1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * IEEE 802.11 support (FreeBSD-specific code) 33 */ 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/eventhandler.h> 39 #include <sys/kernel.h> 40 #include <sys/linker.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/module.h> 44 #include <sys/proc.h> 45 #include <sys/sysctl.h> 46 47 #include <sys/socket.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_dl.h> 53 #include <net/if_clone.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/ethernet.h> 57 #include <net/route.h> 58 #include <net/vnet.h> 59 60 #include <net80211/ieee80211_var.h> 61 #include <net80211/ieee80211_input.h> 62 63 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters"); 64 65 #ifdef IEEE80211_DEBUG 66 static int ieee80211_debug = 0; 67 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 68 0, "debugging printfs"); 69 #endif 70 71 static const char wlanname[] = "wlan"; 72 static struct if_clone *wlan_cloner; 73 74 static int 75 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) 76 { 77 struct ieee80211_clone_params cp; 78 struct ieee80211vap *vap; 79 struct ieee80211com *ic; 80 int error; 81 82 error = copyin(params, &cp, sizeof(cp)); 83 if (error) 84 return error; 85 ic = ieee80211_find_com(cp.icp_parent); 86 if (ic == NULL) 87 return ENXIO; 88 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { 89 ic_printf(ic, "%s: invalid opmode %d\n", __func__, 90 cp.icp_opmode); 91 return EINVAL; 92 } 93 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { 94 ic_printf(ic, "%s mode not supported\n", 95 ieee80211_opmode_name[cp.icp_opmode]); 96 return EOPNOTSUPP; 97 } 98 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && 99 #ifdef IEEE80211_SUPPORT_TDMA 100 (ic->ic_caps & IEEE80211_C_TDMA) == 0 101 #else 102 (1) 103 #endif 104 ) { 105 ic_printf(ic, "TDMA not supported\n"); 106 return EOPNOTSUPP; 107 } 108 vap = ic->ic_vap_create(ic, wlanname, unit, 109 cp.icp_opmode, cp.icp_flags, cp.icp_bssid, 110 cp.icp_flags & IEEE80211_CLONE_MACADDR ? 111 cp.icp_macaddr : ic->ic_macaddr); 112 113 return (vap == NULL ? EIO : 0); 114 } 115 116 static void 117 wlan_clone_destroy(struct ifnet *ifp) 118 { 119 struct ieee80211vap *vap = ifp->if_softc; 120 struct ieee80211com *ic = vap->iv_ic; 121 122 ic->ic_vap_delete(vap); 123 } 124 125 void 126 ieee80211_vap_destroy(struct ieee80211vap *vap) 127 { 128 CURVNET_SET(vap->iv_ifp->if_vnet); 129 if_clone_destroyif(wlan_cloner, vap->iv_ifp); 130 CURVNET_RESTORE(); 131 } 132 133 int 134 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) 135 { 136 int msecs = ticks_to_msecs(*(int *)arg1); 137 int error; 138 139 error = sysctl_handle_int(oidp, &msecs, 0, req); 140 if (error || !req->newptr) 141 return error; 142 *(int *)arg1 = msecs_to_ticks(msecs); 143 return 0; 144 } 145 146 static int 147 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) 148 { 149 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; 150 int error; 151 152 error = sysctl_handle_int(oidp, &inact, 0, req); 153 if (error || !req->newptr) 154 return error; 155 *(int *)arg1 = inact / IEEE80211_INACT_WAIT; 156 return 0; 157 } 158 159 static int 160 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) 161 { 162 struct ieee80211com *ic = arg1; 163 164 return SYSCTL_OUT_STR(req, ic->ic_name); 165 } 166 167 static int 168 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) 169 { 170 struct ieee80211com *ic = arg1; 171 int t = 0, error; 172 173 error = sysctl_handle_int(oidp, &t, 0, req); 174 if (error || !req->newptr) 175 return error; 176 IEEE80211_LOCK(ic); 177 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 178 IEEE80211_UNLOCK(ic); 179 return 0; 180 } 181 182 /* 183 * For now, just restart everything. 184 * 185 * Later on, it'd be nice to have a separate VAP restart to 186 * full-device restart. 187 */ 188 static int 189 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS) 190 { 191 struct ieee80211vap *vap = arg1; 192 int t = 0, error; 193 194 error = sysctl_handle_int(oidp, &t, 0, req); 195 if (error || !req->newptr) 196 return error; 197 198 ieee80211_restart_all(vap->iv_ic); 199 return 0; 200 } 201 202 void 203 ieee80211_sysctl_attach(struct ieee80211com *ic) 204 { 205 } 206 207 void 208 ieee80211_sysctl_detach(struct ieee80211com *ic) 209 { 210 } 211 212 void 213 ieee80211_sysctl_vattach(struct ieee80211vap *vap) 214 { 215 struct ifnet *ifp = vap->iv_ifp; 216 struct sysctl_ctx_list *ctx; 217 struct sysctl_oid *oid; 218 char num[14]; /* sufficient for 32 bits */ 219 220 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), 221 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 222 if (ctx == NULL) { 223 if_printf(ifp, "%s: cannot allocate sysctl context!\n", 224 __func__); 225 return; 226 } 227 sysctl_ctx_init(ctx); 228 snprintf(num, sizeof(num), "%u", ifp->if_dunit); 229 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), 230 OID_AUTO, num, CTLFLAG_RD, NULL, ""); 231 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 232 "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0, 233 ieee80211_sysctl_parent, "A", "parent device"); 234 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 235 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, 236 "driver capabilities"); 237 #ifdef IEEE80211_DEBUG 238 vap->iv_debug = ieee80211_debug; 239 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 240 "debug", CTLFLAG_RW, &vap->iv_debug, 0, 241 "control debugging printfs"); 242 #endif 243 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 244 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, 245 "consecutive beacon misses before scanning"); 246 /* XXX inherit from tunables */ 247 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 248 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0, 249 ieee80211_sysctl_inact, "I", 250 "station inactivity timeout (sec)"); 251 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 252 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0, 253 ieee80211_sysctl_inact, "I", 254 "station inactivity probe timeout (sec)"); 255 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 256 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0, 257 ieee80211_sysctl_inact, "I", 258 "station authentication timeout (sec)"); 259 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 260 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0, 261 ieee80211_sysctl_inact, "I", 262 "station initial state timeout (sec)"); 263 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 264 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 265 "ampdu_mintraffic_bk", CTLFLAG_RW, 266 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, 267 "BK traffic tx aggr threshold (pps)"); 268 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 269 "ampdu_mintraffic_be", CTLFLAG_RW, 270 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, 271 "BE traffic tx aggr threshold (pps)"); 272 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 273 "ampdu_mintraffic_vo", CTLFLAG_RW, 274 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, 275 "VO traffic tx aggr threshold (pps)"); 276 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 277 "ampdu_mintraffic_vi", CTLFLAG_RW, 278 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, 279 "VI traffic tx aggr threshold (pps)"); 280 } 281 282 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 283 "force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0, 284 ieee80211_sysctl_vap_restart, "I", 285 "force a VAP restart"); 286 287 if (vap->iv_caps & IEEE80211_C_DFS) { 288 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 289 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0, 290 ieee80211_sysctl_radar, "I", "simulate radar event"); 291 } 292 vap->iv_sysctl = ctx; 293 vap->iv_oid = oid; 294 } 295 296 void 297 ieee80211_sysctl_vdetach(struct ieee80211vap *vap) 298 { 299 300 if (vap->iv_sysctl != NULL) { 301 sysctl_ctx_free(vap->iv_sysctl); 302 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); 303 vap->iv_sysctl = NULL; 304 } 305 } 306 307 #define MS(_v, _f) (((_v) & _f##_M) >> _f##_S) 308 int 309 ieee80211_com_vincref(struct ieee80211vap *vap) 310 { 311 uint32_t ostate; 312 313 ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); 314 315 if (ostate & IEEE80211_COM_DETACHED) { 316 atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); 317 return (ENETDOWN); 318 } 319 320 if (MS(ostate, IEEE80211_COM_REF) == IEEE80211_COM_REF_MAX) { 321 atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); 322 return (EOVERFLOW); 323 } 324 325 return (0); 326 } 327 328 void 329 ieee80211_com_vdecref(struct ieee80211vap *vap) 330 { 331 uint32_t ostate; 332 333 ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD); 334 335 KASSERT(MS(ostate, IEEE80211_COM_REF) != 0, 336 ("com reference counter underflow")); 337 338 (void) ostate; 339 } 340 341 void 342 ieee80211_com_vdetach(struct ieee80211vap *vap) 343 { 344 int sleep_time; 345 346 sleep_time = msecs_to_ticks(250); 347 atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED); 348 while (MS(atomic_load_32(&vap->iv_com_state), IEEE80211_COM_REF) != 0) 349 pause("comref", sleep_time); 350 } 351 #undef MS 352 353 int 354 ieee80211_node_dectestref(struct ieee80211_node *ni) 355 { 356 /* XXX need equivalent of atomic_dec_and_test */ 357 atomic_subtract_int(&ni->ni_refcnt, 1); 358 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); 359 } 360 361 void 362 ieee80211_drain_ifq(struct ifqueue *ifq) 363 { 364 struct ieee80211_node *ni; 365 struct mbuf *m; 366 367 for (;;) { 368 IF_DEQUEUE(ifq, m); 369 if (m == NULL) 370 break; 371 372 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 373 KASSERT(ni != NULL, ("frame w/o node")); 374 ieee80211_free_node(ni); 375 m->m_pkthdr.rcvif = NULL; 376 377 m_freem(m); 378 } 379 } 380 381 void 382 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) 383 { 384 struct ieee80211_node *ni; 385 struct mbuf *m, **mprev; 386 387 IF_LOCK(ifq); 388 mprev = &ifq->ifq_head; 389 while ((m = *mprev) != NULL) { 390 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 391 if (ni != NULL && ni->ni_vap == vap) { 392 *mprev = m->m_nextpkt; /* remove from list */ 393 ifq->ifq_len--; 394 395 m_freem(m); 396 ieee80211_free_node(ni); /* reclaim ref */ 397 } else 398 mprev = &m->m_nextpkt; 399 } 400 /* recalculate tail ptr */ 401 m = ifq->ifq_head; 402 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) 403 ; 404 ifq->ifq_tail = m; 405 IF_UNLOCK(ifq); 406 } 407 408 /* 409 * As above, for mbufs allocated with m_gethdr/MGETHDR 410 * or initialized by M_COPY_PKTHDR. 411 */ 412 #define MC_ALIGN(m, len) \ 413 do { \ 414 (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \ 415 } while (/* CONSTCOND */ 0) 416 417 /* 418 * Allocate and setup a management frame of the specified 419 * size. We return the mbuf and a pointer to the start 420 * of the contiguous data area that's been reserved based 421 * on the packet length. The data area is forced to 32-bit 422 * alignment and the buffer length to a multiple of 4 bytes. 423 * This is done mainly so beacon frames (that require this) 424 * can use this interface too. 425 */ 426 struct mbuf * 427 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) 428 { 429 struct mbuf *m; 430 u_int len; 431 432 /* 433 * NB: we know the mbuf routines will align the data area 434 * so we don't need to do anything special. 435 */ 436 len = roundup2(headroom + pktlen, 4); 437 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); 438 if (len < MINCLSIZE) { 439 m = m_gethdr(M_NOWAIT, MT_DATA); 440 /* 441 * Align the data in case additional headers are added. 442 * This should only happen when a WEP header is added 443 * which only happens for shared key authentication mgt 444 * frames which all fit in MHLEN. 445 */ 446 if (m != NULL) 447 M_ALIGN(m, len); 448 } else { 449 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 450 if (m != NULL) 451 MC_ALIGN(m, len); 452 } 453 if (m != NULL) { 454 m->m_data += headroom; 455 *frm = m->m_data; 456 } 457 return m; 458 } 459 460 #ifndef __NO_STRICT_ALIGNMENT 461 /* 462 * Re-align the payload in the mbuf. This is mainly used (right now) 463 * to handle IP header alignment requirements on certain architectures. 464 */ 465 struct mbuf * 466 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) 467 { 468 int pktlen, space; 469 struct mbuf *n; 470 471 pktlen = m->m_pkthdr.len; 472 space = pktlen + align; 473 if (space < MINCLSIZE) 474 n = m_gethdr(M_NOWAIT, MT_DATA); 475 else { 476 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 477 space <= MCLBYTES ? MCLBYTES : 478 #if MJUMPAGESIZE != MCLBYTES 479 space <= MJUMPAGESIZE ? MJUMPAGESIZE : 480 #endif 481 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); 482 } 483 if (__predict_true(n != NULL)) { 484 m_move_pkthdr(n, m); 485 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); 486 m_copydata(m, 0, pktlen, mtod(n, caddr_t)); 487 n->m_len = pktlen; 488 } else { 489 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, 490 mtod(m, const struct ieee80211_frame *), NULL, 491 "%s", "no mbuf to realign"); 492 vap->iv_stats.is_rx_badalign++; 493 } 494 m_freem(m); 495 return n; 496 } 497 #endif /* !__NO_STRICT_ALIGNMENT */ 498 499 int 500 ieee80211_add_callback(struct mbuf *m, 501 void (*func)(struct ieee80211_node *, void *, int), void *arg) 502 { 503 struct m_tag *mtag; 504 struct ieee80211_cb *cb; 505 506 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, 507 sizeof(struct ieee80211_cb), M_NOWAIT); 508 if (mtag == NULL) 509 return 0; 510 511 cb = (struct ieee80211_cb *)(mtag+1); 512 cb->func = func; 513 cb->arg = arg; 514 m_tag_prepend(m, mtag); 515 m->m_flags |= M_TXCB; 516 return 1; 517 } 518 519 int 520 ieee80211_add_xmit_params(struct mbuf *m, 521 const struct ieee80211_bpf_params *params) 522 { 523 struct m_tag *mtag; 524 struct ieee80211_tx_params *tx; 525 526 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 527 sizeof(struct ieee80211_tx_params), M_NOWAIT); 528 if (mtag == NULL) 529 return (0); 530 531 tx = (struct ieee80211_tx_params *)(mtag+1); 532 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); 533 m_tag_prepend(m, mtag); 534 return (1); 535 } 536 537 int 538 ieee80211_get_xmit_params(struct mbuf *m, 539 struct ieee80211_bpf_params *params) 540 { 541 struct m_tag *mtag; 542 struct ieee80211_tx_params *tx; 543 544 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 545 NULL); 546 if (mtag == NULL) 547 return (-1); 548 tx = (struct ieee80211_tx_params *)(mtag + 1); 549 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); 550 return (0); 551 } 552 553 void 554 ieee80211_process_callback(struct ieee80211_node *ni, 555 struct mbuf *m, int status) 556 { 557 struct m_tag *mtag; 558 559 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); 560 if (mtag != NULL) { 561 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); 562 cb->func(ni, cb->arg, status); 563 } 564 } 565 566 /* 567 * Add RX parameters to the given mbuf. 568 * 569 * Returns 1 if OK, 0 on error. 570 */ 571 int 572 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) 573 { 574 struct m_tag *mtag; 575 struct ieee80211_rx_params *rx; 576 577 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 578 sizeof(struct ieee80211_rx_stats), M_NOWAIT); 579 if (mtag == NULL) 580 return (0); 581 582 rx = (struct ieee80211_rx_params *)(mtag + 1); 583 memcpy(&rx->params, rxs, sizeof(*rxs)); 584 m_tag_prepend(m, mtag); 585 return (1); 586 } 587 588 int 589 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) 590 { 591 struct m_tag *mtag; 592 struct ieee80211_rx_params *rx; 593 594 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 595 NULL); 596 if (mtag == NULL) 597 return (-1); 598 rx = (struct ieee80211_rx_params *)(mtag + 1); 599 memcpy(rxs, &rx->params, sizeof(*rxs)); 600 return (0); 601 } 602 603 const struct ieee80211_rx_stats * 604 ieee80211_get_rx_params_ptr(struct mbuf *m) 605 { 606 struct m_tag *mtag; 607 struct ieee80211_rx_params *rx; 608 609 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 610 NULL); 611 if (mtag == NULL) 612 return (NULL); 613 rx = (struct ieee80211_rx_params *)(mtag + 1); 614 return (&rx->params); 615 } 616 617 618 /* 619 * Add TOA parameters to the given mbuf. 620 */ 621 int 622 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p) 623 { 624 struct m_tag *mtag; 625 struct ieee80211_toa_params *rp; 626 627 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 628 sizeof(struct ieee80211_toa_params), M_NOWAIT); 629 if (mtag == NULL) 630 return (0); 631 632 rp = (struct ieee80211_toa_params *)(mtag + 1); 633 memcpy(rp, p, sizeof(*rp)); 634 m_tag_prepend(m, mtag); 635 return (1); 636 } 637 638 int 639 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p) 640 { 641 struct m_tag *mtag; 642 struct ieee80211_toa_params *rp; 643 644 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 645 NULL); 646 if (mtag == NULL) 647 return (0); 648 rp = (struct ieee80211_toa_params *)(mtag + 1); 649 if (p != NULL) 650 memcpy(p, rp, sizeof(*p)); 651 return (1); 652 } 653 654 /* 655 * Transmit a frame to the parent interface. 656 */ 657 int 658 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) 659 { 660 int error; 661 662 /* 663 * Assert the IC TX lock is held - this enforces the 664 * processing -> queuing order is maintained 665 */ 666 IEEE80211_TX_LOCK_ASSERT(ic); 667 error = ic->ic_transmit(ic, m); 668 if (error) { 669 struct ieee80211_node *ni; 670 671 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 672 673 /* XXX number of fragments */ 674 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 675 ieee80211_free_node(ni); 676 ieee80211_free_mbuf(m); 677 } 678 return (error); 679 } 680 681 /* 682 * Transmit a frame to the VAP interface. 683 */ 684 int 685 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) 686 { 687 struct ifnet *ifp = vap->iv_ifp; 688 689 /* 690 * When transmitting via the VAP, we shouldn't hold 691 * any IC TX lock as the VAP TX path will acquire it. 692 */ 693 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); 694 695 return (ifp->if_transmit(ifp, m)); 696 697 } 698 699 #include <sys/libkern.h> 700 701 void 702 get_random_bytes(void *p, size_t n) 703 { 704 uint8_t *dp = p; 705 706 while (n > 0) { 707 uint32_t v = arc4random(); 708 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; 709 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); 710 dp += sizeof(uint32_t), n -= nb; 711 } 712 } 713 714 /* 715 * Helper function for events that pass just a single mac address. 716 */ 717 static void 718 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) 719 { 720 struct ieee80211_join_event iev; 721 722 CURVNET_SET(ifp->if_vnet); 723 memset(&iev, 0, sizeof(iev)); 724 IEEE80211_ADDR_COPY(iev.iev_addr, mac); 725 rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); 726 CURVNET_RESTORE(); 727 } 728 729 void 730 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) 731 { 732 struct ieee80211vap *vap = ni->ni_vap; 733 struct ifnet *ifp = vap->iv_ifp; 734 735 CURVNET_SET_QUIET(ifp->if_vnet); 736 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", 737 (ni == vap->iv_bss) ? "bss " : ""); 738 739 if (ni == vap->iv_bss) { 740 notify_macaddr(ifp, newassoc ? 741 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); 742 if_link_state_change(ifp, LINK_STATE_UP); 743 } else { 744 notify_macaddr(ifp, newassoc ? 745 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); 746 } 747 CURVNET_RESTORE(); 748 } 749 750 void 751 ieee80211_notify_node_leave(struct ieee80211_node *ni) 752 { 753 struct ieee80211vap *vap = ni->ni_vap; 754 struct ifnet *ifp = vap->iv_ifp; 755 756 CURVNET_SET_QUIET(ifp->if_vnet); 757 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", 758 (ni == vap->iv_bss) ? "bss " : ""); 759 760 if (ni == vap->iv_bss) { 761 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); 762 if_link_state_change(ifp, LINK_STATE_DOWN); 763 } else { 764 /* fire off wireless event station leaving */ 765 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); 766 } 767 CURVNET_RESTORE(); 768 } 769 770 void 771 ieee80211_notify_scan_done(struct ieee80211vap *vap) 772 { 773 struct ifnet *ifp = vap->iv_ifp; 774 775 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); 776 777 /* dispatch wireless event indicating scan completed */ 778 CURVNET_SET(ifp->if_vnet); 779 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); 780 CURVNET_RESTORE(); 781 } 782 783 void 784 ieee80211_notify_replay_failure(struct ieee80211vap *vap, 785 const struct ieee80211_frame *wh, const struct ieee80211_key *k, 786 u_int64_t rsc, int tid) 787 { 788 struct ifnet *ifp = vap->iv_ifp; 789 790 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 791 "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>", 792 k->wk_cipher->ic_name, tid, (intmax_t) rsc, 793 (intmax_t) k->wk_keyrsc[tid], 794 k->wk_keyix, k->wk_rxkeyix); 795 796 if (ifp != NULL) { /* NB: for cipher test modules */ 797 struct ieee80211_replay_event iev; 798 799 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 800 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 801 iev.iev_cipher = k->wk_cipher->ic_cipher; 802 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) 803 iev.iev_keyix = k->wk_rxkeyix; 804 else 805 iev.iev_keyix = k->wk_keyix; 806 iev.iev_keyrsc = k->wk_keyrsc[tid]; 807 iev.iev_rsc = rsc; 808 CURVNET_SET(ifp->if_vnet); 809 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); 810 CURVNET_RESTORE(); 811 } 812 } 813 814 void 815 ieee80211_notify_michael_failure(struct ieee80211vap *vap, 816 const struct ieee80211_frame *wh, u_int keyix) 817 { 818 struct ifnet *ifp = vap->iv_ifp; 819 820 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 821 "michael MIC verification failed <keyix %u>", keyix); 822 vap->iv_stats.is_rx_tkipmic++; 823 824 if (ifp != NULL) { /* NB: for cipher test modules */ 825 struct ieee80211_michael_event iev; 826 827 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 828 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 829 iev.iev_cipher = IEEE80211_CIPHER_TKIP; 830 iev.iev_keyix = keyix; 831 CURVNET_SET(ifp->if_vnet); 832 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); 833 CURVNET_RESTORE(); 834 } 835 } 836 837 void 838 ieee80211_notify_wds_discover(struct ieee80211_node *ni) 839 { 840 struct ieee80211vap *vap = ni->ni_vap; 841 struct ifnet *ifp = vap->iv_ifp; 842 843 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); 844 } 845 846 void 847 ieee80211_notify_csa(struct ieee80211com *ic, 848 const struct ieee80211_channel *c, int mode, int count) 849 { 850 struct ieee80211_csa_event iev; 851 struct ieee80211vap *vap; 852 struct ifnet *ifp; 853 854 memset(&iev, 0, sizeof(iev)); 855 iev.iev_flags = c->ic_flags; 856 iev.iev_freq = c->ic_freq; 857 iev.iev_ieee = c->ic_ieee; 858 iev.iev_mode = mode; 859 iev.iev_count = count; 860 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 861 ifp = vap->iv_ifp; 862 CURVNET_SET(ifp->if_vnet); 863 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); 864 CURVNET_RESTORE(); 865 } 866 } 867 868 void 869 ieee80211_notify_radar(struct ieee80211com *ic, 870 const struct ieee80211_channel *c) 871 { 872 struct ieee80211_radar_event iev; 873 struct ieee80211vap *vap; 874 struct ifnet *ifp; 875 876 memset(&iev, 0, sizeof(iev)); 877 iev.iev_flags = c->ic_flags; 878 iev.iev_freq = c->ic_freq; 879 iev.iev_ieee = c->ic_ieee; 880 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 881 ifp = vap->iv_ifp; 882 CURVNET_SET(ifp->if_vnet); 883 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); 884 CURVNET_RESTORE(); 885 } 886 } 887 888 void 889 ieee80211_notify_cac(struct ieee80211com *ic, 890 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) 891 { 892 struct ieee80211_cac_event iev; 893 struct ieee80211vap *vap; 894 struct ifnet *ifp; 895 896 memset(&iev, 0, sizeof(iev)); 897 iev.iev_flags = c->ic_flags; 898 iev.iev_freq = c->ic_freq; 899 iev.iev_ieee = c->ic_ieee; 900 iev.iev_type = type; 901 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 902 ifp = vap->iv_ifp; 903 CURVNET_SET(ifp->if_vnet); 904 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); 905 CURVNET_RESTORE(); 906 } 907 } 908 909 void 910 ieee80211_notify_node_deauth(struct ieee80211_node *ni) 911 { 912 struct ieee80211vap *vap = ni->ni_vap; 913 struct ifnet *ifp = vap->iv_ifp; 914 915 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); 916 917 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); 918 } 919 920 void 921 ieee80211_notify_node_auth(struct ieee80211_node *ni) 922 { 923 struct ieee80211vap *vap = ni->ni_vap; 924 struct ifnet *ifp = vap->iv_ifp; 925 926 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); 927 928 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); 929 } 930 931 void 932 ieee80211_notify_country(struct ieee80211vap *vap, 933 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) 934 { 935 struct ifnet *ifp = vap->iv_ifp; 936 struct ieee80211_country_event iev; 937 938 memset(&iev, 0, sizeof(iev)); 939 IEEE80211_ADDR_COPY(iev.iev_addr, bssid); 940 iev.iev_cc[0] = cc[0]; 941 iev.iev_cc[1] = cc[1]; 942 CURVNET_SET(ifp->if_vnet); 943 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); 944 CURVNET_RESTORE(); 945 } 946 947 void 948 ieee80211_notify_radio(struct ieee80211com *ic, int state) 949 { 950 struct ieee80211_radio_event iev; 951 struct ieee80211vap *vap; 952 struct ifnet *ifp; 953 954 memset(&iev, 0, sizeof(iev)); 955 iev.iev_state = state; 956 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 957 ifp = vap->iv_ifp; 958 CURVNET_SET(ifp->if_vnet); 959 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); 960 CURVNET_RESTORE(); 961 } 962 } 963 964 void 965 ieee80211_load_module(const char *modname) 966 { 967 968 #ifdef notyet 969 (void)kern_kldload(curthread, modname, NULL); 970 #else 971 printf("%s: load the %s module by hand for now.\n", __func__, modname); 972 #endif 973 } 974 975 static eventhandler_tag wlan_bpfevent; 976 static eventhandler_tag wlan_ifllevent; 977 978 static void 979 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) 980 { 981 /* NB: identify vap's by if_init */ 982 if (dlt == DLT_IEEE802_11_RADIO && 983 ifp->if_init == ieee80211_init) { 984 struct ieee80211vap *vap = ifp->if_softc; 985 /* 986 * Track bpf radiotap listener state. We mark the vap 987 * to indicate if any listener is present and the com 988 * to indicate if any listener exists on any associated 989 * vap. This flag is used by drivers to prepare radiotap 990 * state only when needed. 991 */ 992 if (attach) { 993 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); 994 if (vap->iv_opmode == IEEE80211_M_MONITOR) 995 atomic_add_int(&vap->iv_ic->ic_montaps, 1); 996 } else if (!bpf_peers_present(vap->iv_rawbpf)) { 997 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); 998 if (vap->iv_opmode == IEEE80211_M_MONITOR) 999 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); 1000 } 1001 } 1002 } 1003 1004 /* 1005 * Change MAC address on the vap (if was not started). 1006 */ 1007 static void 1008 wlan_iflladdr(void *arg __unused, struct ifnet *ifp) 1009 { 1010 /* NB: identify vap's by if_init */ 1011 if (ifp->if_init == ieee80211_init && 1012 (ifp->if_flags & IFF_UP) == 0) { 1013 struct ieee80211vap *vap = ifp->if_softc; 1014 1015 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 1016 } 1017 } 1018 1019 /* 1020 * Module glue. 1021 * 1022 * NB: the module name is "wlan" for compatibility with NetBSD. 1023 */ 1024 static int 1025 wlan_modevent(module_t mod, int type, void *unused) 1026 { 1027 switch (type) { 1028 case MOD_LOAD: 1029 if (bootverbose) 1030 printf("wlan: <802.11 Link Layer>\n"); 1031 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, 1032 bpf_track, 0, EVENTHANDLER_PRI_ANY); 1033 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, 1034 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 1035 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create, 1036 wlan_clone_destroy, 0); 1037 return 0; 1038 case MOD_UNLOAD: 1039 if_clone_detach(wlan_cloner); 1040 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 1041 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); 1042 return 0; 1043 } 1044 return EINVAL; 1045 } 1046 1047 static moduledata_t wlan_mod = { 1048 wlanname, 1049 wlan_modevent, 1050 0 1051 }; 1052 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 1053 MODULE_VERSION(wlan, 1); 1054 MODULE_DEPEND(wlan, ether, 1, 1, 1); 1055 #ifdef IEEE80211_ALQ 1056 MODULE_DEPEND(wlan, alq, 1, 1, 1); 1057 #endif /* IEEE80211_ALQ */ 1058 1059