xref: /freebsd/sys/net80211/ieee80211_crypto_tkip.c (revision 39beb93c3f8bdbf72a61fda42300b5ebed7390c8)
1 /*-
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11i TKIP crypto support.
31  *
32  * Part of this module is derived from similar code in the Host
33  * AP driver. The code is used with the consent of the author and
34  * it's license is included below.
35  */
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/endian.h>
45 
46 #include <sys/socket.h>
47 
48 #include <net/if.h>
49 #include <net/if_media.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 
54 static	void *tkip_attach(struct ieee80211vap *, struct ieee80211_key *);
55 static	void tkip_detach(struct ieee80211_key *);
56 static	int tkip_setkey(struct ieee80211_key *);
57 static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, uint8_t keyid);
58 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
59 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
60 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
61 
62 static const struct ieee80211_cipher tkip  = {
63 	.ic_name	= "TKIP",
64 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
65 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
66 			  IEEE80211_WEP_EXTIVLEN,
67 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
68 	.ic_miclen	= IEEE80211_WEP_MICLEN,
69 	.ic_attach	= tkip_attach,
70 	.ic_detach	= tkip_detach,
71 	.ic_setkey	= tkip_setkey,
72 	.ic_encap	= tkip_encap,
73 	.ic_decap	= tkip_decap,
74 	.ic_enmic	= tkip_enmic,
75 	.ic_demic	= tkip_demic,
76 };
77 
78 typedef	uint8_t u8;
79 typedef	uint16_t u16;
80 typedef	uint32_t __u32;
81 typedef	uint32_t u32;
82 
83 struct tkip_ctx {
84 	struct ieee80211vap *tc_vap;	/* for diagnostics+statistics */
85 
86 	u16	tx_ttak[5];
87 	int	tx_phase1_done;
88 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
89 
90 	u16	rx_ttak[5];
91 	int	rx_phase1_done;
92 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
93 	uint64_t rx_rsc;		/* held until MIC verified */
94 };
95 
96 static	void michael_mic(struct tkip_ctx *, const u8 *key,
97 		struct mbuf *m, u_int off, size_t data_len,
98 		u8 mic[IEEE80211_WEP_MICLEN]);
99 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
100 		struct mbuf *, int hdr_len);
101 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
102 		struct mbuf *, int hdr_len);
103 
104 /* number of references from net80211 layer */
105 static	int nrefs = 0;
106 
107 static void *
108 tkip_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
109 {
110 	struct tkip_ctx *ctx;
111 
112 	ctx = (struct tkip_ctx *) malloc(sizeof(struct tkip_ctx),
113 		M_80211_CRYPTO, M_NOWAIT | M_ZERO);
114 	if (ctx == NULL) {
115 		vap->iv_stats.is_crypto_nomem++;
116 		return NULL;
117 	}
118 
119 	ctx->tc_vap = vap;
120 	nrefs++;			/* NB: we assume caller locking */
121 	return ctx;
122 }
123 
124 static void
125 tkip_detach(struct ieee80211_key *k)
126 {
127 	struct tkip_ctx *ctx = k->wk_private;
128 
129 	free(ctx, M_80211_CRYPTO);
130 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
131 	nrefs--;			/* NB: we assume caller locking */
132 }
133 
134 static int
135 tkip_setkey(struct ieee80211_key *k)
136 {
137 	struct tkip_ctx *ctx = k->wk_private;
138 
139 	if (k->wk_keylen != (128/NBBY)) {
140 		(void) ctx;		/* XXX */
141 		IEEE80211_DPRINTF(ctx->tc_vap, IEEE80211_MSG_CRYPTO,
142 			"%s: Invalid key length %u, expecting %u\n",
143 			__func__, k->wk_keylen, 128/NBBY);
144 		return 0;
145 	}
146 	k->wk_keytsc = 1;		/* TSC starts at 1 */
147 	return 1;
148 }
149 
150 /*
151  * Add privacy headers and do any s/w encryption required.
152  */
153 static int
154 tkip_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
155 {
156 	struct tkip_ctx *ctx = k->wk_private;
157 	struct ieee80211vap *vap = ctx->tc_vap;
158 	struct ieee80211com *ic = vap->iv_ic;
159 	uint8_t *ivp;
160 	int hdrlen;
161 
162 	/*
163 	 * Handle TKIP counter measures requirement.
164 	 */
165 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
166 #ifdef IEEE80211_DEBUG
167 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
168 #endif
169 
170 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
171 		    "discard frame due to countermeasures (%s)", __func__);
172 		vap->iv_stats.is_crypto_tkipcm++;
173 		return 0;
174 	}
175 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
176 
177 	/*
178 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
179 	 */
180 	M_PREPEND(m, tkip.ic_header, M_NOWAIT);
181 	if (m == NULL)
182 		return 0;
183 	ivp = mtod(m, uint8_t *);
184 	memmove(ivp, ivp + tkip.ic_header, hdrlen);
185 	ivp += hdrlen;
186 
187 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
188 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
189 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
190 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
191 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
192 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
193 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
194 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
195 
196 	/*
197 	 * Finally, do software encrypt if neeed.
198 	 */
199 	if (k->wk_flags & IEEE80211_KEY_SWENCRYPT) {
200 		if (!tkip_encrypt(ctx, k, m, hdrlen))
201 			return 0;
202 		/* NB: tkip_encrypt handles wk_keytsc */
203 	} else
204 		k->wk_keytsc++;
205 
206 	return 1;
207 }
208 
209 /*
210  * Add MIC to the frame as needed.
211  */
212 static int
213 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
214 {
215 	struct tkip_ctx *ctx = k->wk_private;
216 
217 	if (force || (k->wk_flags & IEEE80211_KEY_SWENMIC)) {
218 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
219 		struct ieee80211vap *vap = ctx->tc_vap;
220 		struct ieee80211com *ic = vap->iv_ic;
221 		int hdrlen;
222 		uint8_t mic[IEEE80211_WEP_MICLEN];
223 
224 		vap->iv_stats.is_crypto_tkipenmic++;
225 
226 		hdrlen = ieee80211_hdrspace(ic, wh);
227 
228 		michael_mic(ctx, k->wk_txmic,
229 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
230 		return m_append(m, tkip.ic_miclen, mic);
231 	}
232 	return 1;
233 }
234 
235 static __inline uint64_t
236 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
237 {
238 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
239 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
240 	return (((uint64_t)iv16) << 32) | iv32;
241 }
242 
243 /*
244  * Validate and strip privacy headers (and trailer) for a
245  * received frame.  If necessary, decrypt the frame using
246  * the specified key.
247  */
248 static int
249 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
250 {
251 	struct tkip_ctx *ctx = k->wk_private;
252 	struct ieee80211vap *vap = ctx->tc_vap;
253 	struct ieee80211_frame *wh;
254 	uint8_t *ivp, tid;
255 
256 	/*
257 	 * Header should have extended IV and sequence number;
258 	 * verify the former and validate the latter.
259 	 */
260 	wh = mtod(m, struct ieee80211_frame *);
261 	ivp = mtod(m, uint8_t *) + hdrlen;
262 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
263 		/*
264 		 * No extended IV; discard frame.
265 		 */
266 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
267 		    "%s", "missing ExtIV for TKIP cipher");
268 		vap->iv_stats.is_rx_tkipformat++;
269 		return 0;
270 	}
271 	/*
272 	 * Handle TKIP counter measures requirement.
273 	 */
274 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
275 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
276 		    "discard frame due to countermeasures (%s)", __func__);
277 		vap->iv_stats.is_crypto_tkipcm++;
278 		return 0;
279 	}
280 
281 	tid = ieee80211_gettid(wh);
282 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
283 	if (ctx->rx_rsc <= k->wk_keyrsc[tid]) {
284 		/*
285 		 * Replay violation; notify upper layer.
286 		 */
287 		ieee80211_notify_replay_failure(vap, wh, k, ctx->rx_rsc);
288 		vap->iv_stats.is_rx_tkipreplay++;
289 		return 0;
290 	}
291 	/*
292 	 * NB: We can't update the rsc in the key until MIC is verified.
293 	 *
294 	 * We assume we are not preempted between doing the check above
295 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
296 	 * Otherwise we might process another packet and discard it as
297 	 * a replay.
298 	 */
299 
300 	/*
301 	 * Check if the device handled the decrypt in hardware.
302 	 * If so we just strip the header; otherwise we need to
303 	 * handle the decrypt in software.
304 	 */
305 	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
306 	    !tkip_decrypt(ctx, k, m, hdrlen))
307 		return 0;
308 
309 	/*
310 	 * Copy up 802.11 header and strip crypto bits.
311 	 */
312 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
313 	m_adj(m, tkip.ic_header);
314 	m_adj(m, -tkip.ic_trailer);
315 
316 	return 1;
317 }
318 
319 /*
320  * Verify and strip MIC from the frame.
321  */
322 static int
323 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
324 {
325 	struct tkip_ctx *ctx = k->wk_private;
326 	struct ieee80211_frame *wh;
327 	uint8_t tid;
328 
329 	wh = mtod(m, struct ieee80211_frame *);
330 	if ((k->wk_flags & IEEE80211_KEY_SWDEMIC) || force) {
331 		struct ieee80211vap *vap = ctx->tc_vap;
332 		int hdrlen = ieee80211_hdrspace(vap->iv_ic, wh);
333 		u8 mic[IEEE80211_WEP_MICLEN];
334 		u8 mic0[IEEE80211_WEP_MICLEN];
335 
336 		vap->iv_stats.is_crypto_tkipdemic++;
337 
338 		michael_mic(ctx, k->wk_rxmic,
339 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
340 			mic);
341 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
342 			tkip.ic_miclen, mic0);
343 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
344 			/* NB: 802.11 layer handles statistic and debug msg */
345 			ieee80211_notify_michael_failure(vap, wh,
346 				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
347 					k->wk_rxkeyix : k->wk_keyix);
348 			return 0;
349 		}
350 	}
351 	/*
352 	 * Strip MIC from the tail.
353 	 */
354 	m_adj(m, -tkip.ic_miclen);
355 
356 	/*
357 	 * Ok to update rsc now that MIC has been verified.
358 	 */
359 	tid = ieee80211_gettid(wh);
360 	k->wk_keyrsc[tid] = ctx->rx_rsc;
361 
362 	return 1;
363 }
364 
365 /*
366  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
367  *
368  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
369  *
370  * This program is free software; you can redistribute it and/or modify
371  * it under the terms of the GNU General Public License version 2 as
372  * published by the Free Software Foundation. See README and COPYING for
373  * more details.
374  *
375  * Alternatively, this software may be distributed under the terms of BSD
376  * license.
377  */
378 
379 static const __u32 crc32_table[256] = {
380 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
381 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
382 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
383 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
384 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
385 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
386 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
387 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
388 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
389 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
390 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
391 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
392 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
393 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
394 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
395 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
396 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
397 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
398 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
399 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
400 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
401 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
402 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
403 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
404 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
405 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
406 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
407 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
408 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
409 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
410 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
411 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
412 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
413 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
414 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
415 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
416 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
417 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
418 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
419 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
420 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
421 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
422 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
423 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
424 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
425 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
426 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
427 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
428 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
429 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
430 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
431 	0x2d02ef8dL
432 };
433 
434 static __inline u16 RotR1(u16 val)
435 {
436 	return (val >> 1) | (val << 15);
437 }
438 
439 static __inline u8 Lo8(u16 val)
440 {
441 	return val & 0xff;
442 }
443 
444 static __inline u8 Hi8(u16 val)
445 {
446 	return val >> 8;
447 }
448 
449 static __inline u16 Lo16(u32 val)
450 {
451 	return val & 0xffff;
452 }
453 
454 static __inline u16 Hi16(u32 val)
455 {
456 	return val >> 16;
457 }
458 
459 static __inline u16 Mk16(u8 hi, u8 lo)
460 {
461 	return lo | (((u16) hi) << 8);
462 }
463 
464 static __inline u16 Mk16_le(const u16 *v)
465 {
466 	return le16toh(*v);
467 }
468 
469 static const u16 Sbox[256] = {
470 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
471 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
472 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
473 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
474 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
475 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
476 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
477 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
478 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
479 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
480 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
481 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
482 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
483 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
484 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
485 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
486 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
487 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
488 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
489 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
490 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
491 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
492 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
493 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
494 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
495 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
496 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
497 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
498 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
499 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
500 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
501 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
502 };
503 
504 static __inline u16 _S_(u16 v)
505 {
506 	u16 t = Sbox[Hi8(v)];
507 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
508 }
509 
510 #define PHASE1_LOOP_COUNT 8
511 
512 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
513 {
514 	int i, j;
515 
516 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
517 	TTAK[0] = Lo16(IV32);
518 	TTAK[1] = Hi16(IV32);
519 	TTAK[2] = Mk16(TA[1], TA[0]);
520 	TTAK[3] = Mk16(TA[3], TA[2]);
521 	TTAK[4] = Mk16(TA[5], TA[4]);
522 
523 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
524 		j = 2 * (i & 1);
525 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
526 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
527 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
528 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
529 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
530 	}
531 }
532 
533 #ifndef _BYTE_ORDER
534 #error "Don't know native byte order"
535 #endif
536 
537 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
538 			       u16 IV16)
539 {
540 	/* Make temporary area overlap WEP seed so that the final copy can be
541 	 * avoided on little endian hosts. */
542 	u16 *PPK = (u16 *) &WEPSeed[4];
543 
544 	/* Step 1 - make copy of TTAK and bring in TSC */
545 	PPK[0] = TTAK[0];
546 	PPK[1] = TTAK[1];
547 	PPK[2] = TTAK[2];
548 	PPK[3] = TTAK[3];
549 	PPK[4] = TTAK[4];
550 	PPK[5] = TTAK[4] + IV16;
551 
552 	/* Step 2 - 96-bit bijective mixing using S-box */
553 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
554 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
555 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
556 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
557 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
558 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
559 
560 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
561 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
562 	PPK[2] += RotR1(PPK[1]);
563 	PPK[3] += RotR1(PPK[2]);
564 	PPK[4] += RotR1(PPK[3]);
565 	PPK[5] += RotR1(PPK[4]);
566 
567 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
568 	 * WEPSeed[0..2] is transmitted as WEP IV */
569 	WEPSeed[0] = Hi8(IV16);
570 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
571 	WEPSeed[2] = Lo8(IV16);
572 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
573 
574 #if _BYTE_ORDER == _BIG_ENDIAN
575 	{
576 		int i;
577 		for (i = 0; i < 6; i++)
578 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
579 	}
580 #endif
581 }
582 
583 static void
584 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
585 	uint8_t icv[IEEE80211_WEP_CRCLEN])
586 {
587 	u32 i, j, k, crc;
588 	size_t buflen;
589 	u8 S[256];
590 	u8 *pos;
591 	struct mbuf *m;
592 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
593 
594 	/* Setup RC4 state */
595 	for (i = 0; i < 256; i++)
596 		S[i] = i;
597 	j = 0;
598 	for (i = 0; i < 256; i++) {
599 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
600 		S_SWAP(i, j);
601 	}
602 
603 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
604 	crc = ~0;
605 	i = j = 0;
606 	m = m0;
607 	pos = mtod(m, uint8_t *) + off;
608 	buflen = m->m_len - off;
609 	for (;;) {
610 		if (buflen > data_len)
611 			buflen = data_len;
612 		data_len -= buflen;
613 		for (k = 0; k < buflen; k++) {
614 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
615 			i = (i + 1) & 0xff;
616 			j = (j + S[i]) & 0xff;
617 			S_SWAP(i, j);
618 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
619 		}
620 		m = m->m_next;
621 		if (m == NULL) {
622 			KASSERT(data_len == 0,
623 			    ("out of buffers with data_len %zu\n", data_len));
624 			break;
625 		}
626 		pos = mtod(m, uint8_t *);
627 		buflen = m->m_len;
628 	}
629 	crc = ~crc;
630 
631 	/* Append little-endian CRC32 and encrypt it to produce ICV */
632 	icv[0] = crc;
633 	icv[1] = crc >> 8;
634 	icv[2] = crc >> 16;
635 	icv[3] = crc >> 24;
636 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
637 		i = (i + 1) & 0xff;
638 		j = (j + S[i]) & 0xff;
639 		S_SWAP(i, j);
640 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
641 	}
642 }
643 
644 static int
645 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
646 {
647 	u32 i, j, k, crc;
648 	u8 S[256];
649 	u8 *pos, icv[4];
650 	size_t buflen;
651 
652 	/* Setup RC4 state */
653 	for (i = 0; i < 256; i++)
654 		S[i] = i;
655 	j = 0;
656 	for (i = 0; i < 256; i++) {
657 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
658 		S_SWAP(i, j);
659 	}
660 
661 	/* Apply RC4 to data and compute CRC32 over decrypted data */
662 	crc = ~0;
663 	i = j = 0;
664 	pos = mtod(m, uint8_t *) + off;
665 	buflen = m->m_len - off;
666 	for (;;) {
667 		if (buflen > data_len)
668 			buflen = data_len;
669 		data_len -= buflen;
670 		for (k = 0; k < buflen; k++) {
671 			i = (i + 1) & 0xff;
672 			j = (j + S[i]) & 0xff;
673 			S_SWAP(i, j);
674 			*pos ^= S[(S[i] + S[j]) & 0xff];
675 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
676 			pos++;
677 		}
678 		m = m->m_next;
679 		if (m == NULL) {
680 			KASSERT(data_len == 0,
681 			    ("out of buffers with data_len %zu\n", data_len));
682 			break;
683 		}
684 		pos = mtod(m, uint8_t *);
685 		buflen = m->m_len;
686 	}
687 	crc = ~crc;
688 
689 	/* Encrypt little-endian CRC32 and verify that it matches with the
690 	 * received ICV */
691 	icv[0] = crc;
692 	icv[1] = crc >> 8;
693 	icv[2] = crc >> 16;
694 	icv[3] = crc >> 24;
695 	for (k = 0; k < 4; k++) {
696 		i = (i + 1) & 0xff;
697 		j = (j + S[i]) & 0xff;
698 		S_SWAP(i, j);
699 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
700 			/* ICV mismatch - drop frame */
701 			return -1;
702 		}
703 	}
704 
705 	return 0;
706 }
707 
708 
709 static __inline u32 rotl(u32 val, int bits)
710 {
711 	return (val << bits) | (val >> (32 - bits));
712 }
713 
714 
715 static __inline u32 rotr(u32 val, int bits)
716 {
717 	return (val >> bits) | (val << (32 - bits));
718 }
719 
720 
721 static __inline u32 xswap(u32 val)
722 {
723 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
724 }
725 
726 
727 #define michael_block(l, r)	\
728 do {				\
729 	r ^= rotl(l, 17);	\
730 	l += r;			\
731 	r ^= xswap(l);		\
732 	l += r;			\
733 	r ^= rotl(l, 3);	\
734 	l += r;			\
735 	r ^= rotr(l, 2);	\
736 	l += r;			\
737 } while (0)
738 
739 
740 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
741 {
742 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
743 }
744 
745 static __inline u32 get_le32(const u8 *p)
746 {
747 	return get_le32_split(p[0], p[1], p[2], p[3]);
748 }
749 
750 
751 static __inline void put_le32(u8 *p, u32 v)
752 {
753 	p[0] = v;
754 	p[1] = v >> 8;
755 	p[2] = v >> 16;
756 	p[3] = v >> 24;
757 }
758 
759 /*
760  * Craft pseudo header used to calculate the MIC.
761  */
762 static void
763 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
764 {
765 	const struct ieee80211_frame_addr4 *wh =
766 		(const struct ieee80211_frame_addr4 *) wh0;
767 
768 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
769 	case IEEE80211_FC1_DIR_NODS:
770 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
771 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
772 		break;
773 	case IEEE80211_FC1_DIR_TODS:
774 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
775 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
776 		break;
777 	case IEEE80211_FC1_DIR_FROMDS:
778 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
779 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
780 		break;
781 	case IEEE80211_FC1_DIR_DSTODS:
782 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
783 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
784 		break;
785 	}
786 
787 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
788 		const struct ieee80211_qosframe *qwh =
789 			(const struct ieee80211_qosframe *) wh;
790 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
791 	} else
792 		hdr[12] = 0;
793 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
794 }
795 
796 static void
797 michael_mic(struct tkip_ctx *ctx, const u8 *key,
798 	struct mbuf *m, u_int off, size_t data_len,
799 	u8 mic[IEEE80211_WEP_MICLEN])
800 {
801 	uint8_t hdr[16];
802 	u32 l, r;
803 	const uint8_t *data;
804 	u_int space;
805 
806 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
807 
808 	l = get_le32(key);
809 	r = get_le32(key + 4);
810 
811 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
812 	l ^= get_le32(hdr);
813 	michael_block(l, r);
814 	l ^= get_le32(&hdr[4]);
815 	michael_block(l, r);
816 	l ^= get_le32(&hdr[8]);
817 	michael_block(l, r);
818 	l ^= get_le32(&hdr[12]);
819 	michael_block(l, r);
820 
821 	/* first buffer has special handling */
822 	data = mtod(m, const uint8_t *) + off;
823 	space = m->m_len - off;
824 	for (;;) {
825 		if (space > data_len)
826 			space = data_len;
827 		/* collect 32-bit blocks from current buffer */
828 		while (space >= sizeof(uint32_t)) {
829 			l ^= get_le32(data);
830 			michael_block(l, r);
831 			data += sizeof(uint32_t), space -= sizeof(uint32_t);
832 			data_len -= sizeof(uint32_t);
833 		}
834 		/*
835 		 * NB: when space is zero we make one more trip around
836 		 * the loop to advance to the next mbuf where there is
837 		 * data.  This handles the case where there are 4*n
838 		 * bytes in an mbuf followed by <4 bytes in a later mbuf.
839 		 * By making an extra trip we'll drop out of the loop
840 		 * with m pointing at the mbuf with 3 bytes and space
841 		 * set as required by the remainder handling below.
842 		 */
843 		if (data_len == 0 ||
844 		    (data_len < sizeof(uint32_t) && space != 0))
845 			break;
846 		m = m->m_next;
847 		if (m == NULL) {
848 			KASSERT(0, ("out of data, data_len %zu\n", data_len));
849 			break;
850 		}
851 		if (space != 0) {
852 			const uint8_t *data_next;
853 			/*
854 			 * Block straddles buffers, split references.
855 			 */
856 			data_next = mtod(m, const uint8_t *);
857 			KASSERT(m->m_len >= sizeof(uint32_t) - space,
858 				("not enough data in following buffer, "
859 				"m_len %u need %zu\n", m->m_len,
860 				sizeof(uint32_t) - space));
861 			switch (space) {
862 			case 1:
863 				l ^= get_le32_split(data[0], data_next[0],
864 					data_next[1], data_next[2]);
865 				data = data_next + 3;
866 				space = m->m_len - 3;
867 				break;
868 			case 2:
869 				l ^= get_le32_split(data[0], data[1],
870 					data_next[0], data_next[1]);
871 				data = data_next + 2;
872 				space = m->m_len - 2;
873 				break;
874 			case 3:
875 				l ^= get_le32_split(data[0], data[1],
876 					data[2], data_next[0]);
877 				data = data_next + 1;
878 				space = m->m_len - 1;
879 				break;
880 			}
881 			michael_block(l, r);
882 			data_len -= sizeof(uint32_t);
883 		} else {
884 			/*
885 			 * Setup for next buffer.
886 			 */
887 			data = mtod(m, const uint8_t *);
888 			space = m->m_len;
889 		}
890 	}
891 	/*
892 	 * Catch degenerate cases like mbuf[4*n+1 bytes] followed by
893 	 * mbuf[2 bytes].  I don't believe these should happen; if they
894 	 * do then we'll need more involved logic.
895 	 */
896 	KASSERT(data_len <= space,
897 	    ("not enough data, data_len %zu space %u\n", data_len, space));
898 
899 	/* Last block and padding (0x5a, 4..7 x 0) */
900 	switch (data_len) {
901 	case 0:
902 		l ^= get_le32_split(0x5a, 0, 0, 0);
903 		break;
904 	case 1:
905 		l ^= get_le32_split(data[0], 0x5a, 0, 0);
906 		break;
907 	case 2:
908 		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
909 		break;
910 	case 3:
911 		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
912 		break;
913 	}
914 	michael_block(l, r);
915 	/* l ^= 0; */
916 	michael_block(l, r);
917 
918 	put_le32(mic, l);
919 	put_le32(mic + 4, r);
920 }
921 
922 static int
923 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
924 	struct mbuf *m, int hdrlen)
925 {
926 	struct ieee80211_frame *wh;
927 	uint8_t icv[IEEE80211_WEP_CRCLEN];
928 
929 	ctx->tc_vap->iv_stats.is_crypto_tkip++;
930 
931 	wh = mtod(m, struct ieee80211_frame *);
932 	if (!ctx->tx_phase1_done) {
933 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
934 				   (u32)(key->wk_keytsc >> 16));
935 		ctx->tx_phase1_done = 1;
936 	}
937 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
938 		(u16) key->wk_keytsc);
939 
940 	wep_encrypt(ctx->tx_rc4key,
941 		m, hdrlen + tkip.ic_header,
942 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
943 		icv);
944 	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
945 
946 	key->wk_keytsc++;
947 	if ((u16)(key->wk_keytsc) == 0)
948 		ctx->tx_phase1_done = 0;
949 	return 1;
950 }
951 
952 static int
953 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
954 	struct mbuf *m, int hdrlen)
955 {
956 	struct ieee80211_frame *wh;
957 	struct ieee80211vap *vap = ctx->tc_vap;
958 	u32 iv32;
959 	u16 iv16;
960 	u8 tid;
961 
962 	vap->iv_stats.is_crypto_tkip++;
963 
964 	wh = mtod(m, struct ieee80211_frame *);
965 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
966 	iv16 = (u16) ctx->rx_rsc;
967 	iv32 = (u32) (ctx->rx_rsc >> 16);
968 
969 	tid = ieee80211_gettid(wh);
970 	if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16) || !ctx->rx_phase1_done) {
971 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
972 			wh->i_addr2, iv32);
973 		ctx->rx_phase1_done = 1;
974 	}
975 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
976 
977 	/* NB: m is unstripped; deduct headers + ICV to get payload */
978 	if (wep_decrypt(ctx->rx_rc4key,
979 		m, hdrlen + tkip.ic_header,
980 	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
981 		if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16)) {
982 			/* Previously cached Phase1 result was already lost, so
983 			 * it needs to be recalculated for the next packet. */
984 			ctx->rx_phase1_done = 0;
985 		}
986 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
987 		    "%s", "TKIP ICV mismatch on decrypt");
988 		vap->iv_stats.is_rx_tkipicv++;
989 		return 0;
990 	}
991 	return 1;
992 }
993 
994 /*
995  * Module glue.
996  */
997 IEEE80211_CRYPTO_MODULE(tkip, 1);
998