xref: /freebsd/sys/net80211/ieee80211_freebsd.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * IEEE 802.11 support (FreeBSD-specific code)
33  */
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/eventhandler.h>
39 #include <sys/kernel.h>
40 #include <sys/linker.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/proc.h>
45 #include <sys/sysctl.h>
46 
47 #include <sys/socket.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_dl.h>
53 #include <net/if_clone.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/ethernet.h>
57 #include <net/route.h>
58 #include <net/vnet.h>
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_input.h>
62 
63 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
64 
65 #ifdef IEEE80211_DEBUG
66 static int	ieee80211_debug = 0;
67 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
68 	    0, "debugging printfs");
69 #endif
70 
71 static const char wlanname[] = "wlan";
72 static struct if_clone *wlan_cloner;
73 
74 static int
75 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
76 {
77 	struct ieee80211_clone_params cp;
78 	struct ieee80211vap *vap;
79 	struct ieee80211com *ic;
80 	int error;
81 
82 	error = copyin(params, &cp, sizeof(cp));
83 	if (error)
84 		return error;
85 	ic = ieee80211_find_com(cp.icp_parent);
86 	if (ic == NULL)
87 		return ENXIO;
88 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
89 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
90 		    cp.icp_opmode);
91 		return EINVAL;
92 	}
93 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
94 		ic_printf(ic, "%s mode not supported\n",
95 		    ieee80211_opmode_name[cp.icp_opmode]);
96 		return EOPNOTSUPP;
97 	}
98 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
99 #ifdef IEEE80211_SUPPORT_TDMA
100 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
101 #else
102 	    (1)
103 #endif
104 	) {
105 		ic_printf(ic, "TDMA not supported\n");
106 		return EOPNOTSUPP;
107 	}
108 	vap = ic->ic_vap_create(ic, wlanname, unit,
109 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
110 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
111 			    cp.icp_macaddr : ic->ic_macaddr);
112 
113 	return (vap == NULL ? EIO : 0);
114 }
115 
116 static void
117 wlan_clone_destroy(struct ifnet *ifp)
118 {
119 	struct ieee80211vap *vap = ifp->if_softc;
120 	struct ieee80211com *ic = vap->iv_ic;
121 
122 	ic->ic_vap_delete(vap);
123 }
124 
125 void
126 ieee80211_vap_destroy(struct ieee80211vap *vap)
127 {
128 	CURVNET_SET(vap->iv_ifp->if_vnet);
129 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
130 	CURVNET_RESTORE();
131 }
132 
133 int
134 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
135 {
136 	int msecs = ticks_to_msecs(*(int *)arg1);
137 	int error;
138 
139 	error = sysctl_handle_int(oidp, &msecs, 0, req);
140 	if (error || !req->newptr)
141 		return error;
142 	*(int *)arg1 = msecs_to_ticks(msecs);
143 	return 0;
144 }
145 
146 static int
147 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
148 {
149 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
150 	int error;
151 
152 	error = sysctl_handle_int(oidp, &inact, 0, req);
153 	if (error || !req->newptr)
154 		return error;
155 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
156 	return 0;
157 }
158 
159 static int
160 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
161 {
162 	struct ieee80211com *ic = arg1;
163 
164 	return SYSCTL_OUT_STR(req, ic->ic_name);
165 }
166 
167 static int
168 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
169 {
170 	struct ieee80211com *ic = arg1;
171 	int t = 0, error;
172 
173 	error = sysctl_handle_int(oidp, &t, 0, req);
174 	if (error || !req->newptr)
175 		return error;
176 	IEEE80211_LOCK(ic);
177 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
178 	IEEE80211_UNLOCK(ic);
179 	return 0;
180 }
181 
182 /*
183  * For now, just restart everything.
184  *
185  * Later on, it'd be nice to have a separate VAP restart to
186  * full-device restart.
187  */
188 static int
189 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
190 {
191 	struct ieee80211vap *vap = arg1;
192 	int t = 0, error;
193 
194 	error = sysctl_handle_int(oidp, &t, 0, req);
195 	if (error || !req->newptr)
196 		return error;
197 
198 	ieee80211_restart_all(vap->iv_ic);
199 	return 0;
200 }
201 
202 void
203 ieee80211_sysctl_attach(struct ieee80211com *ic)
204 {
205 }
206 
207 void
208 ieee80211_sysctl_detach(struct ieee80211com *ic)
209 {
210 }
211 
212 void
213 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
214 {
215 	struct ifnet *ifp = vap->iv_ifp;
216 	struct sysctl_ctx_list *ctx;
217 	struct sysctl_oid *oid;
218 	char num[14];			/* sufficient for 32 bits */
219 
220 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
221 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
222 	if (ctx == NULL) {
223 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
224 			__func__);
225 		return;
226 	}
227 	sysctl_ctx_init(ctx);
228 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
229 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
230 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
231 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
232 		"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
233 		ieee80211_sysctl_parent, "A", "parent device");
234 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
235 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
236 		"driver capabilities");
237 #ifdef IEEE80211_DEBUG
238 	vap->iv_debug = ieee80211_debug;
239 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
240 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
241 		"control debugging printfs");
242 #endif
243 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
244 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
245 		"consecutive beacon misses before scanning");
246 	/* XXX inherit from tunables */
247 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
248 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
249 		ieee80211_sysctl_inact, "I",
250 		"station inactivity timeout (sec)");
251 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
252 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
253 		ieee80211_sysctl_inact, "I",
254 		"station inactivity probe timeout (sec)");
255 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
256 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
257 		ieee80211_sysctl_inact, "I",
258 		"station authentication timeout (sec)");
259 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
260 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
261 		ieee80211_sysctl_inact, "I",
262 		"station initial state timeout (sec)");
263 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
264 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
265 			"ampdu_mintraffic_bk", CTLFLAG_RW,
266 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
267 			"BK traffic tx aggr threshold (pps)");
268 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
269 			"ampdu_mintraffic_be", CTLFLAG_RW,
270 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
271 			"BE traffic tx aggr threshold (pps)");
272 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
273 			"ampdu_mintraffic_vo", CTLFLAG_RW,
274 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
275 			"VO traffic tx aggr threshold (pps)");
276 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
277 			"ampdu_mintraffic_vi", CTLFLAG_RW,
278 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
279 			"VI traffic tx aggr threshold (pps)");
280 	}
281 
282 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
283 		"force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0,
284 		ieee80211_sysctl_vap_restart, "I",
285 		"force a VAP restart");
286 
287 	if (vap->iv_caps & IEEE80211_C_DFS) {
288 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
289 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
290 			ieee80211_sysctl_radar, "I", "simulate radar event");
291 	}
292 	vap->iv_sysctl = ctx;
293 	vap->iv_oid = oid;
294 }
295 
296 void
297 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
298 {
299 
300 	if (vap->iv_sysctl != NULL) {
301 		sysctl_ctx_free(vap->iv_sysctl);
302 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
303 		vap->iv_sysctl = NULL;
304 	}
305 }
306 
307 #define	MS(_v, _f)	(((_v) & _f##_M) >> _f##_S)
308 int
309 ieee80211_com_vincref(struct ieee80211vap *vap)
310 {
311 	uint32_t ostate;
312 
313 	ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
314 
315 	if (ostate & IEEE80211_COM_DETACHED) {
316 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
317 		return (ENETDOWN);
318 	}
319 
320 	if (MS(ostate, IEEE80211_COM_REF) == IEEE80211_COM_REF_MAX) {
321 		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
322 		return (EOVERFLOW);
323 	}
324 
325 	return (0);
326 }
327 
328 void
329 ieee80211_com_vdecref(struct ieee80211vap *vap)
330 {
331 	uint32_t ostate;
332 
333 	ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD);
334 
335 	KASSERT(MS(ostate, IEEE80211_COM_REF) != 0,
336 	    ("com reference counter underflow"));
337 
338 	(void) ostate;
339 }
340 
341 void
342 ieee80211_com_vdetach(struct ieee80211vap *vap)
343 {
344 	int sleep_time;
345 
346 	sleep_time = msecs_to_ticks(250);
347 	atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED);
348 	while (MS(atomic_load_32(&vap->iv_com_state), IEEE80211_COM_REF) != 0)
349 		pause("comref", sleep_time);
350 }
351 #undef	MS
352 
353 int
354 ieee80211_node_dectestref(struct ieee80211_node *ni)
355 {
356 	/* XXX need equivalent of atomic_dec_and_test */
357 	atomic_subtract_int(&ni->ni_refcnt, 1);
358 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
359 }
360 
361 void
362 ieee80211_drain_ifq(struct ifqueue *ifq)
363 {
364 	struct ieee80211_node *ni;
365 	struct mbuf *m;
366 
367 	for (;;) {
368 		IF_DEQUEUE(ifq, m);
369 		if (m == NULL)
370 			break;
371 
372 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
373 		KASSERT(ni != NULL, ("frame w/o node"));
374 		ieee80211_free_node(ni);
375 		m->m_pkthdr.rcvif = NULL;
376 
377 		m_freem(m);
378 	}
379 }
380 
381 void
382 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
383 {
384 	struct ieee80211_node *ni;
385 	struct mbuf *m, **mprev;
386 
387 	IF_LOCK(ifq);
388 	mprev = &ifq->ifq_head;
389 	while ((m = *mprev) != NULL) {
390 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
391 		if (ni != NULL && ni->ni_vap == vap) {
392 			*mprev = m->m_nextpkt;		/* remove from list */
393 			ifq->ifq_len--;
394 
395 			m_freem(m);
396 			ieee80211_free_node(ni);	/* reclaim ref */
397 		} else
398 			mprev = &m->m_nextpkt;
399 	}
400 	/* recalculate tail ptr */
401 	m = ifq->ifq_head;
402 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
403 		;
404 	ifq->ifq_tail = m;
405 	IF_UNLOCK(ifq);
406 }
407 
408 /*
409  * As above, for mbufs allocated with m_gethdr/MGETHDR
410  * or initialized by M_COPY_PKTHDR.
411  */
412 #define	MC_ALIGN(m, len)						\
413 do {									\
414 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
415 } while (/* CONSTCOND */ 0)
416 
417 /*
418  * Allocate and setup a management frame of the specified
419  * size.  We return the mbuf and a pointer to the start
420  * of the contiguous data area that's been reserved based
421  * on the packet length.  The data area is forced to 32-bit
422  * alignment and the buffer length to a multiple of 4 bytes.
423  * This is done mainly so beacon frames (that require this)
424  * can use this interface too.
425  */
426 struct mbuf *
427 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
428 {
429 	struct mbuf *m;
430 	u_int len;
431 
432 	/*
433 	 * NB: we know the mbuf routines will align the data area
434 	 *     so we don't need to do anything special.
435 	 */
436 	len = roundup2(headroom + pktlen, 4);
437 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
438 	if (len < MINCLSIZE) {
439 		m = m_gethdr(M_NOWAIT, MT_DATA);
440 		/*
441 		 * Align the data in case additional headers are added.
442 		 * This should only happen when a WEP header is added
443 		 * which only happens for shared key authentication mgt
444 		 * frames which all fit in MHLEN.
445 		 */
446 		if (m != NULL)
447 			M_ALIGN(m, len);
448 	} else {
449 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
450 		if (m != NULL)
451 			MC_ALIGN(m, len);
452 	}
453 	if (m != NULL) {
454 		m->m_data += headroom;
455 		*frm = m->m_data;
456 	}
457 	return m;
458 }
459 
460 #ifndef __NO_STRICT_ALIGNMENT
461 /*
462  * Re-align the payload in the mbuf.  This is mainly used (right now)
463  * to handle IP header alignment requirements on certain architectures.
464  */
465 struct mbuf *
466 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
467 {
468 	int pktlen, space;
469 	struct mbuf *n;
470 
471 	pktlen = m->m_pkthdr.len;
472 	space = pktlen + align;
473 	if (space < MINCLSIZE)
474 		n = m_gethdr(M_NOWAIT, MT_DATA);
475 	else {
476 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
477 		    space <= MCLBYTES ?     MCLBYTES :
478 #if MJUMPAGESIZE != MCLBYTES
479 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
480 #endif
481 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
482 	}
483 	if (__predict_true(n != NULL)) {
484 		m_move_pkthdr(n, m);
485 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
486 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
487 		n->m_len = pktlen;
488 	} else {
489 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
490 		    mtod(m, const struct ieee80211_frame *), NULL,
491 		    "%s", "no mbuf to realign");
492 		vap->iv_stats.is_rx_badalign++;
493 	}
494 	m_freem(m);
495 	return n;
496 }
497 #endif /* !__NO_STRICT_ALIGNMENT */
498 
499 int
500 ieee80211_add_callback(struct mbuf *m,
501 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
502 {
503 	struct m_tag *mtag;
504 	struct ieee80211_cb *cb;
505 
506 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
507 			sizeof(struct ieee80211_cb), M_NOWAIT);
508 	if (mtag == NULL)
509 		return 0;
510 
511 	cb = (struct ieee80211_cb *)(mtag+1);
512 	cb->func = func;
513 	cb->arg = arg;
514 	m_tag_prepend(m, mtag);
515 	m->m_flags |= M_TXCB;
516 	return 1;
517 }
518 
519 int
520 ieee80211_add_xmit_params(struct mbuf *m,
521     const struct ieee80211_bpf_params *params)
522 {
523 	struct m_tag *mtag;
524 	struct ieee80211_tx_params *tx;
525 
526 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
527 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
528 	if (mtag == NULL)
529 		return (0);
530 
531 	tx = (struct ieee80211_tx_params *)(mtag+1);
532 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
533 	m_tag_prepend(m, mtag);
534 	return (1);
535 }
536 
537 int
538 ieee80211_get_xmit_params(struct mbuf *m,
539     struct ieee80211_bpf_params *params)
540 {
541 	struct m_tag *mtag;
542 	struct ieee80211_tx_params *tx;
543 
544 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
545 	    NULL);
546 	if (mtag == NULL)
547 		return (-1);
548 	tx = (struct ieee80211_tx_params *)(mtag + 1);
549 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
550 	return (0);
551 }
552 
553 void
554 ieee80211_process_callback(struct ieee80211_node *ni,
555 	struct mbuf *m, int status)
556 {
557 	struct m_tag *mtag;
558 
559 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
560 	if (mtag != NULL) {
561 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
562 		cb->func(ni, cb->arg, status);
563 	}
564 }
565 
566 /*
567  * Add RX parameters to the given mbuf.
568  *
569  * Returns 1 if OK, 0 on error.
570  */
571 int
572 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
573 {
574 	struct m_tag *mtag;
575 	struct ieee80211_rx_params *rx;
576 
577 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
578 	    sizeof(struct ieee80211_rx_stats), M_NOWAIT);
579 	if (mtag == NULL)
580 		return (0);
581 
582 	rx = (struct ieee80211_rx_params *)(mtag + 1);
583 	memcpy(&rx->params, rxs, sizeof(*rxs));
584 	m_tag_prepend(m, mtag);
585 	return (1);
586 }
587 
588 int
589 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
590 {
591 	struct m_tag *mtag;
592 	struct ieee80211_rx_params *rx;
593 
594 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
595 	    NULL);
596 	if (mtag == NULL)
597 		return (-1);
598 	rx = (struct ieee80211_rx_params *)(mtag + 1);
599 	memcpy(rxs, &rx->params, sizeof(*rxs));
600 	return (0);
601 }
602 
603 const struct ieee80211_rx_stats *
604 ieee80211_get_rx_params_ptr(struct mbuf *m)
605 {
606 	struct m_tag *mtag;
607 	struct ieee80211_rx_params *rx;
608 
609 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
610 	    NULL);
611 	if (mtag == NULL)
612 		return (NULL);
613 	rx = (struct ieee80211_rx_params *)(mtag + 1);
614 	return (&rx->params);
615 }
616 
617 
618 /*
619  * Add TOA parameters to the given mbuf.
620  */
621 int
622 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
623 {
624 	struct m_tag *mtag;
625 	struct ieee80211_toa_params *rp;
626 
627 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
628 	    sizeof(struct ieee80211_toa_params), M_NOWAIT);
629 	if (mtag == NULL)
630 		return (0);
631 
632 	rp = (struct ieee80211_toa_params *)(mtag + 1);
633 	memcpy(rp, p, sizeof(*rp));
634 	m_tag_prepend(m, mtag);
635 	return (1);
636 }
637 
638 int
639 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
640 {
641 	struct m_tag *mtag;
642 	struct ieee80211_toa_params *rp;
643 
644 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
645 	    NULL);
646 	if (mtag == NULL)
647 		return (0);
648 	rp = (struct ieee80211_toa_params *)(mtag + 1);
649 	if (p != NULL)
650 		memcpy(p, rp, sizeof(*p));
651 	return (1);
652 }
653 
654 /*
655  * Transmit a frame to the parent interface.
656  */
657 int
658 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
659 {
660 	int error;
661 
662 	/*
663 	 * Assert the IC TX lock is held - this enforces the
664 	 * processing -> queuing order is maintained
665 	 */
666 	IEEE80211_TX_LOCK_ASSERT(ic);
667 	error = ic->ic_transmit(ic, m);
668 	if (error) {
669 		struct ieee80211_node *ni;
670 
671 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
672 
673 		/* XXX number of fragments */
674 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
675 		ieee80211_free_node(ni);
676 		ieee80211_free_mbuf(m);
677 	}
678 	return (error);
679 }
680 
681 /*
682  * Transmit a frame to the VAP interface.
683  */
684 int
685 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
686 {
687 	struct ifnet *ifp = vap->iv_ifp;
688 
689 	/*
690 	 * When transmitting via the VAP, we shouldn't hold
691 	 * any IC TX lock as the VAP TX path will acquire it.
692 	 */
693 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
694 
695 	return (ifp->if_transmit(ifp, m));
696 
697 }
698 
699 #include <sys/libkern.h>
700 
701 void
702 get_random_bytes(void *p, size_t n)
703 {
704 	uint8_t *dp = p;
705 
706 	while (n > 0) {
707 		uint32_t v = arc4random();
708 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
709 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
710 		dp += sizeof(uint32_t), n -= nb;
711 	}
712 }
713 
714 /*
715  * Helper function for events that pass just a single mac address.
716  */
717 static void
718 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
719 {
720 	struct ieee80211_join_event iev;
721 
722 	CURVNET_SET(ifp->if_vnet);
723 	memset(&iev, 0, sizeof(iev));
724 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
725 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
726 	CURVNET_RESTORE();
727 }
728 
729 void
730 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
731 {
732 	struct ieee80211vap *vap = ni->ni_vap;
733 	struct ifnet *ifp = vap->iv_ifp;
734 
735 	CURVNET_SET_QUIET(ifp->if_vnet);
736 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
737 	    (ni == vap->iv_bss) ? "bss " : "");
738 
739 	if (ni == vap->iv_bss) {
740 		notify_macaddr(ifp, newassoc ?
741 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
742 		if_link_state_change(ifp, LINK_STATE_UP);
743 	} else {
744 		notify_macaddr(ifp, newassoc ?
745 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
746 	}
747 	CURVNET_RESTORE();
748 }
749 
750 void
751 ieee80211_notify_node_leave(struct ieee80211_node *ni)
752 {
753 	struct ieee80211vap *vap = ni->ni_vap;
754 	struct ifnet *ifp = vap->iv_ifp;
755 
756 	CURVNET_SET_QUIET(ifp->if_vnet);
757 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
758 	    (ni == vap->iv_bss) ? "bss " : "");
759 
760 	if (ni == vap->iv_bss) {
761 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
762 		if_link_state_change(ifp, LINK_STATE_DOWN);
763 	} else {
764 		/* fire off wireless event station leaving */
765 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
766 	}
767 	CURVNET_RESTORE();
768 }
769 
770 void
771 ieee80211_notify_scan_done(struct ieee80211vap *vap)
772 {
773 	struct ifnet *ifp = vap->iv_ifp;
774 
775 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
776 
777 	/* dispatch wireless event indicating scan completed */
778 	CURVNET_SET(ifp->if_vnet);
779 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
780 	CURVNET_RESTORE();
781 }
782 
783 void
784 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
785 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
786 	u_int64_t rsc, int tid)
787 {
788 	struct ifnet *ifp = vap->iv_ifp;
789 
790 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
791 	    "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
792 	    k->wk_cipher->ic_name, tid, (intmax_t) rsc,
793 	    (intmax_t) k->wk_keyrsc[tid],
794 	    k->wk_keyix, k->wk_rxkeyix);
795 
796 	if (ifp != NULL) {		/* NB: for cipher test modules */
797 		struct ieee80211_replay_event iev;
798 
799 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
800 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
801 		iev.iev_cipher = k->wk_cipher->ic_cipher;
802 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
803 			iev.iev_keyix = k->wk_rxkeyix;
804 		else
805 			iev.iev_keyix = k->wk_keyix;
806 		iev.iev_keyrsc = k->wk_keyrsc[tid];
807 		iev.iev_rsc = rsc;
808 		CURVNET_SET(ifp->if_vnet);
809 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
810 		CURVNET_RESTORE();
811 	}
812 }
813 
814 void
815 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
816 	const struct ieee80211_frame *wh, u_int keyix)
817 {
818 	struct ifnet *ifp = vap->iv_ifp;
819 
820 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
821 	    "michael MIC verification failed <keyix %u>", keyix);
822 	vap->iv_stats.is_rx_tkipmic++;
823 
824 	if (ifp != NULL) {		/* NB: for cipher test modules */
825 		struct ieee80211_michael_event iev;
826 
827 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
828 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
829 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
830 		iev.iev_keyix = keyix;
831 		CURVNET_SET(ifp->if_vnet);
832 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
833 		CURVNET_RESTORE();
834 	}
835 }
836 
837 void
838 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
839 {
840 	struct ieee80211vap *vap = ni->ni_vap;
841 	struct ifnet *ifp = vap->iv_ifp;
842 
843 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
844 }
845 
846 void
847 ieee80211_notify_csa(struct ieee80211com *ic,
848 	const struct ieee80211_channel *c, int mode, int count)
849 {
850 	struct ieee80211_csa_event iev;
851 	struct ieee80211vap *vap;
852 	struct ifnet *ifp;
853 
854 	memset(&iev, 0, sizeof(iev));
855 	iev.iev_flags = c->ic_flags;
856 	iev.iev_freq = c->ic_freq;
857 	iev.iev_ieee = c->ic_ieee;
858 	iev.iev_mode = mode;
859 	iev.iev_count = count;
860 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
861 		ifp = vap->iv_ifp;
862 		CURVNET_SET(ifp->if_vnet);
863 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
864 		CURVNET_RESTORE();
865 	}
866 }
867 
868 void
869 ieee80211_notify_radar(struct ieee80211com *ic,
870 	const struct ieee80211_channel *c)
871 {
872 	struct ieee80211_radar_event iev;
873 	struct ieee80211vap *vap;
874 	struct ifnet *ifp;
875 
876 	memset(&iev, 0, sizeof(iev));
877 	iev.iev_flags = c->ic_flags;
878 	iev.iev_freq = c->ic_freq;
879 	iev.iev_ieee = c->ic_ieee;
880 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
881 		ifp = vap->iv_ifp;
882 		CURVNET_SET(ifp->if_vnet);
883 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
884 		CURVNET_RESTORE();
885 	}
886 }
887 
888 void
889 ieee80211_notify_cac(struct ieee80211com *ic,
890 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
891 {
892 	struct ieee80211_cac_event iev;
893 	struct ieee80211vap *vap;
894 	struct ifnet *ifp;
895 
896 	memset(&iev, 0, sizeof(iev));
897 	iev.iev_flags = c->ic_flags;
898 	iev.iev_freq = c->ic_freq;
899 	iev.iev_ieee = c->ic_ieee;
900 	iev.iev_type = type;
901 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
902 		ifp = vap->iv_ifp;
903 		CURVNET_SET(ifp->if_vnet);
904 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
905 		CURVNET_RESTORE();
906 	}
907 }
908 
909 void
910 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
911 {
912 	struct ieee80211vap *vap = ni->ni_vap;
913 	struct ifnet *ifp = vap->iv_ifp;
914 
915 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
916 
917 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
918 }
919 
920 void
921 ieee80211_notify_node_auth(struct ieee80211_node *ni)
922 {
923 	struct ieee80211vap *vap = ni->ni_vap;
924 	struct ifnet *ifp = vap->iv_ifp;
925 
926 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
927 
928 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
929 }
930 
931 void
932 ieee80211_notify_country(struct ieee80211vap *vap,
933 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
934 {
935 	struct ifnet *ifp = vap->iv_ifp;
936 	struct ieee80211_country_event iev;
937 
938 	memset(&iev, 0, sizeof(iev));
939 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
940 	iev.iev_cc[0] = cc[0];
941 	iev.iev_cc[1] = cc[1];
942 	CURVNET_SET(ifp->if_vnet);
943 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
944 	CURVNET_RESTORE();
945 }
946 
947 void
948 ieee80211_notify_radio(struct ieee80211com *ic, int state)
949 {
950 	struct ieee80211_radio_event iev;
951 	struct ieee80211vap *vap;
952 	struct ifnet *ifp;
953 
954 	memset(&iev, 0, sizeof(iev));
955 	iev.iev_state = state;
956 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
957 		ifp = vap->iv_ifp;
958 		CURVNET_SET(ifp->if_vnet);
959 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
960 		CURVNET_RESTORE();
961 	}
962 }
963 
964 void
965 ieee80211_load_module(const char *modname)
966 {
967 
968 #ifdef notyet
969 	(void)kern_kldload(curthread, modname, NULL);
970 #else
971 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
972 #endif
973 }
974 
975 static eventhandler_tag wlan_bpfevent;
976 static eventhandler_tag wlan_ifllevent;
977 
978 static void
979 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
980 {
981 	/* NB: identify vap's by if_init */
982 	if (dlt == DLT_IEEE802_11_RADIO &&
983 	    ifp->if_init == ieee80211_init) {
984 		struct ieee80211vap *vap = ifp->if_softc;
985 		/*
986 		 * Track bpf radiotap listener state.  We mark the vap
987 		 * to indicate if any listener is present and the com
988 		 * to indicate if any listener exists on any associated
989 		 * vap.  This flag is used by drivers to prepare radiotap
990 		 * state only when needed.
991 		 */
992 		if (attach) {
993 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
994 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
995 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
996 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
997 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
998 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
999 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1000 		}
1001 	}
1002 }
1003 
1004 /*
1005  * Change MAC address on the vap (if was not started).
1006  */
1007 static void
1008 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
1009 {
1010 	/* NB: identify vap's by if_init */
1011 	if (ifp->if_init == ieee80211_init &&
1012 	    (ifp->if_flags & IFF_UP) == 0) {
1013 		struct ieee80211vap *vap = ifp->if_softc;
1014 
1015 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1016 	}
1017 }
1018 
1019 /*
1020  * Module glue.
1021  *
1022  * NB: the module name is "wlan" for compatibility with NetBSD.
1023  */
1024 static int
1025 wlan_modevent(module_t mod, int type, void *unused)
1026 {
1027 	switch (type) {
1028 	case MOD_LOAD:
1029 		if (bootverbose)
1030 			printf("wlan: <802.11 Link Layer>\n");
1031 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1032 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
1033 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1034 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
1035 		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
1036 		    wlan_clone_destroy, 0);
1037 		return 0;
1038 	case MOD_UNLOAD:
1039 		if_clone_detach(wlan_cloner);
1040 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1041 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1042 		return 0;
1043 	}
1044 	return EINVAL;
1045 }
1046 
1047 static moduledata_t wlan_mod = {
1048 	wlanname,
1049 	wlan_modevent,
1050 	0
1051 };
1052 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1053 MODULE_VERSION(wlan, 1);
1054 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1055 #ifdef	IEEE80211_ALQ
1056 MODULE_DEPEND(wlan, alq, 1, 1, 1);
1057 #endif	/* IEEE80211_ALQ */
1058 
1059