xref: /freebsd/sys/net80211/ieee80211_freebsd.c (revision b9128a37faafede823eb456aa65a11ac69997284)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 /*
30  * IEEE 802.11 support (FreeBSD-specific code)
31  */
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/eventhandler.h>
37 #include <sys/kernel.h>
38 #include <sys/linker.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/sysctl.h>
45 
46 #include <sys/socket.h>
47 
48 #include <net/bpf.h>
49 #include <net/debugnet.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_dl.h>
53 #include <net/if_clone.h>
54 #include <net/if_media.h>
55 #include <net/if_private.h>
56 #include <net/if_types.h>
57 #include <net/ethernet.h>
58 #include <net/route.h>
59 #include <net/vnet.h>
60 
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_input.h>
63 
64 DEBUGNET_DEFINE(ieee80211);
65 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
66     "IEEE 80211 parameters");
67 
68 #ifdef IEEE80211_DEBUG
69 static int	ieee80211_debug = 0;
70 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
71 	    0, "debugging printfs");
72 #endif
73 
74 static const char wlanname[] = "wlan";
75 static struct if_clone *wlan_cloner;
76 
77 /*
78  * priv(9) NET80211 checks.
79  * Return 0 if operation is allowed, E* (usually EPERM) otherwise.
80  */
81 int
82 ieee80211_priv_check_vap_getkey(u_long cmd __unused,
83      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
84 {
85 
86 	return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY));
87 }
88 
89 int
90 ieee80211_priv_check_vap_manage(u_long cmd __unused,
91      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
92 {
93 
94 	return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE));
95 }
96 
97 int
98 ieee80211_priv_check_vap_setmac(u_long cmd __unused,
99      struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
100 {
101 
102 	return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC));
103 }
104 
105 int
106 ieee80211_priv_check_create_vap(u_long cmd __unused,
107     struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
108 {
109 
110 	return (priv_check(curthread, PRIV_NET80211_CREATE_VAP));
111 }
112 
113 static int
114 wlan_clone_create(struct if_clone *ifc, char *name, size_t len,
115     struct ifc_data *ifd, struct ifnet **ifpp)
116 {
117 	struct ieee80211_clone_params cp;
118 	struct ieee80211vap *vap;
119 	struct ieee80211com *ic;
120 	int error;
121 
122 	error = ieee80211_priv_check_create_vap(0, NULL, NULL);
123 	if (error)
124 		return error;
125 
126 	error = ifc_copyin(ifd, &cp, sizeof(cp));
127 	if (error)
128 		return error;
129 	ic = ieee80211_find_com(cp.icp_parent);
130 	if (ic == NULL)
131 		return ENXIO;
132 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
133 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
134 		    cp.icp_opmode);
135 		return EINVAL;
136 	}
137 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
138 		ic_printf(ic, "%s mode not supported\n",
139 		    ieee80211_opmode_name[cp.icp_opmode]);
140 		return EOPNOTSUPP;
141 	}
142 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
143 #ifdef IEEE80211_SUPPORT_TDMA
144 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
145 #else
146 	    (1)
147 #endif
148 	) {
149 		ic_printf(ic, "TDMA not supported\n");
150 		return EOPNOTSUPP;
151 	}
152 	vap = ic->ic_vap_create(ic, wlanname, ifd->unit,
153 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
154 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
155 			    cp.icp_macaddr : ic->ic_macaddr);
156 
157 	if (vap == NULL)
158 		return (EIO);
159 
160 #ifdef DEBUGNET
161 	if (ic->ic_debugnet_meth != NULL)
162 		DEBUGNET_SET(vap->iv_ifp, ieee80211);
163 #endif
164 	*ifpp = vap->iv_ifp;
165 
166 	return (0);
167 }
168 
169 static int
170 wlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
171 {
172 	struct ieee80211vap *vap = ifp->if_softc;
173 	struct ieee80211com *ic = vap->iv_ic;
174 
175 	ic->ic_vap_delete(vap);
176 
177 	return (0);
178 }
179 
180 void
181 ieee80211_vap_destroy(struct ieee80211vap *vap)
182 {
183 	CURVNET_SET(vap->iv_ifp->if_vnet);
184 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
185 	CURVNET_RESTORE();
186 }
187 
188 int
189 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
190 {
191 	int msecs = ticks_to_msecs(*(int *)arg1);
192 	int error;
193 
194 	error = sysctl_handle_int(oidp, &msecs, 0, req);
195 	if (error || !req->newptr)
196 		return error;
197 	*(int *)arg1 = msecs_to_ticks(msecs);
198 	return 0;
199 }
200 
201 static int
202 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
203 {
204 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
205 	int error;
206 
207 	error = sysctl_handle_int(oidp, &inact, 0, req);
208 	if (error || !req->newptr)
209 		return error;
210 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
211 	return 0;
212 }
213 
214 static int
215 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
216 {
217 	struct ieee80211com *ic = arg1;
218 
219 	return SYSCTL_OUT_STR(req, ic->ic_name);
220 }
221 
222 static int
223 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
224 {
225 	struct ieee80211com *ic = arg1;
226 	int t = 0, error;
227 
228 	error = sysctl_handle_int(oidp, &t, 0, req);
229 	if (error || !req->newptr)
230 		return error;
231 	IEEE80211_LOCK(ic);
232 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
233 	IEEE80211_UNLOCK(ic);
234 	return 0;
235 }
236 
237 /*
238  * For now, just restart everything.
239  *
240  * Later on, it'd be nice to have a separate VAP restart to
241  * full-device restart.
242  */
243 static int
244 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
245 {
246 	struct ieee80211vap *vap = arg1;
247 	int t = 0, error;
248 
249 	error = sysctl_handle_int(oidp, &t, 0, req);
250 	if (error || !req->newptr)
251 		return error;
252 
253 	ieee80211_restart_all(vap->iv_ic);
254 	return 0;
255 }
256 
257 void
258 ieee80211_sysctl_attach(struct ieee80211com *ic)
259 {
260 }
261 
262 void
263 ieee80211_sysctl_detach(struct ieee80211com *ic)
264 {
265 }
266 
267 void
268 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
269 {
270 	struct ifnet *ifp = vap->iv_ifp;
271 	struct sysctl_ctx_list *ctx;
272 	struct sysctl_oid *oid;
273 	char num[14];			/* sufficient for 32 bits */
274 
275 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
276 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
277 	if (ctx == NULL) {
278 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
279 			__func__);
280 		return;
281 	}
282 	sysctl_ctx_init(ctx);
283 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
284 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
285 	    OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
286 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
287 	    "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
288 	    vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device");
289 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
290 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
291 		"driver capabilities");
292 #ifdef IEEE80211_DEBUG
293 	vap->iv_debug = ieee80211_debug;
294 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
295 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
296 		"control debugging printfs");
297 #endif
298 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
299 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
300 		"consecutive beacon misses before scanning");
301 	/* XXX inherit from tunables */
302 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
303 	    "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
304 	    &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I",
305 	    "station inactivity timeout (sec)");
306 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
307 	    "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
308 	    &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I",
309 	    "station inactivity probe timeout (sec)");
310 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
311 	    "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
312 	    &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I",
313 	    "station authentication timeout (sec)");
314 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
315 	    "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
316 	    &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I",
317 	    "station initial state timeout (sec)");
318 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
319 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
320 			"ampdu_mintraffic_bk", CTLFLAG_RW,
321 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
322 			"BK traffic tx aggr threshold (pps)");
323 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
324 			"ampdu_mintraffic_be", CTLFLAG_RW,
325 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
326 			"BE traffic tx aggr threshold (pps)");
327 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
328 			"ampdu_mintraffic_vo", CTLFLAG_RW,
329 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
330 			"VO traffic tx aggr threshold (pps)");
331 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
332 			"ampdu_mintraffic_vi", CTLFLAG_RW,
333 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
334 			"VI traffic tx aggr threshold (pps)");
335 	}
336 
337 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
338 	    "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
339 	    vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart");
340 
341 	if (vap->iv_caps & IEEE80211_C_DFS) {
342 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
343 		    "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
344 		    vap->iv_ic, 0, ieee80211_sysctl_radar, "I",
345 		    "simulate radar event");
346 	}
347 	vap->iv_sysctl = ctx;
348 	vap->iv_oid = oid;
349 }
350 
351 void
352 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
353 {
354 
355 	if (vap->iv_sysctl != NULL) {
356 		sysctl_ctx_free(vap->iv_sysctl);
357 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
358 		vap->iv_sysctl = NULL;
359 	}
360 }
361 
362 int
363 ieee80211_com_vincref(struct ieee80211vap *vap)
364 {
365 	uint32_t ostate;
366 
367 	ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
368 
369 	if (ostate & IEEE80211_COM_DETACHED) {
370 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
371 		return (ENETDOWN);
372 	}
373 
374 	if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) ==
375 	    IEEE80211_COM_REF_MAX) {
376 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
377 		return (EOVERFLOW);
378 	}
379 
380 	return (0);
381 }
382 
383 void
384 ieee80211_com_vdecref(struct ieee80211vap *vap)
385 {
386 	uint32_t ostate;
387 
388 	ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD);
389 
390 	KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0,
391 	    ("com reference counter underflow"));
392 
393 	(void) ostate;
394 }
395 
396 void
397 ieee80211_com_vdetach(struct ieee80211vap *vap)
398 {
399 	int sleep_time;
400 
401 	sleep_time = msecs_to_ticks(250);
402 	atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED);
403 	while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state),
404 	    IEEE80211_COM_REF) != 0)
405 		pause("comref", sleep_time);
406 }
407 
408 int
409 ieee80211_node_dectestref(struct ieee80211_node *ni)
410 {
411 	/* XXX need equivalent of atomic_dec_and_test */
412 	atomic_subtract_int(&ni->ni_refcnt, 1);
413 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
414 }
415 
416 void
417 ieee80211_drain_ifq(struct ifqueue *ifq)
418 {
419 	struct ieee80211_node *ni;
420 	struct mbuf *m;
421 
422 	for (;;) {
423 		IF_DEQUEUE(ifq, m);
424 		if (m == NULL)
425 			break;
426 
427 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
428 		KASSERT(ni != NULL, ("frame w/o node"));
429 		ieee80211_free_node(ni);
430 		m->m_pkthdr.rcvif = NULL;
431 
432 		m_freem(m);
433 	}
434 }
435 
436 void
437 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
438 {
439 	struct ieee80211_node *ni;
440 	struct mbuf *m, **mprev;
441 
442 	IF_LOCK(ifq);
443 	mprev = &ifq->ifq_head;
444 	while ((m = *mprev) != NULL) {
445 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
446 		if (ni != NULL && ni->ni_vap == vap) {
447 			*mprev = m->m_nextpkt;		/* remove from list */
448 			ifq->ifq_len--;
449 
450 			m_freem(m);
451 			ieee80211_free_node(ni);	/* reclaim ref */
452 		} else
453 			mprev = &m->m_nextpkt;
454 	}
455 	/* recalculate tail ptr */
456 	m = ifq->ifq_head;
457 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
458 		;
459 	ifq->ifq_tail = m;
460 	IF_UNLOCK(ifq);
461 }
462 
463 /*
464  * As above, for mbufs allocated with m_gethdr/MGETHDR
465  * or initialized by M_COPY_PKTHDR.
466  */
467 #define	MC_ALIGN(m, len)						\
468 do {									\
469 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
470 } while (/* CONSTCOND */ 0)
471 
472 /*
473  * Allocate and setup a management frame of the specified
474  * size.  We return the mbuf and a pointer to the start
475  * of the contiguous data area that's been reserved based
476  * on the packet length.  The data area is forced to 32-bit
477  * alignment and the buffer length to a multiple of 4 bytes.
478  * This is done mainly so beacon frames (that require this)
479  * can use this interface too.
480  */
481 struct mbuf *
482 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
483 {
484 	struct mbuf *m;
485 	u_int len;
486 
487 	/*
488 	 * NB: we know the mbuf routines will align the data area
489 	 *     so we don't need to do anything special.
490 	 */
491 	len = roundup2(headroom + pktlen, 4);
492 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
493 	if (len < MINCLSIZE) {
494 		m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
495 		/*
496 		 * Align the data in case additional headers are added.
497 		 * This should only happen when a WEP header is added
498 		 * which only happens for shared key authentication mgt
499 		 * frames which all fit in MHLEN.
500 		 */
501 		if (m != NULL)
502 			M_ALIGN(m, len);
503 	} else {
504 		m = m_getcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
505 		if (m != NULL)
506 			MC_ALIGN(m, len);
507 	}
508 	if (m != NULL) {
509 		m->m_data += headroom;
510 		*frm = m->m_data;
511 	}
512 	return m;
513 }
514 
515 #ifndef __NO_STRICT_ALIGNMENT
516 /*
517  * Re-align the payload in the mbuf.  This is mainly used (right now)
518  * to handle IP header alignment requirements on certain architectures.
519  */
520 struct mbuf *
521 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
522 {
523 	int pktlen, space;
524 	struct mbuf *n;
525 
526 	pktlen = m->m_pkthdr.len;
527 	space = pktlen + align;
528 	if (space < MINCLSIZE)
529 		n = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
530 	else {
531 		n = m_getjcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR,
532 		    space <= MCLBYTES ?     MCLBYTES :
533 #if MJUMPAGESIZE != MCLBYTES
534 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
535 #endif
536 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
537 	}
538 	if (__predict_true(n != NULL)) {
539 		m_move_pkthdr(n, m);
540 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
541 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
542 		n->m_len = pktlen;
543 	} else {
544 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
545 		    mtod(m, const struct ieee80211_frame *), NULL,
546 		    "%s", "no mbuf to realign");
547 		vap->iv_stats.is_rx_badalign++;
548 	}
549 	m_freem(m);
550 	return n;
551 }
552 #endif /* !__NO_STRICT_ALIGNMENT */
553 
554 int
555 ieee80211_add_callback(struct mbuf *m,
556 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
557 {
558 	struct m_tag *mtag;
559 	struct ieee80211_cb *cb;
560 
561 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
562 			sizeof(struct ieee80211_cb), IEEE80211_M_NOWAIT);
563 	if (mtag == NULL)
564 		return 0;
565 
566 	cb = (struct ieee80211_cb *)(mtag+1);
567 	cb->func = func;
568 	cb->arg = arg;
569 	m_tag_prepend(m, mtag);
570 	m->m_flags |= M_TXCB;
571 	return 1;
572 }
573 
574 int
575 ieee80211_add_xmit_params(struct mbuf *m,
576     const struct ieee80211_bpf_params *params)
577 {
578 	struct m_tag *mtag;
579 	struct ieee80211_tx_params *tx;
580 
581 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
582 	    sizeof(struct ieee80211_tx_params), IEEE80211_M_NOWAIT);
583 	if (mtag == NULL)
584 		return (0);
585 
586 	tx = (struct ieee80211_tx_params *)(mtag+1);
587 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
588 	m_tag_prepend(m, mtag);
589 	return (1);
590 }
591 
592 int
593 ieee80211_get_xmit_params(struct mbuf *m,
594     struct ieee80211_bpf_params *params)
595 {
596 	struct m_tag *mtag;
597 	struct ieee80211_tx_params *tx;
598 
599 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
600 	    NULL);
601 	if (mtag == NULL)
602 		return (-1);
603 	tx = (struct ieee80211_tx_params *)(mtag + 1);
604 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
605 	return (0);
606 }
607 
608 void
609 ieee80211_process_callback(struct ieee80211_node *ni,
610 	struct mbuf *m, int status)
611 {
612 	struct m_tag *mtag;
613 
614 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
615 	if (mtag != NULL) {
616 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
617 		cb->func(ni, cb->arg, status);
618 	}
619 }
620 
621 /*
622  * Add RX parameters to the given mbuf.
623  *
624  * Returns 1 if OK, 0 on error.
625  */
626 int
627 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
628 {
629 	struct m_tag *mtag;
630 	struct ieee80211_rx_params *rx;
631 
632 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
633 	    sizeof(struct ieee80211_rx_stats), IEEE80211_M_NOWAIT);
634 	if (mtag == NULL)
635 		return (0);
636 
637 	rx = (struct ieee80211_rx_params *)(mtag + 1);
638 	memcpy(&rx->params, rxs, sizeof(*rxs));
639 	m_tag_prepend(m, mtag);
640 	return (1);
641 }
642 
643 int
644 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
645 {
646 	struct m_tag *mtag;
647 	struct ieee80211_rx_params *rx;
648 
649 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
650 	    NULL);
651 	if (mtag == NULL)
652 		return (-1);
653 	rx = (struct ieee80211_rx_params *)(mtag + 1);
654 	memcpy(rxs, &rx->params, sizeof(*rxs));
655 	return (0);
656 }
657 
658 const struct ieee80211_rx_stats *
659 ieee80211_get_rx_params_ptr(struct mbuf *m)
660 {
661 	struct m_tag *mtag;
662 	struct ieee80211_rx_params *rx;
663 
664 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
665 	    NULL);
666 	if (mtag == NULL)
667 		return (NULL);
668 	rx = (struct ieee80211_rx_params *)(mtag + 1);
669 	return (&rx->params);
670 }
671 
672 /*
673  * Add TOA parameters to the given mbuf.
674  */
675 int
676 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
677 {
678 	struct m_tag *mtag;
679 	struct ieee80211_toa_params *rp;
680 
681 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
682 	    sizeof(struct ieee80211_toa_params), IEEE80211_M_NOWAIT);
683 	if (mtag == NULL)
684 		return (0);
685 
686 	rp = (struct ieee80211_toa_params *)(mtag + 1);
687 	memcpy(rp, p, sizeof(*rp));
688 	m_tag_prepend(m, mtag);
689 	return (1);
690 }
691 
692 int
693 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
694 {
695 	struct m_tag *mtag;
696 	struct ieee80211_toa_params *rp;
697 
698 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
699 	    NULL);
700 	if (mtag == NULL)
701 		return (0);
702 	rp = (struct ieee80211_toa_params *)(mtag + 1);
703 	if (p != NULL)
704 		memcpy(p, rp, sizeof(*p));
705 	return (1);
706 }
707 
708 /*
709  * Transmit a frame to the parent interface.
710  */
711 int
712 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
713 {
714 	int error;
715 
716 	/*
717 	 * Assert the IC TX lock is held - this enforces the
718 	 * processing -> queuing order is maintained
719 	 */
720 	IEEE80211_TX_LOCK_ASSERT(ic);
721 	error = ic->ic_transmit(ic, m);
722 	if (error) {
723 		struct ieee80211_node *ni;
724 
725 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
726 
727 		/* XXX number of fragments */
728 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
729 		ieee80211_free_node(ni);
730 		ieee80211_free_mbuf(m);
731 	}
732 	return (error);
733 }
734 
735 /*
736  * Transmit a frame to the VAP interface.
737  */
738 int
739 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
740 {
741 	struct ifnet *ifp = vap->iv_ifp;
742 
743 	/*
744 	 * When transmitting via the VAP, we shouldn't hold
745 	 * any IC TX lock as the VAP TX path will acquire it.
746 	 */
747 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
748 
749 	return (ifp->if_transmit(ifp, m));
750 
751 }
752 
753 #include <sys/libkern.h>
754 
755 void
756 net80211_get_random_bytes(void *p, size_t n)
757 {
758 	uint8_t *dp = p;
759 
760 	while (n > 0) {
761 		uint32_t v = arc4random();
762 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
763 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
764 		dp += sizeof(uint32_t), n -= nb;
765 	}
766 }
767 
768 /*
769  * Helper function for events that pass just a single mac address.
770  */
771 static void
772 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
773 {
774 	struct ieee80211_join_event iev;
775 
776 	CURVNET_SET(ifp->if_vnet);
777 	memset(&iev, 0, sizeof(iev));
778 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
779 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
780 	CURVNET_RESTORE();
781 }
782 
783 void
784 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
785 {
786 	struct ieee80211vap *vap = ni->ni_vap;
787 	struct ifnet *ifp = vap->iv_ifp;
788 
789 	CURVNET_SET_QUIET(ifp->if_vnet);
790 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
791 	    (ni == vap->iv_bss) ? "bss " : "");
792 
793 	if (ni == vap->iv_bss) {
794 		notify_macaddr(ifp, newassoc ?
795 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
796 		if_link_state_change(ifp, LINK_STATE_UP);
797 	} else {
798 		notify_macaddr(ifp, newassoc ?
799 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
800 	}
801 	CURVNET_RESTORE();
802 }
803 
804 void
805 ieee80211_notify_node_leave(struct ieee80211_node *ni)
806 {
807 	struct ieee80211vap *vap = ni->ni_vap;
808 	struct ifnet *ifp = vap->iv_ifp;
809 
810 	CURVNET_SET_QUIET(ifp->if_vnet);
811 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
812 	    (ni == vap->iv_bss) ? "bss " : "");
813 
814 	if (ni == vap->iv_bss) {
815 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
816 		if_link_state_change(ifp, LINK_STATE_DOWN);
817 	} else {
818 		/* fire off wireless event station leaving */
819 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
820 	}
821 	CURVNET_RESTORE();
822 }
823 
824 void
825 ieee80211_notify_scan_done(struct ieee80211vap *vap)
826 {
827 	struct ifnet *ifp = vap->iv_ifp;
828 
829 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
830 
831 	/* dispatch wireless event indicating scan completed */
832 	CURVNET_SET(ifp->if_vnet);
833 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
834 	CURVNET_RESTORE();
835 }
836 
837 void
838 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
839 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
840 	u_int64_t rsc, int tid)
841 {
842 	struct ifnet *ifp = vap->iv_ifp;
843 
844 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
845 	    "%s replay detected tid %d <rsc %ju (%jx), csc %ju (%jx), keyix %u rxkeyix %u>",
846 	    k->wk_cipher->ic_name, tid,
847 	    (intmax_t) rsc,
848 	    (intmax_t) rsc,
849 	    (intmax_t) k->wk_keyrsc[tid],
850 	    (intmax_t) k->wk_keyrsc[tid],
851 	    k->wk_keyix, k->wk_rxkeyix);
852 
853 	if (ifp != NULL) {		/* NB: for cipher test modules */
854 		struct ieee80211_replay_event iev;
855 
856 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
857 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
858 		iev.iev_cipher = k->wk_cipher->ic_cipher;
859 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
860 			iev.iev_keyix = k->wk_rxkeyix;
861 		else
862 			iev.iev_keyix = k->wk_keyix;
863 		iev.iev_keyrsc = k->wk_keyrsc[tid];
864 		iev.iev_rsc = rsc;
865 		CURVNET_SET(ifp->if_vnet);
866 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
867 		CURVNET_RESTORE();
868 	}
869 }
870 
871 void
872 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
873 	const struct ieee80211_frame *wh, u_int keyix)
874 {
875 	struct ifnet *ifp = vap->iv_ifp;
876 
877 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
878 	    "michael MIC verification failed <keyix %u>", keyix);
879 	vap->iv_stats.is_rx_tkipmic++;
880 
881 	if (ifp != NULL) {		/* NB: for cipher test modules */
882 		struct ieee80211_michael_event iev;
883 
884 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
885 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
886 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
887 		iev.iev_keyix = keyix;
888 		CURVNET_SET(ifp->if_vnet);
889 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
890 		CURVNET_RESTORE();
891 	}
892 }
893 
894 void
895 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
896 {
897 	struct ieee80211vap *vap = ni->ni_vap;
898 	struct ifnet *ifp = vap->iv_ifp;
899 
900 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
901 }
902 
903 void
904 ieee80211_notify_csa(struct ieee80211com *ic,
905 	const struct ieee80211_channel *c, int mode, int count)
906 {
907 	struct ieee80211_csa_event iev;
908 	struct ieee80211vap *vap;
909 	struct ifnet *ifp;
910 
911 	memset(&iev, 0, sizeof(iev));
912 	iev.iev_flags = c->ic_flags;
913 	iev.iev_freq = c->ic_freq;
914 	iev.iev_ieee = c->ic_ieee;
915 	iev.iev_mode = mode;
916 	iev.iev_count = count;
917 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
918 		ifp = vap->iv_ifp;
919 		CURVNET_SET(ifp->if_vnet);
920 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
921 		CURVNET_RESTORE();
922 	}
923 }
924 
925 void
926 ieee80211_notify_radar(struct ieee80211com *ic,
927 	const struct ieee80211_channel *c)
928 {
929 	struct ieee80211_radar_event iev;
930 	struct ieee80211vap *vap;
931 	struct ifnet *ifp;
932 
933 	memset(&iev, 0, sizeof(iev));
934 	iev.iev_flags = c->ic_flags;
935 	iev.iev_freq = c->ic_freq;
936 	iev.iev_ieee = c->ic_ieee;
937 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
938 		ifp = vap->iv_ifp;
939 		CURVNET_SET(ifp->if_vnet);
940 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
941 		CURVNET_RESTORE();
942 	}
943 }
944 
945 void
946 ieee80211_notify_cac(struct ieee80211com *ic,
947 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
948 {
949 	struct ieee80211_cac_event iev;
950 	struct ieee80211vap *vap;
951 	struct ifnet *ifp;
952 
953 	memset(&iev, 0, sizeof(iev));
954 	iev.iev_flags = c->ic_flags;
955 	iev.iev_freq = c->ic_freq;
956 	iev.iev_ieee = c->ic_ieee;
957 	iev.iev_type = type;
958 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
959 		ifp = vap->iv_ifp;
960 		CURVNET_SET(ifp->if_vnet);
961 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
962 		CURVNET_RESTORE();
963 	}
964 }
965 
966 void
967 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
968 {
969 	struct ieee80211vap *vap = ni->ni_vap;
970 	struct ifnet *ifp = vap->iv_ifp;
971 
972 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
973 
974 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
975 }
976 
977 void
978 ieee80211_notify_node_auth(struct ieee80211_node *ni)
979 {
980 	struct ieee80211vap *vap = ni->ni_vap;
981 	struct ifnet *ifp = vap->iv_ifp;
982 
983 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
984 
985 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
986 }
987 
988 void
989 ieee80211_notify_country(struct ieee80211vap *vap,
990 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
991 {
992 	struct ifnet *ifp = vap->iv_ifp;
993 	struct ieee80211_country_event iev;
994 
995 	memset(&iev, 0, sizeof(iev));
996 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
997 	iev.iev_cc[0] = cc[0];
998 	iev.iev_cc[1] = cc[1];
999 	CURVNET_SET(ifp->if_vnet);
1000 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
1001 	CURVNET_RESTORE();
1002 }
1003 
1004 void
1005 ieee80211_notify_radio(struct ieee80211com *ic, int state)
1006 {
1007 	struct ieee80211_radio_event iev;
1008 	struct ieee80211vap *vap;
1009 	struct ifnet *ifp;
1010 
1011 	memset(&iev, 0, sizeof(iev));
1012 	iev.iev_state = state;
1013 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1014 		ifp = vap->iv_ifp;
1015 		CURVNET_SET(ifp->if_vnet);
1016 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
1017 		CURVNET_RESTORE();
1018 	}
1019 }
1020 
1021 void
1022 ieee80211_notify_ifnet_change(struct ieee80211vap *vap, int if_flags_mask)
1023 {
1024 	struct ifnet *ifp = vap->iv_ifp;
1025 
1026 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n",
1027 	    "interface state change");
1028 
1029 	CURVNET_SET(ifp->if_vnet);
1030 	rt_ifmsg(ifp, if_flags_mask);
1031 	CURVNET_RESTORE();
1032 }
1033 
1034 void
1035 ieee80211_load_module(const char *modname)
1036 {
1037 
1038 #ifdef notyet
1039 	(void)kern_kldload(curthread, modname, NULL);
1040 #else
1041 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
1042 #endif
1043 }
1044 
1045 static eventhandler_tag wlan_bpfevent;
1046 static eventhandler_tag wlan_ifllevent;
1047 
1048 static void
1049 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
1050 {
1051 	/* NB: identify vap's by if_init */
1052 	if (dlt == DLT_IEEE802_11_RADIO &&
1053 	    ifp->if_init == ieee80211_init) {
1054 		struct ieee80211vap *vap = ifp->if_softc;
1055 		/*
1056 		 * Track bpf radiotap listener state.  We mark the vap
1057 		 * to indicate if any listener is present and the com
1058 		 * to indicate if any listener exists on any associated
1059 		 * vap.  This flag is used by drivers to prepare radiotap
1060 		 * state only when needed.
1061 		 */
1062 		if (attach) {
1063 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1064 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1065 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1066 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
1067 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1068 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1069 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1070 		}
1071 	}
1072 }
1073 
1074 /*
1075  * Change MAC address on the vap (if was not started).
1076  */
1077 static void
1078 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
1079 {
1080 	/* NB: identify vap's by if_init */
1081 	if (ifp->if_init == ieee80211_init &&
1082 	    (ifp->if_flags & IFF_UP) == 0) {
1083 		struct ieee80211vap *vap = ifp->if_softc;
1084 
1085 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1086 	}
1087 }
1088 
1089 /*
1090  * Fetch the VAP name.
1091  *
1092  * This returns a const char pointer suitable for debugging,
1093  * but don't expect it to stick around for much longer.
1094  */
1095 const char *
1096 ieee80211_get_vap_ifname(struct ieee80211vap *vap)
1097 {
1098 	if (vap->iv_ifp == NULL)
1099 		return "(none)";
1100 	return vap->iv_ifp->if_xname;
1101 }
1102 
1103 #ifdef DEBUGNET
1104 static void
1105 ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
1106 {
1107 	struct ieee80211vap *vap;
1108 	struct ieee80211com *ic;
1109 
1110 	vap = if_getsoftc(ifp);
1111 	ic = vap->iv_ic;
1112 
1113 	IEEE80211_LOCK(ic);
1114 	ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize);
1115 	IEEE80211_UNLOCK(ic);
1116 }
1117 
1118 static void
1119 ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev)
1120 {
1121 	struct ieee80211vap *vap;
1122 	struct ieee80211com *ic;
1123 
1124 	vap = if_getsoftc(ifp);
1125 	ic = vap->iv_ic;
1126 
1127 	IEEE80211_LOCK(ic);
1128 	ic->ic_debugnet_meth->dn8_event(ic, ev);
1129 	IEEE80211_UNLOCK(ic);
1130 }
1131 
1132 static int
1133 ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
1134 {
1135 	return (ieee80211_vap_transmit(ifp, m));
1136 }
1137 
1138 static int
1139 ieee80211_debugnet_poll(struct ifnet *ifp, int count)
1140 {
1141 	struct ieee80211vap *vap;
1142 	struct ieee80211com *ic;
1143 
1144 	vap = if_getsoftc(ifp);
1145 	ic = vap->iv_ic;
1146 
1147 	return (ic->ic_debugnet_meth->dn8_poll(ic, count));
1148 }
1149 #endif
1150 
1151 /*
1152  * Module glue.
1153  *
1154  * NB: the module name is "wlan" for compatibility with NetBSD.
1155  */
1156 static int
1157 wlan_modevent(module_t mod, int type, void *unused)
1158 {
1159 	switch (type) {
1160 	case MOD_LOAD:
1161 		if (bootverbose)
1162 			printf("wlan: <802.11 Link Layer>\n");
1163 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1164 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
1165 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1166 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
1167 		struct if_clone_addreq req = {
1168 			.create_f = wlan_clone_create,
1169 			.destroy_f = wlan_clone_destroy,
1170 			.flags = IFC_F_AUTOUNIT,
1171 		};
1172 		wlan_cloner = ifc_attach_cloner(wlanname, &req);
1173 		return 0;
1174 	case MOD_UNLOAD:
1175 		ifc_detach_cloner(wlan_cloner);
1176 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1177 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1178 		return 0;
1179 	}
1180 	return EINVAL;
1181 }
1182 
1183 static moduledata_t wlan_mod = {
1184 	wlanname,
1185 	wlan_modevent,
1186 	0
1187 };
1188 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1189 MODULE_VERSION(wlan, 1);
1190 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1191 #ifdef	IEEE80211_ALQ
1192 MODULE_DEPEND(wlan, alq, 1, 1, 1);
1193 #endif	/* IEEE80211_ALQ */
1194