1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * IEEE 802.11 support (FreeBSD-specific code) 33 */ 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/eventhandler.h> 39 #include <sys/kernel.h> 40 #include <sys/linker.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/module.h> 44 #include <sys/proc.h> 45 #include <sys/sysctl.h> 46 47 #include <sys/socket.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_dl.h> 53 #include <net/if_clone.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/ethernet.h> 57 #include <net/route.h> 58 #include <net/vnet.h> 59 60 #include <net80211/ieee80211_var.h> 61 #include <net80211/ieee80211_input.h> 62 63 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters"); 64 65 #ifdef IEEE80211_DEBUG 66 static int ieee80211_debug = 0; 67 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 68 0, "debugging printfs"); 69 #endif 70 71 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state"); 72 73 static const char wlanname[] = "wlan"; 74 static struct if_clone *wlan_cloner; 75 76 static int 77 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) 78 { 79 struct ieee80211_clone_params cp; 80 struct ieee80211vap *vap; 81 struct ieee80211com *ic; 82 int error; 83 84 error = copyin(params, &cp, sizeof(cp)); 85 if (error) 86 return error; 87 ic = ieee80211_find_com(cp.icp_parent); 88 if (ic == NULL) 89 return ENXIO; 90 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { 91 ic_printf(ic, "%s: invalid opmode %d\n", __func__, 92 cp.icp_opmode); 93 return EINVAL; 94 } 95 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { 96 ic_printf(ic, "%s mode not supported\n", 97 ieee80211_opmode_name[cp.icp_opmode]); 98 return EOPNOTSUPP; 99 } 100 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && 101 #ifdef IEEE80211_SUPPORT_TDMA 102 (ic->ic_caps & IEEE80211_C_TDMA) == 0 103 #else 104 (1) 105 #endif 106 ) { 107 ic_printf(ic, "TDMA not supported\n"); 108 return EOPNOTSUPP; 109 } 110 vap = ic->ic_vap_create(ic, wlanname, unit, 111 cp.icp_opmode, cp.icp_flags, cp.icp_bssid, 112 cp.icp_flags & IEEE80211_CLONE_MACADDR ? 113 cp.icp_macaddr : ic->ic_macaddr); 114 115 return (vap == NULL ? EIO : 0); 116 } 117 118 static void 119 wlan_clone_destroy(struct ifnet *ifp) 120 { 121 struct ieee80211vap *vap = ifp->if_softc; 122 struct ieee80211com *ic = vap->iv_ic; 123 124 ic->ic_vap_delete(vap); 125 } 126 127 void 128 ieee80211_vap_destroy(struct ieee80211vap *vap) 129 { 130 CURVNET_SET(vap->iv_ifp->if_vnet); 131 if_clone_destroyif(wlan_cloner, vap->iv_ifp); 132 CURVNET_RESTORE(); 133 } 134 135 int 136 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) 137 { 138 int msecs = ticks_to_msecs(*(int *)arg1); 139 int error; 140 141 error = sysctl_handle_int(oidp, &msecs, 0, req); 142 if (error || !req->newptr) 143 return error; 144 *(int *)arg1 = msecs_to_ticks(msecs); 145 return 0; 146 } 147 148 static int 149 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) 150 { 151 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; 152 int error; 153 154 error = sysctl_handle_int(oidp, &inact, 0, req); 155 if (error || !req->newptr) 156 return error; 157 *(int *)arg1 = inact / IEEE80211_INACT_WAIT; 158 return 0; 159 } 160 161 static int 162 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) 163 { 164 struct ieee80211com *ic = arg1; 165 166 return SYSCTL_OUT_STR(req, ic->ic_name); 167 } 168 169 static int 170 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) 171 { 172 struct ieee80211com *ic = arg1; 173 int t = 0, error; 174 175 error = sysctl_handle_int(oidp, &t, 0, req); 176 if (error || !req->newptr) 177 return error; 178 IEEE80211_LOCK(ic); 179 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 180 IEEE80211_UNLOCK(ic); 181 return 0; 182 } 183 184 /* 185 * For now, just restart everything. 186 * 187 * Later on, it'd be nice to have a separate VAP restart to 188 * full-device restart. 189 */ 190 static int 191 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS) 192 { 193 struct ieee80211vap *vap = arg1; 194 int t = 0, error; 195 196 error = sysctl_handle_int(oidp, &t, 0, req); 197 if (error || !req->newptr) 198 return error; 199 200 ieee80211_restart_all(vap->iv_ic); 201 return 0; 202 } 203 204 void 205 ieee80211_sysctl_attach(struct ieee80211com *ic) 206 { 207 } 208 209 void 210 ieee80211_sysctl_detach(struct ieee80211com *ic) 211 { 212 } 213 214 void 215 ieee80211_sysctl_vattach(struct ieee80211vap *vap) 216 { 217 struct ifnet *ifp = vap->iv_ifp; 218 struct sysctl_ctx_list *ctx; 219 struct sysctl_oid *oid; 220 char num[14]; /* sufficient for 32 bits */ 221 222 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), 223 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 224 if (ctx == NULL) { 225 if_printf(ifp, "%s: cannot allocate sysctl context!\n", 226 __func__); 227 return; 228 } 229 sysctl_ctx_init(ctx); 230 snprintf(num, sizeof(num), "%u", ifp->if_dunit); 231 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), 232 OID_AUTO, num, CTLFLAG_RD, NULL, ""); 233 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 234 "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0, 235 ieee80211_sysctl_parent, "A", "parent device"); 236 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 237 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, 238 "driver capabilities"); 239 #ifdef IEEE80211_DEBUG 240 vap->iv_debug = ieee80211_debug; 241 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 242 "debug", CTLFLAG_RW, &vap->iv_debug, 0, 243 "control debugging printfs"); 244 #endif 245 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 246 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, 247 "consecutive beacon misses before scanning"); 248 /* XXX inherit from tunables */ 249 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 250 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0, 251 ieee80211_sysctl_inact, "I", 252 "station inactivity timeout (sec)"); 253 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 254 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0, 255 ieee80211_sysctl_inact, "I", 256 "station inactivity probe timeout (sec)"); 257 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 258 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0, 259 ieee80211_sysctl_inact, "I", 260 "station authentication timeout (sec)"); 261 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 262 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0, 263 ieee80211_sysctl_inact, "I", 264 "station initial state timeout (sec)"); 265 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 266 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 267 "ampdu_mintraffic_bk", CTLFLAG_RW, 268 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, 269 "BK traffic tx aggr threshold (pps)"); 270 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 271 "ampdu_mintraffic_be", CTLFLAG_RW, 272 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, 273 "BE traffic tx aggr threshold (pps)"); 274 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 275 "ampdu_mintraffic_vo", CTLFLAG_RW, 276 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, 277 "VO traffic tx aggr threshold (pps)"); 278 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 279 "ampdu_mintraffic_vi", CTLFLAG_RW, 280 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, 281 "VI traffic tx aggr threshold (pps)"); 282 } 283 284 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 285 "force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0, 286 ieee80211_sysctl_vap_restart, "I", 287 "force a VAP restart"); 288 289 if (vap->iv_caps & IEEE80211_C_DFS) { 290 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 291 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0, 292 ieee80211_sysctl_radar, "I", "simulate radar event"); 293 } 294 vap->iv_sysctl = ctx; 295 vap->iv_oid = oid; 296 } 297 298 void 299 ieee80211_sysctl_vdetach(struct ieee80211vap *vap) 300 { 301 302 if (vap->iv_sysctl != NULL) { 303 sysctl_ctx_free(vap->iv_sysctl); 304 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); 305 vap->iv_sysctl = NULL; 306 } 307 } 308 309 #define MS(_v, _f) (((_v) & _f##_M) >> _f##_S) 310 int 311 ieee80211_com_vincref(struct ieee80211vap *vap) 312 { 313 uint32_t ostate; 314 315 ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); 316 317 if (ostate & IEEE80211_COM_DETACHED) { 318 atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); 319 return (ENETDOWN); 320 } 321 322 if (MS(ostate, IEEE80211_COM_REF) == IEEE80211_COM_REF_MAX) { 323 atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); 324 return (EOVERFLOW); 325 } 326 327 return (0); 328 } 329 330 void 331 ieee80211_com_vdecref(struct ieee80211vap *vap) 332 { 333 uint32_t ostate; 334 335 ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD); 336 337 KASSERT(MS(ostate, IEEE80211_COM_REF) != 0, 338 ("com reference counter underflow")); 339 340 (void) ostate; 341 } 342 343 void 344 ieee80211_com_vdetach(struct ieee80211vap *vap) 345 { 346 int sleep_time; 347 348 sleep_time = msecs_to_ticks(250); 349 atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED); 350 while (MS(atomic_load_32(&vap->iv_com_state), IEEE80211_COM_REF) != 0) 351 pause("comref", sleep_time); 352 } 353 #undef MS 354 355 int 356 ieee80211_node_dectestref(struct ieee80211_node *ni) 357 { 358 /* XXX need equivalent of atomic_dec_and_test */ 359 atomic_subtract_int(&ni->ni_refcnt, 1); 360 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); 361 } 362 363 void 364 ieee80211_drain_ifq(struct ifqueue *ifq) 365 { 366 struct ieee80211_node *ni; 367 struct mbuf *m; 368 369 for (;;) { 370 IF_DEQUEUE(ifq, m); 371 if (m == NULL) 372 break; 373 374 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 375 KASSERT(ni != NULL, ("frame w/o node")); 376 ieee80211_free_node(ni); 377 m->m_pkthdr.rcvif = NULL; 378 379 m_freem(m); 380 } 381 } 382 383 void 384 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) 385 { 386 struct ieee80211_node *ni; 387 struct mbuf *m, **mprev; 388 389 IF_LOCK(ifq); 390 mprev = &ifq->ifq_head; 391 while ((m = *mprev) != NULL) { 392 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 393 if (ni != NULL && ni->ni_vap == vap) { 394 *mprev = m->m_nextpkt; /* remove from list */ 395 ifq->ifq_len--; 396 397 m_freem(m); 398 ieee80211_free_node(ni); /* reclaim ref */ 399 } else 400 mprev = &m->m_nextpkt; 401 } 402 /* recalculate tail ptr */ 403 m = ifq->ifq_head; 404 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) 405 ; 406 ifq->ifq_tail = m; 407 IF_UNLOCK(ifq); 408 } 409 410 /* 411 * As above, for mbufs allocated with m_gethdr/MGETHDR 412 * or initialized by M_COPY_PKTHDR. 413 */ 414 #define MC_ALIGN(m, len) \ 415 do { \ 416 (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \ 417 } while (/* CONSTCOND */ 0) 418 419 /* 420 * Allocate and setup a management frame of the specified 421 * size. We return the mbuf and a pointer to the start 422 * of the contiguous data area that's been reserved based 423 * on the packet length. The data area is forced to 32-bit 424 * alignment and the buffer length to a multiple of 4 bytes. 425 * This is done mainly so beacon frames (that require this) 426 * can use this interface too. 427 */ 428 struct mbuf * 429 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) 430 { 431 struct mbuf *m; 432 u_int len; 433 434 /* 435 * NB: we know the mbuf routines will align the data area 436 * so we don't need to do anything special. 437 */ 438 len = roundup2(headroom + pktlen, 4); 439 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); 440 if (len < MINCLSIZE) { 441 m = m_gethdr(M_NOWAIT, MT_DATA); 442 /* 443 * Align the data in case additional headers are added. 444 * This should only happen when a WEP header is added 445 * which only happens for shared key authentication mgt 446 * frames which all fit in MHLEN. 447 */ 448 if (m != NULL) 449 M_ALIGN(m, len); 450 } else { 451 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 452 if (m != NULL) 453 MC_ALIGN(m, len); 454 } 455 if (m != NULL) { 456 m->m_data += headroom; 457 *frm = m->m_data; 458 } 459 return m; 460 } 461 462 #ifndef __NO_STRICT_ALIGNMENT 463 /* 464 * Re-align the payload in the mbuf. This is mainly used (right now) 465 * to handle IP header alignment requirements on certain architectures. 466 */ 467 struct mbuf * 468 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) 469 { 470 int pktlen, space; 471 struct mbuf *n; 472 473 pktlen = m->m_pkthdr.len; 474 space = pktlen + align; 475 if (space < MINCLSIZE) 476 n = m_gethdr(M_NOWAIT, MT_DATA); 477 else { 478 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 479 space <= MCLBYTES ? MCLBYTES : 480 #if MJUMPAGESIZE != MCLBYTES 481 space <= MJUMPAGESIZE ? MJUMPAGESIZE : 482 #endif 483 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); 484 } 485 if (__predict_true(n != NULL)) { 486 m_move_pkthdr(n, m); 487 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); 488 m_copydata(m, 0, pktlen, mtod(n, caddr_t)); 489 n->m_len = pktlen; 490 } else { 491 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, 492 mtod(m, const struct ieee80211_frame *), NULL, 493 "%s", "no mbuf to realign"); 494 vap->iv_stats.is_rx_badalign++; 495 } 496 m_freem(m); 497 return n; 498 } 499 #endif /* !__NO_STRICT_ALIGNMENT */ 500 501 int 502 ieee80211_add_callback(struct mbuf *m, 503 void (*func)(struct ieee80211_node *, void *, int), void *arg) 504 { 505 struct m_tag *mtag; 506 struct ieee80211_cb *cb; 507 508 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, 509 sizeof(struct ieee80211_cb), M_NOWAIT); 510 if (mtag == NULL) 511 return 0; 512 513 cb = (struct ieee80211_cb *)(mtag+1); 514 cb->func = func; 515 cb->arg = arg; 516 m_tag_prepend(m, mtag); 517 m->m_flags |= M_TXCB; 518 return 1; 519 } 520 521 int 522 ieee80211_add_xmit_params(struct mbuf *m, 523 const struct ieee80211_bpf_params *params) 524 { 525 struct m_tag *mtag; 526 struct ieee80211_tx_params *tx; 527 528 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 529 sizeof(struct ieee80211_tx_params), M_NOWAIT); 530 if (mtag == NULL) 531 return (0); 532 533 tx = (struct ieee80211_tx_params *)(mtag+1); 534 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); 535 m_tag_prepend(m, mtag); 536 return (1); 537 } 538 539 int 540 ieee80211_get_xmit_params(struct mbuf *m, 541 struct ieee80211_bpf_params *params) 542 { 543 struct m_tag *mtag; 544 struct ieee80211_tx_params *tx; 545 546 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, 547 NULL); 548 if (mtag == NULL) 549 return (-1); 550 tx = (struct ieee80211_tx_params *)(mtag + 1); 551 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); 552 return (0); 553 } 554 555 void 556 ieee80211_process_callback(struct ieee80211_node *ni, 557 struct mbuf *m, int status) 558 { 559 struct m_tag *mtag; 560 561 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); 562 if (mtag != NULL) { 563 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); 564 cb->func(ni, cb->arg, status); 565 } 566 } 567 568 /* 569 * Add RX parameters to the given mbuf. 570 * 571 * Returns 1 if OK, 0 on error. 572 */ 573 int 574 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) 575 { 576 struct m_tag *mtag; 577 struct ieee80211_rx_params *rx; 578 579 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 580 sizeof(struct ieee80211_rx_stats), M_NOWAIT); 581 if (mtag == NULL) 582 return (0); 583 584 rx = (struct ieee80211_rx_params *)(mtag + 1); 585 memcpy(&rx->params, rxs, sizeof(*rxs)); 586 m_tag_prepend(m, mtag); 587 return (1); 588 } 589 590 int 591 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) 592 { 593 struct m_tag *mtag; 594 struct ieee80211_rx_params *rx; 595 596 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 597 NULL); 598 if (mtag == NULL) 599 return (-1); 600 rx = (struct ieee80211_rx_params *)(mtag + 1); 601 memcpy(rxs, &rx->params, sizeof(*rxs)); 602 return (0); 603 } 604 605 const struct ieee80211_rx_stats * 606 ieee80211_get_rx_params_ptr(struct mbuf *m) 607 { 608 struct m_tag *mtag; 609 struct ieee80211_rx_params *rx; 610 611 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, 612 NULL); 613 if (mtag == NULL) 614 return (NULL); 615 rx = (struct ieee80211_rx_params *)(mtag + 1); 616 return (&rx->params); 617 } 618 619 620 /* 621 * Add TOA parameters to the given mbuf. 622 */ 623 int 624 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p) 625 { 626 struct m_tag *mtag; 627 struct ieee80211_toa_params *rp; 628 629 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 630 sizeof(struct ieee80211_toa_params), M_NOWAIT); 631 if (mtag == NULL) 632 return (0); 633 634 rp = (struct ieee80211_toa_params *)(mtag + 1); 635 memcpy(rp, p, sizeof(*rp)); 636 m_tag_prepend(m, mtag); 637 return (1); 638 } 639 640 int 641 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p) 642 { 643 struct m_tag *mtag; 644 struct ieee80211_toa_params *rp; 645 646 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, 647 NULL); 648 if (mtag == NULL) 649 return (0); 650 rp = (struct ieee80211_toa_params *)(mtag + 1); 651 if (p != NULL) 652 memcpy(p, rp, sizeof(*p)); 653 return (1); 654 } 655 656 /* 657 * Transmit a frame to the parent interface. 658 */ 659 int 660 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) 661 { 662 int error; 663 664 /* 665 * Assert the IC TX lock is held - this enforces the 666 * processing -> queuing order is maintained 667 */ 668 IEEE80211_TX_LOCK_ASSERT(ic); 669 error = ic->ic_transmit(ic, m); 670 if (error) { 671 struct ieee80211_node *ni; 672 673 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 674 675 /* XXX number of fragments */ 676 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 677 ieee80211_free_node(ni); 678 ieee80211_free_mbuf(m); 679 } 680 return (error); 681 } 682 683 /* 684 * Transmit a frame to the VAP interface. 685 */ 686 int 687 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) 688 { 689 struct ifnet *ifp = vap->iv_ifp; 690 691 /* 692 * When transmitting via the VAP, we shouldn't hold 693 * any IC TX lock as the VAP TX path will acquire it. 694 */ 695 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); 696 697 return (ifp->if_transmit(ifp, m)); 698 699 } 700 701 #include <sys/libkern.h> 702 703 void 704 get_random_bytes(void *p, size_t n) 705 { 706 uint8_t *dp = p; 707 708 while (n > 0) { 709 uint32_t v = arc4random(); 710 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; 711 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); 712 dp += sizeof(uint32_t), n -= nb; 713 } 714 } 715 716 /* 717 * Helper function for events that pass just a single mac address. 718 */ 719 static void 720 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) 721 { 722 struct ieee80211_join_event iev; 723 724 CURVNET_SET(ifp->if_vnet); 725 memset(&iev, 0, sizeof(iev)); 726 IEEE80211_ADDR_COPY(iev.iev_addr, mac); 727 rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); 728 CURVNET_RESTORE(); 729 } 730 731 void 732 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) 733 { 734 struct ieee80211vap *vap = ni->ni_vap; 735 struct ifnet *ifp = vap->iv_ifp; 736 737 CURVNET_SET_QUIET(ifp->if_vnet); 738 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", 739 (ni == vap->iv_bss) ? "bss " : ""); 740 741 if (ni == vap->iv_bss) { 742 notify_macaddr(ifp, newassoc ? 743 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); 744 if_link_state_change(ifp, LINK_STATE_UP); 745 } else { 746 notify_macaddr(ifp, newassoc ? 747 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); 748 } 749 CURVNET_RESTORE(); 750 } 751 752 void 753 ieee80211_notify_node_leave(struct ieee80211_node *ni) 754 { 755 struct ieee80211vap *vap = ni->ni_vap; 756 struct ifnet *ifp = vap->iv_ifp; 757 758 CURVNET_SET_QUIET(ifp->if_vnet); 759 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", 760 (ni == vap->iv_bss) ? "bss " : ""); 761 762 if (ni == vap->iv_bss) { 763 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); 764 if_link_state_change(ifp, LINK_STATE_DOWN); 765 } else { 766 /* fire off wireless event station leaving */ 767 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); 768 } 769 CURVNET_RESTORE(); 770 } 771 772 void 773 ieee80211_notify_scan_done(struct ieee80211vap *vap) 774 { 775 struct ifnet *ifp = vap->iv_ifp; 776 777 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); 778 779 /* dispatch wireless event indicating scan completed */ 780 CURVNET_SET(ifp->if_vnet); 781 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); 782 CURVNET_RESTORE(); 783 } 784 785 void 786 ieee80211_notify_replay_failure(struct ieee80211vap *vap, 787 const struct ieee80211_frame *wh, const struct ieee80211_key *k, 788 u_int64_t rsc, int tid) 789 { 790 struct ifnet *ifp = vap->iv_ifp; 791 792 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 793 "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>", 794 k->wk_cipher->ic_name, tid, (intmax_t) rsc, 795 (intmax_t) k->wk_keyrsc[tid], 796 k->wk_keyix, k->wk_rxkeyix); 797 798 if (ifp != NULL) { /* NB: for cipher test modules */ 799 struct ieee80211_replay_event iev; 800 801 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 802 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 803 iev.iev_cipher = k->wk_cipher->ic_cipher; 804 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) 805 iev.iev_keyix = k->wk_rxkeyix; 806 else 807 iev.iev_keyix = k->wk_keyix; 808 iev.iev_keyrsc = k->wk_keyrsc[tid]; 809 iev.iev_rsc = rsc; 810 CURVNET_SET(ifp->if_vnet); 811 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); 812 CURVNET_RESTORE(); 813 } 814 } 815 816 void 817 ieee80211_notify_michael_failure(struct ieee80211vap *vap, 818 const struct ieee80211_frame *wh, u_int keyix) 819 { 820 struct ifnet *ifp = vap->iv_ifp; 821 822 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 823 "michael MIC verification failed <keyix %u>", keyix); 824 vap->iv_stats.is_rx_tkipmic++; 825 826 if (ifp != NULL) { /* NB: for cipher test modules */ 827 struct ieee80211_michael_event iev; 828 829 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); 830 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); 831 iev.iev_cipher = IEEE80211_CIPHER_TKIP; 832 iev.iev_keyix = keyix; 833 CURVNET_SET(ifp->if_vnet); 834 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); 835 CURVNET_RESTORE(); 836 } 837 } 838 839 void 840 ieee80211_notify_wds_discover(struct ieee80211_node *ni) 841 { 842 struct ieee80211vap *vap = ni->ni_vap; 843 struct ifnet *ifp = vap->iv_ifp; 844 845 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); 846 } 847 848 void 849 ieee80211_notify_csa(struct ieee80211com *ic, 850 const struct ieee80211_channel *c, int mode, int count) 851 { 852 struct ieee80211_csa_event iev; 853 struct ieee80211vap *vap; 854 struct ifnet *ifp; 855 856 memset(&iev, 0, sizeof(iev)); 857 iev.iev_flags = c->ic_flags; 858 iev.iev_freq = c->ic_freq; 859 iev.iev_ieee = c->ic_ieee; 860 iev.iev_mode = mode; 861 iev.iev_count = count; 862 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 863 ifp = vap->iv_ifp; 864 CURVNET_SET(ifp->if_vnet); 865 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); 866 CURVNET_RESTORE(); 867 } 868 } 869 870 void 871 ieee80211_notify_radar(struct ieee80211com *ic, 872 const struct ieee80211_channel *c) 873 { 874 struct ieee80211_radar_event iev; 875 struct ieee80211vap *vap; 876 struct ifnet *ifp; 877 878 memset(&iev, 0, sizeof(iev)); 879 iev.iev_flags = c->ic_flags; 880 iev.iev_freq = c->ic_freq; 881 iev.iev_ieee = c->ic_ieee; 882 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 883 ifp = vap->iv_ifp; 884 CURVNET_SET(ifp->if_vnet); 885 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); 886 CURVNET_RESTORE(); 887 } 888 } 889 890 void 891 ieee80211_notify_cac(struct ieee80211com *ic, 892 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) 893 { 894 struct ieee80211_cac_event iev; 895 struct ieee80211vap *vap; 896 struct ifnet *ifp; 897 898 memset(&iev, 0, sizeof(iev)); 899 iev.iev_flags = c->ic_flags; 900 iev.iev_freq = c->ic_freq; 901 iev.iev_ieee = c->ic_ieee; 902 iev.iev_type = type; 903 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 904 ifp = vap->iv_ifp; 905 CURVNET_SET(ifp->if_vnet); 906 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); 907 CURVNET_RESTORE(); 908 } 909 } 910 911 void 912 ieee80211_notify_node_deauth(struct ieee80211_node *ni) 913 { 914 struct ieee80211vap *vap = ni->ni_vap; 915 struct ifnet *ifp = vap->iv_ifp; 916 917 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); 918 919 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); 920 } 921 922 void 923 ieee80211_notify_node_auth(struct ieee80211_node *ni) 924 { 925 struct ieee80211vap *vap = ni->ni_vap; 926 struct ifnet *ifp = vap->iv_ifp; 927 928 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); 929 930 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); 931 } 932 933 void 934 ieee80211_notify_country(struct ieee80211vap *vap, 935 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) 936 { 937 struct ifnet *ifp = vap->iv_ifp; 938 struct ieee80211_country_event iev; 939 940 memset(&iev, 0, sizeof(iev)); 941 IEEE80211_ADDR_COPY(iev.iev_addr, bssid); 942 iev.iev_cc[0] = cc[0]; 943 iev.iev_cc[1] = cc[1]; 944 CURVNET_SET(ifp->if_vnet); 945 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); 946 CURVNET_RESTORE(); 947 } 948 949 void 950 ieee80211_notify_radio(struct ieee80211com *ic, int state) 951 { 952 struct ieee80211_radio_event iev; 953 struct ieee80211vap *vap; 954 struct ifnet *ifp; 955 956 memset(&iev, 0, sizeof(iev)); 957 iev.iev_state = state; 958 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 959 ifp = vap->iv_ifp; 960 CURVNET_SET(ifp->if_vnet); 961 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); 962 CURVNET_RESTORE(); 963 } 964 } 965 966 void 967 ieee80211_load_module(const char *modname) 968 { 969 970 #ifdef notyet 971 (void)kern_kldload(curthread, modname, NULL); 972 #else 973 printf("%s: load the %s module by hand for now.\n", __func__, modname); 974 #endif 975 } 976 977 static eventhandler_tag wlan_bpfevent; 978 static eventhandler_tag wlan_ifllevent; 979 980 static void 981 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) 982 { 983 /* NB: identify vap's by if_init */ 984 if (dlt == DLT_IEEE802_11_RADIO && 985 ifp->if_init == ieee80211_init) { 986 struct ieee80211vap *vap = ifp->if_softc; 987 /* 988 * Track bpf radiotap listener state. We mark the vap 989 * to indicate if any listener is present and the com 990 * to indicate if any listener exists on any associated 991 * vap. This flag is used by drivers to prepare radiotap 992 * state only when needed. 993 */ 994 if (attach) { 995 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); 996 if (vap->iv_opmode == IEEE80211_M_MONITOR) 997 atomic_add_int(&vap->iv_ic->ic_montaps, 1); 998 } else if (!bpf_peers_present(vap->iv_rawbpf)) { 999 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); 1000 if (vap->iv_opmode == IEEE80211_M_MONITOR) 1001 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); 1002 } 1003 } 1004 } 1005 1006 /* 1007 * Change MAC address on the vap (if was not started). 1008 */ 1009 static void 1010 wlan_iflladdr(void *arg __unused, struct ifnet *ifp) 1011 { 1012 /* NB: identify vap's by if_init */ 1013 if (ifp->if_init == ieee80211_init && 1014 (ifp->if_flags & IFF_UP) == 0) { 1015 struct ieee80211vap *vap = ifp->if_softc; 1016 1017 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 1018 } 1019 } 1020 1021 /* 1022 * Module glue. 1023 * 1024 * NB: the module name is "wlan" for compatibility with NetBSD. 1025 */ 1026 static int 1027 wlan_modevent(module_t mod, int type, void *unused) 1028 { 1029 switch (type) { 1030 case MOD_LOAD: 1031 if (bootverbose) 1032 printf("wlan: <802.11 Link Layer>\n"); 1033 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, 1034 bpf_track, 0, EVENTHANDLER_PRI_ANY); 1035 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, 1036 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 1037 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create, 1038 wlan_clone_destroy, 0); 1039 return 0; 1040 case MOD_UNLOAD: 1041 if_clone_detach(wlan_cloner); 1042 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); 1043 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); 1044 return 0; 1045 } 1046 return EINVAL; 1047 } 1048 1049 static moduledata_t wlan_mod = { 1050 wlanname, 1051 wlan_modevent, 1052 0 1053 }; 1054 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 1055 MODULE_VERSION(wlan, 1); 1056 MODULE_DEPEND(wlan, ether, 1, 1, 1); 1057 #ifdef IEEE80211_ALQ 1058 MODULE_DEPEND(wlan, alq, 1, 1, 1); 1059 #endif /* IEEE80211_ALQ */ 1060 1061