1 /*- 2 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 /* 30 * IEEE 802.11 support (FreeBSD-specific code) 31 */ 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/systm.h> 37 #include <sys/linker.h> 38 #include <sys/mbuf.h> 39 #include <sys/module.h> 40 #include <sys/proc.h> 41 #include <sys/sysctl.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_clone.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 #include <net/ethernet.h> 53 #include <net/route.h> 54 #include <net/vnet.h> 55 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_input.h> 58 59 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters"); 60 61 #ifdef IEEE80211_DEBUG 62 int ieee80211_debug = 0; 63 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 64 0, "debugging printfs"); 65 #endif 66 67 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state"); 68 69 static const char wlanname[] = "wlan"; 70 static struct if_clone *wlan_cloner; 71 72 static int 73 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) 74 { 75 struct ieee80211_clone_params cp; 76 struct ieee80211vap *vap; 77 struct ieee80211com *ic; 78 int error; 79 80 error = copyin(params, &cp, sizeof(cp)); 81 if (error) 82 return error; 83 ic = ieee80211_find_com(cp.icp_parent); 84 if (ic == NULL) 85 return ENXIO; 86 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { 87 ic_printf(ic, "%s: invalid opmode %d\n", __func__, 88 cp.icp_opmode); 89 return EINVAL; 90 } 91 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { 92 ic_printf(ic, "%s mode not supported\n", 93 ieee80211_opmode_name[cp.icp_opmode]); 94 return EOPNOTSUPP; 95 } 96 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && 97 #ifdef IEEE80211_SUPPORT_TDMA 98 (ic->ic_caps & IEEE80211_C_TDMA) == 0 99 #else 100 (1) 101 #endif 102 ) { 103 ic_printf(ic, "TDMA not supported\n"); 104 return EOPNOTSUPP; 105 } 106 vap = ic->ic_vap_create(ic, wlanname, unit, 107 cp.icp_opmode, cp.icp_flags, cp.icp_bssid, 108 cp.icp_flags & IEEE80211_CLONE_MACADDR ? 109 cp.icp_macaddr : ic->ic_macaddr); 110 111 return (vap == NULL ? EIO : 0); 112 } 113 114 static void 115 wlan_clone_destroy(struct ifnet *ifp) 116 { 117 struct ieee80211vap *vap = ifp->if_softc; 118 struct ieee80211com *ic = vap->iv_ic; 119 120 ic->ic_vap_delete(vap); 121 } 122 123 void 124 ieee80211_vap_destroy(struct ieee80211vap *vap) 125 { 126 CURVNET_SET(vap->iv_ifp->if_vnet); 127 if_clone_destroyif(wlan_cloner, vap->iv_ifp); 128 CURVNET_RESTORE(); 129 } 130 131 int 132 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) 133 { 134 int msecs = ticks_to_msecs(*(int *)arg1); 135 int error, t; 136 137 error = sysctl_handle_int(oidp, &msecs, 0, req); 138 if (error || !req->newptr) 139 return error; 140 t = msecs_to_ticks(msecs); 141 *(int *)arg1 = (t < 1) ? 1 : t; 142 return 0; 143 } 144 145 static int 146 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) 147 { 148 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; 149 int error; 150 151 error = sysctl_handle_int(oidp, &inact, 0, req); 152 if (error || !req->newptr) 153 return error; 154 *(int *)arg1 = inact / IEEE80211_INACT_WAIT; 155 return 0; 156 } 157 158 static int 159 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) 160 { 161 struct ieee80211com *ic = arg1; 162 163 return SYSCTL_OUT_STR(req, ic->ic_name); 164 } 165 166 static int 167 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) 168 { 169 struct ieee80211com *ic = arg1; 170 int t = 0, error; 171 172 error = sysctl_handle_int(oidp, &t, 0, req); 173 if (error || !req->newptr) 174 return error; 175 IEEE80211_LOCK(ic); 176 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 177 IEEE80211_UNLOCK(ic); 178 return 0; 179 } 180 181 void 182 ieee80211_sysctl_attach(struct ieee80211com *ic) 183 { 184 } 185 186 void 187 ieee80211_sysctl_detach(struct ieee80211com *ic) 188 { 189 } 190 191 void 192 ieee80211_sysctl_vattach(struct ieee80211vap *vap) 193 { 194 struct ifnet *ifp = vap->iv_ifp; 195 struct sysctl_ctx_list *ctx; 196 struct sysctl_oid *oid; 197 char num[14]; /* sufficient for 32 bits */ 198 199 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), 200 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 201 if (ctx == NULL) { 202 if_printf(ifp, "%s: cannot allocate sysctl context!\n", 203 __func__); 204 return; 205 } 206 sysctl_ctx_init(ctx); 207 snprintf(num, sizeof(num), "%u", ifp->if_dunit); 208 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), 209 OID_AUTO, num, CTLFLAG_RD, NULL, ""); 210 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 211 "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0, 212 ieee80211_sysctl_parent, "A", "parent device"); 213 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 214 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, 215 "driver capabilities"); 216 #ifdef IEEE80211_DEBUG 217 vap->iv_debug = ieee80211_debug; 218 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 219 "debug", CTLFLAG_RW, &vap->iv_debug, 0, 220 "control debugging printfs"); 221 #endif 222 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 223 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, 224 "consecutive beacon misses before scanning"); 225 /* XXX inherit from tunables */ 226 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 227 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0, 228 ieee80211_sysctl_inact, "I", 229 "station inactivity timeout (sec)"); 230 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 231 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0, 232 ieee80211_sysctl_inact, "I", 233 "station inactivity probe timeout (sec)"); 234 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 235 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0, 236 ieee80211_sysctl_inact, "I", 237 "station authentication timeout (sec)"); 238 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 239 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0, 240 ieee80211_sysctl_inact, "I", 241 "station initial state timeout (sec)"); 242 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 243 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 244 "ampdu_mintraffic_bk", CTLFLAG_RW, 245 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, 246 "BK traffic tx aggr threshold (pps)"); 247 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 248 "ampdu_mintraffic_be", CTLFLAG_RW, 249 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, 250 "BE traffic tx aggr threshold (pps)"); 251 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 252 "ampdu_mintraffic_vo", CTLFLAG_RW, 253 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, 254 "VO traffic tx aggr threshold (pps)"); 255 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 256 "ampdu_mintraffic_vi", CTLFLAG_RW, 257 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, 258 "VI traffic tx aggr threshold (pps)"); 259 } 260 if (vap->iv_caps & IEEE80211_C_DFS) { 261 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 262 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0, 263 ieee80211_sysctl_radar, "I", "simulate radar event"); 264 } 265 vap->iv_sysctl = ctx; 266 vap->iv_oid = oid; 267 } 268 269 void 270 ieee80211_sysctl_vdetach(struct ieee80211vap *vap) 271 { 272 273 if (vap->iv_sysctl != NULL) { 274 sysctl_ctx_free(vap->iv_sysctl); 275 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); 276 vap->iv_sysctl = NULL; 277 } 278 } 279 280 int 281 ieee80211_node_dectestref(struct ieee80211_node *ni) 282 { 283 /* XXX need equivalent of atomic_dec_and_test */ 284 atomic_subtract_int(&ni->ni_refcnt, 1); 285 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); 286 } 287 288 void 289 ieee80211_drain_ifq(struct ifqueue *ifq) 290 { 291 struct ieee80211_node *ni; 292 struct mbuf *m; 293 294 for (;;) { 295 IF_DEQUEUE(ifq, m); 296 if (m == NULL) 297 break; 298 299 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 300 KASSERT(ni != NULL, ("frame w/o node")); 301 ieee80211_free_node(ni); 302 m->m_pkthdr.rcvif = NULL; 303 304 m_freem(m); 305 } 306 } 307 308 void 309 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) 310 { 311 struct ieee80211_node *ni; 312 struct mbuf *m, **mprev; 313 314 IF_LOCK(ifq); 315 mprev = &ifq->ifq_head; 316 while ((m = *mprev) != NULL) { 317 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 318 if (ni != NULL && ni->ni_vap == vap) { 319 *mprev = m->m_nextpkt; /* remove from list */ 320 ifq->ifq_len--; 321 322 m_freem(m); 323 ieee80211_free_node(ni); /* reclaim ref */ 324 } else 325 mprev = &m->m_nextpkt; 326 } 327 /* recalculate tail ptr */ 328 m = ifq->ifq_head; 329 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) 330 ; 331 ifq->ifq_tail = m; 332 IF_UNLOCK(ifq); 333 } 334 335 /* 336 * As above, for mbufs allocated with m_gethdr/MGETHDR 337 * or initialized by M_COPY_PKTHDR. 338 */ 339 #define MC_ALIGN(m, len) \ 340 do { \ 341 (m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1); \ 342 } while (/* CONSTCOND */ 0) 343 344 /* 345 * Allocate and setup a management frame of the specified 346 * size. We return the mbuf and a pointer to the start 347 * of the contiguous data area that's been reserved based 348 * on the packet length. The data area is forced to 32-bit 349 * alignment and the buffer length to a multiple of 4 bytes. 350 * This is done mainly so beacon frames (that require this) 351 * can use this interface too. 352 */ 353 struct mbuf * 354 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) 355 { 356 struct mbuf *m; 357 u_int len; 358 359 /* 360 * NB: we know the mbuf routines will align the data area 361 * so we don't need to do anything special. 362 */ 363 len = roundup2(headroom + pktlen, 4); 364 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); 365 if (len < MINCLSIZE) { 366 m = m_gethdr(M_NOWAIT, MT_DATA); 367 /* 368 * Align the data in case additional headers are added. 369 * This should only happen when a WEP header is added 370 * which only happens for shared key authentication mgt 371 * frames which all fit in MHLEN. 372 */ 373 if (m != NULL) 374 M_ALIGN(m, len); 375 } else { 376 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 377 if (m != NULL) 378 MC_ALIGN(m, len); 379 } 380 if (m != NULL) { 381 m->m_data += headroom; 382 *frm = m->m_data; 383 } 384 return m; 385 } 386 387 #ifndef __NO_STRICT_ALIGNMENT 388 /* 389 * Re-align the payload in the mbuf. This is mainly used (right now) 390 * to handle IP header alignment requirements on certain architectures. 391 */ 392 struct mbuf * 393 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) 394 { 395 int pktlen, space; 396 struct mbuf *n; 397 398 pktlen = m->m_pkthdr.len; 399 space = pktlen + align; 400 if (space < MINCLSIZE) 401 n = m_gethdr(M_NOWAIT, MT_DATA); 402 else { 403 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 404 space <= MCLBYTES ? MCLBYTES : 405 #if MJUMPAGESIZE != MCLBYTES 406 space <= MJUMPAGESIZE ? MJUMPAGESIZE : 407 #endif 408 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); 409 } 410 if (__predict_true(n != NULL)) { 411 m_move_pkthdr(n, m); 412 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); 413 m_copydata(m, 0, pktlen, mtod(n, caddr_t)); 414 n->m_len = pktlen; 415 } else { 416 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, 417 mtod(m, const struct ieee80211_frame *), NULL, 418 "%s", "no mbuf to realign"); 419 vap->iv_stats.is_rx_badalign++; 420 } 421 m_freem(m); 422 return n; 423 } 424 #endif /* !__NO_STRICT_ALIGNMENT */ 425 426 int 427 ieee80211_add_callback(struct mbuf *m, 428 void (*func)(struct ieee80211_node *, void *, int), void *arg) 429 { 430 struct m_tag *mtag; 431 struct ieee80211_cb *cb; 432 433 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, 434 sizeof(struct ieee80211_cb), M_NOWAIT); 435 if (mtag == NULL) 436 return 0; 437 438 cb = (struct ieee80211_cb *)(mtag+1); 439 cb->func = func; 440 cb->arg = arg; 441 m_tag_prepend(m, mtag); 442 m->m_flags |= M_TXCB; 443 return 1; 444 } 445 446 int 447 ieee80211_add_xmit_params(struct mbuf *m, 448 const struct ieee80211_bpf_params *params) 449 { 450 struct m_tag *mtag; 451 struct ieee80211_tx_params *tx; 452 453 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 454 sizeof(struct ieee80211_tx_params), M_NOWAIT); 455 if (mtag == NULL) 456 return (0); 457 458 tx = (struct ieee80211_tx_params *)(mtag+1); 459 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); 460 m_tag_prepend(m, mtag); 461 return (1); 462 } 463 464 int 465 ieee80211_get_xmit_params(struct mbuf *m, 466 struct ieee80211_bpf_params *params) 467 { 468 struct m_tag *mtag; 469 struct ieee80211_tx_params *tx; 470 471 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 472 NULL); 473 if (mtag == NULL) 474 return (-1); 475 tx = (struct ieee80211_tx_params *)(mtag + 1); 476 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); 477 return (0); 478 } 479 480 void 481 ieee80211_process_callback(struct ieee80211_node *ni, 482 struct mbuf *m, int status) 483 { 484 struct m_tag *mtag; 485 486 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); 487 if (mtag != NULL) { 488 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); 489 cb->func(ni, cb->arg, status); 490 } 491 } 492 493 /* 494 * Transmit a frame to the parent interface. 495 * 496 * TODO: if the transmission fails, make sure the parent node is freed 497 * (the callers will first need modifying.) 498 */ 499 int 500 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) 501 { 502 int error; 503 504 /* 505 * Assert the IC TX lock is held - this enforces the 506 * processing -> queuing order is maintained 507 */ 508 IEEE80211_TX_LOCK_ASSERT(ic); 509 error = ic->ic_transmit(ic, m); 510 if (error) 511 m_freem(m); 512 return (error); 513 } 514 515 /* 516 * Transmit a frame to the VAP interface. 517 */ 518 int 519 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) 520 { 521 struct ifnet *ifp = vap->iv_ifp; 522 523 /* 524 * When transmitting via the VAP, we shouldn't hold 525 * any IC TX lock as the VAP TX path will acquire it. 526 */ 527 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); 528 529 return (ifp->if_transmit(ifp, m)); 530 531 } 532 533 #include <sys/libkern.h> 534 535 void 536 get_random_bytes(void *p, size_t n) 537 { 538 uint8_t *dp = p; 539 540 while (n > 0) { 541 uint32_t v = arc4random(); 542 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; 543 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); 544 dp += sizeof(uint32_t), n -= nb; 545 } 546 } 547 548 /* 549 * Helper function for events that pass just a single mac address. 550 */ 551 static void 552 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) 553 { 554 struct ieee80211_join_event iev; 555 556 CURVNET_SET(ifp->if_vnet); 557 memset(&iev, 0, sizeof(iev)); 558 IEEE80211_ADDR_COPY(iev.iev_addr, mac); 559 rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); 560 CURVNET_RESTORE(); 561 } 562 563 void 564 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) 565 { 566 struct ieee80211vap *vap = ni->ni_vap; 567 struct ifnet *ifp = vap->iv_ifp; 568 569 CURVNET_SET_QUIET(ifp->if_vnet); 570 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", 571 (ni == vap->iv_bss) ? "bss " : ""); 572 573 if (ni == vap->iv_bss) { 574 notify_macaddr(ifp, newassoc ? 575 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); 576 if_link_state_change(ifp, LINK_STATE_UP); 577 } else { 578 notify_macaddr(ifp, newassoc ? 579 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); 580 } 581 CURVNET_RESTORE(); 582 } 583 584 void 585 ieee80211_notify_node_leave(struct ieee80211_node *ni) 586 { 587 struct ieee80211vap *vap = ni->ni_vap; 588 struct ifnet *ifp = vap->iv_ifp; 589 590 CURVNET_SET_QUIET(ifp->if_vnet); 591 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", 592 (ni == vap->iv_bss) ? "bss " : ""); 593 594 if (ni == vap->iv_bss) { 595 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); 596 if_link_state_change(ifp, LINK_STATE_DOWN); 597 } else { 598 /* fire off wireless event station leaving */ 599 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); 600 } 601 CURVNET_RESTORE(); 602 } 603 604 void 605 ieee80211_notify_scan_done(struct ieee80211vap *vap) 606 { 607 struct ifnet *ifp = vap->iv_ifp; 608 609 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); 610 611 /* dispatch wireless event indicating scan completed */ 612 CURVNET_SET(ifp->if_vnet); 613 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); 614 CURVNET_RESTORE(); 615 } 616 617 void 618 ieee80211_notify_replay_failure(struct ieee80211vap *vap, 619 const struct ieee80211_frame *wh, const struct ieee80211_key *k, 620 u_int64_t rsc, int tid) 621 { 622 struct ifnet *ifp = vap->iv_ifp; 623 624 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 625 "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>", 626 k->wk_cipher->ic_name, tid, (intmax_t) rsc, 627 (intmax_t) k->wk_keyrsc[tid], 628 k->wk_keyix, k->wk_rxkeyix); 629 630 if (ifp != NULL) { /* NB: for cipher test modules */ 631 struct ieee80211_replay_event iev; 632 633 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 634 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 635 iev.iev_cipher = k->wk_cipher->ic_cipher; 636 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) 637 iev.iev_keyix = k->wk_rxkeyix; 638 else 639 iev.iev_keyix = k->wk_keyix; 640 iev.iev_keyrsc = k->wk_keyrsc[tid]; 641 iev.iev_rsc = rsc; 642 CURVNET_SET(ifp->if_vnet); 643 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); 644 CURVNET_RESTORE(); 645 } 646 } 647 648 void 649 ieee80211_notify_michael_failure(struct ieee80211vap *vap, 650 const struct ieee80211_frame *wh, u_int keyix) 651 { 652 struct ifnet *ifp = vap->iv_ifp; 653 654 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 655 "michael MIC verification failed <keyix %u>", keyix); 656 vap->iv_stats.is_rx_tkipmic++; 657 658 if (ifp != NULL) { /* NB: for cipher test modules */ 659 struct ieee80211_michael_event iev; 660 661 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 662 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 663 iev.iev_cipher = IEEE80211_CIPHER_TKIP; 664 iev.iev_keyix = keyix; 665 CURVNET_SET(ifp->if_vnet); 666 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); 667 CURVNET_RESTORE(); 668 } 669 } 670 671 void 672 ieee80211_notify_wds_discover(struct ieee80211_node *ni) 673 { 674 struct ieee80211vap *vap = ni->ni_vap; 675 struct ifnet *ifp = vap->iv_ifp; 676 677 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); 678 } 679 680 void 681 ieee80211_notify_csa(struct ieee80211com *ic, 682 const struct ieee80211_channel *c, int mode, int count) 683 { 684 struct ieee80211_csa_event iev; 685 struct ieee80211vap *vap; 686 struct ifnet *ifp; 687 688 memset(&iev, 0, sizeof(iev)); 689 iev.iev_flags = c->ic_flags; 690 iev.iev_freq = c->ic_freq; 691 iev.iev_ieee = c->ic_ieee; 692 iev.iev_mode = mode; 693 iev.iev_count = count; 694 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 695 ifp = vap->iv_ifp; 696 CURVNET_SET(ifp->if_vnet); 697 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); 698 CURVNET_RESTORE(); 699 } 700 } 701 702 void 703 ieee80211_notify_radar(struct ieee80211com *ic, 704 const struct ieee80211_channel *c) 705 { 706 struct ieee80211_radar_event iev; 707 struct ieee80211vap *vap; 708 struct ifnet *ifp; 709 710 memset(&iev, 0, sizeof(iev)); 711 iev.iev_flags = c->ic_flags; 712 iev.iev_freq = c->ic_freq; 713 iev.iev_ieee = c->ic_ieee; 714 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 715 ifp = vap->iv_ifp; 716 CURVNET_SET(ifp->if_vnet); 717 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); 718 CURVNET_RESTORE(); 719 } 720 } 721 722 void 723 ieee80211_notify_cac(struct ieee80211com *ic, 724 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) 725 { 726 struct ieee80211_cac_event iev; 727 struct ieee80211vap *vap; 728 struct ifnet *ifp; 729 730 memset(&iev, 0, sizeof(iev)); 731 iev.iev_flags = c->ic_flags; 732 iev.iev_freq = c->ic_freq; 733 iev.iev_ieee = c->ic_ieee; 734 iev.iev_type = type; 735 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 736 ifp = vap->iv_ifp; 737 CURVNET_SET(ifp->if_vnet); 738 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); 739 CURVNET_RESTORE(); 740 } 741 } 742 743 void 744 ieee80211_notify_node_deauth(struct ieee80211_node *ni) 745 { 746 struct ieee80211vap *vap = ni->ni_vap; 747 struct ifnet *ifp = vap->iv_ifp; 748 749 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); 750 751 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); 752 } 753 754 void 755 ieee80211_notify_node_auth(struct ieee80211_node *ni) 756 { 757 struct ieee80211vap *vap = ni->ni_vap; 758 struct ifnet *ifp = vap->iv_ifp; 759 760 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); 761 762 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); 763 } 764 765 void 766 ieee80211_notify_country(struct ieee80211vap *vap, 767 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) 768 { 769 struct ifnet *ifp = vap->iv_ifp; 770 struct ieee80211_country_event iev; 771 772 memset(&iev, 0, sizeof(iev)); 773 IEEE80211_ADDR_COPY(iev.iev_addr, bssid); 774 iev.iev_cc[0] = cc[0]; 775 iev.iev_cc[1] = cc[1]; 776 CURVNET_SET(ifp->if_vnet); 777 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); 778 CURVNET_RESTORE(); 779 } 780 781 void 782 ieee80211_notify_radio(struct ieee80211com *ic, int state) 783 { 784 struct ieee80211_radio_event iev; 785 struct ieee80211vap *vap; 786 struct ifnet *ifp; 787 788 memset(&iev, 0, sizeof(iev)); 789 iev.iev_state = state; 790 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 791 ifp = vap->iv_ifp; 792 CURVNET_SET(ifp->if_vnet); 793 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); 794 CURVNET_RESTORE(); 795 } 796 } 797 798 void 799 ieee80211_load_module(const char *modname) 800 { 801 802 #ifdef notyet 803 (void)kern_kldload(curthread, modname, NULL); 804 #else 805 printf("%s: load the %s module by hand for now.\n", __func__, modname); 806 #endif 807 } 808 809 static eventhandler_tag wlan_bpfevent; 810 811 static void 812 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) 813 { 814 /* NB: identify vap's by if_init */ 815 if (dlt == DLT_IEEE802_11_RADIO && 816 ifp->if_init == ieee80211_init) { 817 struct ieee80211vap *vap = ifp->if_softc; 818 /* 819 * Track bpf radiotap listener state. We mark the vap 820 * to indicate if any listener is present and the com 821 * to indicate if any listener exists on any associated 822 * vap. This flag is used by drivers to prepare radiotap 823 * state only when needed. 824 */ 825 if (attach) { 826 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); 827 if (vap->iv_opmode == IEEE80211_M_MONITOR) 828 atomic_add_int(&vap->iv_ic->ic_montaps, 1); 829 } else if (!bpf_peers_present(vap->iv_rawbpf)) { 830 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); 831 if (vap->iv_opmode == IEEE80211_M_MONITOR) 832 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); 833 } 834 } 835 } 836 837 /* 838 * Module glue. 839 * 840 * NB: the module name is "wlan" for compatibility with NetBSD. 841 */ 842 static int 843 wlan_modevent(module_t mod, int type, void *unused) 844 { 845 switch (type) { 846 case MOD_LOAD: 847 if (bootverbose) 848 printf("wlan: <802.11 Link Layer>\n"); 849 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, 850 bpf_track, 0, EVENTHANDLER_PRI_ANY); 851 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create, 852 wlan_clone_destroy, 0); 853 return 0; 854 case MOD_UNLOAD: 855 if_clone_detach(wlan_cloner); 856 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 857 return 0; 858 } 859 return EINVAL; 860 } 861 862 static moduledata_t wlan_mod = { 863 wlanname, 864 wlan_modevent, 865 0 866 }; 867 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 868 MODULE_VERSION(wlan, 1); 869 MODULE_DEPEND(wlan, ether, 1, 1, 1); 870 #ifdef IEEE80211_ALQ 871 MODULE_DEPEND(wlan, alq, 1, 1, 1); 872 #endif /* IEEE80211_ALQ */ 873 874