
394 	(void) ostate;
395 }
396 
397 void
398 ieee80211_com_vdetach(struct ieee80211vap *vap)
399 {
400 	int sleep_time;
401 
402 	sleep_time = msecs_to_ticks(250);
403 	atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED);
404 	while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state),
405 	    IEEE80211_COM_REF) != 0)
406 		pause("comref", sleep_time);
407 }
408 
409 int
410 ieee80211_node_dectestref(struct ieee80211_node *ni)
411 {
412 	/* XXX need equivalent of atomic_dec_and_test */
413 	atomic_subtract_int(&ni->ni_refcnt, 1);
414 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
415 }
416 
417 void
418 ieee80211_drain_ifq(struct ifqueue *ifq)
419 {
420 	struct ieee80211_node *ni;
421 	struct mbuf *m;
422 
423 	for (;;) {
424 		IF_DEQUEUE(ifq, m);
425 		if (m == NULL)
426 			break;
427 
428 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
429 		KASSERT(ni != NULL, ("frame w/o node"));
430 		ieee80211_free_node(ni);
431 		m->m_pkthdr.rcvif = NULL;
432 
433 		m_freem(m);
434 	}
435 }
436 
437 void
438 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
439 {
440 	struct ieee80211_node *ni;
441 	struct mbuf *m, **mprev;
442 
443 	IF_LOCK(ifq);
444 	mprev = &ifq->ifq_head;
445 	while ((m = *mprev) != NULL) {
446 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
447 		if (ni != NULL && ni->ni_vap == vap) {
448 			*mprev = m->m_nextpkt;		/* remove from list */
449 			ifq->ifq_len--;
450 
451 			m_freem(m);
452 			ieee80211_free_node(ni);	/* reclaim ref */
453 		} else
454 			mprev = &m->m_nextpkt;
455 	}
456 	/* recalculate tail ptr */
457 	m = ifq->ifq_head;
458 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
459 		;
460 	ifq->ifq_tail = m;
461 	IF_UNLOCK(ifq);
462 }
463 
464 /*
465  * As above, for mbufs allocated with m_gethdr/MGETHDR
466  * or initialized by M_COPY_PKTHDR.
467  */
468 #define	MC_ALIGN(m, len)						\
469 do {									\
470 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
471 } while (/* CONSTCOND */ 0)
472 
473 /*
474  * Allocate and setup a management frame of the specified
475  * size.  We return the mbuf and a pointer to the start
476  * of the contiguous data area that's been reserved based
477  * on the packet length.  The data area is forced to 32-bit
478  * alignment and the buffer length to a multiple of 4 bytes.
479  * This is done mainly so beacon frames (that require this)
480  * can use this interface too.
481  */
482 struct mbuf *
483 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
484 {
485 	struct mbuf *m;
486 	u_int len;
487 
488 	/*
489 	 * NB: we know the mbuf routines will align the data area
490 	 *     so we don't need to do anything special.
491 	 */
492 	len = roundup2(headroom + pktlen, 4);
493 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
494 	if (len < MINCLSIZE) {
495 		m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
496 		/*
497 		 * Align the data in case additional headers are added.
498 		 * This should only happen when a WEP header is added
499 		 * which only happens for shared key authentication mgt
500 		 * frames which all fit in MHLEN.
501 		 */
502 		if (m != NULL)
503 			M_ALIGN(m, len);
504 	} else {
505 		m = m_getcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
506 		if (m != NULL)
507 			MC_ALIGN(m, len);
508 	}
509 	if (m != NULL) {
510 		m->m_data += headroom;
511 		*frm = m->m_data;
512 	}
513 	return m;
514 }
515 
516 #ifndef __NO_STRICT_ALIGNMENT
517 /*
518  * Re-align the payload in the mbuf.  This is mainly used (right now)
519  * to handle IP header alignment requirements on certain architectures.
520  */
521 struct mbuf *
522 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
523 {
524 	int pktlen, space;
525 	struct mbuf *n;
526 
527 	pktlen = m->m_pkthdr.len;
528 	space = pktlen + align;
529 	if (space < MINCLSIZE)
530 		n = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
531 	else {
532 		n = m_getjcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR,
533 		    space <= MCLBYTES ?     MCLBYTES :
534 #if MJUMPAGESIZE != MCLBYTES
535 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
536 #endif
537 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
538 	}
539 	if (__predict_true(n != NULL)) {
540 		m_move_pkthdr(n, m);
541 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
542 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
543 		n->m_len = pktlen;
544 	} else {
545 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
546 		    mtod(m, const struct ieee80211_frame *), NULL,
547 		    "%s", "no mbuf to realign");
548 		vap->iv_stats.is_rx_badalign++;
549 	}
550 	m_freem(m);
551 	return n;
552 }
553 #endif /* !__NO_STRICT_ALIGNMENT */
554 
555 int
556 ieee80211_add_callback(struct mbuf *m,
557 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
558 {
559 	struct m_tag *mtag;
560 	struct ieee80211_cb *cb;
561 
562 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
563 			sizeof(struct ieee80211_cb), IEEE80211_M_NOWAIT);
564 	if (mtag == NULL)
565 		return 0;
566 
567 	cb = (struct ieee80211_cb *)(mtag+1);
568 	cb->func = func;
569 	cb->arg = arg;
570 	m_tag_prepend(m, mtag);
571 	m->m_flags |= M_TXCB;
572 	return 1;
573 }
574 
575 int
576 ieee80211_add_xmit_params(struct mbuf *m,
577     const struct ieee80211_bpf_params *params)
578 {
579 	struct m_tag *mtag;
580 	struct ieee80211_tx_params *tx;
581 
582 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
583 	    sizeof(struct ieee80211_tx_params), IEEE80211_M_NOWAIT);
584 	if (mtag == NULL)
585 		return (0);
586 
587 	tx = (struct ieee80211_tx_params *)(mtag+1);
588 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
589 	m_tag_prepend(m, mtag);
590 	return (1);
591 }
592 
593 int
594 ieee80211_get_xmit_params(struct mbuf *m,
595     struct ieee80211_bpf_params *params)
596 {
597 	struct m_tag *mtag;
598 	struct ieee80211_tx_params *tx;
599 
600 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
601 	    NULL);
602 	if (mtag == NULL)
603 		return (-1);
604 	tx = (struct ieee80211_tx_params *)(mtag + 1);
605 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
606 	return (0);
607 }
608 
609 void
610 ieee80211_process_callback(struct ieee80211_node *ni,
611 	struct mbuf *m, int status)
612 {
613 	struct m_tag *mtag;
614 
615 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
616 	if (mtag != NULL) {
617 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
618 		cb->func(ni, cb->arg, status);
619 	}
620 }
621 
622 /*
623  * Add RX parameters to the given mbuf.
624  *
625  * Returns 1 if OK, 0 on error.
626  */
627 int
628 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
629 {
630 	struct m_tag *mtag;
631 	struct ieee80211_rx_params *rx;
632 
633 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
634 	    sizeof(struct ieee80211_rx_stats), IEEE80211_M_NOWAIT);
635 	if (mtag == NULL)
636 		return (0);
637 
638 	rx = (struct ieee80211_rx_params *)(mtag + 1);
639 	memcpy(&rx->params, rxs, sizeof(*rxs));
640 	m_tag_prepend(m, mtag);
641 	return (1);
642 }
643 
644 int
645 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
646 {
647 	struct m_tag *mtag;
648 	struct ieee80211_rx_params *rx;
649 
650 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
651 	    NULL);
652 	if (mtag == NULL)
653 		return (-1);
654 	rx = (struct ieee80211_rx_params *)(mtag + 1);
655 	memcpy(rxs, &rx->params, sizeof(*rxs));
656 	return (0);
657 }
658 
659 const struct ieee80211_rx_stats *
660 ieee80211_get_rx_params_ptr(struct mbuf *m)
661 {
662 	struct m_tag *mtag;
663 	struct ieee80211_rx_params *rx;
664 
665 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
666 	    NULL);
667 	if (mtag == NULL)
668 		return (NULL);
669 	rx = (struct ieee80211_rx_params *)(mtag + 1);
670 	return (&rx->params);
671 }
672 
673 /*
674  * Add TOA parameters to the given mbuf.
675  */
676 int
677 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
678 {
679 	struct m_tag *mtag;
680 	struct ieee80211_toa_params *rp;
681 
682 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
683 	    sizeof(struct ieee80211_toa_params), IEEE80211_M_NOWAIT);
684 	if (mtag == NULL)
685 		return (0);
686 
687 	rp = (struct ieee80211_toa_params *)(mtag + 1);
688 	memcpy(rp, p, sizeof(*rp));
689 	m_tag_prepend(m, mtag);
690 	return (1);
691 }
692 
693 int
694 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
695 {
696 	struct m_tag *mtag;
697 	struct ieee80211_toa_params *rp;
698 
699 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
700 	    NULL);
701 	if (mtag == NULL)
702 		return (0);
703 	rp = (struct ieee80211_toa_params *)(mtag + 1);
704 	if (p != NULL)
705 		memcpy(p, rp, sizeof(*p));
706 	return (1);
707 }
708 
709 /*
710  * Transmit a frame to the parent interface.
711  */
712 int
713 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
714 {
715 	int error;
716 
717 	/*
718 	 * Assert the IC TX lock is held - this enforces the
719 	 * processing -> queuing order is maintained
720 	 */
721 	IEEE80211_TX_LOCK_ASSERT(ic);
722 	error = ic->ic_transmit(ic, m);
723 	if (error) {
724 		struct ieee80211_node *ni;
725 
726 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
727 
728 		/* XXX number of fragments */
729 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
730 		ieee80211_free_node(ni);
731 		ieee80211_free_mbuf(m);
732 	}
733 	return (error);
734 }
735 
736 /*
737  * Transmit a frame to the VAP interface.
738  */
739 int
740 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
741 {
742 	struct ifnet *ifp = vap->iv_ifp;
743 
744 	/*
745 	 * When transmitting via the VAP, we shouldn't hold
746 	 * any IC TX lock as the VAP TX path will acquire it.
747 	 */
748 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
749 
750 	return (ifp->if_transmit(ifp, m));
751 
752 }
753 
754 #include <sys/libkern.h>
755 
756 void
757 net80211_get_random_bytes(void *p, size_t n)
758 {
759 	uint8_t *dp = p;
760 
761 	while (n > 0) {
762 		uint32_t v = arc4random();
763 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
764 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
765 		dp += sizeof(uint32_t), n -= nb;
766 	}
767 }
768 
769 /*
770  * Helper function for events that pass just a single mac address.
771  */
772 static void
773 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
774 {
775 	struct ieee80211_join_event iev;
776 
777 	CURVNET_SET(ifp->if_vnet);
778 	memset(&iev, 0, sizeof(iev));
779 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
780 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
781 	CURVNET_RESTORE();
782 }
783 
784 void
785 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
786 {
787 	struct ieee80211vap *vap = ni->ni_vap;
788 	struct ifnet *ifp = vap->iv_ifp;
789 
790 	CURVNET_SET_QUIET(ifp->if_vnet);
791 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
792 	    (ni == vap->iv_bss) ? "bss " : "");
793 
794 	if (ni == vap->iv_bss) {
795 		notify_macaddr(ifp, newassoc ?
796 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
797 		if_link_state_change(ifp, LINK_STATE_UP);
798 	} else {
799 		notify_macaddr(ifp, newassoc ?
800 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
801 	}
802 	CURVNET_RESTORE();
803 }
804 
805 void
806 ieee80211_notify_node_leave(struct ieee80211_node *ni)
807 {
808 	struct ieee80211vap *vap = ni->ni_vap;
809 	struct ifnet *ifp = vap->iv_ifp;
810 
811 	CURVNET_SET_QUIET(ifp->if_vnet);
812 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
813 	    (ni == vap->iv_bss) ? "bss " : "");
814 
815 	if (ni == vap->iv_bss) {
816 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
817 		if_link_state_change(ifp, LINK_STATE_DOWN);
818 	} else {
819 		/* fire off wireless event station leaving */
820 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
821 	}
822 	CURVNET_RESTORE();
823 }
824 
825 void
826 ieee80211_notify_scan_done(struct ieee80211vap *vap)
827 {
828 	struct ifnet *ifp = vap->iv_ifp;
829 
830 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
831 
832 	/* dispatch wireless event indicating scan completed */
833 	CURVNET_SET(ifp->if_vnet);
834 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
835 	CURVNET_RESTORE();
836 }
837 
838 void
839 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
840 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
841 	u_int64_t rsc, int tid)
842 {
843 	struct ifnet *ifp = vap->iv_ifp;
844 
845 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
846 	    "%s replay detected tid %d <rsc %ju (%jx), csc %ju (%jx), keyix %u rxkeyix %u>",
847 	    k->wk_cipher->ic_name, tid,
848 	    (intmax_t) rsc,
849 	    (intmax_t) rsc,
850 	    (intmax_t) k->wk_keyrsc[tid],
851 	    (intmax_t) k->wk_keyrsc[tid],
852 	    k->wk_keyix, k->wk_rxkeyix);
853 
854 	if (ifp != NULL) {		/* NB: for cipher test modules */
855 		struct ieee80211_replay_event iev;
856 
857 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
858 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
859 		iev.iev_cipher = k->wk_cipher->ic_cipher;
860 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
861 			iev.iev_keyix = k->wk_rxkeyix;
862 		else
863 			iev.iev_keyix = k->wk_keyix;
864 		iev.iev_keyrsc = k->wk_keyrsc[tid];
865 		iev.iev_rsc = rsc;
866 		CURVNET_SET(ifp->if_vnet);
867 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
868 		CURVNET_RESTORE();
869 	}
870 }
871 
872 void
873 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
874 	const struct ieee80211_frame *wh, u_int keyix)
875 {
876 	struct ifnet *ifp = vap->iv_ifp;
877 
878 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
879 	    "michael MIC verification failed <keyix %u>", keyix);
880 	vap->iv_stats.is_rx_tkipmic++;
881 
882 	if (ifp != NULL) {		/* NB: for cipher test modules */
883 		struct ieee80211_michael_event iev;
884 
885 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
886 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
887 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
888 		iev.iev_keyix = keyix;
889 		CURVNET_SET(ifp->if_vnet);
890 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
891 		CURVNET_RESTORE();
892 	}
893 }
894 
895 void
896 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
897 {
898 	struct ieee80211vap *vap = ni->ni_vap;
899 	struct ifnet *ifp = vap->iv_ifp;
900 
901 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
902 }
903 
904 void
905 ieee80211_notify_csa(struct ieee80211com *ic,
906 	const struct ieee80211_channel *c, int mode, int count)
907 {
908 	struct ieee80211_csa_event iev;
909 	struct ieee80211vap *vap;
910 	struct ifnet *ifp;
911 
912 	memset(&iev, 0, sizeof(iev));
913 	iev.iev_flags = c->ic_flags;
914 	iev.iev_freq = c->ic_freq;
915 	iev.iev_ieee = c->ic_ieee;
916 	iev.iev_mode = mode;
917 	iev.iev_count = count;
918 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
919 		ifp = vap->iv_ifp;
920 		CURVNET_SET(ifp->if_vnet);
921 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
922 		CURVNET_RESTORE();
923 	}
924 }
925 
926 void
927 ieee80211_notify_radar(struct ieee80211com *ic,
928 	const struct ieee80211_channel *c)
929 {
930 	struct ieee80211_radar_event iev;
931 	struct ieee80211vap *vap;
932 	struct ifnet *ifp;
933 
934 	memset(&iev, 0, sizeof(iev));
935 	iev.iev_flags = c->ic_flags;
936 	iev.iev_freq = c->ic_freq;
937 	iev.iev_ieee = c->ic_ieee;
938 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
939 		ifp = vap->iv_ifp;
940 		CURVNET_SET(ifp->if_vnet);
941 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
942 		CURVNET_RESTORE();
943 	}
944 }
945 
946 void
947 ieee80211_notify_cac(struct ieee80211com *ic,
948 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
949 {
950 	struct ieee80211_cac_event iev;
951 	struct ieee80211vap *vap;
952 	struct ifnet *ifp;
953 
954 	memset(&iev, 0, sizeof(iev));
955 	iev.iev_flags = c->ic_flags;
956 	iev.iev_freq = c->ic_freq;
957 	iev.iev_ieee = c->ic_ieee;
958 	iev.iev_type = type;
959 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
960 		ifp = vap->iv_ifp;
961 		CURVNET_SET(ifp->if_vnet);
962 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
963 		CURVNET_RESTORE();
964 	}
965 }
966 
967 void
968 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
969 {
970 	struct ieee80211vap *vap = ni->ni_vap;
971 	struct ifnet *ifp = vap->iv_ifp;
972 
973 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
974 
975 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
976 }
977 
978 void
979 ieee80211_notify_node_auth(struct ieee80211_node *ni)
980 {
981 	struct ieee80211vap *vap = ni->ni_vap;
982 	struct ifnet *ifp = vap->iv_ifp;
983 
984 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
985 
986 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
987 }
988 
989 void
990 ieee80211_notify_country(struct ieee80211vap *vap,
991 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
992 {
993 	struct ifnet *ifp = vap->iv_ifp;
994 	struct ieee80211_country_event iev;
995 
996 	memset(&iev, 0, sizeof(iev));
997 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
998 	iev.iev_cc[0] = cc[0];
999 	iev.iev_cc[1] = cc[1];
1000 	CURVNET_SET(ifp->if_vnet);
1001 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
1002 	CURVNET_RESTORE();
1003 }
1004 
1005 void
1006 ieee80211_notify_radio(struct ieee80211com *ic, int state)
1007 {
1008 	struct ieee80211_radio_event iev;
1009 	struct ieee80211vap *vap;
1010 	struct ifnet *ifp;
1011 
1012 	memset(&iev, 0, sizeof(iev));
1013 	iev.iev_state = state;
1014 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1015 		ifp = vap->iv_ifp;
1016 		CURVNET_SET(ifp->if_vnet);
1017 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
1018 		CURVNET_RESTORE();
1019 	}
1020 }
1021 
1022 void
1023 ieee80211_notify_ifnet_change(struct ieee80211vap *vap, int if_flags_mask)
1024 {
1025 	struct ifnet *ifp = vap->iv_ifp;
1026 
1027 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n",
1028 	    "interface state change");
1029 
1030 	CURVNET_SET(ifp->if_vnet);
1031 	rt_ifmsg(ifp, if_flags_mask);
1032 	CURVNET_RESTORE();
1033 }
1034 
1035 void
1036 ieee80211_load_module(const char *modname)
1037 {
1038 
1039 #ifdef notyet
1040 	(void)kern_kldload(curthread, modname, NULL);
1041 #else
1042 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
1043 #endif
1044 }
1045 
1046 static eventhandler_tag wlan_bpfevent;
1047 static eventhandler_tag wlan_ifllevent;
1048 
1049 static void
1050 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
1051 {
1052 	/* NB: identify vap's by if_init */
1053 	if (dlt == DLT_IEEE802_11_RADIO &&
1054 	    ifp->if_init == ieee80211_init) {
1055 		struct ieee80211vap *vap = ifp->if_softc;
1056 		/*
1057 		 * Track bpf radiotap listener state.  We mark the vap
1058 		 * to indicate if any listener is present and the com
1059 		 * to indicate if any listener exists on any associated
1060 		 * vap.  This flag is used by drivers to prepare radiotap
1061 		 * state only when needed.
1062 		 */
1063 		if (attach) {
1064 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1065 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1066 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1067 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
1068 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1069 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1070 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1071 		}
1072 	}
1073 }
1074 
1075 /*
1076  * Change MAC address on the vap (if was not started).
1077  */
1078 static void
1079 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
1080 {
1081 	/* NB: identify vap's by if_init */
1082 	if (ifp->if_init == ieee80211_init &&
1083 	    (ifp->if_flags & IFF_UP) == 0) {
1084 		struct ieee80211vap *vap = ifp->if_softc;
1085 
1086 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1087 	}
1088 }
1089 
1090 /*
1091  * Fetch the VAP name.
1092  *
1093  * This returns a const char pointer suitable for debugging,
1094  * but don't expect it to stick around for much longer.
1095  */
1096 const char *
1097 ieee80211_get_vap_ifname(struct ieee80211vap *vap)
1098 {
1099 	if (vap->iv_ifp == NULL)
1100 		return "(none)";
1101 	return vap->iv_ifp->if_xname;
1102 }
1103 
1104 #ifdef DEBUGNET
1105 static void
1106 ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
1107 {
1108 	struct ieee80211vap *vap;
1109 	struct ieee80211com *ic;
1110 
1111 	vap = if_getsoftc(ifp);
1112 	ic = vap->iv_ic;
1113 
1114 	IEEE80211_LOCK(ic);
1115 	ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize);
1116 	IEEE80211_UNLOCK(ic);
1117 }
1118 
1119 static void
1120 ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev)
1121 {
1122 	struct ieee80211vap *vap;
1123 	struct ieee80211com *ic;
1124 
1125 	vap = if_getsoftc(ifp);
1126 	ic = vap->iv_ic;
1127 
1128 	IEEE80211_LOCK(ic);
1129 	ic->ic_debugnet_meth->dn8_event(ic, ev);
1130 	IEEE80211_UNLOCK(ic);
1131 }
1132 
1133 static int
1134 ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
1135 {
1136 	return (ieee80211_vap_transmit(ifp, m));
1137 }
1138 
1139 static int
1140 ieee80211_debugnet_poll(struct ifnet *ifp, int count)
1141 {
1142 	struct ieee80211vap *vap;
1143 	struct ieee80211com *ic;
1144 
1145 	vap = if_getsoftc(ifp);
1146 	ic = vap->iv_ic;
1147 
1148 	return (ic->ic_debugnet_meth->dn8_poll(ic, count));
1149 }
1150 #endif
1151 
1152 /*
1153  * Module glue.
1154  *
1155  * NB: the module name is "wlan" for compatibility with NetBSD.
1156  */
1157 static int
1158 wlan_modevent(module_t mod, int type, void *unused)
1159 {
1160 	switch (type) {
1161 	case MOD_LOAD:
1162 		if (bootverbose)
1163 			printf("wlan: <802.11 Link Layer>\n");
1164 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1165 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
1166 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1167 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
1168 		struct if_clone_addreq req = {
1169 			.create_f = wlan_clone_create,
1170 			.destroy_f = wlan_clone_destroy,
1171 			.flags = IFC_F_AUTOUNIT,
1172 		};
1173 		wlan_cloner = ifc_attach_cloner(wlanname, &req);
1174 		return 0;
1175 	case MOD_UNLOAD:
1176 		ifc_detach_cloner(wlan_cloner);
1177 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1178 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1179 		return 0;
1180 	}
1181 	return EINVAL;
1182 }
1183 
1184 static moduledata_t wlan_mod = {
1185 	wlanname,
1186 	wlan_modevent,
1187 	0
1188 };
1189 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1190 MODULE_VERSION(wlan, 1);
1191 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1192 #ifdef	IEEE80211_ALQ
1193 MODULE_DEPEND(wlan, alq, 1, 1, 1);
1194 #endif	/* IEEE80211_ALQ */
1195