1 /*- 2 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 /* 30 * IEEE 802.11 support (FreeBSD-specific code) 31 */ 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/systm.h> 37 #include <sys/linker.h> 38 #include <sys/mbuf.h> 39 #include <sys/module.h> 40 #include <sys/proc.h> 41 #include <sys/sysctl.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_clone.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 #include <net/ethernet.h> 53 #include <net/route.h> 54 #include <net/vnet.h> 55 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_input.h> 58 59 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters"); 60 61 #ifdef IEEE80211_DEBUG 62 int ieee80211_debug = 0; 63 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 64 0, "debugging printfs"); 65 #endif 66 67 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state"); 68 69 static const char wlanname[] = "wlan"; 70 static struct if_clone *wlan_cloner; 71 72 static int 73 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) 74 { 75 struct ieee80211_clone_params cp; 76 struct ieee80211vap *vap; 77 struct ieee80211com *ic; 78 int error; 79 80 error = copyin(params, &cp, sizeof(cp)); 81 if (error) 82 return error; 83 ic = ieee80211_find_com(cp.icp_parent); 84 if (ic == NULL) 85 return ENXIO; 86 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { 87 ic_printf(ic, "%s: invalid opmode %d\n", __func__, 88 cp.icp_opmode); 89 return EINVAL; 90 } 91 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { 92 ic_printf(ic, "%s mode not supported\n", 93 ieee80211_opmode_name[cp.icp_opmode]); 94 return EOPNOTSUPP; 95 } 96 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && 97 #ifdef IEEE80211_SUPPORT_TDMA 98 (ic->ic_caps & IEEE80211_C_TDMA) == 0 99 #else 100 (1) 101 #endif 102 ) { 103 ic_printf(ic, "TDMA not supported\n"); 104 return EOPNOTSUPP; 105 } 106 vap = ic->ic_vap_create(ic, wlanname, unit, 107 cp.icp_opmode, cp.icp_flags, cp.icp_bssid, 108 cp.icp_flags & IEEE80211_CLONE_MACADDR ? 109 cp.icp_macaddr : ic->ic_macaddr); 110 111 return (vap == NULL ? EIO : 0); 112 } 113 114 static void 115 wlan_clone_destroy(struct ifnet *ifp) 116 { 117 struct ieee80211vap *vap = ifp->if_softc; 118 struct ieee80211com *ic = vap->iv_ic; 119 120 ic->ic_vap_delete(vap); 121 } 122 123 void 124 ieee80211_vap_destroy(struct ieee80211vap *vap) 125 { 126 CURVNET_SET(vap->iv_ifp->if_vnet); 127 if_clone_destroyif(wlan_cloner, vap->iv_ifp); 128 CURVNET_RESTORE(); 129 } 130 131 int 132 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) 133 { 134 int msecs = ticks_to_msecs(*(int *)arg1); 135 int error, t; 136 137 error = sysctl_handle_int(oidp, &msecs, 0, req); 138 if (error || !req->newptr) 139 return error; 140 t = msecs_to_ticks(msecs); 141 *(int *)arg1 = (t < 1) ? 1 : t; 142 return 0; 143 } 144 145 static int 146 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) 147 { 148 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; 149 int error; 150 151 error = sysctl_handle_int(oidp, &inact, 0, req); 152 if (error || !req->newptr) 153 return error; 154 *(int *)arg1 = inact / IEEE80211_INACT_WAIT; 155 return 0; 156 } 157 158 static int 159 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) 160 { 161 struct ieee80211com *ic = arg1; 162 163 return SYSCTL_OUT_STR(req, ic->ic_name); 164 } 165 166 static int 167 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) 168 { 169 struct ieee80211com *ic = arg1; 170 int t = 0, error; 171 172 error = sysctl_handle_int(oidp, &t, 0, req); 173 if (error || !req->newptr) 174 return error; 175 IEEE80211_LOCK(ic); 176 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 177 IEEE80211_UNLOCK(ic); 178 return 0; 179 } 180 181 void 182 ieee80211_sysctl_attach(struct ieee80211com *ic) 183 { 184 } 185 186 void 187 ieee80211_sysctl_detach(struct ieee80211com *ic) 188 { 189 } 190 191 void 192 ieee80211_sysctl_vattach(struct ieee80211vap *vap) 193 { 194 struct ifnet *ifp = vap->iv_ifp; 195 struct sysctl_ctx_list *ctx; 196 struct sysctl_oid *oid; 197 char num[14]; /* sufficient for 32 bits */ 198 199 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), 200 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 201 if (ctx == NULL) { 202 if_printf(ifp, "%s: cannot allocate sysctl context!\n", 203 __func__); 204 return; 205 } 206 sysctl_ctx_init(ctx); 207 snprintf(num, sizeof(num), "%u", ifp->if_dunit); 208 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), 209 OID_AUTO, num, CTLFLAG_RD, NULL, ""); 210 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 211 "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0, 212 ieee80211_sysctl_parent, "A", "parent device"); 213 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 214 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, 215 "driver capabilities"); 216 #ifdef IEEE80211_DEBUG 217 vap->iv_debug = ieee80211_debug; 218 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 219 "debug", CTLFLAG_RW, &vap->iv_debug, 0, 220 "control debugging printfs"); 221 #endif 222 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 223 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, 224 "consecutive beacon misses before scanning"); 225 /* XXX inherit from tunables */ 226 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 227 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0, 228 ieee80211_sysctl_inact, "I", 229 "station inactivity timeout (sec)"); 230 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 231 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0, 232 ieee80211_sysctl_inact, "I", 233 "station inactivity probe timeout (sec)"); 234 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 235 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0, 236 ieee80211_sysctl_inact, "I", 237 "station authentication timeout (sec)"); 238 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 239 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0, 240 ieee80211_sysctl_inact, "I", 241 "station initial state timeout (sec)"); 242 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 243 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 244 "ampdu_mintraffic_bk", CTLFLAG_RW, 245 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, 246 "BK traffic tx aggr threshold (pps)"); 247 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 248 "ampdu_mintraffic_be", CTLFLAG_RW, 249 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, 250 "BE traffic tx aggr threshold (pps)"); 251 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 252 "ampdu_mintraffic_vo", CTLFLAG_RW, 253 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, 254 "VO traffic tx aggr threshold (pps)"); 255 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 256 "ampdu_mintraffic_vi", CTLFLAG_RW, 257 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, 258 "VI traffic tx aggr threshold (pps)"); 259 } 260 if (vap->iv_caps & IEEE80211_C_DFS) { 261 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 262 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0, 263 ieee80211_sysctl_radar, "I", "simulate radar event"); 264 } 265 vap->iv_sysctl = ctx; 266 vap->iv_oid = oid; 267 } 268 269 void 270 ieee80211_sysctl_vdetach(struct ieee80211vap *vap) 271 { 272 273 if (vap->iv_sysctl != NULL) { 274 sysctl_ctx_free(vap->iv_sysctl); 275 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); 276 vap->iv_sysctl = NULL; 277 } 278 } 279 280 int 281 ieee80211_node_dectestref(struct ieee80211_node *ni) 282 { 283 /* XXX need equivalent of atomic_dec_and_test */ 284 atomic_subtract_int(&ni->ni_refcnt, 1); 285 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); 286 } 287 288 void 289 ieee80211_drain_ifq(struct ifqueue *ifq) 290 { 291 struct ieee80211_node *ni; 292 struct mbuf *m; 293 294 for (;;) { 295 IF_DEQUEUE(ifq, m); 296 if (m == NULL) 297 break; 298 299 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 300 KASSERT(ni != NULL, ("frame w/o node")); 301 ieee80211_free_node(ni); 302 m->m_pkthdr.rcvif = NULL; 303 304 m_freem(m); 305 } 306 } 307 308 void 309 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) 310 { 311 struct ieee80211_node *ni; 312 struct mbuf *m, **mprev; 313 314 IF_LOCK(ifq); 315 mprev = &ifq->ifq_head; 316 while ((m = *mprev) != NULL) { 317 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 318 if (ni != NULL && ni->ni_vap == vap) { 319 *mprev = m->m_nextpkt; /* remove from list */ 320 ifq->ifq_len--; 321 322 m_freem(m); 323 ieee80211_free_node(ni); /* reclaim ref */ 324 } else 325 mprev = &m->m_nextpkt; 326 } 327 /* recalculate tail ptr */ 328 m = ifq->ifq_head; 329 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) 330 ; 331 ifq->ifq_tail = m; 332 IF_UNLOCK(ifq); 333 } 334 335 /* 336 * As above, for mbufs allocated with m_gethdr/MGETHDR 337 * or initialized by M_COPY_PKTHDR. 338 */ 339 #define MC_ALIGN(m, len) \ 340 do { \ 341 (m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1); \ 342 } while (/* CONSTCOND */ 0) 343 344 /* 345 * Allocate and setup a management frame of the specified 346 * size. We return the mbuf and a pointer to the start 347 * of the contiguous data area that's been reserved based 348 * on the packet length. The data area is forced to 32-bit 349 * alignment and the buffer length to a multiple of 4 bytes. 350 * This is done mainly so beacon frames (that require this) 351 * can use this interface too. 352 */ 353 struct mbuf * 354 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) 355 { 356 struct mbuf *m; 357 u_int len; 358 359 /* 360 * NB: we know the mbuf routines will align the data area 361 * so we don't need to do anything special. 362 */ 363 len = roundup2(headroom + pktlen, 4); 364 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); 365 if (len < MINCLSIZE) { 366 m = m_gethdr(M_NOWAIT, MT_DATA); 367 /* 368 * Align the data in case additional headers are added. 369 * This should only happen when a WEP header is added 370 * which only happens for shared key authentication mgt 371 * frames which all fit in MHLEN. 372 */ 373 if (m != NULL) 374 M_ALIGN(m, len); 375 } else { 376 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 377 if (m != NULL) 378 MC_ALIGN(m, len); 379 } 380 if (m != NULL) { 381 m->m_data += headroom; 382 *frm = m->m_data; 383 } 384 return m; 385 } 386 387 #ifndef __NO_STRICT_ALIGNMENT 388 /* 389 * Re-align the payload in the mbuf. This is mainly used (right now) 390 * to handle IP header alignment requirements on certain architectures. 391 */ 392 struct mbuf * 393 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) 394 { 395 int pktlen, space; 396 struct mbuf *n; 397 398 pktlen = m->m_pkthdr.len; 399 space = pktlen + align; 400 if (space < MINCLSIZE) 401 n = m_gethdr(M_NOWAIT, MT_DATA); 402 else { 403 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 404 space <= MCLBYTES ? MCLBYTES : 405 #if MJUMPAGESIZE != MCLBYTES 406 space <= MJUMPAGESIZE ? MJUMPAGESIZE : 407 #endif 408 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); 409 } 410 if (__predict_true(n != NULL)) { 411 m_move_pkthdr(n, m); 412 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); 413 m_copydata(m, 0, pktlen, mtod(n, caddr_t)); 414 n->m_len = pktlen; 415 } else { 416 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, 417 mtod(m, const struct ieee80211_frame *), NULL, 418 "%s", "no mbuf to realign"); 419 vap->iv_stats.is_rx_badalign++; 420 } 421 m_freem(m); 422 return n; 423 } 424 #endif /* !__NO_STRICT_ALIGNMENT */ 425 426 int 427 ieee80211_add_callback(struct mbuf *m, 428 void (*func)(struct ieee80211_node *, void *, int), void *arg) 429 { 430 struct m_tag *mtag; 431 struct ieee80211_cb *cb; 432 433 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, 434 sizeof(struct ieee80211_cb), M_NOWAIT); 435 if (mtag == NULL) 436 return 0; 437 438 cb = (struct ieee80211_cb *)(mtag+1); 439 cb->func = func; 440 cb->arg = arg; 441 m_tag_prepend(m, mtag); 442 m->m_flags |= M_TXCB; 443 return 1; 444 } 445 446 int 447 ieee80211_add_xmit_params(struct mbuf *m, 448 const struct ieee80211_bpf_params *params) 449 { 450 struct m_tag *mtag; 451 struct ieee80211_tx_params *tx; 452 453 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 454 sizeof(struct ieee80211_tx_params), M_NOWAIT); 455 if (mtag == NULL) 456 return (0); 457 458 tx = (struct ieee80211_tx_params *)(mtag+1); 459 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); 460 m_tag_prepend(m, mtag); 461 return (1); 462 } 463 464 int 465 ieee80211_get_xmit_params(struct mbuf *m, 466 struct ieee80211_bpf_params *params) 467 { 468 struct m_tag *mtag; 469 struct ieee80211_tx_params *tx; 470 471 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 472 NULL); 473 if (mtag == NULL) 474 return (-1); 475 tx = (struct ieee80211_tx_params *)(mtag + 1); 476 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); 477 return (0); 478 } 479 480 void 481 ieee80211_process_callback(struct ieee80211_node *ni, 482 struct mbuf *m, int status) 483 { 484 struct m_tag *mtag; 485 486 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); 487 if (mtag != NULL) { 488 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); 489 cb->func(ni, cb->arg, status); 490 } 491 } 492 493 /* 494 * Add RX parameters to the given mbuf. 495 * 496 * Returns 1 if OK, 0 on error. 497 */ 498 int 499 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) 500 { 501 struct m_tag *mtag; 502 struct ieee80211_rx_params *rx; 503 504 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 505 sizeof(struct ieee80211_rx_stats), M_NOWAIT); 506 if (mtag == NULL) 507 return (0); 508 509 rx = (struct ieee80211_rx_params *)(mtag + 1); 510 memcpy(&rx->params, rxs, sizeof(*rxs)); 511 m_tag_prepend(m, mtag); 512 return (1); 513 } 514 515 int 516 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) 517 { 518 struct m_tag *mtag; 519 struct ieee80211_rx_params *rx; 520 521 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 522 NULL); 523 if (mtag == NULL) 524 return (-1); 525 rx = (struct ieee80211_rx_params *)(mtag + 1); 526 memcpy(rxs, &rx->params, sizeof(*rxs)); 527 return (0); 528 } 529 530 /* 531 * Transmit a frame to the parent interface. 532 * 533 * TODO: if the transmission fails, make sure the parent node is freed 534 * (the callers will first need modifying.) 535 */ 536 int 537 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) 538 { 539 int error; 540 541 /* 542 * Assert the IC TX lock is held - this enforces the 543 * processing -> queuing order is maintained 544 */ 545 IEEE80211_TX_LOCK_ASSERT(ic); 546 error = ic->ic_transmit(ic, m); 547 if (error) 548 m_freem(m); 549 return (error); 550 } 551 552 /* 553 * Transmit a frame to the VAP interface. 554 */ 555 int 556 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) 557 { 558 struct ifnet *ifp = vap->iv_ifp; 559 560 /* 561 * When transmitting via the VAP, we shouldn't hold 562 * any IC TX lock as the VAP TX path will acquire it. 563 */ 564 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); 565 566 return (ifp->if_transmit(ifp, m)); 567 568 } 569 570 #include <sys/libkern.h> 571 572 void 573 get_random_bytes(void *p, size_t n) 574 { 575 uint8_t *dp = p; 576 577 while (n > 0) { 578 uint32_t v = arc4random(); 579 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; 580 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); 581 dp += sizeof(uint32_t), n -= nb; 582 } 583 } 584 585 /* 586 * Helper function for events that pass just a single mac address. 587 */ 588 static void 589 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) 590 { 591 struct ieee80211_join_event iev; 592 593 CURVNET_SET(ifp->if_vnet); 594 memset(&iev, 0, sizeof(iev)); 595 IEEE80211_ADDR_COPY(iev.iev_addr, mac); 596 rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); 597 CURVNET_RESTORE(); 598 } 599 600 void 601 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) 602 { 603 struct ieee80211vap *vap = ni->ni_vap; 604 struct ifnet *ifp = vap->iv_ifp; 605 606 CURVNET_SET_QUIET(ifp->if_vnet); 607 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", 608 (ni == vap->iv_bss) ? "bss " : ""); 609 610 if (ni == vap->iv_bss) { 611 notify_macaddr(ifp, newassoc ? 612 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); 613 if_link_state_change(ifp, LINK_STATE_UP); 614 } else { 615 notify_macaddr(ifp, newassoc ? 616 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); 617 } 618 CURVNET_RESTORE(); 619 } 620 621 void 622 ieee80211_notify_node_leave(struct ieee80211_node *ni) 623 { 624 struct ieee80211vap *vap = ni->ni_vap; 625 struct ifnet *ifp = vap->iv_ifp; 626 627 CURVNET_SET_QUIET(ifp->if_vnet); 628 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", 629 (ni == vap->iv_bss) ? "bss " : ""); 630 631 if (ni == vap->iv_bss) { 632 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); 633 if_link_state_change(ifp, LINK_STATE_DOWN); 634 } else { 635 /* fire off wireless event station leaving */ 636 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); 637 } 638 CURVNET_RESTORE(); 639 } 640 641 void 642 ieee80211_notify_scan_done(struct ieee80211vap *vap) 643 { 644 struct ifnet *ifp = vap->iv_ifp; 645 646 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); 647 648 /* dispatch wireless event indicating scan completed */ 649 CURVNET_SET(ifp->if_vnet); 650 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); 651 CURVNET_RESTORE(); 652 } 653 654 void 655 ieee80211_notify_replay_failure(struct ieee80211vap *vap, 656 const struct ieee80211_frame *wh, const struct ieee80211_key *k, 657 u_int64_t rsc, int tid) 658 { 659 struct ifnet *ifp = vap->iv_ifp; 660 661 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 662 "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>", 663 k->wk_cipher->ic_name, tid, (intmax_t) rsc, 664 (intmax_t) k->wk_keyrsc[tid], 665 k->wk_keyix, k->wk_rxkeyix); 666 667 if (ifp != NULL) { /* NB: for cipher test modules */ 668 struct ieee80211_replay_event iev; 669 670 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 671 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 672 iev.iev_cipher = k->wk_cipher->ic_cipher; 673 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) 674 iev.iev_keyix = k->wk_rxkeyix; 675 else 676 iev.iev_keyix = k->wk_keyix; 677 iev.iev_keyrsc = k->wk_keyrsc[tid]; 678 iev.iev_rsc = rsc; 679 CURVNET_SET(ifp->if_vnet); 680 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); 681 CURVNET_RESTORE(); 682 } 683 } 684 685 void 686 ieee80211_notify_michael_failure(struct ieee80211vap *vap, 687 const struct ieee80211_frame *wh, u_int keyix) 688 { 689 struct ifnet *ifp = vap->iv_ifp; 690 691 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 692 "michael MIC verification failed <keyix %u>", keyix); 693 vap->iv_stats.is_rx_tkipmic++; 694 695 if (ifp != NULL) { /* NB: for cipher test modules */ 696 struct ieee80211_michael_event iev; 697 698 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 699 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 700 iev.iev_cipher = IEEE80211_CIPHER_TKIP; 701 iev.iev_keyix = keyix; 702 CURVNET_SET(ifp->if_vnet); 703 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); 704 CURVNET_RESTORE(); 705 } 706 } 707 708 void 709 ieee80211_notify_wds_discover(struct ieee80211_node *ni) 710 { 711 struct ieee80211vap *vap = ni->ni_vap; 712 struct ifnet *ifp = vap->iv_ifp; 713 714 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); 715 } 716 717 void 718 ieee80211_notify_csa(struct ieee80211com *ic, 719 const struct ieee80211_channel *c, int mode, int count) 720 { 721 struct ieee80211_csa_event iev; 722 struct ieee80211vap *vap; 723 struct ifnet *ifp; 724 725 memset(&iev, 0, sizeof(iev)); 726 iev.iev_flags = c->ic_flags; 727 iev.iev_freq = c->ic_freq; 728 iev.iev_ieee = c->ic_ieee; 729 iev.iev_mode = mode; 730 iev.iev_count = count; 731 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 732 ifp = vap->iv_ifp; 733 CURVNET_SET(ifp->if_vnet); 734 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); 735 CURVNET_RESTORE(); 736 } 737 } 738 739 void 740 ieee80211_notify_radar(struct ieee80211com *ic, 741 const struct ieee80211_channel *c) 742 { 743 struct ieee80211_radar_event iev; 744 struct ieee80211vap *vap; 745 struct ifnet *ifp; 746 747 memset(&iev, 0, sizeof(iev)); 748 iev.iev_flags = c->ic_flags; 749 iev.iev_freq = c->ic_freq; 750 iev.iev_ieee = c->ic_ieee; 751 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 752 ifp = vap->iv_ifp; 753 CURVNET_SET(ifp->if_vnet); 754 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); 755 CURVNET_RESTORE(); 756 } 757 } 758 759 void 760 ieee80211_notify_cac(struct ieee80211com *ic, 761 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) 762 { 763 struct ieee80211_cac_event iev; 764 struct ieee80211vap *vap; 765 struct ifnet *ifp; 766 767 memset(&iev, 0, sizeof(iev)); 768 iev.iev_flags = c->ic_flags; 769 iev.iev_freq = c->ic_freq; 770 iev.iev_ieee = c->ic_ieee; 771 iev.iev_type = type; 772 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 773 ifp = vap->iv_ifp; 774 CURVNET_SET(ifp->if_vnet); 775 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); 776 CURVNET_RESTORE(); 777 } 778 } 779 780 void 781 ieee80211_notify_node_deauth(struct ieee80211_node *ni) 782 { 783 struct ieee80211vap *vap = ni->ni_vap; 784 struct ifnet *ifp = vap->iv_ifp; 785 786 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); 787 788 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); 789 } 790 791 void 792 ieee80211_notify_node_auth(struct ieee80211_node *ni) 793 { 794 struct ieee80211vap *vap = ni->ni_vap; 795 struct ifnet *ifp = vap->iv_ifp; 796 797 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); 798 799 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); 800 } 801 802 void 803 ieee80211_notify_country(struct ieee80211vap *vap, 804 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) 805 { 806 struct ifnet *ifp = vap->iv_ifp; 807 struct ieee80211_country_event iev; 808 809 memset(&iev, 0, sizeof(iev)); 810 IEEE80211_ADDR_COPY(iev.iev_addr, bssid); 811 iev.iev_cc[0] = cc[0]; 812 iev.iev_cc[1] = cc[1]; 813 CURVNET_SET(ifp->if_vnet); 814 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); 815 CURVNET_RESTORE(); 816 } 817 818 void 819 ieee80211_notify_radio(struct ieee80211com *ic, int state) 820 { 821 struct ieee80211_radio_event iev; 822 struct ieee80211vap *vap; 823 struct ifnet *ifp; 824 825 memset(&iev, 0, sizeof(iev)); 826 iev.iev_state = state; 827 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 828 ifp = vap->iv_ifp; 829 CURVNET_SET(ifp->if_vnet); 830 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); 831 CURVNET_RESTORE(); 832 } 833 } 834 835 void 836 ieee80211_load_module(const char *modname) 837 { 838 839 #ifdef notyet 840 (void)kern_kldload(curthread, modname, NULL); 841 #else 842 printf("%s: load the %s module by hand for now.\n", __func__, modname); 843 #endif 844 } 845 846 static eventhandler_tag wlan_bpfevent; 847 848 static void 849 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) 850 { 851 /* NB: identify vap's by if_init */ 852 if (dlt == DLT_IEEE802_11_RADIO && 853 ifp->if_init == ieee80211_init) { 854 struct ieee80211vap *vap = ifp->if_softc; 855 /* 856 * Track bpf radiotap listener state. We mark the vap 857 * to indicate if any listener is present and the com 858 * to indicate if any listener exists on any associated 859 * vap. This flag is used by drivers to prepare radiotap 860 * state only when needed. 861 */ 862 if (attach) { 863 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); 864 if (vap->iv_opmode == IEEE80211_M_MONITOR) 865 atomic_add_int(&vap->iv_ic->ic_montaps, 1); 866 } else if (!bpf_peers_present(vap->iv_rawbpf)) { 867 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); 868 if (vap->iv_opmode == IEEE80211_M_MONITOR) 869 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); 870 } 871 } 872 } 873 874 /* 875 * Module glue. 876 * 877 * NB: the module name is "wlan" for compatibility with NetBSD. 878 */ 879 static int 880 wlan_modevent(module_t mod, int type, void *unused) 881 { 882 switch (type) { 883 case MOD_LOAD: 884 if (bootverbose) 885 printf("wlan: <802.11 Link Layer>\n"); 886 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, 887 bpf_track, 0, EVENTHANDLER_PRI_ANY); 888 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create, 889 wlan_clone_destroy, 0); 890 return 0; 891 case MOD_UNLOAD: 892 if_clone_detach(wlan_cloner); 893 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 894 return 0; 895 } 896 return EINVAL; 897 } 898 899 static moduledata_t wlan_mod = { 900 wlanname, 901 wlan_modevent, 902 0 903 }; 904 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 905 MODULE_VERSION(wlan, 1); 906 MODULE_DEPEND(wlan, ether, 1, 1, 1); 907 #ifdef IEEE80211_ALQ 908 MODULE_DEPEND(wlan, alq, 1, 1, 1); 909 #endif /* IEEE80211_ALQ */ 910 911