xref: /freebsd/sys/net80211/ieee80211_crypto_tkip.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11i TKIP crypto support.
31  *
32  * Part of this module is derived from similar code in the Host
33  * AP driver. The code is used with the consent of the author and
34  * it's license is included below.
35  */
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/endian.h>
45 
46 #include <sys/socket.h>
47 
48 #include <net/if.h>
49 #include <net/if_media.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 
54 static	void *tkip_attach(struct ieee80211vap *, struct ieee80211_key *);
55 static	void tkip_detach(struct ieee80211_key *);
56 static	int tkip_setkey(struct ieee80211_key *);
57 static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, uint8_t keyid);
58 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
59 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
60 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
61 
62 static const struct ieee80211_cipher tkip  = {
63 	.ic_name	= "TKIP",
64 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
65 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
66 			  IEEE80211_WEP_EXTIVLEN,
67 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
68 	.ic_miclen	= IEEE80211_WEP_MICLEN,
69 	.ic_attach	= tkip_attach,
70 	.ic_detach	= tkip_detach,
71 	.ic_setkey	= tkip_setkey,
72 	.ic_encap	= tkip_encap,
73 	.ic_decap	= tkip_decap,
74 	.ic_enmic	= tkip_enmic,
75 	.ic_demic	= tkip_demic,
76 };
77 
78 typedef	uint8_t u8;
79 typedef	uint16_t u16;
80 typedef	uint32_t __u32;
81 typedef	uint32_t u32;
82 
83 struct tkip_ctx {
84 	struct ieee80211vap *tc_vap;	/* for diagnostics+statistics */
85 
86 	u16	tx_ttak[5];
87 	int	tx_phase1_done;
88 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
89 
90 	u16	rx_ttak[5];
91 	int	rx_phase1_done;
92 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
93 	uint64_t rx_rsc;		/* held until MIC verified */
94 };
95 
96 static	void michael_mic(struct tkip_ctx *, const u8 *key,
97 		struct mbuf *m, u_int off, size_t data_len,
98 		u8 mic[IEEE80211_WEP_MICLEN]);
99 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
100 		struct mbuf *, int hdr_len);
101 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
102 		struct mbuf *, int hdr_len);
103 
104 /* number of references from net80211 layer */
105 static	int nrefs = 0;
106 
107 static void *
108 tkip_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
109 {
110 	struct tkip_ctx *ctx;
111 
112 	ctx = (struct tkip_ctx *) malloc(sizeof(struct tkip_ctx),
113 		M_80211_CRYPTO, M_NOWAIT | M_ZERO);
114 	if (ctx == NULL) {
115 		vap->iv_stats.is_crypto_nomem++;
116 		return NULL;
117 	}
118 
119 	ctx->tc_vap = vap;
120 	nrefs++;			/* NB: we assume caller locking */
121 	return ctx;
122 }
123 
124 static void
125 tkip_detach(struct ieee80211_key *k)
126 {
127 	struct tkip_ctx *ctx = k->wk_private;
128 
129 	free(ctx, M_80211_CRYPTO);
130 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
131 	nrefs--;			/* NB: we assume caller locking */
132 }
133 
134 static int
135 tkip_setkey(struct ieee80211_key *k)
136 {
137 	struct tkip_ctx *ctx = k->wk_private;
138 
139 	if (k->wk_keylen != (128/NBBY)) {
140 		(void) ctx;		/* XXX */
141 		IEEE80211_DPRINTF(ctx->tc_vap, IEEE80211_MSG_CRYPTO,
142 			"%s: Invalid key length %u, expecting %u\n",
143 			__func__, k->wk_keylen, 128/NBBY);
144 		return 0;
145 	}
146 	k->wk_keytsc = 1;		/* TSC starts at 1 */
147 	ctx->rx_phase1_done = 0;
148 	return 1;
149 }
150 
151 /*
152  * Add privacy headers and do any s/w encryption required.
153  */
154 static int
155 tkip_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
156 {
157 	struct tkip_ctx *ctx = k->wk_private;
158 	struct ieee80211vap *vap = ctx->tc_vap;
159 	struct ieee80211com *ic = vap->iv_ic;
160 	uint8_t *ivp;
161 	int hdrlen;
162 
163 	/*
164 	 * Handle TKIP counter measures requirement.
165 	 */
166 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
167 #ifdef IEEE80211_DEBUG
168 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
169 #endif
170 
171 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
172 		    "discard frame due to countermeasures (%s)", __func__);
173 		vap->iv_stats.is_crypto_tkipcm++;
174 		return 0;
175 	}
176 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
177 
178 	/*
179 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
180 	 */
181 	M_PREPEND(m, tkip.ic_header, M_NOWAIT);
182 	if (m == NULL)
183 		return 0;
184 	ivp = mtod(m, uint8_t *);
185 	memmove(ivp, ivp + tkip.ic_header, hdrlen);
186 	ivp += hdrlen;
187 
188 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
189 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
190 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
191 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
192 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
193 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
194 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
195 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
196 
197 	/*
198 	 * Finally, do software encrypt if neeed.
199 	 */
200 	if (k->wk_flags & IEEE80211_KEY_SWENCRYPT) {
201 		if (!tkip_encrypt(ctx, k, m, hdrlen))
202 			return 0;
203 		/* NB: tkip_encrypt handles wk_keytsc */
204 	} else
205 		k->wk_keytsc++;
206 
207 	return 1;
208 }
209 
210 /*
211  * Add MIC to the frame as needed.
212  */
213 static int
214 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
215 {
216 	struct tkip_ctx *ctx = k->wk_private;
217 
218 	if (force || (k->wk_flags & IEEE80211_KEY_SWENMIC)) {
219 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
220 		struct ieee80211vap *vap = ctx->tc_vap;
221 		struct ieee80211com *ic = vap->iv_ic;
222 		int hdrlen;
223 		uint8_t mic[IEEE80211_WEP_MICLEN];
224 
225 		vap->iv_stats.is_crypto_tkipenmic++;
226 
227 		hdrlen = ieee80211_hdrspace(ic, wh);
228 
229 		michael_mic(ctx, k->wk_txmic,
230 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
231 		return m_append(m, tkip.ic_miclen, mic);
232 	}
233 	return 1;
234 }
235 
236 static __inline uint64_t
237 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
238 {
239 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
240 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
241 	return (((uint64_t)iv16) << 32) | iv32;
242 }
243 
244 /*
245  * Validate and strip privacy headers (and trailer) for a
246  * received frame.  If necessary, decrypt the frame using
247  * the specified key.
248  */
249 static int
250 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
251 {
252 	struct tkip_ctx *ctx = k->wk_private;
253 	struct ieee80211vap *vap = ctx->tc_vap;
254 	struct ieee80211_frame *wh;
255 	uint8_t *ivp, tid;
256 
257 	/*
258 	 * Header should have extended IV and sequence number;
259 	 * verify the former and validate the latter.
260 	 */
261 	wh = mtod(m, struct ieee80211_frame *);
262 	ivp = mtod(m, uint8_t *) + hdrlen;
263 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
264 		/*
265 		 * No extended IV; discard frame.
266 		 */
267 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
268 		    "%s", "missing ExtIV for TKIP cipher");
269 		vap->iv_stats.is_rx_tkipformat++;
270 		return 0;
271 	}
272 	/*
273 	 * Handle TKIP counter measures requirement.
274 	 */
275 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
276 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
277 		    "discard frame due to countermeasures (%s)", __func__);
278 		vap->iv_stats.is_crypto_tkipcm++;
279 		return 0;
280 	}
281 
282 	tid = ieee80211_gettid(wh);
283 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
284 	/*
285 	 * NB: Multiple stations are using the same key in
286 	 * IBSS mode, there is currently no way to sync keyrsc
287 	 * counters without discarding too many frames.
288 	 */
289 	if (vap->iv_opmode != IEEE80211_M_IBSS &&
290 	    vap->iv_opmode != IEEE80211_M_AHDEMO &&
291 	    ctx->rx_rsc <= k->wk_keyrsc[tid]) {
292 		/*
293 		 * Replay violation; notify upper layer.
294 		 */
295 		ieee80211_notify_replay_failure(vap, wh, k, ctx->rx_rsc, tid);
296 		vap->iv_stats.is_rx_tkipreplay++;
297 		return 0;
298 	}
299 	/*
300 	 * NB: We can't update the rsc in the key until MIC is verified.
301 	 *
302 	 * We assume we are not preempted between doing the check above
303 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
304 	 * Otherwise we might process another packet and discard it as
305 	 * a replay.
306 	 */
307 
308 	/*
309 	 * Check if the device handled the decrypt in hardware.
310 	 * If so we just strip the header; otherwise we need to
311 	 * handle the decrypt in software.
312 	 */
313 	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
314 	    !tkip_decrypt(ctx, k, m, hdrlen))
315 		return 0;
316 
317 	/*
318 	 * Copy up 802.11 header and strip crypto bits.
319 	 */
320 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
321 	m_adj(m, tkip.ic_header);
322 	m_adj(m, -tkip.ic_trailer);
323 
324 	return 1;
325 }
326 
327 /*
328  * Verify and strip MIC from the frame.
329  */
330 static int
331 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
332 {
333 	struct tkip_ctx *ctx = k->wk_private;
334 	struct ieee80211_frame *wh;
335 	uint8_t tid;
336 
337 	wh = mtod(m, struct ieee80211_frame *);
338 	if ((k->wk_flags & IEEE80211_KEY_SWDEMIC) || force) {
339 		struct ieee80211vap *vap = ctx->tc_vap;
340 		int hdrlen = ieee80211_hdrspace(vap->iv_ic, wh);
341 		u8 mic[IEEE80211_WEP_MICLEN];
342 		u8 mic0[IEEE80211_WEP_MICLEN];
343 
344 		vap->iv_stats.is_crypto_tkipdemic++;
345 
346 		michael_mic(ctx, k->wk_rxmic,
347 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
348 			mic);
349 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
350 			tkip.ic_miclen, mic0);
351 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
352 			/* NB: 802.11 layer handles statistic and debug msg */
353 			ieee80211_notify_michael_failure(vap, wh,
354 				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
355 					k->wk_rxkeyix : k->wk_keyix);
356 			return 0;
357 		}
358 	}
359 	/*
360 	 * Strip MIC from the tail.
361 	 */
362 	m_adj(m, -tkip.ic_miclen);
363 
364 	/*
365 	 * Ok to update rsc now that MIC has been verified.
366 	 */
367 	tid = ieee80211_gettid(wh);
368 	k->wk_keyrsc[tid] = ctx->rx_rsc;
369 
370 	return 1;
371 }
372 
373 /*
374  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
375  *
376  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
377  *
378  * This program is free software; you can redistribute it and/or modify
379  * it under the terms of the GNU General Public License version 2 as
380  * published by the Free Software Foundation. See README and COPYING for
381  * more details.
382  *
383  * Alternatively, this software may be distributed under the terms of BSD
384  * license.
385  */
386 
387 static const __u32 crc32_table[256] = {
388 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
389 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
390 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
391 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
392 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
393 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
394 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
395 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
396 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
397 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
398 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
399 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
400 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
401 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
402 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
403 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
404 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
405 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
406 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
407 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
408 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
409 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
410 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
411 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
412 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
413 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
414 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
415 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
416 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
417 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
418 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
419 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
420 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
421 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
422 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
423 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
424 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
425 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
426 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
427 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
428 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
429 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
430 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
431 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
432 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
433 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
434 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
435 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
436 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
437 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
438 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
439 	0x2d02ef8dL
440 };
441 
442 static __inline u16 RotR1(u16 val)
443 {
444 	return (val >> 1) | (val << 15);
445 }
446 
447 static __inline u8 Lo8(u16 val)
448 {
449 	return val & 0xff;
450 }
451 
452 static __inline u8 Hi8(u16 val)
453 {
454 	return val >> 8;
455 }
456 
457 static __inline u16 Lo16(u32 val)
458 {
459 	return val & 0xffff;
460 }
461 
462 static __inline u16 Hi16(u32 val)
463 {
464 	return val >> 16;
465 }
466 
467 static __inline u16 Mk16(u8 hi, u8 lo)
468 {
469 	return lo | (((u16) hi) << 8);
470 }
471 
472 static __inline u16 Mk16_le(const u16 *v)
473 {
474 	return le16toh(*v);
475 }
476 
477 static const u16 Sbox[256] = {
478 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
479 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
480 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
481 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
482 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
483 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
484 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
485 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
486 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
487 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
488 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
489 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
490 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
491 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
492 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
493 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
494 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
495 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
496 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
497 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
498 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
499 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
500 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
501 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
502 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
503 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
504 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
505 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
506 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
507 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
508 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
509 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
510 };
511 
512 static __inline u16 _S_(u16 v)
513 {
514 	u16 t = Sbox[Hi8(v)];
515 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
516 }
517 
518 #define PHASE1_LOOP_COUNT 8
519 
520 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
521 {
522 	int i, j;
523 
524 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
525 	TTAK[0] = Lo16(IV32);
526 	TTAK[1] = Hi16(IV32);
527 	TTAK[2] = Mk16(TA[1], TA[0]);
528 	TTAK[3] = Mk16(TA[3], TA[2]);
529 	TTAK[4] = Mk16(TA[5], TA[4]);
530 
531 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
532 		j = 2 * (i & 1);
533 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
534 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
535 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
536 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
537 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
538 	}
539 }
540 
541 #ifndef _BYTE_ORDER
542 #error "Don't know native byte order"
543 #endif
544 
545 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
546 			       u16 IV16)
547 {
548 	/* Make temporary area overlap WEP seed so that the final copy can be
549 	 * avoided on little endian hosts. */
550 	u16 *PPK = (u16 *) &WEPSeed[4];
551 
552 	/* Step 1 - make copy of TTAK and bring in TSC */
553 	PPK[0] = TTAK[0];
554 	PPK[1] = TTAK[1];
555 	PPK[2] = TTAK[2];
556 	PPK[3] = TTAK[3];
557 	PPK[4] = TTAK[4];
558 	PPK[5] = TTAK[4] + IV16;
559 
560 	/* Step 2 - 96-bit bijective mixing using S-box */
561 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
562 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
563 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
564 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
565 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
566 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
567 
568 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
569 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
570 	PPK[2] += RotR1(PPK[1]);
571 	PPK[3] += RotR1(PPK[2]);
572 	PPK[4] += RotR1(PPK[3]);
573 	PPK[5] += RotR1(PPK[4]);
574 
575 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
576 	 * WEPSeed[0..2] is transmitted as WEP IV */
577 	WEPSeed[0] = Hi8(IV16);
578 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
579 	WEPSeed[2] = Lo8(IV16);
580 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
581 
582 #if _BYTE_ORDER == _BIG_ENDIAN
583 	{
584 		int i;
585 		for (i = 0; i < 6; i++)
586 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
587 	}
588 #endif
589 }
590 
591 static void
592 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
593 	uint8_t icv[IEEE80211_WEP_CRCLEN])
594 {
595 	u32 i, j, k, crc;
596 	size_t buflen;
597 	u8 S[256];
598 	u8 *pos;
599 	struct mbuf *m;
600 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
601 
602 	/* Setup RC4 state */
603 	for (i = 0; i < 256; i++)
604 		S[i] = i;
605 	j = 0;
606 	for (i = 0; i < 256; i++) {
607 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
608 		S_SWAP(i, j);
609 	}
610 
611 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
612 	crc = ~0;
613 	i = j = 0;
614 	m = m0;
615 	pos = mtod(m, uint8_t *) + off;
616 	buflen = m->m_len - off;
617 	for (;;) {
618 		if (buflen > data_len)
619 			buflen = data_len;
620 		data_len -= buflen;
621 		for (k = 0; k < buflen; k++) {
622 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
623 			i = (i + 1) & 0xff;
624 			j = (j + S[i]) & 0xff;
625 			S_SWAP(i, j);
626 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
627 		}
628 		m = m->m_next;
629 		if (m == NULL) {
630 			KASSERT(data_len == 0,
631 			    ("out of buffers with data_len %zu\n", data_len));
632 			break;
633 		}
634 		pos = mtod(m, uint8_t *);
635 		buflen = m->m_len;
636 	}
637 	crc = ~crc;
638 
639 	/* Append little-endian CRC32 and encrypt it to produce ICV */
640 	icv[0] = crc;
641 	icv[1] = crc >> 8;
642 	icv[2] = crc >> 16;
643 	icv[3] = crc >> 24;
644 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
645 		i = (i + 1) & 0xff;
646 		j = (j + S[i]) & 0xff;
647 		S_SWAP(i, j);
648 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
649 	}
650 }
651 
652 static int
653 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
654 {
655 	u32 i, j, k, crc;
656 	u8 S[256];
657 	u8 *pos, icv[4];
658 	size_t buflen;
659 
660 	/* Setup RC4 state */
661 	for (i = 0; i < 256; i++)
662 		S[i] = i;
663 	j = 0;
664 	for (i = 0; i < 256; i++) {
665 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
666 		S_SWAP(i, j);
667 	}
668 
669 	/* Apply RC4 to data and compute CRC32 over decrypted data */
670 	crc = ~0;
671 	i = j = 0;
672 	pos = mtod(m, uint8_t *) + off;
673 	buflen = m->m_len - off;
674 	for (;;) {
675 		if (buflen > data_len)
676 			buflen = data_len;
677 		data_len -= buflen;
678 		for (k = 0; k < buflen; k++) {
679 			i = (i + 1) & 0xff;
680 			j = (j + S[i]) & 0xff;
681 			S_SWAP(i, j);
682 			*pos ^= S[(S[i] + S[j]) & 0xff];
683 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
684 			pos++;
685 		}
686 		m = m->m_next;
687 		if (m == NULL) {
688 			KASSERT(data_len == 0,
689 			    ("out of buffers with data_len %zu\n", data_len));
690 			break;
691 		}
692 		pos = mtod(m, uint8_t *);
693 		buflen = m->m_len;
694 	}
695 	crc = ~crc;
696 
697 	/* Encrypt little-endian CRC32 and verify that it matches with the
698 	 * received ICV */
699 	icv[0] = crc;
700 	icv[1] = crc >> 8;
701 	icv[2] = crc >> 16;
702 	icv[3] = crc >> 24;
703 	for (k = 0; k < 4; k++) {
704 		i = (i + 1) & 0xff;
705 		j = (j + S[i]) & 0xff;
706 		S_SWAP(i, j);
707 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
708 			/* ICV mismatch - drop frame */
709 			return -1;
710 		}
711 	}
712 
713 	return 0;
714 }
715 
716 
717 static __inline u32 rotl(u32 val, int bits)
718 {
719 	return (val << bits) | (val >> (32 - bits));
720 }
721 
722 
723 static __inline u32 rotr(u32 val, int bits)
724 {
725 	return (val >> bits) | (val << (32 - bits));
726 }
727 
728 
729 static __inline u32 xswap(u32 val)
730 {
731 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
732 }
733 
734 
735 #define michael_block(l, r)	\
736 do {				\
737 	r ^= rotl(l, 17);	\
738 	l += r;			\
739 	r ^= xswap(l);		\
740 	l += r;			\
741 	r ^= rotl(l, 3);	\
742 	l += r;			\
743 	r ^= rotr(l, 2);	\
744 	l += r;			\
745 } while (0)
746 
747 
748 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
749 {
750 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
751 }
752 
753 static __inline u32 get_le32(const u8 *p)
754 {
755 	return get_le32_split(p[0], p[1], p[2], p[3]);
756 }
757 
758 
759 static __inline void put_le32(u8 *p, u32 v)
760 {
761 	p[0] = v;
762 	p[1] = v >> 8;
763 	p[2] = v >> 16;
764 	p[3] = v >> 24;
765 }
766 
767 /*
768  * Craft pseudo header used to calculate the MIC.
769  */
770 static void
771 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
772 {
773 	const struct ieee80211_frame_addr4 *wh =
774 		(const struct ieee80211_frame_addr4 *) wh0;
775 
776 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
777 	case IEEE80211_FC1_DIR_NODS:
778 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
779 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
780 		break;
781 	case IEEE80211_FC1_DIR_TODS:
782 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
783 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
784 		break;
785 	case IEEE80211_FC1_DIR_FROMDS:
786 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
787 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
788 		break;
789 	case IEEE80211_FC1_DIR_DSTODS:
790 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
791 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
792 		break;
793 	}
794 
795 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
796 		const struct ieee80211_qosframe *qwh =
797 			(const struct ieee80211_qosframe *) wh;
798 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
799 	} else
800 		hdr[12] = 0;
801 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
802 }
803 
804 static void
805 michael_mic(struct tkip_ctx *ctx, const u8 *key,
806 	struct mbuf *m, u_int off, size_t data_len,
807 	u8 mic[IEEE80211_WEP_MICLEN])
808 {
809 	uint8_t hdr[16];
810 	u32 l, r;
811 	const uint8_t *data;
812 	u_int space;
813 
814 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
815 
816 	l = get_le32(key);
817 	r = get_le32(key + 4);
818 
819 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
820 	l ^= get_le32(hdr);
821 	michael_block(l, r);
822 	l ^= get_le32(&hdr[4]);
823 	michael_block(l, r);
824 	l ^= get_le32(&hdr[8]);
825 	michael_block(l, r);
826 	l ^= get_le32(&hdr[12]);
827 	michael_block(l, r);
828 
829 	/* first buffer has special handling */
830 	data = mtod(m, const uint8_t *) + off;
831 	space = m->m_len - off;
832 	for (;;) {
833 		if (space > data_len)
834 			space = data_len;
835 		/* collect 32-bit blocks from current buffer */
836 		while (space >= sizeof(uint32_t)) {
837 			l ^= get_le32(data);
838 			michael_block(l, r);
839 			data += sizeof(uint32_t), space -= sizeof(uint32_t);
840 			data_len -= sizeof(uint32_t);
841 		}
842 		/*
843 		 * NB: when space is zero we make one more trip around
844 		 * the loop to advance to the next mbuf where there is
845 		 * data.  This handles the case where there are 4*n
846 		 * bytes in an mbuf followed by <4 bytes in a later mbuf.
847 		 * By making an extra trip we'll drop out of the loop
848 		 * with m pointing at the mbuf with 3 bytes and space
849 		 * set as required by the remainder handling below.
850 		 */
851 		if (data_len == 0 ||
852 		    (data_len < sizeof(uint32_t) && space != 0))
853 			break;
854 		m = m->m_next;
855 		if (m == NULL) {
856 			KASSERT(0, ("out of data, data_len %zu\n", data_len));
857 			break;
858 		}
859 		if (space != 0) {
860 			const uint8_t *data_next;
861 			/*
862 			 * Block straddles buffers, split references.
863 			 */
864 			data_next = mtod(m, const uint8_t *);
865 			KASSERT(m->m_len >= sizeof(uint32_t) - space,
866 				("not enough data in following buffer, "
867 				"m_len %u need %zu\n", m->m_len,
868 				sizeof(uint32_t) - space));
869 			switch (space) {
870 			case 1:
871 				l ^= get_le32_split(data[0], data_next[0],
872 					data_next[1], data_next[2]);
873 				data = data_next + 3;
874 				space = m->m_len - 3;
875 				break;
876 			case 2:
877 				l ^= get_le32_split(data[0], data[1],
878 					data_next[0], data_next[1]);
879 				data = data_next + 2;
880 				space = m->m_len - 2;
881 				break;
882 			case 3:
883 				l ^= get_le32_split(data[0], data[1],
884 					data[2], data_next[0]);
885 				data = data_next + 1;
886 				space = m->m_len - 1;
887 				break;
888 			}
889 			michael_block(l, r);
890 			data_len -= sizeof(uint32_t);
891 		} else {
892 			/*
893 			 * Setup for next buffer.
894 			 */
895 			data = mtod(m, const uint8_t *);
896 			space = m->m_len;
897 		}
898 	}
899 	/*
900 	 * Catch degenerate cases like mbuf[4*n+1 bytes] followed by
901 	 * mbuf[2 bytes].  I don't believe these should happen; if they
902 	 * do then we'll need more involved logic.
903 	 */
904 	KASSERT(data_len <= space,
905 	    ("not enough data, data_len %zu space %u\n", data_len, space));
906 
907 	/* Last block and padding (0x5a, 4..7 x 0) */
908 	switch (data_len) {
909 	case 0:
910 		l ^= get_le32_split(0x5a, 0, 0, 0);
911 		break;
912 	case 1:
913 		l ^= get_le32_split(data[0], 0x5a, 0, 0);
914 		break;
915 	case 2:
916 		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
917 		break;
918 	case 3:
919 		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
920 		break;
921 	}
922 	michael_block(l, r);
923 	/* l ^= 0; */
924 	michael_block(l, r);
925 
926 	put_le32(mic, l);
927 	put_le32(mic + 4, r);
928 }
929 
930 static int
931 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
932 	struct mbuf *m, int hdrlen)
933 {
934 	struct ieee80211_frame *wh;
935 	uint8_t icv[IEEE80211_WEP_CRCLEN];
936 
937 	ctx->tc_vap->iv_stats.is_crypto_tkip++;
938 
939 	wh = mtod(m, struct ieee80211_frame *);
940 	if (!ctx->tx_phase1_done) {
941 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
942 				   (u32)(key->wk_keytsc >> 16));
943 		ctx->tx_phase1_done = 1;
944 	}
945 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
946 		(u16) key->wk_keytsc);
947 
948 	wep_encrypt(ctx->tx_rc4key,
949 		m, hdrlen + tkip.ic_header,
950 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
951 		icv);
952 	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
953 
954 	key->wk_keytsc++;
955 	if ((u16)(key->wk_keytsc) == 0)
956 		ctx->tx_phase1_done = 0;
957 	return 1;
958 }
959 
960 static int
961 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
962 	struct mbuf *m, int hdrlen)
963 {
964 	struct ieee80211_frame *wh;
965 	struct ieee80211vap *vap = ctx->tc_vap;
966 	u32 iv32;
967 	u16 iv16;
968 	u8 tid;
969 
970 	vap->iv_stats.is_crypto_tkip++;
971 
972 	wh = mtod(m, struct ieee80211_frame *);
973 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
974 	iv16 = (u16) ctx->rx_rsc;
975 	iv32 = (u32) (ctx->rx_rsc >> 16);
976 
977 	tid = ieee80211_gettid(wh);
978 	if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16) || !ctx->rx_phase1_done) {
979 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
980 			wh->i_addr2, iv32);
981 		ctx->rx_phase1_done = 1;
982 	}
983 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
984 
985 	/* NB: m is unstripped; deduct headers + ICV to get payload */
986 	if (wep_decrypt(ctx->rx_rc4key,
987 		m, hdrlen + tkip.ic_header,
988 	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
989 		if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16)) {
990 			/* Previously cached Phase1 result was already lost, so
991 			 * it needs to be recalculated for the next packet. */
992 			ctx->rx_phase1_done = 0;
993 		}
994 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
995 		    "%s", "TKIP ICV mismatch on decrypt");
996 		vap->iv_stats.is_rx_tkipicv++;
997 		return 0;
998 	}
999 	return 1;
1000 }
1001 
1002 /*
1003  * Module glue.
1004  */
1005 IEEE80211_CRYPTO_MODULE(tkip, 1);
1006