1 /*- 2 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 /* 30 * IEEE 802.11 support (FreeBSD-specific code) 31 */ 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/eventhandler.h> 37 #include <sys/kernel.h> 38 #include <sys/linker.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/module.h> 42 #include <sys/proc.h> 43 #include <sys/sysctl.h> 44 45 #include <sys/socket.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_dl.h> 51 #include <net/if_clone.h> 52 #include <net/if_media.h> 53 #include <net/if_types.h> 54 #include <net/ethernet.h> 55 #include <net/route.h> 56 #include <net/vnet.h> 57 58 #include <net80211/ieee80211_var.h> 59 #include <net80211/ieee80211_input.h> 60 61 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters"); 62 63 #ifdef IEEE80211_DEBUG 64 static int ieee80211_debug = 0; 65 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 66 0, "debugging printfs"); 67 #endif 68 69 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state"); 70 71 static const char wlanname[] = "wlan"; 72 static struct if_clone *wlan_cloner; 73 74 static int 75 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) 76 { 77 struct ieee80211_clone_params cp; 78 struct ieee80211vap *vap; 79 struct ieee80211com *ic; 80 int error; 81 82 error = copyin(params, &cp, sizeof(cp)); 83 if (error) 84 return error; 85 ic = ieee80211_find_com(cp.icp_parent); 86 if (ic == NULL) 87 return ENXIO; 88 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { 89 ic_printf(ic, "%s: invalid opmode %d\n", __func__, 90 cp.icp_opmode); 91 return EINVAL; 92 } 93 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { 94 ic_printf(ic, "%s mode not supported\n", 95 ieee80211_opmode_name[cp.icp_opmode]); 96 return EOPNOTSUPP; 97 } 98 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && 99 #ifdef IEEE80211_SUPPORT_TDMA 100 (ic->ic_caps & IEEE80211_C_TDMA) == 0 101 #else 102 (1) 103 #endif 104 ) { 105 ic_printf(ic, "TDMA not supported\n"); 106 return EOPNOTSUPP; 107 } 108 vap = ic->ic_vap_create(ic, wlanname, unit, 109 cp.icp_opmode, cp.icp_flags, cp.icp_bssid, 110 cp.icp_flags & IEEE80211_CLONE_MACADDR ? 111 cp.icp_macaddr : ic->ic_macaddr); 112 113 return (vap == NULL ? EIO : 0); 114 } 115 116 static void 117 wlan_clone_destroy(struct ifnet *ifp) 118 { 119 struct ieee80211vap *vap = ifp->if_softc; 120 struct ieee80211com *ic = vap->iv_ic; 121 122 ic->ic_vap_delete(vap); 123 } 124 125 void 126 ieee80211_vap_destroy(struct ieee80211vap *vap) 127 { 128 CURVNET_SET(vap->iv_ifp->if_vnet); 129 if_clone_destroyif(wlan_cloner, vap->iv_ifp); 130 CURVNET_RESTORE(); 131 } 132 133 int 134 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) 135 { 136 int msecs = ticks_to_msecs(*(int *)arg1); 137 int error, t; 138 139 error = sysctl_handle_int(oidp, &msecs, 0, req); 140 if (error || !req->newptr) 141 return error; 142 t = msecs_to_ticks(msecs); 143 *(int *)arg1 = (t < 1) ? 1 : t; 144 return 0; 145 } 146 147 static int 148 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) 149 { 150 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; 151 int error; 152 153 error = sysctl_handle_int(oidp, &inact, 0, req); 154 if (error || !req->newptr) 155 return error; 156 *(int *)arg1 = inact / IEEE80211_INACT_WAIT; 157 return 0; 158 } 159 160 static int 161 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) 162 { 163 struct ieee80211com *ic = arg1; 164 165 return SYSCTL_OUT_STR(req, ic->ic_name); 166 } 167 168 static int 169 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) 170 { 171 struct ieee80211com *ic = arg1; 172 int t = 0, error; 173 174 error = sysctl_handle_int(oidp, &t, 0, req); 175 if (error || !req->newptr) 176 return error; 177 IEEE80211_LOCK(ic); 178 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 179 IEEE80211_UNLOCK(ic); 180 return 0; 181 } 182 183 /* 184 * For now, just restart everything. 185 * 186 * Later on, it'd be nice to have a separate VAP restart to 187 * full-device restart. 188 */ 189 static int 190 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS) 191 { 192 struct ieee80211vap *vap = arg1; 193 int t = 0, error; 194 195 error = sysctl_handle_int(oidp, &t, 0, req); 196 if (error || !req->newptr) 197 return error; 198 199 ieee80211_restart_all(vap->iv_ic); 200 return 0; 201 } 202 203 void 204 ieee80211_sysctl_attach(struct ieee80211com *ic) 205 { 206 } 207 208 void 209 ieee80211_sysctl_detach(struct ieee80211com *ic) 210 { 211 } 212 213 void 214 ieee80211_sysctl_vattach(struct ieee80211vap *vap) 215 { 216 struct ifnet *ifp = vap->iv_ifp; 217 struct sysctl_ctx_list *ctx; 218 struct sysctl_oid *oid; 219 char num[14]; /* sufficient for 32 bits */ 220 221 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), 222 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 223 if (ctx == NULL) { 224 if_printf(ifp, "%s: cannot allocate sysctl context!\n", 225 __func__); 226 return; 227 } 228 sysctl_ctx_init(ctx); 229 snprintf(num, sizeof(num), "%u", ifp->if_dunit); 230 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), 231 OID_AUTO, num, CTLFLAG_RD, NULL, ""); 232 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 233 "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0, 234 ieee80211_sysctl_parent, "A", "parent device"); 235 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 236 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, 237 "driver capabilities"); 238 #ifdef IEEE80211_DEBUG 239 vap->iv_debug = ieee80211_debug; 240 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 241 "debug", CTLFLAG_RW, &vap->iv_debug, 0, 242 "control debugging printfs"); 243 #endif 244 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 245 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, 246 "consecutive beacon misses before scanning"); 247 /* XXX inherit from tunables */ 248 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 249 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0, 250 ieee80211_sysctl_inact, "I", 251 "station inactivity timeout (sec)"); 252 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 253 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0, 254 ieee80211_sysctl_inact, "I", 255 "station inactivity probe timeout (sec)"); 256 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 257 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0, 258 ieee80211_sysctl_inact, "I", 259 "station authentication timeout (sec)"); 260 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 261 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0, 262 ieee80211_sysctl_inact, "I", 263 "station initial state timeout (sec)"); 264 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 265 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 266 "ampdu_mintraffic_bk", CTLFLAG_RW, 267 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, 268 "BK traffic tx aggr threshold (pps)"); 269 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 270 "ampdu_mintraffic_be", CTLFLAG_RW, 271 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, 272 "BE traffic tx aggr threshold (pps)"); 273 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 274 "ampdu_mintraffic_vo", CTLFLAG_RW, 275 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, 276 "VO traffic tx aggr threshold (pps)"); 277 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 278 "ampdu_mintraffic_vi", CTLFLAG_RW, 279 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, 280 "VI traffic tx aggr threshold (pps)"); 281 } 282 283 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 284 "force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0, 285 ieee80211_sysctl_vap_restart, "I", 286 "force a VAP restart"); 287 288 if (vap->iv_caps & IEEE80211_C_DFS) { 289 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 290 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0, 291 ieee80211_sysctl_radar, "I", "simulate radar event"); 292 } 293 vap->iv_sysctl = ctx; 294 vap->iv_oid = oid; 295 } 296 297 void 298 ieee80211_sysctl_vdetach(struct ieee80211vap *vap) 299 { 300 301 if (vap->iv_sysctl != NULL) { 302 sysctl_ctx_free(vap->iv_sysctl); 303 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); 304 vap->iv_sysctl = NULL; 305 } 306 } 307 308 int 309 ieee80211_node_dectestref(struct ieee80211_node *ni) 310 { 311 /* XXX need equivalent of atomic_dec_and_test */ 312 atomic_subtract_int(&ni->ni_refcnt, 1); 313 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); 314 } 315 316 void 317 ieee80211_drain_ifq(struct ifqueue *ifq) 318 { 319 struct ieee80211_node *ni; 320 struct mbuf *m; 321 322 for (;;) { 323 IF_DEQUEUE(ifq, m); 324 if (m == NULL) 325 break; 326 327 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 328 KASSERT(ni != NULL, ("frame w/o node")); 329 ieee80211_free_node(ni); 330 m->m_pkthdr.rcvif = NULL; 331 332 m_freem(m); 333 } 334 } 335 336 void 337 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) 338 { 339 struct ieee80211_node *ni; 340 struct mbuf *m, **mprev; 341 342 IF_LOCK(ifq); 343 mprev = &ifq->ifq_head; 344 while ((m = *mprev) != NULL) { 345 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 346 if (ni != NULL && ni->ni_vap == vap) { 347 *mprev = m->m_nextpkt; /* remove from list */ 348 ifq->ifq_len--; 349 350 m_freem(m); 351 ieee80211_free_node(ni); /* reclaim ref */ 352 } else 353 mprev = &m->m_nextpkt; 354 } 355 /* recalculate tail ptr */ 356 m = ifq->ifq_head; 357 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) 358 ; 359 ifq->ifq_tail = m; 360 IF_UNLOCK(ifq); 361 } 362 363 /* 364 * As above, for mbufs allocated with m_gethdr/MGETHDR 365 * or initialized by M_COPY_PKTHDR. 366 */ 367 #define MC_ALIGN(m, len) \ 368 do { \ 369 (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \ 370 } while (/* CONSTCOND */ 0) 371 372 /* 373 * Allocate and setup a management frame of the specified 374 * size. We return the mbuf and a pointer to the start 375 * of the contiguous data area that's been reserved based 376 * on the packet length. The data area is forced to 32-bit 377 * alignment and the buffer length to a multiple of 4 bytes. 378 * This is done mainly so beacon frames (that require this) 379 * can use this interface too. 380 */ 381 struct mbuf * 382 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) 383 { 384 struct mbuf *m; 385 u_int len; 386 387 /* 388 * NB: we know the mbuf routines will align the data area 389 * so we don't need to do anything special. 390 */ 391 len = roundup2(headroom + pktlen, 4); 392 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); 393 if (len < MINCLSIZE) { 394 m = m_gethdr(M_NOWAIT, MT_DATA); 395 /* 396 * Align the data in case additional headers are added. 397 * This should only happen when a WEP header is added 398 * which only happens for shared key authentication mgt 399 * frames which all fit in MHLEN. 400 */ 401 if (m != NULL) 402 M_ALIGN(m, len); 403 } else { 404 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 405 if (m != NULL) 406 MC_ALIGN(m, len); 407 } 408 if (m != NULL) { 409 m->m_data += headroom; 410 *frm = m->m_data; 411 } 412 return m; 413 } 414 415 #ifndef __NO_STRICT_ALIGNMENT 416 /* 417 * Re-align the payload in the mbuf. This is mainly used (right now) 418 * to handle IP header alignment requirements on certain architectures. 419 */ 420 struct mbuf * 421 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) 422 { 423 int pktlen, space; 424 struct mbuf *n; 425 426 pktlen = m->m_pkthdr.len; 427 space = pktlen + align; 428 if (space < MINCLSIZE) 429 n = m_gethdr(M_NOWAIT, MT_DATA); 430 else { 431 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 432 space <= MCLBYTES ? MCLBYTES : 433 #if MJUMPAGESIZE != MCLBYTES 434 space <= MJUMPAGESIZE ? MJUMPAGESIZE : 435 #endif 436 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); 437 } 438 if (__predict_true(n != NULL)) { 439 m_move_pkthdr(n, m); 440 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); 441 m_copydata(m, 0, pktlen, mtod(n, caddr_t)); 442 n->m_len = pktlen; 443 } else { 444 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, 445 mtod(m, const struct ieee80211_frame *), NULL, 446 "%s", "no mbuf to realign"); 447 vap->iv_stats.is_rx_badalign++; 448 } 449 m_freem(m); 450 return n; 451 } 452 #endif /* !__NO_STRICT_ALIGNMENT */ 453 454 int 455 ieee80211_add_callback(struct mbuf *m, 456 void (*func)(struct ieee80211_node *, void *, int), void *arg) 457 { 458 struct m_tag *mtag; 459 struct ieee80211_cb *cb; 460 461 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, 462 sizeof(struct ieee80211_cb), M_NOWAIT); 463 if (mtag == NULL) 464 return 0; 465 466 cb = (struct ieee80211_cb *)(mtag+1); 467 cb->func = func; 468 cb->arg = arg; 469 m_tag_prepend(m, mtag); 470 m->m_flags |= M_TXCB; 471 return 1; 472 } 473 474 int 475 ieee80211_add_xmit_params(struct mbuf *m, 476 const struct ieee80211_bpf_params *params) 477 { 478 struct m_tag *mtag; 479 struct ieee80211_tx_params *tx; 480 481 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 482 sizeof(struct ieee80211_tx_params), M_NOWAIT); 483 if (mtag == NULL) 484 return (0); 485 486 tx = (struct ieee80211_tx_params *)(mtag+1); 487 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); 488 m_tag_prepend(m, mtag); 489 return (1); 490 } 491 492 int 493 ieee80211_get_xmit_params(struct mbuf *m, 494 struct ieee80211_bpf_params *params) 495 { 496 struct m_tag *mtag; 497 struct ieee80211_tx_params *tx; 498 499 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 500 NULL); 501 if (mtag == NULL) 502 return (-1); 503 tx = (struct ieee80211_tx_params *)(mtag + 1); 504 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); 505 return (0); 506 } 507 508 void 509 ieee80211_process_callback(struct ieee80211_node *ni, 510 struct mbuf *m, int status) 511 { 512 struct m_tag *mtag; 513 514 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); 515 if (mtag != NULL) { 516 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); 517 cb->func(ni, cb->arg, status); 518 } 519 } 520 521 /* 522 * Add RX parameters to the given mbuf. 523 * 524 * Returns 1 if OK, 0 on error. 525 */ 526 int 527 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) 528 { 529 struct m_tag *mtag; 530 struct ieee80211_rx_params *rx; 531 532 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 533 sizeof(struct ieee80211_rx_stats), M_NOWAIT); 534 if (mtag == NULL) 535 return (0); 536 537 rx = (struct ieee80211_rx_params *)(mtag + 1); 538 memcpy(&rx->params, rxs, sizeof(*rxs)); 539 m_tag_prepend(m, mtag); 540 return (1); 541 } 542 543 int 544 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) 545 { 546 struct m_tag *mtag; 547 struct ieee80211_rx_params *rx; 548 549 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 550 NULL); 551 if (mtag == NULL) 552 return (-1); 553 rx = (struct ieee80211_rx_params *)(mtag + 1); 554 memcpy(rxs, &rx->params, sizeof(*rxs)); 555 return (0); 556 } 557 558 const struct ieee80211_rx_stats * 559 ieee80211_get_rx_params_ptr(struct mbuf *m) 560 { 561 struct m_tag *mtag; 562 struct ieee80211_rx_params *rx; 563 564 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 565 NULL); 566 if (mtag == NULL) 567 return (NULL); 568 rx = (struct ieee80211_rx_params *)(mtag + 1); 569 return (&rx->params); 570 } 571 572 573 /* 574 * Add TOA parameters to the given mbuf. 575 */ 576 int 577 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p) 578 { 579 struct m_tag *mtag; 580 struct ieee80211_toa_params *rp; 581 582 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 583 sizeof(struct ieee80211_toa_params), M_NOWAIT); 584 if (mtag == NULL) 585 return (0); 586 587 rp = (struct ieee80211_toa_params *)(mtag + 1); 588 memcpy(rp, p, sizeof(*rp)); 589 m_tag_prepend(m, mtag); 590 return (1); 591 } 592 593 int 594 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p) 595 { 596 struct m_tag *mtag; 597 struct ieee80211_toa_params *rp; 598 599 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 600 NULL); 601 if (mtag == NULL) 602 return (0); 603 rp = (struct ieee80211_toa_params *)(mtag + 1); 604 if (p != NULL) 605 memcpy(p, rp, sizeof(*p)); 606 return (1); 607 } 608 609 /* 610 * Transmit a frame to the parent interface. 611 */ 612 int 613 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) 614 { 615 int error; 616 617 /* 618 * Assert the IC TX lock is held - this enforces the 619 * processing -> queuing order is maintained 620 */ 621 IEEE80211_TX_LOCK_ASSERT(ic); 622 error = ic->ic_transmit(ic, m); 623 if (error) { 624 struct ieee80211_node *ni; 625 626 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 627 628 /* XXX number of fragments */ 629 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 630 ieee80211_free_node(ni); 631 ieee80211_free_mbuf(m); 632 } 633 return (error); 634 } 635 636 /* 637 * Transmit a frame to the VAP interface. 638 */ 639 int 640 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) 641 { 642 struct ifnet *ifp = vap->iv_ifp; 643 644 /* 645 * When transmitting via the VAP, we shouldn't hold 646 * any IC TX lock as the VAP TX path will acquire it. 647 */ 648 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); 649 650 return (ifp->if_transmit(ifp, m)); 651 652 } 653 654 #include <sys/libkern.h> 655 656 void 657 get_random_bytes(void *p, size_t n) 658 { 659 uint8_t *dp = p; 660 661 while (n > 0) { 662 uint32_t v = arc4random(); 663 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; 664 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); 665 dp += sizeof(uint32_t), n -= nb; 666 } 667 } 668 669 /* 670 * Helper function for events that pass just a single mac address. 671 */ 672 static void 673 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) 674 { 675 struct ieee80211_join_event iev; 676 677 CURVNET_SET(ifp->if_vnet); 678 memset(&iev, 0, sizeof(iev)); 679 IEEE80211_ADDR_COPY(iev.iev_addr, mac); 680 rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); 681 CURVNET_RESTORE(); 682 } 683 684 void 685 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) 686 { 687 struct ieee80211vap *vap = ni->ni_vap; 688 struct ifnet *ifp = vap->iv_ifp; 689 690 CURVNET_SET_QUIET(ifp->if_vnet); 691 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", 692 (ni == vap->iv_bss) ? "bss " : ""); 693 694 if (ni == vap->iv_bss) { 695 notify_macaddr(ifp, newassoc ? 696 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); 697 if_link_state_change(ifp, LINK_STATE_UP); 698 } else { 699 notify_macaddr(ifp, newassoc ? 700 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); 701 } 702 CURVNET_RESTORE(); 703 } 704 705 void 706 ieee80211_notify_node_leave(struct ieee80211_node *ni) 707 { 708 struct ieee80211vap *vap = ni->ni_vap; 709 struct ifnet *ifp = vap->iv_ifp; 710 711 CURVNET_SET_QUIET(ifp->if_vnet); 712 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", 713 (ni == vap->iv_bss) ? "bss " : ""); 714 715 if (ni == vap->iv_bss) { 716 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); 717 if_link_state_change(ifp, LINK_STATE_DOWN); 718 } else { 719 /* fire off wireless event station leaving */ 720 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); 721 } 722 CURVNET_RESTORE(); 723 } 724 725 void 726 ieee80211_notify_scan_done(struct ieee80211vap *vap) 727 { 728 struct ifnet *ifp = vap->iv_ifp; 729 730 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); 731 732 /* dispatch wireless event indicating scan completed */ 733 CURVNET_SET(ifp->if_vnet); 734 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); 735 CURVNET_RESTORE(); 736 } 737 738 void 739 ieee80211_notify_replay_failure(struct ieee80211vap *vap, 740 const struct ieee80211_frame *wh, const struct ieee80211_key *k, 741 u_int64_t rsc, int tid) 742 { 743 struct ifnet *ifp = vap->iv_ifp; 744 745 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 746 "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>", 747 k->wk_cipher->ic_name, tid, (intmax_t) rsc, 748 (intmax_t) k->wk_keyrsc[tid], 749 k->wk_keyix, k->wk_rxkeyix); 750 751 if (ifp != NULL) { /* NB: for cipher test modules */ 752 struct ieee80211_replay_event iev; 753 754 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 755 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 756 iev.iev_cipher = k->wk_cipher->ic_cipher; 757 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) 758 iev.iev_keyix = k->wk_rxkeyix; 759 else 760 iev.iev_keyix = k->wk_keyix; 761 iev.iev_keyrsc = k->wk_keyrsc[tid]; 762 iev.iev_rsc = rsc; 763 CURVNET_SET(ifp->if_vnet); 764 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); 765 CURVNET_RESTORE(); 766 } 767 } 768 769 void 770 ieee80211_notify_michael_failure(struct ieee80211vap *vap, 771 const struct ieee80211_frame *wh, u_int keyix) 772 { 773 struct ifnet *ifp = vap->iv_ifp; 774 775 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 776 "michael MIC verification failed <keyix %u>", keyix); 777 vap->iv_stats.is_rx_tkipmic++; 778 779 if (ifp != NULL) { /* NB: for cipher test modules */ 780 struct ieee80211_michael_event iev; 781 782 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 783 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 784 iev.iev_cipher = IEEE80211_CIPHER_TKIP; 785 iev.iev_keyix = keyix; 786 CURVNET_SET(ifp->if_vnet); 787 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); 788 CURVNET_RESTORE(); 789 } 790 } 791 792 void 793 ieee80211_notify_wds_discover(struct ieee80211_node *ni) 794 { 795 struct ieee80211vap *vap = ni->ni_vap; 796 struct ifnet *ifp = vap->iv_ifp; 797 798 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); 799 } 800 801 void 802 ieee80211_notify_csa(struct ieee80211com *ic, 803 const struct ieee80211_channel *c, int mode, int count) 804 { 805 struct ieee80211_csa_event iev; 806 struct ieee80211vap *vap; 807 struct ifnet *ifp; 808 809 memset(&iev, 0, sizeof(iev)); 810 iev.iev_flags = c->ic_flags; 811 iev.iev_freq = c->ic_freq; 812 iev.iev_ieee = c->ic_ieee; 813 iev.iev_mode = mode; 814 iev.iev_count = count; 815 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 816 ifp = vap->iv_ifp; 817 CURVNET_SET(ifp->if_vnet); 818 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); 819 CURVNET_RESTORE(); 820 } 821 } 822 823 void 824 ieee80211_notify_radar(struct ieee80211com *ic, 825 const struct ieee80211_channel *c) 826 { 827 struct ieee80211_radar_event iev; 828 struct ieee80211vap *vap; 829 struct ifnet *ifp; 830 831 memset(&iev, 0, sizeof(iev)); 832 iev.iev_flags = c->ic_flags; 833 iev.iev_freq = c->ic_freq; 834 iev.iev_ieee = c->ic_ieee; 835 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 836 ifp = vap->iv_ifp; 837 CURVNET_SET(ifp->if_vnet); 838 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); 839 CURVNET_RESTORE(); 840 } 841 } 842 843 void 844 ieee80211_notify_cac(struct ieee80211com *ic, 845 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) 846 { 847 struct ieee80211_cac_event iev; 848 struct ieee80211vap *vap; 849 struct ifnet *ifp; 850 851 memset(&iev, 0, sizeof(iev)); 852 iev.iev_flags = c->ic_flags; 853 iev.iev_freq = c->ic_freq; 854 iev.iev_ieee = c->ic_ieee; 855 iev.iev_type = type; 856 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 857 ifp = vap->iv_ifp; 858 CURVNET_SET(ifp->if_vnet); 859 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); 860 CURVNET_RESTORE(); 861 } 862 } 863 864 void 865 ieee80211_notify_node_deauth(struct ieee80211_node *ni) 866 { 867 struct ieee80211vap *vap = ni->ni_vap; 868 struct ifnet *ifp = vap->iv_ifp; 869 870 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); 871 872 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); 873 } 874 875 void 876 ieee80211_notify_node_auth(struct ieee80211_node *ni) 877 { 878 struct ieee80211vap *vap = ni->ni_vap; 879 struct ifnet *ifp = vap->iv_ifp; 880 881 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); 882 883 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); 884 } 885 886 void 887 ieee80211_notify_country(struct ieee80211vap *vap, 888 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) 889 { 890 struct ifnet *ifp = vap->iv_ifp; 891 struct ieee80211_country_event iev; 892 893 memset(&iev, 0, sizeof(iev)); 894 IEEE80211_ADDR_COPY(iev.iev_addr, bssid); 895 iev.iev_cc[0] = cc[0]; 896 iev.iev_cc[1] = cc[1]; 897 CURVNET_SET(ifp->if_vnet); 898 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); 899 CURVNET_RESTORE(); 900 } 901 902 void 903 ieee80211_notify_radio(struct ieee80211com *ic, int state) 904 { 905 struct ieee80211_radio_event iev; 906 struct ieee80211vap *vap; 907 struct ifnet *ifp; 908 909 memset(&iev, 0, sizeof(iev)); 910 iev.iev_state = state; 911 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 912 ifp = vap->iv_ifp; 913 CURVNET_SET(ifp->if_vnet); 914 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); 915 CURVNET_RESTORE(); 916 } 917 } 918 919 void 920 ieee80211_load_module(const char *modname) 921 { 922 923 #ifdef notyet 924 (void)kern_kldload(curthread, modname, NULL); 925 #else 926 printf("%s: load the %s module by hand for now.\n", __func__, modname); 927 #endif 928 } 929 930 static eventhandler_tag wlan_bpfevent; 931 static eventhandler_tag wlan_ifllevent; 932 933 static void 934 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) 935 { 936 /* NB: identify vap's by if_init */ 937 if (dlt == DLT_IEEE802_11_RADIO && 938 ifp->if_init == ieee80211_init) { 939 struct ieee80211vap *vap = ifp->if_softc; 940 /* 941 * Track bpf radiotap listener state. We mark the vap 942 * to indicate if any listener is present and the com 943 * to indicate if any listener exists on any associated 944 * vap. This flag is used by drivers to prepare radiotap 945 * state only when needed. 946 */ 947 if (attach) { 948 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); 949 if (vap->iv_opmode == IEEE80211_M_MONITOR) 950 atomic_add_int(&vap->iv_ic->ic_montaps, 1); 951 } else if (!bpf_peers_present(vap->iv_rawbpf)) { 952 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); 953 if (vap->iv_opmode == IEEE80211_M_MONITOR) 954 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); 955 } 956 } 957 } 958 959 /* 960 * Change MAC address on the vap (if was not started). 961 */ 962 static void 963 wlan_iflladdr(void *arg __unused, struct ifnet *ifp) 964 { 965 /* NB: identify vap's by if_init */ 966 if (ifp->if_init == ieee80211_init && 967 (ifp->if_flags & IFF_UP) == 0) { 968 struct ieee80211vap *vap = ifp->if_softc; 969 970 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 971 } 972 } 973 974 /* 975 * Module glue. 976 * 977 * NB: the module name is "wlan" for compatibility with NetBSD. 978 */ 979 static int 980 wlan_modevent(module_t mod, int type, void *unused) 981 { 982 switch (type) { 983 case MOD_LOAD: 984 if (bootverbose) 985 printf("wlan: <802.11 Link Layer>\n"); 986 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, 987 bpf_track, 0, EVENTHANDLER_PRI_ANY); 988 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, 989 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 990 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create, 991 wlan_clone_destroy, 0); 992 return 0; 993 case MOD_UNLOAD: 994 if_clone_detach(wlan_cloner); 995 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 996 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); 997 return 0; 998 } 999 return EINVAL; 1000 } 1001 1002 static moduledata_t wlan_mod = { 1003 wlanname, 1004 wlan_modevent, 1005 0 1006 }; 1007 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 1008 MODULE_VERSION(wlan, 1); 1009 MODULE_DEPEND(wlan, ether, 1, 1, 1); 1010 #ifdef IEEE80211_ALQ 1011 MODULE_DEPEND(wlan, alq, 1, 1, 1); 1012 #endif /* IEEE80211_ALQ */ 1013 1014