1 /*- 2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 /* 30 * IEEE 802.11i TKIP crypto support. 31 * 32 * Part of this module is derived from similar code in the Host 33 * AP driver. The code is used with the consent of the author and 34 * it's license is included below. 35 */ 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/mbuf.h> 41 #include <sys/malloc.h> 42 #include <sys/kernel.h> 43 #include <sys/module.h> 44 #include <sys/endian.h> 45 46 #include <sys/socket.h> 47 48 #include <net/if.h> 49 #include <net/if_media.h> 50 #include <net/ethernet.h> 51 52 #include <net80211/ieee80211_var.h> 53 54 static void *tkip_attach(struct ieee80211vap *, struct ieee80211_key *); 55 static void tkip_detach(struct ieee80211_key *); 56 static int tkip_setkey(struct ieee80211_key *); 57 static void tkip_setiv(struct ieee80211_key *, uint8_t *); 58 static int tkip_encap(struct ieee80211_key *, struct mbuf *); 59 static int tkip_enmic(struct ieee80211_key *, struct mbuf *, int); 60 static int tkip_decap(struct ieee80211_key *, struct mbuf *, int); 61 static int tkip_demic(struct ieee80211_key *, struct mbuf *, int); 62 63 static const struct ieee80211_cipher tkip = { 64 .ic_name = "TKIP", 65 .ic_cipher = IEEE80211_CIPHER_TKIP, 66 .ic_header = IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + 67 IEEE80211_WEP_EXTIVLEN, 68 .ic_trailer = IEEE80211_WEP_CRCLEN, 69 .ic_miclen = IEEE80211_WEP_MICLEN, 70 .ic_attach = tkip_attach, 71 .ic_detach = tkip_detach, 72 .ic_setkey = tkip_setkey, 73 .ic_setiv = tkip_setiv, 74 .ic_encap = tkip_encap, 75 .ic_decap = tkip_decap, 76 .ic_enmic = tkip_enmic, 77 .ic_demic = tkip_demic, 78 }; 79 80 typedef uint8_t u8; 81 typedef uint16_t u16; 82 typedef uint32_t __u32; 83 typedef uint32_t u32; 84 85 struct tkip_ctx { 86 struct ieee80211vap *tc_vap; /* for diagnostics+statistics */ 87 88 u16 tx_ttak[5]; 89 u8 tx_rc4key[16]; /* XXX for test module; make locals? */ 90 91 u16 rx_ttak[5]; 92 int rx_phase1_done; 93 u8 rx_rc4key[16]; /* XXX for test module; make locals? */ 94 uint64_t rx_rsc; /* held until MIC verified */ 95 }; 96 97 static void michael_mic(struct tkip_ctx *, const u8 *key, 98 struct mbuf *m, u_int off, size_t data_len, 99 u8 mic[IEEE80211_WEP_MICLEN]); 100 static int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *, 101 struct mbuf *, int hdr_len); 102 static int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *, 103 struct mbuf *, int hdr_len); 104 105 /* number of references from net80211 layer */ 106 static int nrefs = 0; 107 108 static void * 109 tkip_attach(struct ieee80211vap *vap, struct ieee80211_key *k) 110 { 111 struct tkip_ctx *ctx; 112 113 ctx = (struct tkip_ctx *) IEEE80211_MALLOC(sizeof(struct tkip_ctx), 114 M_80211_CRYPTO, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 115 if (ctx == NULL) { 116 vap->iv_stats.is_crypto_nomem++; 117 return NULL; 118 } 119 120 ctx->tc_vap = vap; 121 nrefs++; /* NB: we assume caller locking */ 122 return ctx; 123 } 124 125 static void 126 tkip_detach(struct ieee80211_key *k) 127 { 128 struct tkip_ctx *ctx = k->wk_private; 129 130 IEEE80211_FREE(ctx, M_80211_CRYPTO); 131 KASSERT(nrefs > 0, ("imbalanced attach/detach")); 132 nrefs--; /* NB: we assume caller locking */ 133 } 134 135 static int 136 tkip_setkey(struct ieee80211_key *k) 137 { 138 struct tkip_ctx *ctx = k->wk_private; 139 140 if (k->wk_keylen != (128/NBBY)) { 141 (void) ctx; /* XXX */ 142 IEEE80211_DPRINTF(ctx->tc_vap, IEEE80211_MSG_CRYPTO, 143 "%s: Invalid key length %u, expecting %u\n", 144 __func__, k->wk_keylen, 128/NBBY); 145 return 0; 146 } 147 ctx->rx_phase1_done = 0; 148 return 1; 149 } 150 151 static void 152 tkip_setiv(struct ieee80211_key *k, uint8_t *ivp) 153 { 154 struct tkip_ctx *ctx = k->wk_private; 155 struct ieee80211vap *vap = ctx->tc_vap; 156 uint8_t keyid; 157 158 keyid = ieee80211_crypto_get_keyid(vap, k) << 6; 159 160 k->wk_keytsc++; 161 ivp[0] = k->wk_keytsc >> 8; /* TSC1 */ 162 ivp[1] = (ivp[0] | 0x20) & 0x7f; /* WEP seed */ 163 ivp[2] = k->wk_keytsc >> 0; /* TSC0 */ 164 ivp[3] = keyid | IEEE80211_WEP_EXTIV; /* KeyID | ExtID */ 165 ivp[4] = k->wk_keytsc >> 16; /* TSC2 */ 166 ivp[5] = k->wk_keytsc >> 24; /* TSC3 */ 167 ivp[6] = k->wk_keytsc >> 32; /* TSC4 */ 168 ivp[7] = k->wk_keytsc >> 40; /* TSC5 */ 169 } 170 171 /* 172 * Add privacy headers and do any s/w encryption required. 173 */ 174 static int 175 tkip_encap(struct ieee80211_key *k, struct mbuf *m) 176 { 177 struct tkip_ctx *ctx = k->wk_private; 178 struct ieee80211vap *vap = ctx->tc_vap; 179 struct ieee80211com *ic = vap->iv_ic; 180 struct ieee80211_frame *wh; 181 uint8_t *ivp; 182 int hdrlen; 183 int is_mgmt; 184 185 wh = mtod(m, struct ieee80211_frame *); 186 is_mgmt = IEEE80211_IS_MGMT(wh); 187 188 /* 189 * Handle TKIP counter measures requirement. 190 */ 191 if (vap->iv_flags & IEEE80211_F_COUNTERM) { 192 #ifdef IEEE80211_DEBUG 193 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 194 #endif 195 196 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 197 "discard frame due to countermeasures (%s)", __func__); 198 vap->iv_stats.is_crypto_tkipcm++; 199 return 0; 200 } 201 202 /* 203 * Check to see whether IV needs to be included. 204 */ 205 if (is_mgmt && (k->wk_flags & IEEE80211_KEY_NOIVMGT)) 206 return 1; 207 if ((! is_mgmt) && (k->wk_flags & IEEE80211_KEY_NOIV)) 208 return 1; 209 210 211 hdrlen = ieee80211_hdrspace(ic, mtod(m, void *)); 212 213 /* 214 * Copy down 802.11 header and add the IV, KeyID, and ExtIV. 215 */ 216 M_PREPEND(m, tkip.ic_header, M_NOWAIT); 217 if (m == NULL) 218 return 0; 219 ivp = mtod(m, uint8_t *); 220 memmove(ivp, ivp + tkip.ic_header, hdrlen); 221 ivp += hdrlen; 222 223 tkip_setiv(k, ivp); 224 225 /* 226 * Finally, do software encrypt if needed. 227 */ 228 if ((k->wk_flags & IEEE80211_KEY_SWENCRYPT) && 229 !tkip_encrypt(ctx, k, m, hdrlen)) 230 return 0; 231 232 return 1; 233 } 234 235 /* 236 * Add MIC to the frame as needed. 237 */ 238 static int 239 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force) 240 { 241 struct tkip_ctx *ctx = k->wk_private; 242 struct ieee80211_frame *wh; 243 int is_mgmt; 244 245 wh = mtod(m, struct ieee80211_frame *); 246 is_mgmt = IEEE80211_IS_MGMT(wh); 247 248 /* 249 * Check to see whether MIC needs to be included. 250 */ 251 if (is_mgmt && (k->wk_flags & IEEE80211_KEY_NOMICMGT)) 252 return 1; 253 if ((! is_mgmt) && (k->wk_flags & IEEE80211_KEY_NOMIC)) 254 return 1; 255 256 if (force || (k->wk_flags & IEEE80211_KEY_SWENMIC)) { 257 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 258 struct ieee80211vap *vap = ctx->tc_vap; 259 struct ieee80211com *ic = vap->iv_ic; 260 int hdrlen; 261 uint8_t mic[IEEE80211_WEP_MICLEN]; 262 263 vap->iv_stats.is_crypto_tkipenmic++; 264 265 hdrlen = ieee80211_hdrspace(ic, wh); 266 267 michael_mic(ctx, k->wk_txmic, 268 m, hdrlen, m->m_pkthdr.len - hdrlen, mic); 269 return m_append(m, tkip.ic_miclen, mic); 270 } 271 return 1; 272 } 273 274 static __inline uint64_t 275 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5) 276 { 277 uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24); 278 uint16_t iv16 = (b4 << 0) | (b5 << 8); 279 return (((uint64_t)iv16) << 32) | iv32; 280 } 281 282 /* 283 * Validate and strip privacy headers (and trailer) for a 284 * received frame. If necessary, decrypt the frame using 285 * the specified key. 286 */ 287 static int 288 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen) 289 { 290 const struct ieee80211_rx_stats *rxs; 291 struct tkip_ctx *ctx = k->wk_private; 292 struct ieee80211vap *vap = ctx->tc_vap; 293 struct ieee80211_frame *wh; 294 uint8_t *ivp, tid; 295 296 rxs = ieee80211_get_rx_params_ptr(m); 297 298 /* 299 * If IV has been stripped, we skip most of the below. 300 */ 301 if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP)) 302 goto finish; 303 304 /* 305 * Header should have extended IV and sequence number; 306 * verify the former and validate the latter. 307 */ 308 wh = mtod(m, struct ieee80211_frame *); 309 ivp = mtod(m, uint8_t *) + hdrlen; 310 if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) { 311 /* 312 * No extended IV; discard frame. 313 */ 314 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 315 "%s", "missing ExtIV for TKIP cipher"); 316 vap->iv_stats.is_rx_tkipformat++; 317 return 0; 318 } 319 /* 320 * Handle TKIP counter measures requirement. 321 */ 322 if (vap->iv_flags & IEEE80211_F_COUNTERM) { 323 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 324 "discard frame due to countermeasures (%s)", __func__); 325 vap->iv_stats.is_crypto_tkipcm++; 326 return 0; 327 } 328 329 tid = ieee80211_gettid(wh); 330 ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]); 331 if (ctx->rx_rsc <= k->wk_keyrsc[tid] && 332 (k->wk_flags & IEEE80211_KEY_NOREPLAY) == 0) { 333 /* 334 * Replay violation; notify upper layer. 335 */ 336 ieee80211_notify_replay_failure(vap, wh, k, ctx->rx_rsc, tid); 337 vap->iv_stats.is_rx_tkipreplay++; 338 return 0; 339 } 340 /* 341 * NB: We can't update the rsc in the key until MIC is verified. 342 * 343 * We assume we are not preempted between doing the check above 344 * and updating wk_keyrsc when stripping the MIC in tkip_demic. 345 * Otherwise we might process another packet and discard it as 346 * a replay. 347 */ 348 349 /* 350 * Check if the device handled the decrypt in hardware. 351 * If so we just strip the header; otherwise we need to 352 * handle the decrypt in software. 353 */ 354 if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) && 355 !tkip_decrypt(ctx, k, m, hdrlen)) 356 return 0; 357 358 finish: 359 360 /* 361 * Copy up 802.11 header and strip crypto bits - but only if we 362 * are required to. 363 */ 364 if (! ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP))) { 365 memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), 366 hdrlen); 367 m_adj(m, tkip.ic_header); 368 } 369 370 /* 371 * XXX TODO: do we need an option to potentially not strip the 372 * WEP trailer? Does "MMIC_STRIP" also mean this? Or? 373 */ 374 m_adj(m, -tkip.ic_trailer); 375 376 return 1; 377 } 378 379 /* 380 * Verify and strip MIC from the frame. 381 */ 382 static int 383 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force) 384 { 385 const struct ieee80211_rx_stats *rxs; 386 struct tkip_ctx *ctx = k->wk_private; 387 struct ieee80211_frame *wh; 388 uint8_t tid; 389 390 wh = mtod(m, struct ieee80211_frame *); 391 rxs = ieee80211_get_rx_params_ptr(m); 392 393 /* 394 * If we are told about a MIC failure from the driver, 395 * directly notify as a michael failure to the upper 396 * layers. 397 */ 398 if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_FAIL_MIC)) { 399 struct ieee80211vap *vap = ctx->tc_vap; 400 ieee80211_notify_michael_failure(vap, wh, 401 k->wk_rxkeyix != IEEE80211_KEYIX_NONE ? 402 k->wk_rxkeyix : k->wk_keyix); 403 return 0; 404 } 405 406 /* 407 * If IV has been stripped, we skip most of the below. 408 */ 409 if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_MMIC_STRIP)) 410 goto finish; 411 412 if ((k->wk_flags & IEEE80211_KEY_SWDEMIC) || force) { 413 struct ieee80211vap *vap = ctx->tc_vap; 414 int hdrlen = ieee80211_hdrspace(vap->iv_ic, wh); 415 u8 mic[IEEE80211_WEP_MICLEN]; 416 u8 mic0[IEEE80211_WEP_MICLEN]; 417 418 vap->iv_stats.is_crypto_tkipdemic++; 419 420 michael_mic(ctx, k->wk_rxmic, 421 m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen), 422 mic); 423 m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen, 424 tkip.ic_miclen, mic0); 425 if (memcmp(mic, mic0, tkip.ic_miclen)) { 426 /* NB: 802.11 layer handles statistic and debug msg */ 427 ieee80211_notify_michael_failure(vap, wh, 428 k->wk_rxkeyix != IEEE80211_KEYIX_NONE ? 429 k->wk_rxkeyix : k->wk_keyix); 430 return 0; 431 } 432 } 433 /* 434 * Strip MIC from the tail. 435 */ 436 m_adj(m, -tkip.ic_miclen); 437 438 /* 439 * Ok to update rsc now that MIC has been verified. 440 */ 441 tid = ieee80211_gettid(wh); 442 k->wk_keyrsc[tid] = ctx->rx_rsc; 443 444 finish: 445 return 1; 446 } 447 448 /* 449 * Host AP crypt: host-based TKIP encryption implementation for Host AP driver 450 * 451 * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi> 452 * 453 * This program is free software; you can redistribute it and/or modify 454 * it under the terms of the GNU General Public License version 2 as 455 * published by the Free Software Foundation. See README and COPYING for 456 * more details. 457 * 458 * Alternatively, this software may be distributed under the terms of BSD 459 * license. 460 */ 461 462 static const __u32 crc32_table[256] = { 463 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 464 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 465 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 466 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 467 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 468 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 469 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 470 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 471 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 472 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 473 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 474 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 475 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 476 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 477 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 478 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 479 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 480 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 481 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 482 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 483 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 484 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 485 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 486 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 487 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 488 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 489 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 490 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 491 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 492 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 493 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 494 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 495 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 496 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 497 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 498 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 499 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 500 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 501 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 502 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 503 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 504 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 505 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 506 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 507 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 508 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 509 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 510 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 511 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 512 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 513 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 514 0x2d02ef8dL 515 }; 516 517 static __inline u16 RotR1(u16 val) 518 { 519 return (val >> 1) | (val << 15); 520 } 521 522 static __inline u8 Lo8(u16 val) 523 { 524 return val & 0xff; 525 } 526 527 static __inline u8 Hi8(u16 val) 528 { 529 return val >> 8; 530 } 531 532 static __inline u16 Lo16(u32 val) 533 { 534 return val & 0xffff; 535 } 536 537 static __inline u16 Hi16(u32 val) 538 { 539 return val >> 16; 540 } 541 542 static __inline u16 Mk16(u8 hi, u8 lo) 543 { 544 return lo | (((u16) hi) << 8); 545 } 546 547 static __inline u16 Mk16_le(const u16 *v) 548 { 549 return le16toh(*v); 550 } 551 552 static const u16 Sbox[256] = { 553 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154, 554 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A, 555 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B, 556 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B, 557 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F, 558 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F, 559 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5, 560 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F, 561 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB, 562 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397, 563 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED, 564 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A, 565 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194, 566 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3, 567 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104, 568 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D, 569 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39, 570 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695, 571 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83, 572 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76, 573 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4, 574 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B, 575 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0, 576 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018, 577 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751, 578 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85, 579 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12, 580 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9, 581 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7, 582 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A, 583 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8, 584 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A, 585 }; 586 587 static __inline u16 _S_(u16 v) 588 { 589 u16 t = Sbox[Hi8(v)]; 590 return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8)); 591 } 592 593 #define PHASE1_LOOP_COUNT 8 594 595 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32) 596 { 597 int i, j; 598 599 /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */ 600 TTAK[0] = Lo16(IV32); 601 TTAK[1] = Hi16(IV32); 602 TTAK[2] = Mk16(TA[1], TA[0]); 603 TTAK[3] = Mk16(TA[3], TA[2]); 604 TTAK[4] = Mk16(TA[5], TA[4]); 605 606 for (i = 0; i < PHASE1_LOOP_COUNT; i++) { 607 j = 2 * (i & 1); 608 TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j])); 609 TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j])); 610 TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j])); 611 TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j])); 612 TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i; 613 } 614 } 615 616 #ifndef _BYTE_ORDER 617 #error "Don't know native byte order" 618 #endif 619 620 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK, 621 u16 IV16) 622 { 623 /* Make temporary area overlap WEP seed so that the final copy can be 624 * avoided on little endian hosts. */ 625 u16 *PPK = (u16 *) &WEPSeed[4]; 626 627 /* Step 1 - make copy of TTAK and bring in TSC */ 628 PPK[0] = TTAK[0]; 629 PPK[1] = TTAK[1]; 630 PPK[2] = TTAK[2]; 631 PPK[3] = TTAK[3]; 632 PPK[4] = TTAK[4]; 633 PPK[5] = TTAK[4] + IV16; 634 635 /* Step 2 - 96-bit bijective mixing using S-box */ 636 PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0])); 637 PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2])); 638 PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4])); 639 PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6])); 640 PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8])); 641 PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10])); 642 643 PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12])); 644 PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14])); 645 PPK[2] += RotR1(PPK[1]); 646 PPK[3] += RotR1(PPK[2]); 647 PPK[4] += RotR1(PPK[3]); 648 PPK[5] += RotR1(PPK[4]); 649 650 /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value 651 * WEPSeed[0..2] is transmitted as WEP IV */ 652 WEPSeed[0] = Hi8(IV16); 653 WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F; 654 WEPSeed[2] = Lo8(IV16); 655 WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1); 656 657 #if _BYTE_ORDER == _BIG_ENDIAN 658 { 659 int i; 660 for (i = 0; i < 6; i++) 661 PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8); 662 } 663 #endif 664 } 665 666 static void 667 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len, 668 uint8_t icv[IEEE80211_WEP_CRCLEN]) 669 { 670 u32 i, j, k, crc; 671 size_t buflen; 672 u8 S[256]; 673 u8 *pos; 674 struct mbuf *m; 675 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0) 676 677 /* Setup RC4 state */ 678 for (i = 0; i < 256; i++) 679 S[i] = i; 680 j = 0; 681 for (i = 0; i < 256; i++) { 682 j = (j + S[i] + key[i & 0x0f]) & 0xff; 683 S_SWAP(i, j); 684 } 685 686 /* Compute CRC32 over unencrypted data and apply RC4 to data */ 687 crc = ~0; 688 i = j = 0; 689 m = m0; 690 pos = mtod(m, uint8_t *) + off; 691 buflen = m->m_len - off; 692 for (;;) { 693 if (buflen > data_len) 694 buflen = data_len; 695 data_len -= buflen; 696 for (k = 0; k < buflen; k++) { 697 crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8); 698 i = (i + 1) & 0xff; 699 j = (j + S[i]) & 0xff; 700 S_SWAP(i, j); 701 *pos++ ^= S[(S[i] + S[j]) & 0xff]; 702 } 703 m = m->m_next; 704 if (m == NULL) { 705 KASSERT(data_len == 0, 706 ("out of buffers with data_len %zu\n", data_len)); 707 break; 708 } 709 pos = mtod(m, uint8_t *); 710 buflen = m->m_len; 711 } 712 crc = ~crc; 713 714 /* Append little-endian CRC32 and encrypt it to produce ICV */ 715 icv[0] = crc; 716 icv[1] = crc >> 8; 717 icv[2] = crc >> 16; 718 icv[3] = crc >> 24; 719 for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) { 720 i = (i + 1) & 0xff; 721 j = (j + S[i]) & 0xff; 722 S_SWAP(i, j); 723 icv[k] ^= S[(S[i] + S[j]) & 0xff]; 724 } 725 } 726 727 static int 728 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len) 729 { 730 u32 i, j, k, crc; 731 u8 S[256]; 732 u8 *pos, icv[4]; 733 size_t buflen; 734 735 /* Setup RC4 state */ 736 for (i = 0; i < 256; i++) 737 S[i] = i; 738 j = 0; 739 for (i = 0; i < 256; i++) { 740 j = (j + S[i] + key[i & 0x0f]) & 0xff; 741 S_SWAP(i, j); 742 } 743 744 /* Apply RC4 to data and compute CRC32 over decrypted data */ 745 crc = ~0; 746 i = j = 0; 747 pos = mtod(m, uint8_t *) + off; 748 buflen = m->m_len - off; 749 for (;;) { 750 if (buflen > data_len) 751 buflen = data_len; 752 data_len -= buflen; 753 for (k = 0; k < buflen; k++) { 754 i = (i + 1) & 0xff; 755 j = (j + S[i]) & 0xff; 756 S_SWAP(i, j); 757 *pos ^= S[(S[i] + S[j]) & 0xff]; 758 crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8); 759 pos++; 760 } 761 m = m->m_next; 762 if (m == NULL) { 763 KASSERT(data_len == 0, 764 ("out of buffers with data_len %zu\n", data_len)); 765 break; 766 } 767 pos = mtod(m, uint8_t *); 768 buflen = m->m_len; 769 } 770 crc = ~crc; 771 772 /* Encrypt little-endian CRC32 and verify that it matches with the 773 * received ICV */ 774 icv[0] = crc; 775 icv[1] = crc >> 8; 776 icv[2] = crc >> 16; 777 icv[3] = crc >> 24; 778 for (k = 0; k < 4; k++) { 779 i = (i + 1) & 0xff; 780 j = (j + S[i]) & 0xff; 781 S_SWAP(i, j); 782 if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) { 783 /* ICV mismatch - drop frame */ 784 return -1; 785 } 786 } 787 788 return 0; 789 } 790 791 792 static __inline u32 rotl(u32 val, int bits) 793 { 794 return (val << bits) | (val >> (32 - bits)); 795 } 796 797 798 static __inline u32 rotr(u32 val, int bits) 799 { 800 return (val >> bits) | (val << (32 - bits)); 801 } 802 803 804 static __inline u32 xswap(u32 val) 805 { 806 return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8); 807 } 808 809 810 #define michael_block(l, r) \ 811 do { \ 812 r ^= rotl(l, 17); \ 813 l += r; \ 814 r ^= xswap(l); \ 815 l += r; \ 816 r ^= rotl(l, 3); \ 817 l += r; \ 818 r ^= rotr(l, 2); \ 819 l += r; \ 820 } while (0) 821 822 823 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3) 824 { 825 return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24); 826 } 827 828 static __inline u32 get_le32(const u8 *p) 829 { 830 return get_le32_split(p[0], p[1], p[2], p[3]); 831 } 832 833 834 static __inline void put_le32(u8 *p, u32 v) 835 { 836 p[0] = v; 837 p[1] = v >> 8; 838 p[2] = v >> 16; 839 p[3] = v >> 24; 840 } 841 842 /* 843 * Craft pseudo header used to calculate the MIC. 844 */ 845 static void 846 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16]) 847 { 848 const struct ieee80211_frame_addr4 *wh = 849 (const struct ieee80211_frame_addr4 *) wh0; 850 851 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 852 case IEEE80211_FC1_DIR_NODS: 853 IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */ 854 IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2); 855 break; 856 case IEEE80211_FC1_DIR_TODS: 857 IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */ 858 IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2); 859 break; 860 case IEEE80211_FC1_DIR_FROMDS: 861 IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */ 862 IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3); 863 break; 864 case IEEE80211_FC1_DIR_DSTODS: 865 IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */ 866 IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4); 867 break; 868 } 869 870 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { 871 const struct ieee80211_qosframe *qwh = 872 (const struct ieee80211_qosframe *) wh; 873 hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID; 874 } else 875 hdr[12] = 0; 876 hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */ 877 } 878 879 static void 880 michael_mic(struct tkip_ctx *ctx, const u8 *key, 881 struct mbuf *m, u_int off, size_t data_len, 882 u8 mic[IEEE80211_WEP_MICLEN]) 883 { 884 uint8_t hdr[16]; 885 u32 l, r; 886 const uint8_t *data; 887 u_int space; 888 889 michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr); 890 891 l = get_le32(key); 892 r = get_le32(key + 4); 893 894 /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */ 895 l ^= get_le32(hdr); 896 michael_block(l, r); 897 l ^= get_le32(&hdr[4]); 898 michael_block(l, r); 899 l ^= get_le32(&hdr[8]); 900 michael_block(l, r); 901 l ^= get_le32(&hdr[12]); 902 michael_block(l, r); 903 904 /* first buffer has special handling */ 905 data = mtod(m, const uint8_t *) + off; 906 space = m->m_len - off; 907 for (;;) { 908 if (space > data_len) 909 space = data_len; 910 /* collect 32-bit blocks from current buffer */ 911 while (space >= sizeof(uint32_t)) { 912 l ^= get_le32(data); 913 michael_block(l, r); 914 data += sizeof(uint32_t), space -= sizeof(uint32_t); 915 data_len -= sizeof(uint32_t); 916 } 917 /* 918 * NB: when space is zero we make one more trip around 919 * the loop to advance to the next mbuf where there is 920 * data. This handles the case where there are 4*n 921 * bytes in an mbuf followed by <4 bytes in a later mbuf. 922 * By making an extra trip we'll drop out of the loop 923 * with m pointing at the mbuf with 3 bytes and space 924 * set as required by the remainder handling below. 925 */ 926 if (data_len == 0 || 927 (data_len < sizeof(uint32_t) && space != 0)) 928 break; 929 m = m->m_next; 930 if (m == NULL) { 931 KASSERT(0, ("out of data, data_len %zu\n", data_len)); 932 break; 933 } 934 if (space != 0) { 935 const uint8_t *data_next; 936 /* 937 * Block straddles buffers, split references. 938 */ 939 data_next = mtod(m, const uint8_t *); 940 KASSERT(m->m_len >= sizeof(uint32_t) - space, 941 ("not enough data in following buffer, " 942 "m_len %u need %zu\n", m->m_len, 943 sizeof(uint32_t) - space)); 944 switch (space) { 945 case 1: 946 l ^= get_le32_split(data[0], data_next[0], 947 data_next[1], data_next[2]); 948 data = data_next + 3; 949 space = m->m_len - 3; 950 break; 951 case 2: 952 l ^= get_le32_split(data[0], data[1], 953 data_next[0], data_next[1]); 954 data = data_next + 2; 955 space = m->m_len - 2; 956 break; 957 case 3: 958 l ^= get_le32_split(data[0], data[1], 959 data[2], data_next[0]); 960 data = data_next + 1; 961 space = m->m_len - 1; 962 break; 963 } 964 michael_block(l, r); 965 data_len -= sizeof(uint32_t); 966 } else { 967 /* 968 * Setup for next buffer. 969 */ 970 data = mtod(m, const uint8_t *); 971 space = m->m_len; 972 } 973 } 974 /* 975 * Catch degenerate cases like mbuf[4*n+1 bytes] followed by 976 * mbuf[2 bytes]. I don't believe these should happen; if they 977 * do then we'll need more involved logic. 978 */ 979 KASSERT(data_len <= space, 980 ("not enough data, data_len %zu space %u\n", data_len, space)); 981 982 /* Last block and padding (0x5a, 4..7 x 0) */ 983 switch (data_len) { 984 case 0: 985 l ^= get_le32_split(0x5a, 0, 0, 0); 986 break; 987 case 1: 988 l ^= get_le32_split(data[0], 0x5a, 0, 0); 989 break; 990 case 2: 991 l ^= get_le32_split(data[0], data[1], 0x5a, 0); 992 break; 993 case 3: 994 l ^= get_le32_split(data[0], data[1], data[2], 0x5a); 995 break; 996 } 997 michael_block(l, r); 998 /* l ^= 0; */ 999 michael_block(l, r); 1000 1001 put_le32(mic, l); 1002 put_le32(mic + 4, r); 1003 } 1004 1005 static int 1006 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key, 1007 struct mbuf *m, int hdrlen) 1008 { 1009 struct ieee80211_frame *wh; 1010 uint8_t icv[IEEE80211_WEP_CRCLEN]; 1011 1012 ctx->tc_vap->iv_stats.is_crypto_tkip++; 1013 1014 wh = mtod(m, struct ieee80211_frame *); 1015 if ((u16)(key->wk_keytsc) == 0 || key->wk_keytsc == 1) { 1016 tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2, 1017 (u32)(key->wk_keytsc >> 16)); 1018 } 1019 tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak, 1020 (u16) key->wk_keytsc); 1021 1022 wep_encrypt(ctx->tx_rc4key, 1023 m, hdrlen + tkip.ic_header, 1024 m->m_pkthdr.len - (hdrlen + tkip.ic_header), 1025 icv); 1026 (void) m_append(m, IEEE80211_WEP_CRCLEN, icv); /* XXX check return */ 1027 1028 return 1; 1029 } 1030 1031 static int 1032 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key, 1033 struct mbuf *m, int hdrlen) 1034 { 1035 struct ieee80211_frame *wh; 1036 struct ieee80211vap *vap = ctx->tc_vap; 1037 u32 iv32; 1038 u16 iv16; 1039 u8 tid; 1040 1041 vap->iv_stats.is_crypto_tkip++; 1042 1043 wh = mtod(m, struct ieee80211_frame *); 1044 /* NB: tkip_decap already verified header and left seq in rx_rsc */ 1045 iv16 = (u16) ctx->rx_rsc; 1046 iv32 = (u32) (ctx->rx_rsc >> 16); 1047 1048 tid = ieee80211_gettid(wh); 1049 if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16) || !ctx->rx_phase1_done) { 1050 tkip_mixing_phase1(ctx->rx_ttak, key->wk_key, 1051 wh->i_addr2, iv32); 1052 ctx->rx_phase1_done = 1; 1053 } 1054 tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16); 1055 1056 /* NB: m is unstripped; deduct headers + ICV to get payload */ 1057 if (wep_decrypt(ctx->rx_rc4key, 1058 m, hdrlen + tkip.ic_header, 1059 m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) { 1060 if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16)) { 1061 /* Previously cached Phase1 result was already lost, so 1062 * it needs to be recalculated for the next packet. */ 1063 ctx->rx_phase1_done = 0; 1064 } 1065 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 1066 "%s", "TKIP ICV mismatch on decrypt"); 1067 vap->iv_stats.is_rx_tkipicv++; 1068 return 0; 1069 } 1070 return 1; 1071 } 1072 1073 /* 1074 * Module glue. 1075 */ 1076 IEEE80211_CRYPTO_MODULE(tkip, 1); 1077