xref: /freebsd/sys/net80211/ieee80211_crypto_ccmp.c (revision c7a063741720ef81d4caa4613242579d12f1d605)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * IEEE 802.11i AES-CCMP crypto support.
33  *
34  * Part of this module is derived from similar code in the Host
35  * AP driver. The code is used with the consent of the author and
36  * it's license is included below.
37  */
38 #include "opt_wlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/module.h>
46 
47 #include <sys/socket.h>
48 
49 #include <net/if.h>
50 #include <net/if_media.h>
51 #include <net/ethernet.h>
52 
53 #include <net80211/ieee80211_var.h>
54 
55 #include <crypto/rijndael/rijndael.h>
56 
57 #define AES_BLOCK_LEN 16
58 
59 struct ccmp_ctx {
60 	struct ieee80211vap *cc_vap;	/* for diagnostics+statistics */
61 	struct ieee80211com *cc_ic;
62 	rijndael_ctx	     cc_aes;
63 };
64 
65 static	void *ccmp_attach(struct ieee80211vap *, struct ieee80211_key *);
66 static	void ccmp_detach(struct ieee80211_key *);
67 static	int ccmp_setkey(struct ieee80211_key *);
68 static	void ccmp_setiv(struct ieee80211_key *, uint8_t *);
69 static	int ccmp_encap(struct ieee80211_key *, struct mbuf *);
70 static	int ccmp_decap(struct ieee80211_key *, struct mbuf *, int);
71 static	int ccmp_enmic(struct ieee80211_key *, struct mbuf *, int);
72 static	int ccmp_demic(struct ieee80211_key *, struct mbuf *, int);
73 
74 static const struct ieee80211_cipher ccmp = {
75 	.ic_name	= "AES-CCM",
76 	.ic_cipher	= IEEE80211_CIPHER_AES_CCM,
77 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
78 			  IEEE80211_WEP_EXTIVLEN,
79 	.ic_trailer	= IEEE80211_WEP_MICLEN,
80 	.ic_miclen	= 0,
81 	.ic_attach	= ccmp_attach,
82 	.ic_detach	= ccmp_detach,
83 	.ic_setkey	= ccmp_setkey,
84 	.ic_setiv	= ccmp_setiv,
85 	.ic_encap	= ccmp_encap,
86 	.ic_decap	= ccmp_decap,
87 	.ic_enmic	= ccmp_enmic,
88 	.ic_demic	= ccmp_demic,
89 };
90 
91 static	int ccmp_encrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
92 static	int ccmp_decrypt(struct ieee80211_key *, u_int64_t pn,
93 		struct mbuf *, int hdrlen);
94 
95 /* number of references from net80211 layer */
96 static	int nrefs = 0;
97 
98 static void *
99 ccmp_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
100 {
101 	struct ccmp_ctx *ctx;
102 
103 	ctx = (struct ccmp_ctx *) IEEE80211_MALLOC(sizeof(struct ccmp_ctx),
104 		M_80211_CRYPTO, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
105 	if (ctx == NULL) {
106 		vap->iv_stats.is_crypto_nomem++;
107 		return NULL;
108 	}
109 	ctx->cc_vap = vap;
110 	ctx->cc_ic = vap->iv_ic;
111 	nrefs++;			/* NB: we assume caller locking */
112 	return ctx;
113 }
114 
115 static void
116 ccmp_detach(struct ieee80211_key *k)
117 {
118 	struct ccmp_ctx *ctx = k->wk_private;
119 
120 	IEEE80211_FREE(ctx, M_80211_CRYPTO);
121 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
122 	nrefs--;			/* NB: we assume caller locking */
123 }
124 
125 static int
126 ccmp_setkey(struct ieee80211_key *k)
127 {
128 	struct ccmp_ctx *ctx = k->wk_private;
129 
130 	if (k->wk_keylen != (128/NBBY)) {
131 		IEEE80211_DPRINTF(ctx->cc_vap, IEEE80211_MSG_CRYPTO,
132 			"%s: Invalid key length %u, expecting %u\n",
133 			__func__, k->wk_keylen, 128/NBBY);
134 		return 0;
135 	}
136 	if (k->wk_flags & IEEE80211_KEY_SWENCRYPT)
137 		rijndael_set_key(&ctx->cc_aes, k->wk_key, k->wk_keylen*NBBY);
138 	return 1;
139 }
140 
141 static void
142 ccmp_setiv(struct ieee80211_key *k, uint8_t *ivp)
143 {
144 	struct ccmp_ctx *ctx = k->wk_private;
145 	struct ieee80211vap *vap = ctx->cc_vap;
146 	uint8_t keyid;
147 
148 	keyid = ieee80211_crypto_get_keyid(vap, k) << 6;
149 
150 	k->wk_keytsc++;
151 	ivp[0] = k->wk_keytsc >> 0;		/* PN0 */
152 	ivp[1] = k->wk_keytsc >> 8;		/* PN1 */
153 	ivp[2] = 0;				/* Reserved */
154 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
155 	ivp[4] = k->wk_keytsc >> 16;		/* PN2 */
156 	ivp[5] = k->wk_keytsc >> 24;		/* PN3 */
157 	ivp[6] = k->wk_keytsc >> 32;		/* PN4 */
158 	ivp[7] = k->wk_keytsc >> 40;		/* PN5 */
159 }
160 
161 /*
162  * Add privacy headers appropriate for the specified key.
163  */
164 static int
165 ccmp_encap(struct ieee80211_key *k, struct mbuf *m)
166 {
167 	const struct ieee80211_frame *wh;
168 	struct ccmp_ctx *ctx = k->wk_private;
169 	struct ieee80211com *ic = ctx->cc_ic;
170 	uint8_t *ivp;
171 	int hdrlen;
172 	int is_mgmt;
173 
174 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
175 	wh = mtod(m, const struct ieee80211_frame *);
176 	is_mgmt = IEEE80211_IS_MGMT(wh);
177 
178 	/*
179 	 * Check to see if we need to insert IV/MIC.
180 	 *
181 	 * Some offload devices don't require the IV to be inserted
182 	 * as part of the hardware encryption.
183 	 */
184 	if (is_mgmt && (k->wk_flags & IEEE80211_KEY_NOIVMGT))
185 		return 1;
186 	if ((! is_mgmt) && (k->wk_flags & IEEE80211_KEY_NOIV))
187 		return 1;
188 
189 	/*
190 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
191 	 */
192 	M_PREPEND(m, ccmp.ic_header, IEEE80211_M_NOWAIT);
193 	if (m == NULL)
194 		return 0;
195 	ivp = mtod(m, uint8_t *);
196 	ovbcopy(ivp + ccmp.ic_header, ivp, hdrlen);
197 	ivp += hdrlen;
198 
199 	ccmp_setiv(k, ivp);
200 
201 	/*
202 	 * Finally, do software encrypt if needed.
203 	 */
204 	if ((k->wk_flags & IEEE80211_KEY_SWENCRYPT) &&
205 	    !ccmp_encrypt(k, m, hdrlen))
206 		return 0;
207 
208 	return 1;
209 }
210 
211 /*
212  * Add MIC to the frame as needed.
213  */
214 static int
215 ccmp_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
216 {
217 
218 	return 1;
219 }
220 
221 static __inline uint64_t
222 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
223 {
224 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
225 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
226 	return (((uint64_t)iv16) << 32) | iv32;
227 }
228 
229 /*
230  * Validate and strip privacy headers (and trailer) for a
231  * received frame. The specified key should be correct but
232  * is also verified.
233  */
234 static int
235 ccmp_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
236 {
237 	const struct ieee80211_rx_stats *rxs;
238 	struct ccmp_ctx *ctx = k->wk_private;
239 	struct ieee80211vap *vap = ctx->cc_vap;
240 	struct ieee80211_frame *wh;
241 	uint8_t *ivp, tid;
242 	uint64_t pn;
243 
244 	rxs = ieee80211_get_rx_params_ptr(m);
245 
246 	if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP))
247 		goto finish;
248 
249 	/*
250 	 * Header should have extended IV and sequence number;
251 	 * verify the former and validate the latter.
252 	 */
253 	wh = mtod(m, struct ieee80211_frame *);
254 	ivp = mtod(m, uint8_t *) + hdrlen;
255 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
256 		/*
257 		 * No extended IV; discard frame.
258 		 */
259 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
260 			"%s", "missing ExtIV for AES-CCM cipher");
261 		vap->iv_stats.is_rx_ccmpformat++;
262 		return 0;
263 	}
264 	tid = ieee80211_gettid(wh);
265 	pn = READ_6(ivp[0], ivp[1], ivp[4], ivp[5], ivp[6], ivp[7]);
266 	if (pn <= k->wk_keyrsc[tid] &&
267 	    (k->wk_flags & IEEE80211_KEY_NOREPLAY) == 0) {
268 		/*
269 		 * Replay violation.
270 		 */
271 		ieee80211_notify_replay_failure(vap, wh, k, pn, tid);
272 		vap->iv_stats.is_rx_ccmpreplay++;
273 		return 0;
274 	}
275 
276 	/*
277 	 * Check if the device handled the decrypt in hardware.
278 	 * If so we just strip the header; otherwise we need to
279 	 * handle the decrypt in software.  Note that for the
280 	 * latter we leave the header in place for use in the
281 	 * decryption work.
282 	 */
283 	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
284 	    !ccmp_decrypt(k, pn, m, hdrlen))
285 		return 0;
286 
287 finish:
288 	/*
289 	 * Copy up 802.11 header and strip crypto bits.
290 	 */
291 	if (! ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP))) {
292 		ovbcopy(mtod(m, void *), mtod(m, uint8_t *) + ccmp.ic_header,
293 		    hdrlen);
294 		m_adj(m, ccmp.ic_header);
295 	}
296 
297 	/*
298 	 * XXX TODO: see if MMIC_STRIP also covers CCMP MIC trailer.
299 	 */
300 	if (! ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_MMIC_STRIP)))
301 		m_adj(m, -ccmp.ic_trailer);
302 
303 	/*
304 	 * Ok to update rsc now.
305 	 */
306 	if (! ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP))) {
307 		k->wk_keyrsc[tid] = pn;
308 	}
309 
310 	return 1;
311 }
312 
313 /*
314  * Verify and strip MIC from the frame.
315  */
316 static int
317 ccmp_demic(struct ieee80211_key *k, struct mbuf *m, int force)
318 {
319 	return 1;
320 }
321 
322 static __inline void
323 xor_block(uint8_t *b, const uint8_t *a, size_t len)
324 {
325 	int i;
326 	for (i = 0; i < len; i++)
327 		b[i] ^= a[i];
328 }
329 
330 /*
331  * Host AP crypt: host-based CCMP encryption implementation for Host AP driver
332  *
333  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
334  *
335  * This program is free software; you can redistribute it and/or modify
336  * it under the terms of the GNU General Public License version 2 as
337  * published by the Free Software Foundation. See README and COPYING for
338  * more details.
339  *
340  * Alternatively, this software may be distributed under the terms of BSD
341  * license.
342  */
343 
344 static void
345 ccmp_init_blocks(rijndael_ctx *ctx, struct ieee80211_frame *wh,
346 	u_int64_t pn, size_t dlen,
347 	uint8_t b0[AES_BLOCK_LEN], uint8_t aad[2 * AES_BLOCK_LEN],
348 	uint8_t auth[AES_BLOCK_LEN], uint8_t s0[AES_BLOCK_LEN])
349 {
350 #define	IS_QOS_DATA(wh)	IEEE80211_QOS_HAS_SEQ(wh)
351 
352 	/* CCM Initial Block:
353 	 * Flag (Include authentication header, M=3 (8-octet MIC),
354 	 *       L=1 (2-octet Dlen))
355 	 * Nonce: 0x00 | A2 | PN
356 	 * Dlen */
357 	b0[0] = 0x59;
358 	/* NB: b0[1] set below */
359 	IEEE80211_ADDR_COPY(b0 + 2, wh->i_addr2);
360 	b0[8] = pn >> 40;
361 	b0[9] = pn >> 32;
362 	b0[10] = pn >> 24;
363 	b0[11] = pn >> 16;
364 	b0[12] = pn >> 8;
365 	b0[13] = pn >> 0;
366 	b0[14] = (dlen >> 8) & 0xff;
367 	b0[15] = dlen & 0xff;
368 
369 	/* AAD:
370 	 * FC with bits 4..6 and 11..13 masked to zero; 14 is always one
371 	 * A1 | A2 | A3
372 	 * SC with bits 4..15 (seq#) masked to zero
373 	 * A4 (if present)
374 	 * QC (if present)
375 	 */
376 	aad[0] = 0;	/* AAD length >> 8 */
377 	/* NB: aad[1] set below */
378 	aad[2] = wh->i_fc[0] & 0x8f;	/* XXX magic #s */
379 	aad[3] = wh->i_fc[1] & 0xc7;	/* XXX magic #s */
380 	/* NB: we know 3 addresses are contiguous */
381 	memcpy(aad + 4, wh->i_addr1, 3 * IEEE80211_ADDR_LEN);
382 	aad[22] = wh->i_seq[0] & IEEE80211_SEQ_FRAG_MASK;
383 	aad[23] = 0; /* all bits masked */
384 	/*
385 	 * Construct variable-length portion of AAD based
386 	 * on whether this is a 4-address frame/QOS frame.
387 	 * We always zero-pad to 32 bytes before running it
388 	 * through the cipher.
389 	 *
390 	 * We also fill in the priority bits of the CCM
391 	 * initial block as we know whether or not we have
392 	 * a QOS frame.
393 	 */
394 	if (IEEE80211_IS_DSTODS(wh)) {
395 		IEEE80211_ADDR_COPY(aad + 24,
396 			((struct ieee80211_frame_addr4 *)wh)->i_addr4);
397 		if (IS_QOS_DATA(wh)) {
398 			struct ieee80211_qosframe_addr4 *qwh4 =
399 				(struct ieee80211_qosframe_addr4 *) wh;
400 			aad[30] = qwh4->i_qos[0] & 0x0f;/* just priority bits */
401 			aad[31] = 0;
402 			b0[1] = aad[30];
403 			aad[1] = 22 + IEEE80211_ADDR_LEN + 2;
404 		} else {
405 			*(uint16_t *)&aad[30] = 0;
406 			b0[1] = 0;
407 			aad[1] = 22 + IEEE80211_ADDR_LEN;
408 		}
409 	} else {
410 		if (IS_QOS_DATA(wh)) {
411 			struct ieee80211_qosframe *qwh =
412 				(struct ieee80211_qosframe*) wh;
413 			aad[24] = qwh->i_qos[0] & 0x0f;	/* just priority bits */
414 			aad[25] = 0;
415 			b0[1] = aad[24];
416 			aad[1] = 22 + 2;
417 		} else {
418 			*(uint16_t *)&aad[24] = 0;
419 			b0[1] = 0;
420 			aad[1] = 22;
421 		}
422 		*(uint16_t *)&aad[26] = 0;
423 		*(uint32_t *)&aad[28] = 0;
424 	}
425 
426 	/* Start with the first block and AAD */
427 	rijndael_encrypt(ctx, b0, auth);
428 	xor_block(auth, aad, AES_BLOCK_LEN);
429 	rijndael_encrypt(ctx, auth, auth);
430 	xor_block(auth, &aad[AES_BLOCK_LEN], AES_BLOCK_LEN);
431 	rijndael_encrypt(ctx, auth, auth);
432 	b0[0] &= 0x07;
433 	b0[14] = b0[15] = 0;
434 	rijndael_encrypt(ctx, b0, s0);
435 #undef	IS_QOS_DATA
436 }
437 
438 #define	CCMP_ENCRYPT(_i, _b, _b0, _pos, _e, _len) do {	\
439 	/* Authentication */				\
440 	xor_block(_b, _pos, _len);			\
441 	rijndael_encrypt(&ctx->cc_aes, _b, _b);		\
442 	/* Encryption, with counter */			\
443 	_b0[14] = (_i >> 8) & 0xff;			\
444 	_b0[15] = _i & 0xff;				\
445 	rijndael_encrypt(&ctx->cc_aes, _b0, _e);	\
446 	xor_block(_pos, _e, _len);			\
447 } while (0)
448 
449 static int
450 ccmp_encrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
451 {
452 	struct ccmp_ctx *ctx = key->wk_private;
453 	struct ieee80211_frame *wh;
454 	struct mbuf *m = m0;
455 	int data_len, i, space;
456 	uint8_t aad[2 * AES_BLOCK_LEN], b0[AES_BLOCK_LEN], b[AES_BLOCK_LEN],
457 		e[AES_BLOCK_LEN], s0[AES_BLOCK_LEN];
458 	uint8_t *pos;
459 
460 	ctx->cc_vap->iv_stats.is_crypto_ccmp++;
461 
462 	wh = mtod(m, struct ieee80211_frame *);
463 	data_len = m->m_pkthdr.len - (hdrlen + ccmp.ic_header);
464 	ccmp_init_blocks(&ctx->cc_aes, wh, key->wk_keytsc,
465 		data_len, b0, aad, b, s0);
466 
467 	i = 1;
468 	pos = mtod(m, uint8_t *) + hdrlen + ccmp.ic_header;
469 	/* NB: assumes header is entirely in first mbuf */
470 	space = m->m_len - (hdrlen + ccmp.ic_header);
471 	for (;;) {
472 		if (space > data_len)
473 			space = data_len;
474 		/*
475 		 * Do full blocks.
476 		 */
477 		while (space >= AES_BLOCK_LEN) {
478 			CCMP_ENCRYPT(i, b, b0, pos, e, AES_BLOCK_LEN);
479 			pos += AES_BLOCK_LEN, space -= AES_BLOCK_LEN;
480 			data_len -= AES_BLOCK_LEN;
481 			i++;
482 		}
483 		if (data_len <= 0)		/* no more data */
484 			break;
485 		m = m->m_next;
486 		if (m == NULL) {		/* last buffer */
487 			if (space != 0) {
488 				/*
489 				 * Short last block.
490 				 */
491 				CCMP_ENCRYPT(i, b, b0, pos, e, space);
492 			}
493 			break;
494 		}
495 		if (space != 0) {
496 			uint8_t *pos_next;
497 			int space_next;
498 			int len, dl, sp;
499 			struct mbuf *n;
500 
501 			/*
502 			 * Block straddles one or more mbufs, gather data
503 			 * into the block buffer b, apply the cipher, then
504 			 * scatter the results back into the mbuf chain.
505 			 * The buffer will automatically get space bytes
506 			 * of data at offset 0 copied in+out by the
507 			 * CCMP_ENCRYPT request so we must take care of
508 			 * the remaining data.
509 			 */
510 			n = m;
511 			dl = data_len;
512 			sp = space;
513 			for (;;) {
514 				pos_next = mtod(n, uint8_t *);
515 				len = min(dl, AES_BLOCK_LEN);
516 				space_next = len > sp ? len - sp : 0;
517 				if (n->m_len >= space_next) {
518 					/*
519 					 * This mbuf has enough data; just grab
520 					 * what we need and stop.
521 					 */
522 					xor_block(b+sp, pos_next, space_next);
523 					break;
524 				}
525 				/*
526 				 * This mbuf's contents are insufficient,
527 				 * take 'em all and prepare to advance to
528 				 * the next mbuf.
529 				 */
530 				xor_block(b+sp, pos_next, n->m_len);
531 				sp += n->m_len, dl -= n->m_len;
532 				n = n->m_next;
533 				if (n == NULL)
534 					break;
535 			}
536 
537 			CCMP_ENCRYPT(i, b, b0, pos, e, space);
538 
539 			/* NB: just like above, but scatter data to mbufs */
540 			dl = data_len;
541 			sp = space;
542 			for (;;) {
543 				pos_next = mtod(m, uint8_t *);
544 				len = min(dl, AES_BLOCK_LEN);
545 				space_next = len > sp ? len - sp : 0;
546 				if (m->m_len >= space_next) {
547 					xor_block(pos_next, e+sp, space_next);
548 					break;
549 				}
550 				xor_block(pos_next, e+sp, m->m_len);
551 				sp += m->m_len, dl -= m->m_len;
552 				m = m->m_next;
553 				if (m == NULL)
554 					goto done;
555 			}
556 			/*
557 			 * Do bookkeeping.  m now points to the last mbuf
558 			 * we grabbed data from.  We know we consumed a
559 			 * full block of data as otherwise we'd have hit
560 			 * the end of the mbuf chain, so deduct from data_len.
561 			 * Otherwise advance the block number (i) and setup
562 			 * pos+space to reflect contents of the new mbuf.
563 			 */
564 			data_len -= AES_BLOCK_LEN;
565 			i++;
566 			pos = pos_next + space_next;
567 			space = m->m_len - space_next;
568 		} else {
569 			/*
570 			 * Setup for next buffer.
571 			 */
572 			pos = mtod(m, uint8_t *);
573 			space = m->m_len;
574 		}
575 	}
576 done:
577 	/* tack on MIC */
578 	xor_block(b, s0, ccmp.ic_trailer);
579 	return m_append(m0, ccmp.ic_trailer, b);
580 }
581 #undef CCMP_ENCRYPT
582 
583 #define	CCMP_DECRYPT(_i, _b, _b0, _pos, _a, _len) do {	\
584 	/* Decrypt, with counter */			\
585 	_b0[14] = (_i >> 8) & 0xff;			\
586 	_b0[15] = _i & 0xff;				\
587 	rijndael_encrypt(&ctx->cc_aes, _b0, _b);	\
588 	xor_block(_pos, _b, _len);			\
589 	/* Authentication */				\
590 	xor_block(_a, _pos, _len);			\
591 	rijndael_encrypt(&ctx->cc_aes, _a, _a);		\
592 } while (0)
593 
594 static int
595 ccmp_decrypt(struct ieee80211_key *key, u_int64_t pn, struct mbuf *m, int hdrlen)
596 {
597 	struct ccmp_ctx *ctx = key->wk_private;
598 	struct ieee80211vap *vap = ctx->cc_vap;
599 	struct ieee80211_frame *wh;
600 	uint8_t aad[2 * AES_BLOCK_LEN];
601 	uint8_t b0[AES_BLOCK_LEN], b[AES_BLOCK_LEN], a[AES_BLOCK_LEN];
602 	uint8_t mic[AES_BLOCK_LEN];
603 	size_t data_len;
604 	int i;
605 	uint8_t *pos;
606 	u_int space;
607 
608 	ctx->cc_vap->iv_stats.is_crypto_ccmp++;
609 
610 	wh = mtod(m, struct ieee80211_frame *);
611 	data_len = m->m_pkthdr.len - (hdrlen + ccmp.ic_header + ccmp.ic_trailer);
612 	ccmp_init_blocks(&ctx->cc_aes, wh, pn, data_len, b0, aad, a, b);
613 	m_copydata(m, m->m_pkthdr.len - ccmp.ic_trailer, ccmp.ic_trailer, mic);
614 	xor_block(mic, b, ccmp.ic_trailer);
615 
616 	i = 1;
617 	pos = mtod(m, uint8_t *) + hdrlen + ccmp.ic_header;
618 	space = m->m_len - (hdrlen + ccmp.ic_header);
619 	for (;;) {
620 		if (space > data_len)
621 			space = data_len;
622 		while (space >= AES_BLOCK_LEN) {
623 			CCMP_DECRYPT(i, b, b0, pos, a, AES_BLOCK_LEN);
624 			pos += AES_BLOCK_LEN, space -= AES_BLOCK_LEN;
625 			data_len -= AES_BLOCK_LEN;
626 			i++;
627 		}
628 		if (data_len <= 0)		/* no more data */
629 			break;
630 		m = m->m_next;
631 		if (m == NULL) {		/* last buffer */
632 			if (space != 0)		/* short last block */
633 				CCMP_DECRYPT(i, b, b0, pos, a, space);
634 			break;
635 		}
636 		if (space != 0) {
637 			uint8_t *pos_next;
638 			u_int space_next;
639 			u_int len;
640 
641 			/*
642 			 * Block straddles buffers, split references.  We
643 			 * do not handle splits that require >2 buffers
644 			 * since rx'd frames are never badly fragmented
645 			 * because drivers typically recv in clusters.
646 			 */
647 			pos_next = mtod(m, uint8_t *);
648 			len = min(data_len, AES_BLOCK_LEN);
649 			space_next = len > space ? len - space : 0;
650 			KASSERT(m->m_len >= space_next,
651 				("not enough data in following buffer, "
652 				"m_len %u need %u\n", m->m_len, space_next));
653 
654 			xor_block(b+space, pos_next, space_next);
655 			CCMP_DECRYPT(i, b, b0, pos, a, space);
656 			xor_block(pos_next, b+space, space_next);
657 			data_len -= len;
658 			i++;
659 
660 			pos = pos_next + space_next;
661 			space = m->m_len - space_next;
662 		} else {
663 			/*
664 			 * Setup for next buffer.
665 			 */
666 			pos = mtod(m, uint8_t *);
667 			space = m->m_len;
668 		}
669 	}
670 	if (memcmp(mic, a, ccmp.ic_trailer) != 0) {
671 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
672 		    "%s", "AES-CCM decrypt failed; MIC mismatch");
673 		vap->iv_stats.is_rx_ccmpmic++;
674 		return 0;
675 	}
676 	return 1;
677 }
678 #undef CCMP_DECRYPT
679 
680 /*
681  * Module glue.
682  */
683 IEEE80211_CRYPTO_MODULE(ccmp, 1);
684