xref: /freebsd/sys/net80211/ieee80211_crypto_tkip.c (revision 9336e0699bda8a301cd2bfa37106b6ec5e32012e)
1 /*-
2  * Copyright (c) 2002-2007 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11i TKIP crypto support.
31  *
32  * Part of this module is derived from similar code in the Host
33  * AP driver. The code is used with the consent of the author and
34  * it's license is included below.
35  */
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/module.h>
42 #include <sys/endian.h>
43 
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/if_media.h>
48 #include <net/ethernet.h>
49 
50 #include <net80211/ieee80211_var.h>
51 
52 static	void *tkip_attach(struct ieee80211com *, struct ieee80211_key *);
53 static	void tkip_detach(struct ieee80211_key *);
54 static	int tkip_setkey(struct ieee80211_key *);
55 static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, uint8_t keyid);
56 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
57 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
58 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
59 
60 static const struct ieee80211_cipher tkip  = {
61 	.ic_name	= "TKIP",
62 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
63 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
64 			  IEEE80211_WEP_EXTIVLEN,
65 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
66 	.ic_miclen	= IEEE80211_WEP_MICLEN,
67 	.ic_attach	= tkip_attach,
68 	.ic_detach	= tkip_detach,
69 	.ic_setkey	= tkip_setkey,
70 	.ic_encap	= tkip_encap,
71 	.ic_decap	= tkip_decap,
72 	.ic_enmic	= tkip_enmic,
73 	.ic_demic	= tkip_demic,
74 };
75 
76 typedef	uint8_t u8;
77 typedef	uint16_t u16;
78 typedef	uint32_t __u32;
79 typedef	uint32_t u32;
80 #define	memmove(dst, src, n)	ovbcopy(src, dst, n)
81 
82 struct tkip_ctx {
83 	struct ieee80211com *tc_ic;	/* for diagnostics */
84 
85 	u16	tx_ttak[5];
86 	int	tx_phase1_done;
87 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
88 
89 	u16	rx_ttak[5];
90 	int	rx_phase1_done;
91 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
92 	uint64_t rx_rsc;		/* held until MIC verified */
93 };
94 
95 static	void michael_mic(struct tkip_ctx *, const u8 *key,
96 		struct mbuf *m, u_int off, size_t data_len,
97 		u8 mic[IEEE80211_WEP_MICLEN]);
98 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
99 		struct mbuf *, int hdr_len);
100 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
101 		struct mbuf *, int hdr_len);
102 
103 /* number of references from net80211 layer */
104 static	int nrefs = 0;
105 
106 static void *
107 tkip_attach(struct ieee80211com *ic, struct ieee80211_key *k)
108 {
109 	struct tkip_ctx *ctx;
110 
111 	MALLOC(ctx, struct tkip_ctx *, sizeof(struct tkip_ctx),
112 		M_DEVBUF, M_NOWAIT | M_ZERO);
113 	if (ctx == NULL) {
114 		ic->ic_stats.is_crypto_nomem++;
115 		return NULL;
116 	}
117 
118 	ctx->tc_ic = ic;
119 	nrefs++;			/* NB: we assume caller locking */
120 	return ctx;
121 }
122 
123 static void
124 tkip_detach(struct ieee80211_key *k)
125 {
126 	struct tkip_ctx *ctx = k->wk_private;
127 
128 	FREE(ctx, M_DEVBUF);
129 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
130 	nrefs--;			/* NB: we assume caller locking */
131 }
132 
133 static int
134 tkip_setkey(struct ieee80211_key *k)
135 {
136 	struct tkip_ctx *ctx = k->wk_private;
137 
138 	if (k->wk_keylen != (128/NBBY)) {
139 		(void) ctx;		/* XXX */
140 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
141 			"%s: Invalid key length %u, expecting %u\n",
142 			__func__, k->wk_keylen, 128/NBBY);
143 		return 0;
144 	}
145 	k->wk_keytsc = 1;		/* TSC starts at 1 */
146 	return 1;
147 }
148 
149 /*
150  * Add privacy headers and do any s/w encryption required.
151  */
152 static int
153 tkip_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
154 {
155 	struct tkip_ctx *ctx = k->wk_private;
156 	struct ieee80211com *ic = ctx->tc_ic;
157 	uint8_t *ivp;
158 	int hdrlen;
159 
160 	/*
161 	 * Handle TKIP counter measures requirement.
162 	 */
163 	if (ic->ic_flags & IEEE80211_F_COUNTERM) {
164 #ifdef IEEE80211_DEBUG
165 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
166 #endif
167 
168 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
169 			"[%s] Discard frame due to countermeasures (%s)\n",
170 			ether_sprintf(wh->i_addr2), __func__);
171 		ic->ic_stats.is_crypto_tkipcm++;
172 		return 0;
173 	}
174 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
175 
176 	/*
177 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
178 	 */
179 	M_PREPEND(m, tkip.ic_header, M_NOWAIT);
180 	if (m == NULL)
181 		return 0;
182 	ivp = mtod(m, uint8_t *);
183 	memmove(ivp, ivp + tkip.ic_header, hdrlen);
184 	ivp += hdrlen;
185 
186 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
187 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
188 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
189 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
190 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
191 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
192 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
193 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
194 
195 	/*
196 	 * Finally, do software encrypt if neeed.
197 	 */
198 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
199 		if (!tkip_encrypt(ctx, k, m, hdrlen))
200 			return 0;
201 		/* NB: tkip_encrypt handles wk_keytsc */
202 	} else
203 		k->wk_keytsc++;
204 
205 	return 1;
206 }
207 
208 /*
209  * Add MIC to the frame as needed.
210  */
211 static int
212 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
213 {
214 	struct tkip_ctx *ctx = k->wk_private;
215 
216 	if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
217 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
218 		struct ieee80211com *ic = ctx->tc_ic;
219 		int hdrlen;
220 		uint8_t mic[IEEE80211_WEP_MICLEN];
221 
222 		ic->ic_stats.is_crypto_tkipenmic++;
223 
224 		hdrlen = ieee80211_hdrspace(ic, wh);
225 
226 		michael_mic(ctx, k->wk_txmic,
227 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
228 		return m_append(m, tkip.ic_miclen, mic);
229 	}
230 	return 1;
231 }
232 
233 static __inline uint64_t
234 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
235 {
236 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
237 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
238 	return (((uint64_t)iv16) << 32) | iv32;
239 }
240 
241 /*
242  * Validate and strip privacy headers (and trailer) for a
243  * received frame.  If necessary, decrypt the frame using
244  * the specified key.
245  */
246 static int
247 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
248 {
249 	struct tkip_ctx *ctx = k->wk_private;
250 	struct ieee80211com *ic = ctx->tc_ic;
251 	struct ieee80211_frame *wh;
252 	uint8_t *ivp;
253 
254 	/*
255 	 * Header should have extended IV and sequence number;
256 	 * verify the former and validate the latter.
257 	 */
258 	wh = mtod(m, struct ieee80211_frame *);
259 	ivp = mtod(m, uint8_t *) + hdrlen;
260 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
261 		/*
262 		 * No extended IV; discard frame.
263 		 */
264 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
265 			"[%s] missing ExtIV for TKIP cipher\n",
266 			ether_sprintf(wh->i_addr2));
267 		ctx->tc_ic->ic_stats.is_rx_tkipformat++;
268 		return 0;
269 	}
270 	/*
271 	 * Handle TKIP counter measures requirement.
272 	 */
273 	if (ic->ic_flags & IEEE80211_F_COUNTERM) {
274 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
275 			"[%s] discard frame due to countermeasures (%s)\n",
276 			ether_sprintf(wh->i_addr2), __func__);
277 		ic->ic_stats.is_crypto_tkipcm++;
278 		return 0;
279 	}
280 
281 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
282 	if (ctx->rx_rsc <= k->wk_keyrsc) {
283 		/*
284 		 * Replay violation; notify upper layer.
285 		 */
286 		ieee80211_notify_replay_failure(ctx->tc_ic, wh, k, ctx->rx_rsc);
287 		ctx->tc_ic->ic_stats.is_rx_tkipreplay++;
288 		return 0;
289 	}
290 	/*
291 	 * NB: We can't update the rsc in the key until MIC is verified.
292 	 *
293 	 * We assume we are not preempted between doing the check above
294 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
295 	 * Otherwise we might process another packet and discard it as
296 	 * a replay.
297 	 */
298 
299 	/*
300 	 * Check if the device handled the decrypt in hardware.
301 	 * If so we just strip the header; otherwise we need to
302 	 * handle the decrypt in software.
303 	 */
304 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
305 	    !tkip_decrypt(ctx, k, m, hdrlen))
306 		return 0;
307 
308 	/*
309 	 * Copy up 802.11 header and strip crypto bits.
310 	 */
311 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
312 	m_adj(m, tkip.ic_header);
313 	m_adj(m, -tkip.ic_trailer);
314 
315 	return 1;
316 }
317 
318 /*
319  * Verify and strip MIC from the frame.
320  */
321 static int
322 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
323 {
324 	struct tkip_ctx *ctx = k->wk_private;
325 
326 	if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
327 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
328 		struct ieee80211com *ic = ctx->tc_ic;
329 		int hdrlen = ieee80211_hdrspace(ic, wh);
330 		u8 mic[IEEE80211_WEP_MICLEN];
331 		u8 mic0[IEEE80211_WEP_MICLEN];
332 
333 		ic->ic_stats.is_crypto_tkipdemic++;
334 
335 		michael_mic(ctx, k->wk_rxmic,
336 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
337 			mic);
338 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
339 			tkip.ic_miclen, mic0);
340 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
341 			/* NB: 802.11 layer handles statistic and debug msg */
342 			ieee80211_notify_michael_failure(ic, wh,
343 				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
344 					k->wk_rxkeyix : k->wk_keyix);
345 			return 0;
346 		}
347 	}
348 	/*
349 	 * Strip MIC from the tail.
350 	 */
351 	m_adj(m, -tkip.ic_miclen);
352 
353 	/*
354 	 * Ok to update rsc now that MIC has been verified.
355 	 */
356 	k->wk_keyrsc = ctx->rx_rsc;
357 
358 	return 1;
359 }
360 
361 /*
362  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
363  *
364  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
365  *
366  * This program is free software; you can redistribute it and/or modify
367  * it under the terms of the GNU General Public License version 2 as
368  * published by the Free Software Foundation. See README and COPYING for
369  * more details.
370  *
371  * Alternatively, this software may be distributed under the terms of BSD
372  * license.
373  */
374 
375 static const __u32 crc32_table[256] = {
376 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
377 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
378 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
379 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
380 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
381 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
382 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
383 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
384 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
385 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
386 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
387 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
388 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
389 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
390 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
391 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
392 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
393 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
394 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
395 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
396 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
397 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
398 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
399 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
400 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
401 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
402 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
403 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
404 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
405 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
406 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
407 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
408 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
409 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
410 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
411 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
412 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
413 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
414 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
415 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
416 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
417 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
418 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
419 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
420 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
421 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
422 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
423 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
424 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
425 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
426 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
427 	0x2d02ef8dL
428 };
429 
430 static __inline u16 RotR1(u16 val)
431 {
432 	return (val >> 1) | (val << 15);
433 }
434 
435 static __inline u8 Lo8(u16 val)
436 {
437 	return val & 0xff;
438 }
439 
440 static __inline u8 Hi8(u16 val)
441 {
442 	return val >> 8;
443 }
444 
445 static __inline u16 Lo16(u32 val)
446 {
447 	return val & 0xffff;
448 }
449 
450 static __inline u16 Hi16(u32 val)
451 {
452 	return val >> 16;
453 }
454 
455 static __inline u16 Mk16(u8 hi, u8 lo)
456 {
457 	return lo | (((u16) hi) << 8);
458 }
459 
460 static __inline u16 Mk16_le(const u16 *v)
461 {
462 	return le16toh(*v);
463 }
464 
465 static const u16 Sbox[256] = {
466 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
467 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
468 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
469 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
470 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
471 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
472 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
473 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
474 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
475 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
476 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
477 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
478 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
479 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
480 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
481 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
482 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
483 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
484 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
485 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
486 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
487 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
488 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
489 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
490 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
491 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
492 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
493 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
494 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
495 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
496 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
497 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
498 };
499 
500 static __inline u16 _S_(u16 v)
501 {
502 	u16 t = Sbox[Hi8(v)];
503 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
504 }
505 
506 #define PHASE1_LOOP_COUNT 8
507 
508 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
509 {
510 	int i, j;
511 
512 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
513 	TTAK[0] = Lo16(IV32);
514 	TTAK[1] = Hi16(IV32);
515 	TTAK[2] = Mk16(TA[1], TA[0]);
516 	TTAK[3] = Mk16(TA[3], TA[2]);
517 	TTAK[4] = Mk16(TA[5], TA[4]);
518 
519 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
520 		j = 2 * (i & 1);
521 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
522 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
523 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
524 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
525 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
526 	}
527 }
528 
529 #ifndef _BYTE_ORDER
530 #error "Don't know native byte order"
531 #endif
532 
533 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
534 			       u16 IV16)
535 {
536 	/* Make temporary area overlap WEP seed so that the final copy can be
537 	 * avoided on little endian hosts. */
538 	u16 *PPK = (u16 *) &WEPSeed[4];
539 
540 	/* Step 1 - make copy of TTAK and bring in TSC */
541 	PPK[0] = TTAK[0];
542 	PPK[1] = TTAK[1];
543 	PPK[2] = TTAK[2];
544 	PPK[3] = TTAK[3];
545 	PPK[4] = TTAK[4];
546 	PPK[5] = TTAK[4] + IV16;
547 
548 	/* Step 2 - 96-bit bijective mixing using S-box */
549 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
550 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
551 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
552 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
553 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
554 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
555 
556 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
557 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
558 	PPK[2] += RotR1(PPK[1]);
559 	PPK[3] += RotR1(PPK[2]);
560 	PPK[4] += RotR1(PPK[3]);
561 	PPK[5] += RotR1(PPK[4]);
562 
563 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
564 	 * WEPSeed[0..2] is transmitted as WEP IV */
565 	WEPSeed[0] = Hi8(IV16);
566 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
567 	WEPSeed[2] = Lo8(IV16);
568 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
569 
570 #if _BYTE_ORDER == _BIG_ENDIAN
571 	{
572 		int i;
573 		for (i = 0; i < 6; i++)
574 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
575 	}
576 #endif
577 }
578 
579 static void
580 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
581 	uint8_t icv[IEEE80211_WEP_CRCLEN])
582 {
583 	u32 i, j, k, crc;
584 	size_t buflen;
585 	u8 S[256];
586 	u8 *pos;
587 	struct mbuf *m;
588 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
589 
590 	/* Setup RC4 state */
591 	for (i = 0; i < 256; i++)
592 		S[i] = i;
593 	j = 0;
594 	for (i = 0; i < 256; i++) {
595 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
596 		S_SWAP(i, j);
597 	}
598 
599 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
600 	crc = ~0;
601 	i = j = 0;
602 	m = m0;
603 	pos = mtod(m, uint8_t *) + off;
604 	buflen = m->m_len - off;
605 	for (;;) {
606 		if (buflen > data_len)
607 			buflen = data_len;
608 		data_len -= buflen;
609 		for (k = 0; k < buflen; k++) {
610 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
611 			i = (i + 1) & 0xff;
612 			j = (j + S[i]) & 0xff;
613 			S_SWAP(i, j);
614 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
615 		}
616 		m = m->m_next;
617 		if (m == NULL) {
618 			KASSERT(data_len == 0,
619 			    ("out of buffers with data_len %zu\n", data_len));
620 			break;
621 		}
622 		pos = mtod(m, uint8_t *);
623 		buflen = m->m_len;
624 	}
625 	crc = ~crc;
626 
627 	/* Append little-endian CRC32 and encrypt it to produce ICV */
628 	icv[0] = crc;
629 	icv[1] = crc >> 8;
630 	icv[2] = crc >> 16;
631 	icv[3] = crc >> 24;
632 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
633 		i = (i + 1) & 0xff;
634 		j = (j + S[i]) & 0xff;
635 		S_SWAP(i, j);
636 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
637 	}
638 }
639 
640 static int
641 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
642 {
643 	u32 i, j, k, crc;
644 	u8 S[256];
645 	u8 *pos, icv[4];
646 	size_t buflen;
647 
648 	/* Setup RC4 state */
649 	for (i = 0; i < 256; i++)
650 		S[i] = i;
651 	j = 0;
652 	for (i = 0; i < 256; i++) {
653 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
654 		S_SWAP(i, j);
655 	}
656 
657 	/* Apply RC4 to data and compute CRC32 over decrypted data */
658 	crc = ~0;
659 	i = j = 0;
660 	pos = mtod(m, uint8_t *) + off;
661 	buflen = m->m_len - off;
662 	for (;;) {
663 		if (buflen > data_len)
664 			buflen = data_len;
665 		data_len -= buflen;
666 		for (k = 0; k < buflen; k++) {
667 			i = (i + 1) & 0xff;
668 			j = (j + S[i]) & 0xff;
669 			S_SWAP(i, j);
670 			*pos ^= S[(S[i] + S[j]) & 0xff];
671 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
672 			pos++;
673 		}
674 		m = m->m_next;
675 		if (m == NULL) {
676 			KASSERT(data_len == 0,
677 			    ("out of buffers with data_len %zu\n", data_len));
678 			break;
679 		}
680 		pos = mtod(m, uint8_t *);
681 		buflen = m->m_len;
682 	}
683 	crc = ~crc;
684 
685 	/* Encrypt little-endian CRC32 and verify that it matches with the
686 	 * received ICV */
687 	icv[0] = crc;
688 	icv[1] = crc >> 8;
689 	icv[2] = crc >> 16;
690 	icv[3] = crc >> 24;
691 	for (k = 0; k < 4; k++) {
692 		i = (i + 1) & 0xff;
693 		j = (j + S[i]) & 0xff;
694 		S_SWAP(i, j);
695 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
696 			/* ICV mismatch - drop frame */
697 			return -1;
698 		}
699 	}
700 
701 	return 0;
702 }
703 
704 
705 static __inline u32 rotl(u32 val, int bits)
706 {
707 	return (val << bits) | (val >> (32 - bits));
708 }
709 
710 
711 static __inline u32 rotr(u32 val, int bits)
712 {
713 	return (val >> bits) | (val << (32 - bits));
714 }
715 
716 
717 static __inline u32 xswap(u32 val)
718 {
719 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
720 }
721 
722 
723 #define michael_block(l, r)	\
724 do {				\
725 	r ^= rotl(l, 17);	\
726 	l += r;			\
727 	r ^= xswap(l);		\
728 	l += r;			\
729 	r ^= rotl(l, 3);	\
730 	l += r;			\
731 	r ^= rotr(l, 2);	\
732 	l += r;			\
733 } while (0)
734 
735 
736 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
737 {
738 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
739 }
740 
741 static __inline u32 get_le32(const u8 *p)
742 {
743 	return get_le32_split(p[0], p[1], p[2], p[3]);
744 }
745 
746 
747 static __inline void put_le32(u8 *p, u32 v)
748 {
749 	p[0] = v;
750 	p[1] = v >> 8;
751 	p[2] = v >> 16;
752 	p[3] = v >> 24;
753 }
754 
755 /*
756  * Craft pseudo header used to calculate the MIC.
757  */
758 static void
759 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
760 {
761 	const struct ieee80211_frame_addr4 *wh =
762 		(const struct ieee80211_frame_addr4 *) wh0;
763 
764 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
765 	case IEEE80211_FC1_DIR_NODS:
766 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
767 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
768 		break;
769 	case IEEE80211_FC1_DIR_TODS:
770 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
771 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
772 		break;
773 	case IEEE80211_FC1_DIR_FROMDS:
774 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
775 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
776 		break;
777 	case IEEE80211_FC1_DIR_DSTODS:
778 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
779 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
780 		break;
781 	}
782 
783 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
784 		const struct ieee80211_qosframe *qwh =
785 			(const struct ieee80211_qosframe *) wh;
786 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
787 	} else
788 		hdr[12] = 0;
789 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
790 }
791 
792 static void
793 michael_mic(struct tkip_ctx *ctx, const u8 *key,
794 	struct mbuf *m, u_int off, size_t data_len,
795 	u8 mic[IEEE80211_WEP_MICLEN])
796 {
797 	uint8_t hdr[16];
798 	u32 l, r;
799 	const uint8_t *data;
800 	u_int space;
801 
802 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
803 
804 	l = get_le32(key);
805 	r = get_le32(key + 4);
806 
807 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
808 	l ^= get_le32(hdr);
809 	michael_block(l, r);
810 	l ^= get_le32(&hdr[4]);
811 	michael_block(l, r);
812 	l ^= get_le32(&hdr[8]);
813 	michael_block(l, r);
814 	l ^= get_le32(&hdr[12]);
815 	michael_block(l, r);
816 
817 	/* first buffer has special handling */
818 	data = mtod(m, const uint8_t *) + off;
819 	space = m->m_len - off;
820 	for (;;) {
821 		if (space > data_len)
822 			space = data_len;
823 		/* collect 32-bit blocks from current buffer */
824 		while (space >= sizeof(uint32_t)) {
825 			l ^= get_le32(data);
826 			michael_block(l, r);
827 			data += sizeof(uint32_t), space -= sizeof(uint32_t);
828 			data_len -= sizeof(uint32_t);
829 		}
830 		if (data_len < sizeof(uint32_t))
831 			break;
832 		m = m->m_next;
833 		if (m == NULL) {
834 			KASSERT(0, ("out of data, data_len %zu\n", data_len));
835 			break;
836 		}
837 		if (space != 0) {
838 			const uint8_t *data_next;
839 			/*
840 			 * Block straddles buffers, split references.
841 			 */
842 			data_next = mtod(m, const uint8_t *);
843 			KASSERT(m->m_len >= sizeof(uint32_t) - space,
844 				("not enough data in following buffer, "
845 				"m_len %u need %zu\n", m->m_len,
846 				sizeof(uint32_t) - space));
847 			switch (space) {
848 			case 1:
849 				l ^= get_le32_split(data[0], data_next[0],
850 					data_next[1], data_next[2]);
851 				data = data_next + 3;
852 				space = m->m_len - 3;
853 				break;
854 			case 2:
855 				l ^= get_le32_split(data[0], data[1],
856 					data_next[0], data_next[1]);
857 				data = data_next + 2;
858 				space = m->m_len - 2;
859 				break;
860 			case 3:
861 				l ^= get_le32_split(data[0], data[1],
862 					data[2], data_next[0]);
863 				data = data_next + 1;
864 				space = m->m_len - 1;
865 				break;
866 			}
867 			michael_block(l, r);
868 			data_len -= sizeof(uint32_t);
869 		} else {
870 			/*
871 			 * Setup for next buffer.
872 			 */
873 			data = mtod(m, const uint8_t *);
874 			space = m->m_len;
875 		}
876 	}
877 	/* Last block and padding (0x5a, 4..7 x 0) */
878 	switch (data_len) {
879 	case 0:
880 		l ^= get_le32_split(0x5a, 0, 0, 0);
881 		break;
882 	case 1:
883 		l ^= get_le32_split(data[0], 0x5a, 0, 0);
884 		break;
885 	case 2:
886 		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
887 		break;
888 	case 3:
889 		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
890 		break;
891 	}
892 	michael_block(l, r);
893 	/* l ^= 0; */
894 	michael_block(l, r);
895 
896 	put_le32(mic, l);
897 	put_le32(mic + 4, r);
898 }
899 
900 static int
901 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
902 	struct mbuf *m, int hdrlen)
903 {
904 	struct ieee80211_frame *wh;
905 	uint8_t icv[IEEE80211_WEP_CRCLEN];
906 
907 	ctx->tc_ic->ic_stats.is_crypto_tkip++;
908 
909 	wh = mtod(m, struct ieee80211_frame *);
910 	if (!ctx->tx_phase1_done) {
911 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
912 				   (u32)(key->wk_keytsc >> 16));
913 		ctx->tx_phase1_done = 1;
914 	}
915 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
916 		(u16) key->wk_keytsc);
917 
918 	wep_encrypt(ctx->tx_rc4key,
919 		m, hdrlen + tkip.ic_header,
920 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
921 		icv);
922 	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
923 
924 	key->wk_keytsc++;
925 	if ((u16)(key->wk_keytsc) == 0)
926 		ctx->tx_phase1_done = 0;
927 	return 1;
928 }
929 
930 static int
931 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
932 	struct mbuf *m, int hdrlen)
933 {
934 	struct ieee80211_frame *wh;
935 	u32 iv32;
936 	u16 iv16;
937 
938 	ctx->tc_ic->ic_stats.is_crypto_tkip++;
939 
940 	wh = mtod(m, struct ieee80211_frame *);
941 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
942 	iv16 = (u16) ctx->rx_rsc;
943 	iv32 = (u32) (ctx->rx_rsc >> 16);
944 
945 	if (iv32 != (u32)(key->wk_keyrsc >> 16) || !ctx->rx_phase1_done) {
946 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
947 			wh->i_addr2, iv32);
948 		ctx->rx_phase1_done = 1;
949 	}
950 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
951 
952 	/* NB: m is unstripped; deduct headers + ICV to get payload */
953 	if (wep_decrypt(ctx->rx_rc4key,
954 		m, hdrlen + tkip.ic_header,
955 	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
956 		if (iv32 != (u32)(key->wk_keyrsc >> 16)) {
957 			/* Previously cached Phase1 result was already lost, so
958 			 * it needs to be recalculated for the next packet. */
959 			ctx->rx_phase1_done = 0;
960 		}
961 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
962 		    "[%s] TKIP ICV mismatch on decrypt\n",
963 		    ether_sprintf(wh->i_addr2));
964 		ctx->tc_ic->ic_stats.is_rx_tkipicv++;
965 		return 0;
966 	}
967 	return 1;
968 }
969 
970 /*
971  * Module glue.
972  */
973 IEEE80211_CRYPTO_MODULE(tkip, 1);
974