xref: /freebsd/sys/net80211/ieee80211_freebsd.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * IEEE 802.11 support (FreeBSD-specific code)
33  */
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/eventhandler.h>
39 #include <sys/kernel.h>
40 #include <sys/linker.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/proc.h>
45 #include <sys/sysctl.h>
46 
47 #include <sys/socket.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_dl.h>
53 #include <net/if_clone.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/ethernet.h>
57 #include <net/route.h>
58 #include <net/vnet.h>
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_input.h>
62 
63 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
64     "IEEE 80211 parameters");
65 
66 #ifdef IEEE80211_DEBUG
67 static int	ieee80211_debug = 0;
68 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
69 	    0, "debugging printfs");
70 #endif
71 
72 static const char wlanname[] = "wlan";
73 static struct if_clone *wlan_cloner;
74 
75 static int
76 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
77 {
78 	struct ieee80211_clone_params cp;
79 	struct ieee80211vap *vap;
80 	struct ieee80211com *ic;
81 	int error;
82 
83 	error = copyin(params, &cp, sizeof(cp));
84 	if (error)
85 		return error;
86 	ic = ieee80211_find_com(cp.icp_parent);
87 	if (ic == NULL)
88 		return ENXIO;
89 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
90 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
91 		    cp.icp_opmode);
92 		return EINVAL;
93 	}
94 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
95 		ic_printf(ic, "%s mode not supported\n",
96 		    ieee80211_opmode_name[cp.icp_opmode]);
97 		return EOPNOTSUPP;
98 	}
99 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
100 #ifdef IEEE80211_SUPPORT_TDMA
101 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
102 #else
103 	    (1)
104 #endif
105 	) {
106 		ic_printf(ic, "TDMA not supported\n");
107 		return EOPNOTSUPP;
108 	}
109 	vap = ic->ic_vap_create(ic, wlanname, unit,
110 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
111 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
112 			    cp.icp_macaddr : ic->ic_macaddr);
113 
114 	return (vap == NULL ? EIO : 0);
115 }
116 
117 static void
118 wlan_clone_destroy(struct ifnet *ifp)
119 {
120 	struct ieee80211vap *vap = ifp->if_softc;
121 	struct ieee80211com *ic = vap->iv_ic;
122 
123 	ic->ic_vap_delete(vap);
124 }
125 
126 void
127 ieee80211_vap_destroy(struct ieee80211vap *vap)
128 {
129 	CURVNET_SET(vap->iv_ifp->if_vnet);
130 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
131 	CURVNET_RESTORE();
132 }
133 
134 int
135 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
136 {
137 	int msecs = ticks_to_msecs(*(int *)arg1);
138 	int error;
139 
140 	error = sysctl_handle_int(oidp, &msecs, 0, req);
141 	if (error || !req->newptr)
142 		return error;
143 	*(int *)arg1 = msecs_to_ticks(msecs);
144 	return 0;
145 }
146 
147 static int
148 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
149 {
150 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
151 	int error;
152 
153 	error = sysctl_handle_int(oidp, &inact, 0, req);
154 	if (error || !req->newptr)
155 		return error;
156 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
157 	return 0;
158 }
159 
160 static int
161 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
162 {
163 	struct ieee80211com *ic = arg1;
164 
165 	return SYSCTL_OUT_STR(req, ic->ic_name);
166 }
167 
168 static int
169 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
170 {
171 	struct ieee80211com *ic = arg1;
172 	int t = 0, error;
173 
174 	error = sysctl_handle_int(oidp, &t, 0, req);
175 	if (error || !req->newptr)
176 		return error;
177 	IEEE80211_LOCK(ic);
178 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
179 	IEEE80211_UNLOCK(ic);
180 	return 0;
181 }
182 
183 /*
184  * For now, just restart everything.
185  *
186  * Later on, it'd be nice to have a separate VAP restart to
187  * full-device restart.
188  */
189 static int
190 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
191 {
192 	struct ieee80211vap *vap = arg1;
193 	int t = 0, error;
194 
195 	error = sysctl_handle_int(oidp, &t, 0, req);
196 	if (error || !req->newptr)
197 		return error;
198 
199 	ieee80211_restart_all(vap->iv_ic);
200 	return 0;
201 }
202 
203 void
204 ieee80211_sysctl_attach(struct ieee80211com *ic)
205 {
206 }
207 
208 void
209 ieee80211_sysctl_detach(struct ieee80211com *ic)
210 {
211 }
212 
213 void
214 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
215 {
216 	struct ifnet *ifp = vap->iv_ifp;
217 	struct sysctl_ctx_list *ctx;
218 	struct sysctl_oid *oid;
219 	char num[14];			/* sufficient for 32 bits */
220 
221 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
222 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
223 	if (ctx == NULL) {
224 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
225 			__func__);
226 		return;
227 	}
228 	sysctl_ctx_init(ctx);
229 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
230 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
231 	    OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
232 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
233 	    "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
234 	    vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device");
235 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
236 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
237 		"driver capabilities");
238 #ifdef IEEE80211_DEBUG
239 	vap->iv_debug = ieee80211_debug;
240 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
241 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
242 		"control debugging printfs");
243 #endif
244 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
245 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
246 		"consecutive beacon misses before scanning");
247 	/* XXX inherit from tunables */
248 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
249 	    "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
250 	    &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I",
251 	    "station inactivity timeout (sec)");
252 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
253 	    "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
254 	    &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I",
255 	    "station inactivity probe timeout (sec)");
256 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
257 	    "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
258 	    &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I",
259 	    "station authentication timeout (sec)");
260 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
261 	    "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
262 	    &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I",
263 	    "station initial state timeout (sec)");
264 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
265 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
266 			"ampdu_mintraffic_bk", CTLFLAG_RW,
267 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
268 			"BK traffic tx aggr threshold (pps)");
269 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
270 			"ampdu_mintraffic_be", CTLFLAG_RW,
271 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
272 			"BE traffic tx aggr threshold (pps)");
273 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
274 			"ampdu_mintraffic_vo", CTLFLAG_RW,
275 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
276 			"VO traffic tx aggr threshold (pps)");
277 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
278 			"ampdu_mintraffic_vi", CTLFLAG_RW,
279 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
280 			"VI traffic tx aggr threshold (pps)");
281 	}
282 
283 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
284 	    "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
285 	    vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart");
286 
287 	if (vap->iv_caps & IEEE80211_C_DFS) {
288 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
289 		    "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
290 		    vap->iv_ic, 0, ieee80211_sysctl_radar, "I",
291 		    "simulate radar event");
292 	}
293 	vap->iv_sysctl = ctx;
294 	vap->iv_oid = oid;
295 }
296 
297 void
298 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
299 {
300 
301 	if (vap->iv_sysctl != NULL) {
302 		sysctl_ctx_free(vap->iv_sysctl);
303 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
304 		vap->iv_sysctl = NULL;
305 	}
306 }
307 
308 #define	MS(_v, _f)	(((_v) & _f##_M) >> _f##_S)
309 int
310 ieee80211_com_vincref(struct ieee80211vap *vap)
311 {
312 	uint32_t ostate;
313 
314 	ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
315 
316 	if (ostate & IEEE80211_COM_DETACHED) {
317 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
318 		return (ENETDOWN);
319 	}
320 
321 	if (MS(ostate, IEEE80211_COM_REF) == IEEE80211_COM_REF_MAX) {
322 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
323 		return (EOVERFLOW);
324 	}
325 
326 	return (0);
327 }
328 
329 void
330 ieee80211_com_vdecref(struct ieee80211vap *vap)
331 {
332 	uint32_t ostate;
333 
334 	ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD);
335 
336 	KASSERT(MS(ostate, IEEE80211_COM_REF) != 0,
337 	    ("com reference counter underflow"));
338 
339 	(void) ostate;
340 }
341 
342 void
343 ieee80211_com_vdetach(struct ieee80211vap *vap)
344 {
345 	int sleep_time;
346 
347 	sleep_time = msecs_to_ticks(250);
348 	atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED);
349 	while (MS(atomic_load_32(&vap->iv_com_state), IEEE80211_COM_REF) != 0)
350 		pause("comref", sleep_time);
351 }
352 #undef	MS
353 
354 int
355 ieee80211_node_dectestref(struct ieee80211_node *ni)
356 {
357 	/* XXX need equivalent of atomic_dec_and_test */
358 	atomic_subtract_int(&ni->ni_refcnt, 1);
359 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
360 }
361 
362 void
363 ieee80211_drain_ifq(struct ifqueue *ifq)
364 {
365 	struct ieee80211_node *ni;
366 	struct mbuf *m;
367 
368 	for (;;) {
369 		IF_DEQUEUE(ifq, m);
370 		if (m == NULL)
371 			break;
372 
373 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
374 		KASSERT(ni != NULL, ("frame w/o node"));
375 		ieee80211_free_node(ni);
376 		m->m_pkthdr.rcvif = NULL;
377 
378 		m_freem(m);
379 	}
380 }
381 
382 void
383 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
384 {
385 	struct ieee80211_node *ni;
386 	struct mbuf *m, **mprev;
387 
388 	IF_LOCK(ifq);
389 	mprev = &ifq->ifq_head;
390 	while ((m = *mprev) != NULL) {
391 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
392 		if (ni != NULL && ni->ni_vap == vap) {
393 			*mprev = m->m_nextpkt;		/* remove from list */
394 			ifq->ifq_len--;
395 
396 			m_freem(m);
397 			ieee80211_free_node(ni);	/* reclaim ref */
398 		} else
399 			mprev = &m->m_nextpkt;
400 	}
401 	/* recalculate tail ptr */
402 	m = ifq->ifq_head;
403 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
404 		;
405 	ifq->ifq_tail = m;
406 	IF_UNLOCK(ifq);
407 }
408 
409 /*
410  * As above, for mbufs allocated with m_gethdr/MGETHDR
411  * or initialized by M_COPY_PKTHDR.
412  */
413 #define	MC_ALIGN(m, len)						\
414 do {									\
415 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
416 } while (/* CONSTCOND */ 0)
417 
418 /*
419  * Allocate and setup a management frame of the specified
420  * size.  We return the mbuf and a pointer to the start
421  * of the contiguous data area that's been reserved based
422  * on the packet length.  The data area is forced to 32-bit
423  * alignment and the buffer length to a multiple of 4 bytes.
424  * This is done mainly so beacon frames (that require this)
425  * can use this interface too.
426  */
427 struct mbuf *
428 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
429 {
430 	struct mbuf *m;
431 	u_int len;
432 
433 	/*
434 	 * NB: we know the mbuf routines will align the data area
435 	 *     so we don't need to do anything special.
436 	 */
437 	len = roundup2(headroom + pktlen, 4);
438 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
439 	if (len < MINCLSIZE) {
440 		m = m_gethdr(M_NOWAIT, MT_DATA);
441 		/*
442 		 * Align the data in case additional headers are added.
443 		 * This should only happen when a WEP header is added
444 		 * which only happens for shared key authentication mgt
445 		 * frames which all fit in MHLEN.
446 		 */
447 		if (m != NULL)
448 			M_ALIGN(m, len);
449 	} else {
450 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
451 		if (m != NULL)
452 			MC_ALIGN(m, len);
453 	}
454 	if (m != NULL) {
455 		m->m_data += headroom;
456 		*frm = m->m_data;
457 	}
458 	return m;
459 }
460 
461 #ifndef __NO_STRICT_ALIGNMENT
462 /*
463  * Re-align the payload in the mbuf.  This is mainly used (right now)
464  * to handle IP header alignment requirements on certain architectures.
465  */
466 struct mbuf *
467 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
468 {
469 	int pktlen, space;
470 	struct mbuf *n;
471 
472 	pktlen = m->m_pkthdr.len;
473 	space = pktlen + align;
474 	if (space < MINCLSIZE)
475 		n = m_gethdr(M_NOWAIT, MT_DATA);
476 	else {
477 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
478 		    space <= MCLBYTES ?     MCLBYTES :
479 #if MJUMPAGESIZE != MCLBYTES
480 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
481 #endif
482 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
483 	}
484 	if (__predict_true(n != NULL)) {
485 		m_move_pkthdr(n, m);
486 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
487 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
488 		n->m_len = pktlen;
489 	} else {
490 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
491 		    mtod(m, const struct ieee80211_frame *), NULL,
492 		    "%s", "no mbuf to realign");
493 		vap->iv_stats.is_rx_badalign++;
494 	}
495 	m_freem(m);
496 	return n;
497 }
498 #endif /* !__NO_STRICT_ALIGNMENT */
499 
500 int
501 ieee80211_add_callback(struct mbuf *m,
502 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
503 {
504 	struct m_tag *mtag;
505 	struct ieee80211_cb *cb;
506 
507 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
508 			sizeof(struct ieee80211_cb), M_NOWAIT);
509 	if (mtag == NULL)
510 		return 0;
511 
512 	cb = (struct ieee80211_cb *)(mtag+1);
513 	cb->func = func;
514 	cb->arg = arg;
515 	m_tag_prepend(m, mtag);
516 	m->m_flags |= M_TXCB;
517 	return 1;
518 }
519 
520 int
521 ieee80211_add_xmit_params(struct mbuf *m,
522     const struct ieee80211_bpf_params *params)
523 {
524 	struct m_tag *mtag;
525 	struct ieee80211_tx_params *tx;
526 
527 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
528 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
529 	if (mtag == NULL)
530 		return (0);
531 
532 	tx = (struct ieee80211_tx_params *)(mtag+1);
533 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
534 	m_tag_prepend(m, mtag);
535 	return (1);
536 }
537 
538 int
539 ieee80211_get_xmit_params(struct mbuf *m,
540     struct ieee80211_bpf_params *params)
541 {
542 	struct m_tag *mtag;
543 	struct ieee80211_tx_params *tx;
544 
545 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
546 	    NULL);
547 	if (mtag == NULL)
548 		return (-1);
549 	tx = (struct ieee80211_tx_params *)(mtag + 1);
550 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
551 	return (0);
552 }
553 
554 void
555 ieee80211_process_callback(struct ieee80211_node *ni,
556 	struct mbuf *m, int status)
557 {
558 	struct m_tag *mtag;
559 
560 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
561 	if (mtag != NULL) {
562 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
563 		cb->func(ni, cb->arg, status);
564 	}
565 }
566 
567 /*
568  * Add RX parameters to the given mbuf.
569  *
570  * Returns 1 if OK, 0 on error.
571  */
572 int
573 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
574 {
575 	struct m_tag *mtag;
576 	struct ieee80211_rx_params *rx;
577 
578 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
579 	    sizeof(struct ieee80211_rx_stats), M_NOWAIT);
580 	if (mtag == NULL)
581 		return (0);
582 
583 	rx = (struct ieee80211_rx_params *)(mtag + 1);
584 	memcpy(&rx->params, rxs, sizeof(*rxs));
585 	m_tag_prepend(m, mtag);
586 	return (1);
587 }
588 
589 int
590 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
591 {
592 	struct m_tag *mtag;
593 	struct ieee80211_rx_params *rx;
594 
595 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
596 	    NULL);
597 	if (mtag == NULL)
598 		return (-1);
599 	rx = (struct ieee80211_rx_params *)(mtag + 1);
600 	memcpy(rxs, &rx->params, sizeof(*rxs));
601 	return (0);
602 }
603 
604 const struct ieee80211_rx_stats *
605 ieee80211_get_rx_params_ptr(struct mbuf *m)
606 {
607 	struct m_tag *mtag;
608 	struct ieee80211_rx_params *rx;
609 
610 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
611 	    NULL);
612 	if (mtag == NULL)
613 		return (NULL);
614 	rx = (struct ieee80211_rx_params *)(mtag + 1);
615 	return (&rx->params);
616 }
617 
618 
619 /*
620  * Add TOA parameters to the given mbuf.
621  */
622 int
623 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
624 {
625 	struct m_tag *mtag;
626 	struct ieee80211_toa_params *rp;
627 
628 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
629 	    sizeof(struct ieee80211_toa_params), M_NOWAIT);
630 	if (mtag == NULL)
631 		return (0);
632 
633 	rp = (struct ieee80211_toa_params *)(mtag + 1);
634 	memcpy(rp, p, sizeof(*rp));
635 	m_tag_prepend(m, mtag);
636 	return (1);
637 }
638 
639 int
640 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
641 {
642 	struct m_tag *mtag;
643 	struct ieee80211_toa_params *rp;
644 
645 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
646 	    NULL);
647 	if (mtag == NULL)
648 		return (0);
649 	rp = (struct ieee80211_toa_params *)(mtag + 1);
650 	if (p != NULL)
651 		memcpy(p, rp, sizeof(*p));
652 	return (1);
653 }
654 
655 /*
656  * Transmit a frame to the parent interface.
657  */
658 int
659 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
660 {
661 	int error;
662 
663 	/*
664 	 * Assert the IC TX lock is held - this enforces the
665 	 * processing -> queuing order is maintained
666 	 */
667 	IEEE80211_TX_LOCK_ASSERT(ic);
668 	error = ic->ic_transmit(ic, m);
669 	if (error) {
670 		struct ieee80211_node *ni;
671 
672 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
673 
674 		/* XXX number of fragments */
675 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
676 		ieee80211_free_node(ni);
677 		ieee80211_free_mbuf(m);
678 	}
679 	return (error);
680 }
681 
682 /*
683  * Transmit a frame to the VAP interface.
684  */
685 int
686 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
687 {
688 	struct ifnet *ifp = vap->iv_ifp;
689 
690 	/*
691 	 * When transmitting via the VAP, we shouldn't hold
692 	 * any IC TX lock as the VAP TX path will acquire it.
693 	 */
694 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
695 
696 	return (ifp->if_transmit(ifp, m));
697 
698 }
699 
700 #include <sys/libkern.h>
701 
702 void
703 get_random_bytes(void *p, size_t n)
704 {
705 	uint8_t *dp = p;
706 
707 	while (n > 0) {
708 		uint32_t v = arc4random();
709 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
710 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
711 		dp += sizeof(uint32_t), n -= nb;
712 	}
713 }
714 
715 /*
716  * Helper function for events that pass just a single mac address.
717  */
718 static void
719 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
720 {
721 	struct ieee80211_join_event iev;
722 
723 	CURVNET_SET(ifp->if_vnet);
724 	memset(&iev, 0, sizeof(iev));
725 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
726 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
727 	CURVNET_RESTORE();
728 }
729 
730 void
731 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
732 {
733 	struct ieee80211vap *vap = ni->ni_vap;
734 	struct ifnet *ifp = vap->iv_ifp;
735 
736 	CURVNET_SET_QUIET(ifp->if_vnet);
737 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
738 	    (ni == vap->iv_bss) ? "bss " : "");
739 
740 	if (ni == vap->iv_bss) {
741 		notify_macaddr(ifp, newassoc ?
742 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
743 		if_link_state_change(ifp, LINK_STATE_UP);
744 	} else {
745 		notify_macaddr(ifp, newassoc ?
746 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
747 	}
748 	CURVNET_RESTORE();
749 }
750 
751 void
752 ieee80211_notify_node_leave(struct ieee80211_node *ni)
753 {
754 	struct ieee80211vap *vap = ni->ni_vap;
755 	struct ifnet *ifp = vap->iv_ifp;
756 
757 	CURVNET_SET_QUIET(ifp->if_vnet);
758 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
759 	    (ni == vap->iv_bss) ? "bss " : "");
760 
761 	if (ni == vap->iv_bss) {
762 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
763 		if_link_state_change(ifp, LINK_STATE_DOWN);
764 	} else {
765 		/* fire off wireless event station leaving */
766 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
767 	}
768 	CURVNET_RESTORE();
769 }
770 
771 void
772 ieee80211_notify_scan_done(struct ieee80211vap *vap)
773 {
774 	struct ifnet *ifp = vap->iv_ifp;
775 
776 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
777 
778 	/* dispatch wireless event indicating scan completed */
779 	CURVNET_SET(ifp->if_vnet);
780 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
781 	CURVNET_RESTORE();
782 }
783 
784 void
785 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
786 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
787 	u_int64_t rsc, int tid)
788 {
789 	struct ifnet *ifp = vap->iv_ifp;
790 
791 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
792 	    "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
793 	    k->wk_cipher->ic_name, tid, (intmax_t) rsc,
794 	    (intmax_t) k->wk_keyrsc[tid],
795 	    k->wk_keyix, k->wk_rxkeyix);
796 
797 	if (ifp != NULL) {		/* NB: for cipher test modules */
798 		struct ieee80211_replay_event iev;
799 
800 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
801 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
802 		iev.iev_cipher = k->wk_cipher->ic_cipher;
803 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
804 			iev.iev_keyix = k->wk_rxkeyix;
805 		else
806 			iev.iev_keyix = k->wk_keyix;
807 		iev.iev_keyrsc = k->wk_keyrsc[tid];
808 		iev.iev_rsc = rsc;
809 		CURVNET_SET(ifp->if_vnet);
810 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
811 		CURVNET_RESTORE();
812 	}
813 }
814 
815 void
816 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
817 	const struct ieee80211_frame *wh, u_int keyix)
818 {
819 	struct ifnet *ifp = vap->iv_ifp;
820 
821 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
822 	    "michael MIC verification failed <keyix %u>", keyix);
823 	vap->iv_stats.is_rx_tkipmic++;
824 
825 	if (ifp != NULL) {		/* NB: for cipher test modules */
826 		struct ieee80211_michael_event iev;
827 
828 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
829 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
830 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
831 		iev.iev_keyix = keyix;
832 		CURVNET_SET(ifp->if_vnet);
833 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
834 		CURVNET_RESTORE();
835 	}
836 }
837 
838 void
839 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
840 {
841 	struct ieee80211vap *vap = ni->ni_vap;
842 	struct ifnet *ifp = vap->iv_ifp;
843 
844 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
845 }
846 
847 void
848 ieee80211_notify_csa(struct ieee80211com *ic,
849 	const struct ieee80211_channel *c, int mode, int count)
850 {
851 	struct ieee80211_csa_event iev;
852 	struct ieee80211vap *vap;
853 	struct ifnet *ifp;
854 
855 	memset(&iev, 0, sizeof(iev));
856 	iev.iev_flags = c->ic_flags;
857 	iev.iev_freq = c->ic_freq;
858 	iev.iev_ieee = c->ic_ieee;
859 	iev.iev_mode = mode;
860 	iev.iev_count = count;
861 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
862 		ifp = vap->iv_ifp;
863 		CURVNET_SET(ifp->if_vnet);
864 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
865 		CURVNET_RESTORE();
866 	}
867 }
868 
869 void
870 ieee80211_notify_radar(struct ieee80211com *ic,
871 	const struct ieee80211_channel *c)
872 {
873 	struct ieee80211_radar_event iev;
874 	struct ieee80211vap *vap;
875 	struct ifnet *ifp;
876 
877 	memset(&iev, 0, sizeof(iev));
878 	iev.iev_flags = c->ic_flags;
879 	iev.iev_freq = c->ic_freq;
880 	iev.iev_ieee = c->ic_ieee;
881 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
882 		ifp = vap->iv_ifp;
883 		CURVNET_SET(ifp->if_vnet);
884 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
885 		CURVNET_RESTORE();
886 	}
887 }
888 
889 void
890 ieee80211_notify_cac(struct ieee80211com *ic,
891 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
892 {
893 	struct ieee80211_cac_event iev;
894 	struct ieee80211vap *vap;
895 	struct ifnet *ifp;
896 
897 	memset(&iev, 0, sizeof(iev));
898 	iev.iev_flags = c->ic_flags;
899 	iev.iev_freq = c->ic_freq;
900 	iev.iev_ieee = c->ic_ieee;
901 	iev.iev_type = type;
902 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
903 		ifp = vap->iv_ifp;
904 		CURVNET_SET(ifp->if_vnet);
905 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
906 		CURVNET_RESTORE();
907 	}
908 }
909 
910 void
911 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
912 {
913 	struct ieee80211vap *vap = ni->ni_vap;
914 	struct ifnet *ifp = vap->iv_ifp;
915 
916 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
917 
918 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
919 }
920 
921 void
922 ieee80211_notify_node_auth(struct ieee80211_node *ni)
923 {
924 	struct ieee80211vap *vap = ni->ni_vap;
925 	struct ifnet *ifp = vap->iv_ifp;
926 
927 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
928 
929 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
930 }
931 
932 void
933 ieee80211_notify_country(struct ieee80211vap *vap,
934 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
935 {
936 	struct ifnet *ifp = vap->iv_ifp;
937 	struct ieee80211_country_event iev;
938 
939 	memset(&iev, 0, sizeof(iev));
940 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
941 	iev.iev_cc[0] = cc[0];
942 	iev.iev_cc[1] = cc[1];
943 	CURVNET_SET(ifp->if_vnet);
944 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
945 	CURVNET_RESTORE();
946 }
947 
948 void
949 ieee80211_notify_radio(struct ieee80211com *ic, int state)
950 {
951 	struct ieee80211_radio_event iev;
952 	struct ieee80211vap *vap;
953 	struct ifnet *ifp;
954 
955 	memset(&iev, 0, sizeof(iev));
956 	iev.iev_state = state;
957 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
958 		ifp = vap->iv_ifp;
959 		CURVNET_SET(ifp->if_vnet);
960 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
961 		CURVNET_RESTORE();
962 	}
963 }
964 
965 void
966 ieee80211_load_module(const char *modname)
967 {
968 
969 #ifdef notyet
970 	(void)kern_kldload(curthread, modname, NULL);
971 #else
972 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
973 #endif
974 }
975 
976 static eventhandler_tag wlan_bpfevent;
977 static eventhandler_tag wlan_ifllevent;
978 
979 static void
980 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
981 {
982 	/* NB: identify vap's by if_init */
983 	if (dlt == DLT_IEEE802_11_RADIO &&
984 	    ifp->if_init == ieee80211_init) {
985 		struct ieee80211vap *vap = ifp->if_softc;
986 		/*
987 		 * Track bpf radiotap listener state.  We mark the vap
988 		 * to indicate if any listener is present and the com
989 		 * to indicate if any listener exists on any associated
990 		 * vap.  This flag is used by drivers to prepare radiotap
991 		 * state only when needed.
992 		 */
993 		if (attach) {
994 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
995 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
996 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
997 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
998 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
999 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1000 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1001 		}
1002 	}
1003 }
1004 
1005 /*
1006  * Change MAC address on the vap (if was not started).
1007  */
1008 static void
1009 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
1010 {
1011 	/* NB: identify vap's by if_init */
1012 	if (ifp->if_init == ieee80211_init &&
1013 	    (ifp->if_flags & IFF_UP) == 0) {
1014 		struct ieee80211vap *vap = ifp->if_softc;
1015 
1016 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1017 	}
1018 }
1019 
1020 /*
1021  * Module glue.
1022  *
1023  * NB: the module name is "wlan" for compatibility with NetBSD.
1024  */
1025 static int
1026 wlan_modevent(module_t mod, int type, void *unused)
1027 {
1028 	switch (type) {
1029 	case MOD_LOAD:
1030 		if (bootverbose)
1031 			printf("wlan: <802.11 Link Layer>\n");
1032 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1033 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
1034 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1035 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
1036 		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
1037 		    wlan_clone_destroy, 0);
1038 		return 0;
1039 	case MOD_UNLOAD:
1040 		if_clone_detach(wlan_cloner);
1041 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1042 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1043 		return 0;
1044 	}
1045 	return EINVAL;
1046 }
1047 
1048 static moduledata_t wlan_mod = {
1049 	wlanname,
1050 	wlan_modevent,
1051 	0
1052 };
1053 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1054 MODULE_VERSION(wlan, 1);
1055 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1056 #ifdef	IEEE80211_ALQ
1057 MODULE_DEPEND(wlan, alq, 1, 1, 1);
1058 #endif	/* IEEE80211_ALQ */
1059 
1060