xref: /freebsd/sys/net80211/ieee80211_crypto_tkip.c (revision bd81e07d2761cf1c13063eb49a5c0cb4a6951318)
1 /*-
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11i TKIP crypto support.
31  *
32  * Part of this module is derived from similar code in the Host
33  * AP driver. The code is used with the consent of the author and
34  * it's license is included below.
35  */
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/endian.h>
45 
46 #include <sys/socket.h>
47 
48 #include <net/if.h>
49 #include <net/if_media.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 
54 static	void *tkip_attach(struct ieee80211vap *, struct ieee80211_key *);
55 static	void tkip_detach(struct ieee80211_key *);
56 static	int tkip_setkey(struct ieee80211_key *);
57 static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, uint8_t keyid);
58 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
59 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
60 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
61 
62 static const struct ieee80211_cipher tkip  = {
63 	.ic_name	= "TKIP",
64 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
65 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
66 			  IEEE80211_WEP_EXTIVLEN,
67 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
68 	.ic_miclen	= IEEE80211_WEP_MICLEN,
69 	.ic_attach	= tkip_attach,
70 	.ic_detach	= tkip_detach,
71 	.ic_setkey	= tkip_setkey,
72 	.ic_encap	= tkip_encap,
73 	.ic_decap	= tkip_decap,
74 	.ic_enmic	= tkip_enmic,
75 	.ic_demic	= tkip_demic,
76 };
77 
78 typedef	uint8_t u8;
79 typedef	uint16_t u16;
80 typedef	uint32_t __u32;
81 typedef	uint32_t u32;
82 
83 struct tkip_ctx {
84 	struct ieee80211vap *tc_vap;	/* for diagnostics+statistics */
85 
86 	u16	tx_ttak[5];
87 	int	tx_phase1_done;
88 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
89 
90 	u16	rx_ttak[5];
91 	int	rx_phase1_done;
92 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
93 	uint64_t rx_rsc;		/* held until MIC verified */
94 };
95 
96 static	void michael_mic(struct tkip_ctx *, const u8 *key,
97 		struct mbuf *m, u_int off, size_t data_len,
98 		u8 mic[IEEE80211_WEP_MICLEN]);
99 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
100 		struct mbuf *, int hdr_len);
101 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
102 		struct mbuf *, int hdr_len);
103 
104 /* number of references from net80211 layer */
105 static	int nrefs = 0;
106 
107 static void *
108 tkip_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
109 {
110 	struct tkip_ctx *ctx;
111 
112 	ctx = (struct tkip_ctx *) IEEE80211_MALLOC(sizeof(struct tkip_ctx),
113 		M_80211_CRYPTO, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
114 	if (ctx == NULL) {
115 		vap->iv_stats.is_crypto_nomem++;
116 		return NULL;
117 	}
118 
119 	ctx->tc_vap = vap;
120 	nrefs++;			/* NB: we assume caller locking */
121 	return ctx;
122 }
123 
124 static void
125 tkip_detach(struct ieee80211_key *k)
126 {
127 	struct tkip_ctx *ctx = k->wk_private;
128 
129 	IEEE80211_FREE(ctx, M_80211_CRYPTO);
130 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
131 	nrefs--;			/* NB: we assume caller locking */
132 }
133 
134 static int
135 tkip_setkey(struct ieee80211_key *k)
136 {
137 	struct tkip_ctx *ctx = k->wk_private;
138 
139 	if (k->wk_keylen != (128/NBBY)) {
140 		(void) ctx;		/* XXX */
141 		IEEE80211_DPRINTF(ctx->tc_vap, IEEE80211_MSG_CRYPTO,
142 			"%s: Invalid key length %u, expecting %u\n",
143 			__func__, k->wk_keylen, 128/NBBY);
144 		return 0;
145 	}
146 	k->wk_keytsc = 1;		/* TSC starts at 1 */
147 	ctx->rx_phase1_done = 0;
148 	return 1;
149 }
150 
151 /*
152  * Add privacy headers and do any s/w encryption required.
153  */
154 static int
155 tkip_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
156 {
157 	struct tkip_ctx *ctx = k->wk_private;
158 	struct ieee80211vap *vap = ctx->tc_vap;
159 	struct ieee80211com *ic = vap->iv_ic;
160 	uint8_t *ivp;
161 	int hdrlen;
162 
163 	/*
164 	 * Handle TKIP counter measures requirement.
165 	 */
166 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
167 #ifdef IEEE80211_DEBUG
168 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
169 #endif
170 
171 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
172 		    "discard frame due to countermeasures (%s)", __func__);
173 		vap->iv_stats.is_crypto_tkipcm++;
174 		return 0;
175 	}
176 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
177 
178 	/*
179 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
180 	 */
181 	M_PREPEND(m, tkip.ic_header, M_NOWAIT);
182 	if (m == NULL)
183 		return 0;
184 	ivp = mtod(m, uint8_t *);
185 	memmove(ivp, ivp + tkip.ic_header, hdrlen);
186 	ivp += hdrlen;
187 
188 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
189 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
190 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
191 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
192 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
193 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
194 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
195 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
196 
197 	/*
198 	 * Finally, do software encrypt if neeed.
199 	 */
200 	if (k->wk_flags & IEEE80211_KEY_SWENCRYPT) {
201 		if (!tkip_encrypt(ctx, k, m, hdrlen))
202 			return 0;
203 		/* NB: tkip_encrypt handles wk_keytsc */
204 	} else
205 		k->wk_keytsc++;
206 
207 	return 1;
208 }
209 
210 /*
211  * Add MIC to the frame as needed.
212  */
213 static int
214 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
215 {
216 	struct tkip_ctx *ctx = k->wk_private;
217 
218 	if (force || (k->wk_flags & IEEE80211_KEY_SWENMIC)) {
219 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
220 		struct ieee80211vap *vap = ctx->tc_vap;
221 		struct ieee80211com *ic = vap->iv_ic;
222 		int hdrlen;
223 		uint8_t mic[IEEE80211_WEP_MICLEN];
224 
225 		vap->iv_stats.is_crypto_tkipenmic++;
226 
227 		hdrlen = ieee80211_hdrspace(ic, wh);
228 
229 		michael_mic(ctx, k->wk_txmic,
230 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
231 		return m_append(m, tkip.ic_miclen, mic);
232 	}
233 	return 1;
234 }
235 
236 static __inline uint64_t
237 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
238 {
239 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
240 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
241 	return (((uint64_t)iv16) << 32) | iv32;
242 }
243 
244 /*
245  * Validate and strip privacy headers (and trailer) for a
246  * received frame.  If necessary, decrypt the frame using
247  * the specified key.
248  */
249 static int
250 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
251 {
252 	struct tkip_ctx *ctx = k->wk_private;
253 	struct ieee80211vap *vap = ctx->tc_vap;
254 	struct ieee80211_frame *wh;
255 	uint8_t *ivp, tid;
256 
257 	/*
258 	 * Header should have extended IV and sequence number;
259 	 * verify the former and validate the latter.
260 	 */
261 	wh = mtod(m, struct ieee80211_frame *);
262 	ivp = mtod(m, uint8_t *) + hdrlen;
263 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
264 		/*
265 		 * No extended IV; discard frame.
266 		 */
267 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
268 		    "%s", "missing ExtIV for TKIP cipher");
269 		vap->iv_stats.is_rx_tkipformat++;
270 		return 0;
271 	}
272 	/*
273 	 * Handle TKIP counter measures requirement.
274 	 */
275 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
276 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
277 		    "discard frame due to countermeasures (%s)", __func__);
278 		vap->iv_stats.is_crypto_tkipcm++;
279 		return 0;
280 	}
281 
282 	tid = ieee80211_gettid(wh);
283 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
284 	if (ctx->rx_rsc <= k->wk_keyrsc[tid] &&
285 	    (k->wk_flags & IEEE80211_KEY_NOREPLAY) == 0) {
286 		/*
287 		 * Replay violation; notify upper layer.
288 		 */
289 		ieee80211_notify_replay_failure(vap, wh, k, ctx->rx_rsc, tid);
290 		vap->iv_stats.is_rx_tkipreplay++;
291 		return 0;
292 	}
293 	/*
294 	 * NB: We can't update the rsc in the key until MIC is verified.
295 	 *
296 	 * We assume we are not preempted between doing the check above
297 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
298 	 * Otherwise we might process another packet and discard it as
299 	 * a replay.
300 	 */
301 
302 	/*
303 	 * Check if the device handled the decrypt in hardware.
304 	 * If so we just strip the header; otherwise we need to
305 	 * handle the decrypt in software.
306 	 */
307 	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
308 	    !tkip_decrypt(ctx, k, m, hdrlen))
309 		return 0;
310 
311 	/*
312 	 * Copy up 802.11 header and strip crypto bits.
313 	 */
314 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
315 	m_adj(m, tkip.ic_header);
316 	m_adj(m, -tkip.ic_trailer);
317 
318 	return 1;
319 }
320 
321 /*
322  * Verify and strip MIC from the frame.
323  */
324 static int
325 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
326 {
327 	struct tkip_ctx *ctx = k->wk_private;
328 	struct ieee80211_frame *wh;
329 	uint8_t tid;
330 
331 	wh = mtod(m, struct ieee80211_frame *);
332 	if ((k->wk_flags & IEEE80211_KEY_SWDEMIC) || force) {
333 		struct ieee80211vap *vap = ctx->tc_vap;
334 		int hdrlen = ieee80211_hdrspace(vap->iv_ic, wh);
335 		u8 mic[IEEE80211_WEP_MICLEN];
336 		u8 mic0[IEEE80211_WEP_MICLEN];
337 
338 		vap->iv_stats.is_crypto_tkipdemic++;
339 
340 		michael_mic(ctx, k->wk_rxmic,
341 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
342 			mic);
343 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
344 			tkip.ic_miclen, mic0);
345 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
346 			/* NB: 802.11 layer handles statistic and debug msg */
347 			ieee80211_notify_michael_failure(vap, wh,
348 				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
349 					k->wk_rxkeyix : k->wk_keyix);
350 			return 0;
351 		}
352 	}
353 	/*
354 	 * Strip MIC from the tail.
355 	 */
356 	m_adj(m, -tkip.ic_miclen);
357 
358 	/*
359 	 * Ok to update rsc now that MIC has been verified.
360 	 */
361 	tid = ieee80211_gettid(wh);
362 	k->wk_keyrsc[tid] = ctx->rx_rsc;
363 
364 	return 1;
365 }
366 
367 /*
368  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
369  *
370  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
371  *
372  * This program is free software; you can redistribute it and/or modify
373  * it under the terms of the GNU General Public License version 2 as
374  * published by the Free Software Foundation. See README and COPYING for
375  * more details.
376  *
377  * Alternatively, this software may be distributed under the terms of BSD
378  * license.
379  */
380 
381 static const __u32 crc32_table[256] = {
382 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
383 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
384 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
385 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
386 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
387 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
388 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
389 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
390 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
391 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
392 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
393 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
394 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
395 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
396 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
397 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
398 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
399 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
400 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
401 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
402 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
403 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
404 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
405 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
406 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
407 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
408 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
409 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
410 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
411 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
412 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
413 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
414 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
415 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
416 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
417 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
418 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
419 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
420 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
421 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
422 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
423 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
424 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
425 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
426 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
427 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
428 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
429 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
430 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
431 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
432 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
433 	0x2d02ef8dL
434 };
435 
436 static __inline u16 RotR1(u16 val)
437 {
438 	return (val >> 1) | (val << 15);
439 }
440 
441 static __inline u8 Lo8(u16 val)
442 {
443 	return val & 0xff;
444 }
445 
446 static __inline u8 Hi8(u16 val)
447 {
448 	return val >> 8;
449 }
450 
451 static __inline u16 Lo16(u32 val)
452 {
453 	return val & 0xffff;
454 }
455 
456 static __inline u16 Hi16(u32 val)
457 {
458 	return val >> 16;
459 }
460 
461 static __inline u16 Mk16(u8 hi, u8 lo)
462 {
463 	return lo | (((u16) hi) << 8);
464 }
465 
466 static __inline u16 Mk16_le(const u16 *v)
467 {
468 	return le16toh(*v);
469 }
470 
471 static const u16 Sbox[256] = {
472 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
473 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
474 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
475 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
476 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
477 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
478 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
479 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
480 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
481 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
482 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
483 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
484 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
485 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
486 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
487 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
488 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
489 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
490 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
491 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
492 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
493 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
494 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
495 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
496 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
497 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
498 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
499 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
500 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
501 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
502 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
503 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
504 };
505 
506 static __inline u16 _S_(u16 v)
507 {
508 	u16 t = Sbox[Hi8(v)];
509 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
510 }
511 
512 #define PHASE1_LOOP_COUNT 8
513 
514 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
515 {
516 	int i, j;
517 
518 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
519 	TTAK[0] = Lo16(IV32);
520 	TTAK[1] = Hi16(IV32);
521 	TTAK[2] = Mk16(TA[1], TA[0]);
522 	TTAK[3] = Mk16(TA[3], TA[2]);
523 	TTAK[4] = Mk16(TA[5], TA[4]);
524 
525 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
526 		j = 2 * (i & 1);
527 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
528 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
529 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
530 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
531 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
532 	}
533 }
534 
535 #ifndef _BYTE_ORDER
536 #error "Don't know native byte order"
537 #endif
538 
539 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
540 			       u16 IV16)
541 {
542 	/* Make temporary area overlap WEP seed so that the final copy can be
543 	 * avoided on little endian hosts. */
544 	u16 *PPK = (u16 *) &WEPSeed[4];
545 
546 	/* Step 1 - make copy of TTAK and bring in TSC */
547 	PPK[0] = TTAK[0];
548 	PPK[1] = TTAK[1];
549 	PPK[2] = TTAK[2];
550 	PPK[3] = TTAK[3];
551 	PPK[4] = TTAK[4];
552 	PPK[5] = TTAK[4] + IV16;
553 
554 	/* Step 2 - 96-bit bijective mixing using S-box */
555 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
556 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
557 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
558 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
559 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
560 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
561 
562 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
563 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
564 	PPK[2] += RotR1(PPK[1]);
565 	PPK[3] += RotR1(PPK[2]);
566 	PPK[4] += RotR1(PPK[3]);
567 	PPK[5] += RotR1(PPK[4]);
568 
569 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
570 	 * WEPSeed[0..2] is transmitted as WEP IV */
571 	WEPSeed[0] = Hi8(IV16);
572 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
573 	WEPSeed[2] = Lo8(IV16);
574 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
575 
576 #if _BYTE_ORDER == _BIG_ENDIAN
577 	{
578 		int i;
579 		for (i = 0; i < 6; i++)
580 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
581 	}
582 #endif
583 }
584 
585 static void
586 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
587 	uint8_t icv[IEEE80211_WEP_CRCLEN])
588 {
589 	u32 i, j, k, crc;
590 	size_t buflen;
591 	u8 S[256];
592 	u8 *pos;
593 	struct mbuf *m;
594 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
595 
596 	/* Setup RC4 state */
597 	for (i = 0; i < 256; i++)
598 		S[i] = i;
599 	j = 0;
600 	for (i = 0; i < 256; i++) {
601 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
602 		S_SWAP(i, j);
603 	}
604 
605 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
606 	crc = ~0;
607 	i = j = 0;
608 	m = m0;
609 	pos = mtod(m, uint8_t *) + off;
610 	buflen = m->m_len - off;
611 	for (;;) {
612 		if (buflen > data_len)
613 			buflen = data_len;
614 		data_len -= buflen;
615 		for (k = 0; k < buflen; k++) {
616 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
617 			i = (i + 1) & 0xff;
618 			j = (j + S[i]) & 0xff;
619 			S_SWAP(i, j);
620 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
621 		}
622 		m = m->m_next;
623 		if (m == NULL) {
624 			KASSERT(data_len == 0,
625 			    ("out of buffers with data_len %zu\n", data_len));
626 			break;
627 		}
628 		pos = mtod(m, uint8_t *);
629 		buflen = m->m_len;
630 	}
631 	crc = ~crc;
632 
633 	/* Append little-endian CRC32 and encrypt it to produce ICV */
634 	icv[0] = crc;
635 	icv[1] = crc >> 8;
636 	icv[2] = crc >> 16;
637 	icv[3] = crc >> 24;
638 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
639 		i = (i + 1) & 0xff;
640 		j = (j + S[i]) & 0xff;
641 		S_SWAP(i, j);
642 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
643 	}
644 }
645 
646 static int
647 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
648 {
649 	u32 i, j, k, crc;
650 	u8 S[256];
651 	u8 *pos, icv[4];
652 	size_t buflen;
653 
654 	/* Setup RC4 state */
655 	for (i = 0; i < 256; i++)
656 		S[i] = i;
657 	j = 0;
658 	for (i = 0; i < 256; i++) {
659 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
660 		S_SWAP(i, j);
661 	}
662 
663 	/* Apply RC4 to data and compute CRC32 over decrypted data */
664 	crc = ~0;
665 	i = j = 0;
666 	pos = mtod(m, uint8_t *) + off;
667 	buflen = m->m_len - off;
668 	for (;;) {
669 		if (buflen > data_len)
670 			buflen = data_len;
671 		data_len -= buflen;
672 		for (k = 0; k < buflen; k++) {
673 			i = (i + 1) & 0xff;
674 			j = (j + S[i]) & 0xff;
675 			S_SWAP(i, j);
676 			*pos ^= S[(S[i] + S[j]) & 0xff];
677 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
678 			pos++;
679 		}
680 		m = m->m_next;
681 		if (m == NULL) {
682 			KASSERT(data_len == 0,
683 			    ("out of buffers with data_len %zu\n", data_len));
684 			break;
685 		}
686 		pos = mtod(m, uint8_t *);
687 		buflen = m->m_len;
688 	}
689 	crc = ~crc;
690 
691 	/* Encrypt little-endian CRC32 and verify that it matches with the
692 	 * received ICV */
693 	icv[0] = crc;
694 	icv[1] = crc >> 8;
695 	icv[2] = crc >> 16;
696 	icv[3] = crc >> 24;
697 	for (k = 0; k < 4; k++) {
698 		i = (i + 1) & 0xff;
699 		j = (j + S[i]) & 0xff;
700 		S_SWAP(i, j);
701 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
702 			/* ICV mismatch - drop frame */
703 			return -1;
704 		}
705 	}
706 
707 	return 0;
708 }
709 
710 
711 static __inline u32 rotl(u32 val, int bits)
712 {
713 	return (val << bits) | (val >> (32 - bits));
714 }
715 
716 
717 static __inline u32 rotr(u32 val, int bits)
718 {
719 	return (val >> bits) | (val << (32 - bits));
720 }
721 
722 
723 static __inline u32 xswap(u32 val)
724 {
725 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
726 }
727 
728 
729 #define michael_block(l, r)	\
730 do {				\
731 	r ^= rotl(l, 17);	\
732 	l += r;			\
733 	r ^= xswap(l);		\
734 	l += r;			\
735 	r ^= rotl(l, 3);	\
736 	l += r;			\
737 	r ^= rotr(l, 2);	\
738 	l += r;			\
739 } while (0)
740 
741 
742 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
743 {
744 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
745 }
746 
747 static __inline u32 get_le32(const u8 *p)
748 {
749 	return get_le32_split(p[0], p[1], p[2], p[3]);
750 }
751 
752 
753 static __inline void put_le32(u8 *p, u32 v)
754 {
755 	p[0] = v;
756 	p[1] = v >> 8;
757 	p[2] = v >> 16;
758 	p[3] = v >> 24;
759 }
760 
761 /*
762  * Craft pseudo header used to calculate the MIC.
763  */
764 static void
765 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
766 {
767 	const struct ieee80211_frame_addr4 *wh =
768 		(const struct ieee80211_frame_addr4 *) wh0;
769 
770 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
771 	case IEEE80211_FC1_DIR_NODS:
772 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
773 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
774 		break;
775 	case IEEE80211_FC1_DIR_TODS:
776 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
777 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
778 		break;
779 	case IEEE80211_FC1_DIR_FROMDS:
780 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
781 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
782 		break;
783 	case IEEE80211_FC1_DIR_DSTODS:
784 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
785 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
786 		break;
787 	}
788 
789 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
790 		const struct ieee80211_qosframe *qwh =
791 			(const struct ieee80211_qosframe *) wh;
792 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
793 	} else
794 		hdr[12] = 0;
795 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
796 }
797 
798 static void
799 michael_mic(struct tkip_ctx *ctx, const u8 *key,
800 	struct mbuf *m, u_int off, size_t data_len,
801 	u8 mic[IEEE80211_WEP_MICLEN])
802 {
803 	uint8_t hdr[16];
804 	u32 l, r;
805 	const uint8_t *data;
806 	u_int space;
807 
808 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
809 
810 	l = get_le32(key);
811 	r = get_le32(key + 4);
812 
813 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
814 	l ^= get_le32(hdr);
815 	michael_block(l, r);
816 	l ^= get_le32(&hdr[4]);
817 	michael_block(l, r);
818 	l ^= get_le32(&hdr[8]);
819 	michael_block(l, r);
820 	l ^= get_le32(&hdr[12]);
821 	michael_block(l, r);
822 
823 	/* first buffer has special handling */
824 	data = mtod(m, const uint8_t *) + off;
825 	space = m->m_len - off;
826 	for (;;) {
827 		if (space > data_len)
828 			space = data_len;
829 		/* collect 32-bit blocks from current buffer */
830 		while (space >= sizeof(uint32_t)) {
831 			l ^= get_le32(data);
832 			michael_block(l, r);
833 			data += sizeof(uint32_t), space -= sizeof(uint32_t);
834 			data_len -= sizeof(uint32_t);
835 		}
836 		/*
837 		 * NB: when space is zero we make one more trip around
838 		 * the loop to advance to the next mbuf where there is
839 		 * data.  This handles the case where there are 4*n
840 		 * bytes in an mbuf followed by <4 bytes in a later mbuf.
841 		 * By making an extra trip we'll drop out of the loop
842 		 * with m pointing at the mbuf with 3 bytes and space
843 		 * set as required by the remainder handling below.
844 		 */
845 		if (data_len == 0 ||
846 		    (data_len < sizeof(uint32_t) && space != 0))
847 			break;
848 		m = m->m_next;
849 		if (m == NULL) {
850 			KASSERT(0, ("out of data, data_len %zu\n", data_len));
851 			break;
852 		}
853 		if (space != 0) {
854 			const uint8_t *data_next;
855 			/*
856 			 * Block straddles buffers, split references.
857 			 */
858 			data_next = mtod(m, const uint8_t *);
859 			KASSERT(m->m_len >= sizeof(uint32_t) - space,
860 				("not enough data in following buffer, "
861 				"m_len %u need %zu\n", m->m_len,
862 				sizeof(uint32_t) - space));
863 			switch (space) {
864 			case 1:
865 				l ^= get_le32_split(data[0], data_next[0],
866 					data_next[1], data_next[2]);
867 				data = data_next + 3;
868 				space = m->m_len - 3;
869 				break;
870 			case 2:
871 				l ^= get_le32_split(data[0], data[1],
872 					data_next[0], data_next[1]);
873 				data = data_next + 2;
874 				space = m->m_len - 2;
875 				break;
876 			case 3:
877 				l ^= get_le32_split(data[0], data[1],
878 					data[2], data_next[0]);
879 				data = data_next + 1;
880 				space = m->m_len - 1;
881 				break;
882 			}
883 			michael_block(l, r);
884 			data_len -= sizeof(uint32_t);
885 		} else {
886 			/*
887 			 * Setup for next buffer.
888 			 */
889 			data = mtod(m, const uint8_t *);
890 			space = m->m_len;
891 		}
892 	}
893 	/*
894 	 * Catch degenerate cases like mbuf[4*n+1 bytes] followed by
895 	 * mbuf[2 bytes].  I don't believe these should happen; if they
896 	 * do then we'll need more involved logic.
897 	 */
898 	KASSERT(data_len <= space,
899 	    ("not enough data, data_len %zu space %u\n", data_len, space));
900 
901 	/* Last block and padding (0x5a, 4..7 x 0) */
902 	switch (data_len) {
903 	case 0:
904 		l ^= get_le32_split(0x5a, 0, 0, 0);
905 		break;
906 	case 1:
907 		l ^= get_le32_split(data[0], 0x5a, 0, 0);
908 		break;
909 	case 2:
910 		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
911 		break;
912 	case 3:
913 		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
914 		break;
915 	}
916 	michael_block(l, r);
917 	/* l ^= 0; */
918 	michael_block(l, r);
919 
920 	put_le32(mic, l);
921 	put_le32(mic + 4, r);
922 }
923 
924 static int
925 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
926 	struct mbuf *m, int hdrlen)
927 {
928 	struct ieee80211_frame *wh;
929 	uint8_t icv[IEEE80211_WEP_CRCLEN];
930 
931 	ctx->tc_vap->iv_stats.is_crypto_tkip++;
932 
933 	wh = mtod(m, struct ieee80211_frame *);
934 	if (!ctx->tx_phase1_done) {
935 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
936 				   (u32)(key->wk_keytsc >> 16));
937 		ctx->tx_phase1_done = 1;
938 	}
939 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
940 		(u16) key->wk_keytsc);
941 
942 	wep_encrypt(ctx->tx_rc4key,
943 		m, hdrlen + tkip.ic_header,
944 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
945 		icv);
946 	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
947 
948 	key->wk_keytsc++;
949 	if ((u16)(key->wk_keytsc) == 0)
950 		ctx->tx_phase1_done = 0;
951 	return 1;
952 }
953 
954 static int
955 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
956 	struct mbuf *m, int hdrlen)
957 {
958 	struct ieee80211_frame *wh;
959 	struct ieee80211vap *vap = ctx->tc_vap;
960 	u32 iv32;
961 	u16 iv16;
962 	u8 tid;
963 
964 	vap->iv_stats.is_crypto_tkip++;
965 
966 	wh = mtod(m, struct ieee80211_frame *);
967 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
968 	iv16 = (u16) ctx->rx_rsc;
969 	iv32 = (u32) (ctx->rx_rsc >> 16);
970 
971 	tid = ieee80211_gettid(wh);
972 	if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16) || !ctx->rx_phase1_done) {
973 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
974 			wh->i_addr2, iv32);
975 		ctx->rx_phase1_done = 1;
976 	}
977 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
978 
979 	/* NB: m is unstripped; deduct headers + ICV to get payload */
980 	if (wep_decrypt(ctx->rx_rc4key,
981 		m, hdrlen + tkip.ic_header,
982 	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
983 		if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16)) {
984 			/* Previously cached Phase1 result was already lost, so
985 			 * it needs to be recalculated for the next packet. */
986 			ctx->rx_phase1_done = 0;
987 		}
988 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
989 		    "%s", "TKIP ICV mismatch on decrypt");
990 		vap->iv_stats.is_rx_tkipicv++;
991 		return 0;
992 	}
993 	return 1;
994 }
995 
996 /*
997  * Module glue.
998  */
999 IEEE80211_CRYPTO_MODULE(tkip, 1);
1000