xref: /freebsd/sys/net80211/ieee80211_crypto_tkip.c (revision d056fa046c6a91b90cd98165face0e42a33a5173)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * Alternatively, this software may be distributed under the terms of the
17  * GNU General Public License ("GPL") version 2 as published by the Free
18  * Software Foundation.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*
36  * IEEE 802.11i TKIP crypto support.
37  *
38  * Part of this module is derived from similar code in the Host
39  * AP driver. The code is used with the consent of the author and
40  * it's license is included below.
41  */
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/module.h>
48 #include <sys/endian.h>
49 
50 #include <sys/socket.h>
51 
52 #include <net/if.h>
53 #include <net/if_media.h>
54 #include <net/ethernet.h>
55 
56 #include <net80211/ieee80211_var.h>
57 
58 static	void *tkip_attach(struct ieee80211com *, struct ieee80211_key *);
59 static	void tkip_detach(struct ieee80211_key *);
60 static	int tkip_setkey(struct ieee80211_key *);
61 static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, u_int8_t keyid);
62 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
63 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
64 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
65 
66 static const struct ieee80211_cipher tkip  = {
67 	.ic_name	= "TKIP",
68 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
69 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
70 			  IEEE80211_WEP_EXTIVLEN,
71 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
72 	.ic_miclen	= IEEE80211_WEP_MICLEN,
73 	.ic_attach	= tkip_attach,
74 	.ic_detach	= tkip_detach,
75 	.ic_setkey	= tkip_setkey,
76 	.ic_encap	= tkip_encap,
77 	.ic_decap	= tkip_decap,
78 	.ic_enmic	= tkip_enmic,
79 	.ic_demic	= tkip_demic,
80 };
81 
82 typedef	uint8_t u8;
83 typedef	uint16_t u16;
84 typedef	uint32_t __u32;
85 typedef	uint32_t u32;
86 #define	memmove(dst, src, n)	ovbcopy(src, dst, n)
87 
88 struct tkip_ctx {
89 	struct ieee80211com *tc_ic;	/* for diagnostics */
90 
91 	u16	tx_ttak[5];
92 	int	tx_phase1_done;
93 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
94 
95 	u16	rx_ttak[5];
96 	int	rx_phase1_done;
97 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
98 	uint64_t rx_rsc;		/* held until MIC verified */
99 };
100 
101 static	void michael_mic(struct tkip_ctx *, const u8 *key,
102 		struct mbuf *m, u_int off, size_t data_len,
103 		u8 mic[IEEE80211_WEP_MICLEN]);
104 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
105 		struct mbuf *, int hdr_len);
106 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
107 		struct mbuf *, int hdr_len);
108 
109 /* number of references from net80211 layer */
110 static	int nrefs = 0;
111 
112 static void *
113 tkip_attach(struct ieee80211com *ic, struct ieee80211_key *k)
114 {
115 	struct tkip_ctx *ctx;
116 
117 	MALLOC(ctx, struct tkip_ctx *, sizeof(struct tkip_ctx),
118 		M_DEVBUF, M_NOWAIT | M_ZERO);
119 	if (ctx == NULL) {
120 		ic->ic_stats.is_crypto_nomem++;
121 		return NULL;
122 	}
123 
124 	ctx->tc_ic = ic;
125 	nrefs++;			/* NB: we assume caller locking */
126 	return ctx;
127 }
128 
129 static void
130 tkip_detach(struct ieee80211_key *k)
131 {
132 	struct tkip_ctx *ctx = k->wk_private;
133 
134 	FREE(ctx, M_DEVBUF);
135 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
136 	nrefs--;			/* NB: we assume caller locking */
137 }
138 
139 static int
140 tkip_setkey(struct ieee80211_key *k)
141 {
142 	struct tkip_ctx *ctx = k->wk_private;
143 
144 	if (k->wk_keylen != (128/NBBY)) {
145 		(void) ctx;		/* XXX */
146 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
147 			"%s: Invalid key length %u, expecting %u\n",
148 			__func__, k->wk_keylen, 128/NBBY);
149 		return 0;
150 	}
151 	k->wk_keytsc = 1;		/* TSC starts at 1 */
152 	return 1;
153 }
154 
155 /*
156  * Add privacy headers and do any s/w encryption required.
157  */
158 static int
159 tkip_encap(struct ieee80211_key *k, struct mbuf *m, u_int8_t keyid)
160 {
161 	struct tkip_ctx *ctx = k->wk_private;
162 	struct ieee80211com *ic = ctx->tc_ic;
163 	u_int8_t *ivp;
164 	int hdrlen;
165 
166 	/*
167 	 * Handle TKIP counter measures requirement.
168 	 */
169 	if (ic->ic_flags & IEEE80211_F_COUNTERM) {
170 #ifdef IEEE80211_DEBUG
171 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
172 #endif
173 
174 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
175 			"[%s] Discard frame due to countermeasures (%s)\n",
176 			ether_sprintf(wh->i_addr2), __func__);
177 		ic->ic_stats.is_crypto_tkipcm++;
178 		return 0;
179 	}
180 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
181 
182 	/*
183 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
184 	 */
185 	M_PREPEND(m, tkip.ic_header, M_NOWAIT);
186 	if (m == NULL)
187 		return 0;
188 	ivp = mtod(m, u_int8_t *);
189 	memmove(ivp, ivp + tkip.ic_header, hdrlen);
190 	ivp += hdrlen;
191 
192 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
193 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
194 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
195 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
196 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
197 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
198 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
199 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
200 
201 	/*
202 	 * Finally, do software encrypt if neeed.
203 	 */
204 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
205 		if (!tkip_encrypt(ctx, k, m, hdrlen))
206 			return 0;
207 		/* NB: tkip_encrypt handles wk_keytsc */
208 	} else
209 		k->wk_keytsc++;
210 
211 	return 1;
212 }
213 
214 /*
215  * Add MIC to the frame as needed.
216  */
217 static int
218 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
219 {
220 	struct tkip_ctx *ctx = k->wk_private;
221 
222 	if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
223 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
224 		struct ieee80211com *ic = ctx->tc_ic;
225 		int hdrlen;
226 		uint8_t mic[IEEE80211_WEP_MICLEN];
227 
228 		ic->ic_stats.is_crypto_tkipenmic++;
229 
230 		hdrlen = ieee80211_hdrspace(ic, wh);
231 
232 		michael_mic(ctx, k->wk_txmic,
233 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
234 		return m_append(m, tkip.ic_miclen, mic);
235 	}
236 	return 1;
237 }
238 
239 static __inline uint64_t
240 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
241 {
242 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
243 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
244 	return (((uint64_t)iv16) << 32) | iv32;
245 }
246 
247 /*
248  * Validate and strip privacy headers (and trailer) for a
249  * received frame.  If necessary, decrypt the frame using
250  * the specified key.
251  */
252 static int
253 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
254 {
255 	struct tkip_ctx *ctx = k->wk_private;
256 	struct ieee80211com *ic = ctx->tc_ic;
257 	struct ieee80211_frame *wh;
258 	uint8_t *ivp;
259 
260 	/*
261 	 * Header should have extended IV and sequence number;
262 	 * verify the former and validate the latter.
263 	 */
264 	wh = mtod(m, struct ieee80211_frame *);
265 	ivp = mtod(m, uint8_t *) + hdrlen;
266 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
267 		/*
268 		 * No extended IV; discard frame.
269 		 */
270 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
271 			"[%s] missing ExtIV for TKIP cipher\n",
272 			ether_sprintf(wh->i_addr2));
273 		ctx->tc_ic->ic_stats.is_rx_tkipformat++;
274 		return 0;
275 	}
276 	/*
277 	 * Handle TKIP counter measures requirement.
278 	 */
279 	if (ic->ic_flags & IEEE80211_F_COUNTERM) {
280 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
281 			"[%s] discard frame due to countermeasures (%s)\n",
282 			ether_sprintf(wh->i_addr2), __func__);
283 		ic->ic_stats.is_crypto_tkipcm++;
284 		return 0;
285 	}
286 
287 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
288 	if (ctx->rx_rsc <= k->wk_keyrsc) {
289 		/*
290 		 * Replay violation; notify upper layer.
291 		 */
292 		ieee80211_notify_replay_failure(ctx->tc_ic, wh, k, ctx->rx_rsc);
293 		ctx->tc_ic->ic_stats.is_rx_tkipreplay++;
294 		return 0;
295 	}
296 	/*
297 	 * NB: We can't update the rsc in the key until MIC is verified.
298 	 *
299 	 * We assume we are not preempted between doing the check above
300 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
301 	 * Otherwise we might process another packet and discard it as
302 	 * a replay.
303 	 */
304 
305 	/*
306 	 * Check if the device handled the decrypt in hardware.
307 	 * If so we just strip the header; otherwise we need to
308 	 * handle the decrypt in software.
309 	 */
310 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
311 	    !tkip_decrypt(ctx, k, m, hdrlen))
312 		return 0;
313 
314 	/*
315 	 * Copy up 802.11 header and strip crypto bits.
316 	 */
317 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
318 	m_adj(m, tkip.ic_header);
319 	m_adj(m, -tkip.ic_trailer);
320 
321 	return 1;
322 }
323 
324 /*
325  * Verify and strip MIC from the frame.
326  */
327 static int
328 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
329 {
330 	struct tkip_ctx *ctx = k->wk_private;
331 
332 	if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
333 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
334 		struct ieee80211com *ic = ctx->tc_ic;
335 		int hdrlen = ieee80211_hdrspace(ic, wh);
336 		u8 mic[IEEE80211_WEP_MICLEN];
337 		u8 mic0[IEEE80211_WEP_MICLEN];
338 
339 		ic->ic_stats.is_crypto_tkipdemic++;
340 
341 		michael_mic(ctx, k->wk_rxmic,
342 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
343 			mic);
344 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
345 			tkip.ic_miclen, mic0);
346 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
347 			/* NB: 802.11 layer handles statistic and debug msg */
348 			ieee80211_notify_michael_failure(ic, wh,
349 				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
350 					k->wk_rxkeyix : k->wk_keyix);
351 			return 0;
352 		}
353 	}
354 	/*
355 	 * Strip MIC from the tail.
356 	 */
357 	m_adj(m, -tkip.ic_miclen);
358 
359 	/*
360 	 * Ok to update rsc now that MIC has been verified.
361 	 */
362 	k->wk_keyrsc = ctx->rx_rsc;
363 
364 	return 1;
365 }
366 
367 /*
368  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
369  *
370  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
371  *
372  * This program is free software; you can redistribute it and/or modify
373  * it under the terms of the GNU General Public License version 2 as
374  * published by the Free Software Foundation. See README and COPYING for
375  * more details.
376  *
377  * Alternatively, this software may be distributed under the terms of BSD
378  * license.
379  */
380 
381 static const __u32 crc32_table[256] = {
382 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
383 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
384 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
385 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
386 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
387 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
388 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
389 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
390 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
391 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
392 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
393 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
394 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
395 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
396 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
397 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
398 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
399 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
400 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
401 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
402 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
403 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
404 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
405 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
406 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
407 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
408 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
409 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
410 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
411 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
412 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
413 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
414 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
415 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
416 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
417 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
418 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
419 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
420 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
421 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
422 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
423 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
424 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
425 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
426 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
427 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
428 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
429 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
430 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
431 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
432 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
433 	0x2d02ef8dL
434 };
435 
436 static __inline u16 RotR1(u16 val)
437 {
438 	return (val >> 1) | (val << 15);
439 }
440 
441 static __inline u8 Lo8(u16 val)
442 {
443 	return val & 0xff;
444 }
445 
446 static __inline u8 Hi8(u16 val)
447 {
448 	return val >> 8;
449 }
450 
451 static __inline u16 Lo16(u32 val)
452 {
453 	return val & 0xffff;
454 }
455 
456 static __inline u16 Hi16(u32 val)
457 {
458 	return val >> 16;
459 }
460 
461 static __inline u16 Mk16(u8 hi, u8 lo)
462 {
463 	return lo | (((u16) hi) << 8);
464 }
465 
466 static __inline u16 Mk16_le(const u16 *v)
467 {
468 	return le16toh(*v);
469 }
470 
471 static const u16 Sbox[256] = {
472 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
473 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
474 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
475 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
476 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
477 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
478 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
479 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
480 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
481 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
482 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
483 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
484 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
485 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
486 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
487 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
488 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
489 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
490 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
491 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
492 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
493 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
494 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
495 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
496 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
497 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
498 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
499 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
500 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
501 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
502 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
503 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
504 };
505 
506 static __inline u16 _S_(u16 v)
507 {
508 	u16 t = Sbox[Hi8(v)];
509 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
510 }
511 
512 #define PHASE1_LOOP_COUNT 8
513 
514 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
515 {
516 	int i, j;
517 
518 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
519 	TTAK[0] = Lo16(IV32);
520 	TTAK[1] = Hi16(IV32);
521 	TTAK[2] = Mk16(TA[1], TA[0]);
522 	TTAK[3] = Mk16(TA[3], TA[2]);
523 	TTAK[4] = Mk16(TA[5], TA[4]);
524 
525 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
526 		j = 2 * (i & 1);
527 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
528 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
529 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
530 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
531 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
532 	}
533 }
534 
535 #ifndef _BYTE_ORDER
536 #error "Don't know native byte order"
537 #endif
538 
539 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
540 			       u16 IV16)
541 {
542 	/* Make temporary area overlap WEP seed so that the final copy can be
543 	 * avoided on little endian hosts. */
544 	u16 *PPK = (u16 *) &WEPSeed[4];
545 
546 	/* Step 1 - make copy of TTAK and bring in TSC */
547 	PPK[0] = TTAK[0];
548 	PPK[1] = TTAK[1];
549 	PPK[2] = TTAK[2];
550 	PPK[3] = TTAK[3];
551 	PPK[4] = TTAK[4];
552 	PPK[5] = TTAK[4] + IV16;
553 
554 	/* Step 2 - 96-bit bijective mixing using S-box */
555 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
556 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
557 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
558 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
559 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
560 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
561 
562 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
563 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
564 	PPK[2] += RotR1(PPK[1]);
565 	PPK[3] += RotR1(PPK[2]);
566 	PPK[4] += RotR1(PPK[3]);
567 	PPK[5] += RotR1(PPK[4]);
568 
569 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
570 	 * WEPSeed[0..2] is transmitted as WEP IV */
571 	WEPSeed[0] = Hi8(IV16);
572 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
573 	WEPSeed[2] = Lo8(IV16);
574 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
575 
576 #if _BYTE_ORDER == _BIG_ENDIAN
577 	{
578 		int i;
579 		for (i = 0; i < 6; i++)
580 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
581 	}
582 #endif
583 }
584 
585 static void
586 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
587 	uint8_t icv[IEEE80211_WEP_CRCLEN])
588 {
589 	u32 i, j, k, crc;
590 	size_t buflen;
591 	u8 S[256];
592 	u8 *pos;
593 	struct mbuf *m;
594 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
595 
596 	/* Setup RC4 state */
597 	for (i = 0; i < 256; i++)
598 		S[i] = i;
599 	j = 0;
600 	for (i = 0; i < 256; i++) {
601 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
602 		S_SWAP(i, j);
603 	}
604 
605 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
606 	crc = ~0;
607 	i = j = 0;
608 	m = m0;
609 	pos = mtod(m, uint8_t *) + off;
610 	buflen = m->m_len - off;
611 	for (;;) {
612 		if (buflen > data_len)
613 			buflen = data_len;
614 		data_len -= buflen;
615 		for (k = 0; k < buflen; k++) {
616 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
617 			i = (i + 1) & 0xff;
618 			j = (j + S[i]) & 0xff;
619 			S_SWAP(i, j);
620 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
621 		}
622 		m = m->m_next;
623 		if (m == NULL) {
624 			KASSERT(data_len == 0,
625 			    ("out of buffers with data_len %zu\n", data_len));
626 			break;
627 		}
628 		pos = mtod(m, uint8_t *);
629 		buflen = m->m_len;
630 	}
631 	crc = ~crc;
632 
633 	/* Append little-endian CRC32 and encrypt it to produce ICV */
634 	icv[0] = crc;
635 	icv[1] = crc >> 8;
636 	icv[2] = crc >> 16;
637 	icv[3] = crc >> 24;
638 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
639 		i = (i + 1) & 0xff;
640 		j = (j + S[i]) & 0xff;
641 		S_SWAP(i, j);
642 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
643 	}
644 }
645 
646 static int
647 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
648 {
649 	u32 i, j, k, crc;
650 	u8 S[256];
651 	u8 *pos, icv[4];
652 	size_t buflen;
653 
654 	/* Setup RC4 state */
655 	for (i = 0; i < 256; i++)
656 		S[i] = i;
657 	j = 0;
658 	for (i = 0; i < 256; i++) {
659 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
660 		S_SWAP(i, j);
661 	}
662 
663 	/* Apply RC4 to data and compute CRC32 over decrypted data */
664 	crc = ~0;
665 	i = j = 0;
666 	pos = mtod(m, uint8_t *) + off;
667 	buflen = m->m_len - off;
668 	for (;;) {
669 		if (buflen > data_len)
670 			buflen = data_len;
671 		data_len -= buflen;
672 		for (k = 0; k < buflen; k++) {
673 			i = (i + 1) & 0xff;
674 			j = (j + S[i]) & 0xff;
675 			S_SWAP(i, j);
676 			*pos ^= S[(S[i] + S[j]) & 0xff];
677 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
678 			pos++;
679 		}
680 		m = m->m_next;
681 		if (m == NULL) {
682 			KASSERT(data_len == 0,
683 			    ("out of buffers with data_len %zu\n", data_len));
684 			break;
685 		}
686 		pos = mtod(m, uint8_t *);
687 		buflen = m->m_len;
688 	}
689 	crc = ~crc;
690 
691 	/* Encrypt little-endian CRC32 and verify that it matches with the
692 	 * received ICV */
693 	icv[0] = crc;
694 	icv[1] = crc >> 8;
695 	icv[2] = crc >> 16;
696 	icv[3] = crc >> 24;
697 	for (k = 0; k < 4; k++) {
698 		i = (i + 1) & 0xff;
699 		j = (j + S[i]) & 0xff;
700 		S_SWAP(i, j);
701 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
702 			/* ICV mismatch - drop frame */
703 			return -1;
704 		}
705 	}
706 
707 	return 0;
708 }
709 
710 
711 static __inline u32 rotl(u32 val, int bits)
712 {
713 	return (val << bits) | (val >> (32 - bits));
714 }
715 
716 
717 static __inline u32 rotr(u32 val, int bits)
718 {
719 	return (val >> bits) | (val << (32 - bits));
720 }
721 
722 
723 static __inline u32 xswap(u32 val)
724 {
725 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
726 }
727 
728 
729 #define michael_block(l, r)	\
730 do {				\
731 	r ^= rotl(l, 17);	\
732 	l += r;			\
733 	r ^= xswap(l);		\
734 	l += r;			\
735 	r ^= rotl(l, 3);	\
736 	l += r;			\
737 	r ^= rotr(l, 2);	\
738 	l += r;			\
739 } while (0)
740 
741 
742 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
743 {
744 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
745 }
746 
747 static __inline u32 get_le32(const u8 *p)
748 {
749 	return get_le32_split(p[0], p[1], p[2], p[3]);
750 }
751 
752 
753 static __inline void put_le32(u8 *p, u32 v)
754 {
755 	p[0] = v;
756 	p[1] = v >> 8;
757 	p[2] = v >> 16;
758 	p[3] = v >> 24;
759 }
760 
761 /*
762  * Craft pseudo header used to calculate the MIC.
763  */
764 static void
765 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
766 {
767 	const struct ieee80211_frame_addr4 *wh =
768 		(const struct ieee80211_frame_addr4 *) wh0;
769 
770 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
771 	case IEEE80211_FC1_DIR_NODS:
772 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
773 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
774 		break;
775 	case IEEE80211_FC1_DIR_TODS:
776 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
777 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
778 		break;
779 	case IEEE80211_FC1_DIR_FROMDS:
780 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
781 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
782 		break;
783 	case IEEE80211_FC1_DIR_DSTODS:
784 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
785 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
786 		break;
787 	}
788 
789 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
790 		const struct ieee80211_qosframe *qwh =
791 			(const struct ieee80211_qosframe *) wh;
792 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
793 	} else
794 		hdr[12] = 0;
795 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
796 }
797 
798 static void
799 michael_mic(struct tkip_ctx *ctx, const u8 *key,
800 	struct mbuf *m, u_int off, size_t data_len,
801 	u8 mic[IEEE80211_WEP_MICLEN])
802 {
803 	uint8_t hdr[16];
804 	u32 l, r;
805 	const uint8_t *data;
806 	u_int space;
807 
808 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
809 
810 	l = get_le32(key);
811 	r = get_le32(key + 4);
812 
813 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
814 	l ^= get_le32(hdr);
815 	michael_block(l, r);
816 	l ^= get_le32(&hdr[4]);
817 	michael_block(l, r);
818 	l ^= get_le32(&hdr[8]);
819 	michael_block(l, r);
820 	l ^= get_le32(&hdr[12]);
821 	michael_block(l, r);
822 
823 	/* first buffer has special handling */
824 	data = mtod(m, const uint8_t *) + off;
825 	space = m->m_len - off;
826 	for (;;) {
827 		if (space > data_len)
828 			space = data_len;
829 		/* collect 32-bit blocks from current buffer */
830 		while (space >= sizeof(uint32_t)) {
831 			l ^= get_le32(data);
832 			michael_block(l, r);
833 			data += sizeof(uint32_t), space -= sizeof(uint32_t);
834 			data_len -= sizeof(uint32_t);
835 		}
836 		if (data_len < sizeof(uint32_t))
837 			break;
838 		m = m->m_next;
839 		if (m == NULL) {
840 			KASSERT(0, ("out of data, data_len %zu\n", data_len));
841 			break;
842 		}
843 		if (space != 0) {
844 			const uint8_t *data_next;
845 			/*
846 			 * Block straddles buffers, split references.
847 			 */
848 			data_next = mtod(m, const uint8_t *);
849 			KASSERT(m->m_len >= sizeof(uint32_t) - space,
850 				("not enough data in following buffer, "
851 				"m_len %u need %zu\n", m->m_len,
852 				sizeof(uint32_t) - space));
853 			switch (space) {
854 			case 1:
855 				l ^= get_le32_split(data[0], data_next[0],
856 					data_next[1], data_next[2]);
857 				data = data_next + 3;
858 				space = m->m_len - 3;
859 				break;
860 			case 2:
861 				l ^= get_le32_split(data[0], data[1],
862 					data_next[0], data_next[1]);
863 				data = data_next + 2;
864 				space = m->m_len - 2;
865 				break;
866 			case 3:
867 				l ^= get_le32_split(data[0], data[1],
868 					data[2], data_next[0]);
869 				data = data_next + 1;
870 				space = m->m_len - 1;
871 				break;
872 			}
873 			michael_block(l, r);
874 			data_len -= sizeof(uint32_t);
875 		} else {
876 			/*
877 			 * Setup for next buffer.
878 			 */
879 			data = mtod(m, const uint8_t *);
880 			space = m->m_len;
881 		}
882 	}
883 	/* Last block and padding (0x5a, 4..7 x 0) */
884 	switch (data_len) {
885 	case 0:
886 		l ^= get_le32_split(0x5a, 0, 0, 0);
887 		break;
888 	case 1:
889 		l ^= get_le32_split(data[0], 0x5a, 0, 0);
890 		break;
891 	case 2:
892 		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
893 		break;
894 	case 3:
895 		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
896 		break;
897 	}
898 	michael_block(l, r);
899 	/* l ^= 0; */
900 	michael_block(l, r);
901 
902 	put_le32(mic, l);
903 	put_le32(mic + 4, r);
904 }
905 
906 static int
907 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
908 	struct mbuf *m, int hdrlen)
909 {
910 	struct ieee80211_frame *wh;
911 	uint8_t icv[IEEE80211_WEP_CRCLEN];
912 
913 	ctx->tc_ic->ic_stats.is_crypto_tkip++;
914 
915 	wh = mtod(m, struct ieee80211_frame *);
916 	if (!ctx->tx_phase1_done) {
917 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
918 				   (u32)(key->wk_keytsc >> 16));
919 		ctx->tx_phase1_done = 1;
920 	}
921 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
922 		(u16) key->wk_keytsc);
923 
924 	wep_encrypt(ctx->tx_rc4key,
925 		m, hdrlen + tkip.ic_header,
926 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
927 		icv);
928 	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
929 
930 	key->wk_keytsc++;
931 	if ((u16)(key->wk_keytsc) == 0)
932 		ctx->tx_phase1_done = 0;
933 	return 1;
934 }
935 
936 static int
937 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
938 	struct mbuf *m, int hdrlen)
939 {
940 	struct ieee80211_frame *wh;
941 	u32 iv32;
942 	u16 iv16;
943 
944 	ctx->tc_ic->ic_stats.is_crypto_tkip++;
945 
946 	wh = mtod(m, struct ieee80211_frame *);
947 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
948 	iv16 = (u16) ctx->rx_rsc;
949 	iv32 = (u32) (ctx->rx_rsc >> 16);
950 
951 	if (iv32 != (u32)(key->wk_keyrsc >> 16) || !ctx->rx_phase1_done) {
952 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
953 			wh->i_addr2, iv32);
954 		ctx->rx_phase1_done = 1;
955 	}
956 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
957 
958 	/* NB: m is unstripped; deduct headers + ICV to get payload */
959 	if (wep_decrypt(ctx->rx_rc4key,
960 		m, hdrlen + tkip.ic_header,
961 	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
962 		if (iv32 != (u32)(key->wk_keyrsc >> 16)) {
963 			/* Previously cached Phase1 result was already lost, so
964 			 * it needs to be recalculated for the next packet. */
965 			ctx->rx_phase1_done = 0;
966 		}
967 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
968 		    "[%s] TKIP ICV mismatch on decrypt\n",
969 		    ether_sprintf(wh->i_addr2));
970 		ctx->tc_ic->ic_stats.is_rx_tkipicv++;
971 		return 0;
972 	}
973 	return 1;
974 }
975 
976 /*
977  * Module glue.
978  */
979 static int
980 tkip_modevent(module_t mod, int type, void *unused)
981 {
982 	switch (type) {
983 	case MOD_LOAD:
984 		ieee80211_crypto_register(&tkip);
985 		return 0;
986 	case MOD_UNLOAD:
987 	case MOD_QUIESCE:
988 		if (nrefs) {
989 			printf("wlan_tkip: still in use (%u dynamic refs)\n",
990 				nrefs);
991 			return EBUSY;
992 		}
993 		if (type == MOD_UNLOAD)
994 			ieee80211_crypto_unregister(&tkip);
995 		return 0;
996 	}
997 	return EINVAL;
998 }
999 
1000 static moduledata_t tkip_mod = {
1001 	"wlan_tkip",
1002 	tkip_modevent,
1003 	0
1004 };
1005 DECLARE_MODULE(wlan_tkip, tkip_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1006 MODULE_VERSION(wlan_tkip, 1);
1007 MODULE_DEPEND(wlan_tkip, wlan, 1, 1, 1);
1008