xref: /freebsd/sys/net80211/ieee80211_crypto_ccmp.c (revision b2d48be1bc7df45ddd13b143a160d0acb5a383c5)
1 /*-
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11i AES-CCMP crypto support.
31  *
32  * Part of this module is derived from similar code in the Host
33  * AP driver. The code is used with the consent of the author and
34  * it's license is included below.
35  */
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 
45 #include <sys/socket.h>
46 
47 #include <net/if.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 
53 #include <crypto/rijndael/rijndael.h>
54 
55 #define AES_BLOCK_LEN 16
56 
57 struct ccmp_ctx {
58 	struct ieee80211vap *cc_vap;	/* for diagnostics+statistics */
59 	struct ieee80211com *cc_ic;
60 	rijndael_ctx	     cc_aes;
61 };
62 
63 static	void *ccmp_attach(struct ieee80211vap *, struct ieee80211_key *);
64 static	void ccmp_detach(struct ieee80211_key *);
65 static	int ccmp_setkey(struct ieee80211_key *);
66 static	void ccmp_setiv(struct ieee80211_key *, uint8_t *);
67 static	int ccmp_encap(struct ieee80211_key *, struct mbuf *);
68 static	int ccmp_decap(struct ieee80211_key *, struct mbuf *, int);
69 static	int ccmp_enmic(struct ieee80211_key *, struct mbuf *, int);
70 static	int ccmp_demic(struct ieee80211_key *, struct mbuf *, int);
71 
72 static const struct ieee80211_cipher ccmp = {
73 	.ic_name	= "AES-CCM",
74 	.ic_cipher	= IEEE80211_CIPHER_AES_CCM,
75 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
76 			  IEEE80211_WEP_EXTIVLEN,
77 	.ic_trailer	= IEEE80211_WEP_MICLEN,
78 	.ic_miclen	= 0,
79 	.ic_attach	= ccmp_attach,
80 	.ic_detach	= ccmp_detach,
81 	.ic_setkey	= ccmp_setkey,
82 	.ic_setiv	= ccmp_setiv,
83 	.ic_encap	= ccmp_encap,
84 	.ic_decap	= ccmp_decap,
85 	.ic_enmic	= ccmp_enmic,
86 	.ic_demic	= ccmp_demic,
87 };
88 
89 static	int ccmp_encrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
90 static	int ccmp_decrypt(struct ieee80211_key *, u_int64_t pn,
91 		struct mbuf *, int hdrlen);
92 
93 /* number of references from net80211 layer */
94 static	int nrefs = 0;
95 
96 static void *
97 ccmp_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
98 {
99 	struct ccmp_ctx *ctx;
100 
101 	ctx = (struct ccmp_ctx *) IEEE80211_MALLOC(sizeof(struct ccmp_ctx),
102 		M_80211_CRYPTO, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
103 	if (ctx == NULL) {
104 		vap->iv_stats.is_crypto_nomem++;
105 		return NULL;
106 	}
107 	ctx->cc_vap = vap;
108 	ctx->cc_ic = vap->iv_ic;
109 	nrefs++;			/* NB: we assume caller locking */
110 	return ctx;
111 }
112 
113 static void
114 ccmp_detach(struct ieee80211_key *k)
115 {
116 	struct ccmp_ctx *ctx = k->wk_private;
117 
118 	IEEE80211_FREE(ctx, M_80211_CRYPTO);
119 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
120 	nrefs--;			/* NB: we assume caller locking */
121 }
122 
123 static int
124 ccmp_setkey(struct ieee80211_key *k)
125 {
126 	struct ccmp_ctx *ctx = k->wk_private;
127 
128 	if (k->wk_keylen != (128/NBBY)) {
129 		IEEE80211_DPRINTF(ctx->cc_vap, IEEE80211_MSG_CRYPTO,
130 			"%s: Invalid key length %u, expecting %u\n",
131 			__func__, k->wk_keylen, 128/NBBY);
132 		return 0;
133 	}
134 	if (k->wk_flags & IEEE80211_KEY_SWENCRYPT)
135 		rijndael_set_key(&ctx->cc_aes, k->wk_key, k->wk_keylen*NBBY);
136 	return 1;
137 }
138 
139 static void
140 ccmp_setiv(struct ieee80211_key *k, uint8_t *ivp)
141 {
142 	struct ccmp_ctx *ctx = k->wk_private;
143 	struct ieee80211vap *vap = ctx->cc_vap;
144 	uint8_t keyid;
145 
146 	keyid = ieee80211_crypto_get_keyid(vap, k) << 6;
147 
148 	k->wk_keytsc++;
149 	ivp[0] = k->wk_keytsc >> 0;		/* PN0 */
150 	ivp[1] = k->wk_keytsc >> 8;		/* PN1 */
151 	ivp[2] = 0;				/* Reserved */
152 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
153 	ivp[4] = k->wk_keytsc >> 16;		/* PN2 */
154 	ivp[5] = k->wk_keytsc >> 24;		/* PN3 */
155 	ivp[6] = k->wk_keytsc >> 32;		/* PN4 */
156 	ivp[7] = k->wk_keytsc >> 40;		/* PN5 */
157 }
158 
159 /*
160  * Add privacy headers appropriate for the specified key.
161  */
162 static int
163 ccmp_encap(struct ieee80211_key *k, struct mbuf *m)
164 {
165 	struct ccmp_ctx *ctx = k->wk_private;
166 	struct ieee80211com *ic = ctx->cc_ic;
167 	uint8_t *ivp;
168 	int hdrlen;
169 
170 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
171 
172 	/*
173 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
174 	 */
175 	M_PREPEND(m, ccmp.ic_header, M_NOWAIT);
176 	if (m == NULL)
177 		return 0;
178 	ivp = mtod(m, uint8_t *);
179 	ovbcopy(ivp + ccmp.ic_header, ivp, hdrlen);
180 	ivp += hdrlen;
181 
182 	ccmp_setiv(k, ivp);
183 
184 	/*
185 	 * Finally, do software encrypt if needed.
186 	 */
187 	if ((k->wk_flags & IEEE80211_KEY_SWENCRYPT) &&
188 	    !ccmp_encrypt(k, m, hdrlen))
189 		return 0;
190 
191 	return 1;
192 }
193 
194 /*
195  * Add MIC to the frame as needed.
196  */
197 static int
198 ccmp_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
199 {
200 
201 	return 1;
202 }
203 
204 static __inline uint64_t
205 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
206 {
207 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
208 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
209 	return (((uint64_t)iv16) << 32) | iv32;
210 }
211 
212 /*
213  * Validate and strip privacy headers (and trailer) for a
214  * received frame. The specified key should be correct but
215  * is also verified.
216  */
217 static int
218 ccmp_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
219 {
220 	struct ccmp_ctx *ctx = k->wk_private;
221 	struct ieee80211vap *vap = ctx->cc_vap;
222 	struct ieee80211_frame *wh;
223 	uint8_t *ivp, tid;
224 	uint64_t pn;
225 
226 	/*
227 	 * Header should have extended IV and sequence number;
228 	 * verify the former and validate the latter.
229 	 */
230 	wh = mtod(m, struct ieee80211_frame *);
231 	ivp = mtod(m, uint8_t *) + hdrlen;
232 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
233 		/*
234 		 * No extended IV; discard frame.
235 		 */
236 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
237 			"%s", "missing ExtIV for AES-CCM cipher");
238 		vap->iv_stats.is_rx_ccmpformat++;
239 		return 0;
240 	}
241 	tid = ieee80211_gettid(wh);
242 	pn = READ_6(ivp[0], ivp[1], ivp[4], ivp[5], ivp[6], ivp[7]);
243 	if (pn <= k->wk_keyrsc[tid] &&
244 	    (k->wk_flags & IEEE80211_KEY_NOREPLAY) == 0) {
245 		/*
246 		 * Replay violation.
247 		 */
248 		ieee80211_notify_replay_failure(vap, wh, k, pn, tid);
249 		vap->iv_stats.is_rx_ccmpreplay++;
250 		return 0;
251 	}
252 
253 	/*
254 	 * Check if the device handled the decrypt in hardware.
255 	 * If so we just strip the header; otherwise we need to
256 	 * handle the decrypt in software.  Note that for the
257 	 * latter we leave the header in place for use in the
258 	 * decryption work.
259 	 */
260 	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
261 	    !ccmp_decrypt(k, pn, m, hdrlen))
262 		return 0;
263 
264 	/*
265 	 * Copy up 802.11 header and strip crypto bits.
266 	 */
267 	ovbcopy(mtod(m, void *), mtod(m, uint8_t *) + ccmp.ic_header, hdrlen);
268 	m_adj(m, ccmp.ic_header);
269 	m_adj(m, -ccmp.ic_trailer);
270 
271 	/*
272 	 * Ok to update rsc now.
273 	 */
274 	k->wk_keyrsc[tid] = pn;
275 
276 	return 1;
277 }
278 
279 /*
280  * Verify and strip MIC from the frame.
281  */
282 static int
283 ccmp_demic(struct ieee80211_key *k, struct mbuf *m, int force)
284 {
285 	return 1;
286 }
287 
288 static __inline void
289 xor_block(uint8_t *b, const uint8_t *a, size_t len)
290 {
291 	int i;
292 	for (i = 0; i < len; i++)
293 		b[i] ^= a[i];
294 }
295 
296 /*
297  * Host AP crypt: host-based CCMP encryption implementation for Host AP driver
298  *
299  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
300  *
301  * This program is free software; you can redistribute it and/or modify
302  * it under the terms of the GNU General Public License version 2 as
303  * published by the Free Software Foundation. See README and COPYING for
304  * more details.
305  *
306  * Alternatively, this software may be distributed under the terms of BSD
307  * license.
308  */
309 
310 static void
311 ccmp_init_blocks(rijndael_ctx *ctx, struct ieee80211_frame *wh,
312 	u_int64_t pn, size_t dlen,
313 	uint8_t b0[AES_BLOCK_LEN], uint8_t aad[2 * AES_BLOCK_LEN],
314 	uint8_t auth[AES_BLOCK_LEN], uint8_t s0[AES_BLOCK_LEN])
315 {
316 #define	IS_QOS_DATA(wh)	IEEE80211_QOS_HAS_SEQ(wh)
317 
318 	/* CCM Initial Block:
319 	 * Flag (Include authentication header, M=3 (8-octet MIC),
320 	 *       L=1 (2-octet Dlen))
321 	 * Nonce: 0x00 | A2 | PN
322 	 * Dlen */
323 	b0[0] = 0x59;
324 	/* NB: b0[1] set below */
325 	IEEE80211_ADDR_COPY(b0 + 2, wh->i_addr2);
326 	b0[8] = pn >> 40;
327 	b0[9] = pn >> 32;
328 	b0[10] = pn >> 24;
329 	b0[11] = pn >> 16;
330 	b0[12] = pn >> 8;
331 	b0[13] = pn >> 0;
332 	b0[14] = (dlen >> 8) & 0xff;
333 	b0[15] = dlen & 0xff;
334 
335 	/* AAD:
336 	 * FC with bits 4..6 and 11..13 masked to zero; 14 is always one
337 	 * A1 | A2 | A3
338 	 * SC with bits 4..15 (seq#) masked to zero
339 	 * A4 (if present)
340 	 * QC (if present)
341 	 */
342 	aad[0] = 0;	/* AAD length >> 8 */
343 	/* NB: aad[1] set below */
344 	aad[2] = wh->i_fc[0] & 0x8f;	/* XXX magic #s */
345 	aad[3] = wh->i_fc[1] & 0xc7;	/* XXX magic #s */
346 	/* NB: we know 3 addresses are contiguous */
347 	memcpy(aad + 4, wh->i_addr1, 3 * IEEE80211_ADDR_LEN);
348 	aad[22] = wh->i_seq[0] & IEEE80211_SEQ_FRAG_MASK;
349 	aad[23] = 0; /* all bits masked */
350 	/*
351 	 * Construct variable-length portion of AAD based
352 	 * on whether this is a 4-address frame/QOS frame.
353 	 * We always zero-pad to 32 bytes before running it
354 	 * through the cipher.
355 	 *
356 	 * We also fill in the priority bits of the CCM
357 	 * initial block as we know whether or not we have
358 	 * a QOS frame.
359 	 */
360 	if (IEEE80211_IS_DSTODS(wh)) {
361 		IEEE80211_ADDR_COPY(aad + 24,
362 			((struct ieee80211_frame_addr4 *)wh)->i_addr4);
363 		if (IS_QOS_DATA(wh)) {
364 			struct ieee80211_qosframe_addr4 *qwh4 =
365 				(struct ieee80211_qosframe_addr4 *) wh;
366 			aad[30] = qwh4->i_qos[0] & 0x0f;/* just priority bits */
367 			aad[31] = 0;
368 			b0[1] = aad[30];
369 			aad[1] = 22 + IEEE80211_ADDR_LEN + 2;
370 		} else {
371 			*(uint16_t *)&aad[30] = 0;
372 			b0[1] = 0;
373 			aad[1] = 22 + IEEE80211_ADDR_LEN;
374 		}
375 	} else {
376 		if (IS_QOS_DATA(wh)) {
377 			struct ieee80211_qosframe *qwh =
378 				(struct ieee80211_qosframe*) wh;
379 			aad[24] = qwh->i_qos[0] & 0x0f;	/* just priority bits */
380 			aad[25] = 0;
381 			b0[1] = aad[24];
382 			aad[1] = 22 + 2;
383 		} else {
384 			*(uint16_t *)&aad[24] = 0;
385 			b0[1] = 0;
386 			aad[1] = 22;
387 		}
388 		*(uint16_t *)&aad[26] = 0;
389 		*(uint32_t *)&aad[28] = 0;
390 	}
391 
392 	/* Start with the first block and AAD */
393 	rijndael_encrypt(ctx, b0, auth);
394 	xor_block(auth, aad, AES_BLOCK_LEN);
395 	rijndael_encrypt(ctx, auth, auth);
396 	xor_block(auth, &aad[AES_BLOCK_LEN], AES_BLOCK_LEN);
397 	rijndael_encrypt(ctx, auth, auth);
398 	b0[0] &= 0x07;
399 	b0[14] = b0[15] = 0;
400 	rijndael_encrypt(ctx, b0, s0);
401 #undef	IS_QOS_DATA
402 }
403 
404 #define	CCMP_ENCRYPT(_i, _b, _b0, _pos, _e, _len) do {	\
405 	/* Authentication */				\
406 	xor_block(_b, _pos, _len);			\
407 	rijndael_encrypt(&ctx->cc_aes, _b, _b);		\
408 	/* Encryption, with counter */			\
409 	_b0[14] = (_i >> 8) & 0xff;			\
410 	_b0[15] = _i & 0xff;				\
411 	rijndael_encrypt(&ctx->cc_aes, _b0, _e);	\
412 	xor_block(_pos, _e, _len);			\
413 } while (0)
414 
415 static int
416 ccmp_encrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
417 {
418 	struct ccmp_ctx *ctx = key->wk_private;
419 	struct ieee80211_frame *wh;
420 	struct mbuf *m = m0;
421 	int data_len, i, space;
422 	uint8_t aad[2 * AES_BLOCK_LEN], b0[AES_BLOCK_LEN], b[AES_BLOCK_LEN],
423 		e[AES_BLOCK_LEN], s0[AES_BLOCK_LEN];
424 	uint8_t *pos;
425 
426 	ctx->cc_vap->iv_stats.is_crypto_ccmp++;
427 
428 	wh = mtod(m, struct ieee80211_frame *);
429 	data_len = m->m_pkthdr.len - (hdrlen + ccmp.ic_header);
430 	ccmp_init_blocks(&ctx->cc_aes, wh, key->wk_keytsc,
431 		data_len, b0, aad, b, s0);
432 
433 	i = 1;
434 	pos = mtod(m, uint8_t *) + hdrlen + ccmp.ic_header;
435 	/* NB: assumes header is entirely in first mbuf */
436 	space = m->m_len - (hdrlen + ccmp.ic_header);
437 	for (;;) {
438 		if (space > data_len)
439 			space = data_len;
440 		/*
441 		 * Do full blocks.
442 		 */
443 		while (space >= AES_BLOCK_LEN) {
444 			CCMP_ENCRYPT(i, b, b0, pos, e, AES_BLOCK_LEN);
445 			pos += AES_BLOCK_LEN, space -= AES_BLOCK_LEN;
446 			data_len -= AES_BLOCK_LEN;
447 			i++;
448 		}
449 		if (data_len <= 0)		/* no more data */
450 			break;
451 		m = m->m_next;
452 		if (m == NULL) {		/* last buffer */
453 			if (space != 0) {
454 				/*
455 				 * Short last block.
456 				 */
457 				CCMP_ENCRYPT(i, b, b0, pos, e, space);
458 			}
459 			break;
460 		}
461 		if (space != 0) {
462 			uint8_t *pos_next;
463 			int space_next;
464 			int len, dl, sp;
465 			struct mbuf *n;
466 
467 			/*
468 			 * Block straddles one or more mbufs, gather data
469 			 * into the block buffer b, apply the cipher, then
470 			 * scatter the results back into the mbuf chain.
471 			 * The buffer will automatically get space bytes
472 			 * of data at offset 0 copied in+out by the
473 			 * CCMP_ENCRYPT request so we must take care of
474 			 * the remaining data.
475 			 */
476 			n = m;
477 			dl = data_len;
478 			sp = space;
479 			for (;;) {
480 				pos_next = mtod(n, uint8_t *);
481 				len = min(dl, AES_BLOCK_LEN);
482 				space_next = len > sp ? len - sp : 0;
483 				if (n->m_len >= space_next) {
484 					/*
485 					 * This mbuf has enough data; just grab
486 					 * what we need and stop.
487 					 */
488 					xor_block(b+sp, pos_next, space_next);
489 					break;
490 				}
491 				/*
492 				 * This mbuf's contents are insufficient,
493 				 * take 'em all and prepare to advance to
494 				 * the next mbuf.
495 				 */
496 				xor_block(b+sp, pos_next, n->m_len);
497 				sp += n->m_len, dl -= n->m_len;
498 				n = n->m_next;
499 				if (n == NULL)
500 					break;
501 			}
502 
503 			CCMP_ENCRYPT(i, b, b0, pos, e, space);
504 
505 			/* NB: just like above, but scatter data to mbufs */
506 			dl = data_len;
507 			sp = space;
508 			for (;;) {
509 				pos_next = mtod(m, uint8_t *);
510 				len = min(dl, AES_BLOCK_LEN);
511 				space_next = len > sp ? len - sp : 0;
512 				if (m->m_len >= space_next) {
513 					xor_block(pos_next, e+sp, space_next);
514 					break;
515 				}
516 				xor_block(pos_next, e+sp, m->m_len);
517 				sp += m->m_len, dl -= m->m_len;
518 				m = m->m_next;
519 				if (m == NULL)
520 					goto done;
521 			}
522 			/*
523 			 * Do bookkeeping.  m now points to the last mbuf
524 			 * we grabbed data from.  We know we consumed a
525 			 * full block of data as otherwise we'd have hit
526 			 * the end of the mbuf chain, so deduct from data_len.
527 			 * Otherwise advance the block number (i) and setup
528 			 * pos+space to reflect contents of the new mbuf.
529 			 */
530 			data_len -= AES_BLOCK_LEN;
531 			i++;
532 			pos = pos_next + space_next;
533 			space = m->m_len - space_next;
534 		} else {
535 			/*
536 			 * Setup for next buffer.
537 			 */
538 			pos = mtod(m, uint8_t *);
539 			space = m->m_len;
540 		}
541 	}
542 done:
543 	/* tack on MIC */
544 	xor_block(b, s0, ccmp.ic_trailer);
545 	return m_append(m0, ccmp.ic_trailer, b);
546 }
547 #undef CCMP_ENCRYPT
548 
549 #define	CCMP_DECRYPT(_i, _b, _b0, _pos, _a, _len) do {	\
550 	/* Decrypt, with counter */			\
551 	_b0[14] = (_i >> 8) & 0xff;			\
552 	_b0[15] = _i & 0xff;				\
553 	rijndael_encrypt(&ctx->cc_aes, _b0, _b);	\
554 	xor_block(_pos, _b, _len);			\
555 	/* Authentication */				\
556 	xor_block(_a, _pos, _len);			\
557 	rijndael_encrypt(&ctx->cc_aes, _a, _a);		\
558 } while (0)
559 
560 static int
561 ccmp_decrypt(struct ieee80211_key *key, u_int64_t pn, struct mbuf *m, int hdrlen)
562 {
563 	struct ccmp_ctx *ctx = key->wk_private;
564 	struct ieee80211vap *vap = ctx->cc_vap;
565 	struct ieee80211_frame *wh;
566 	uint8_t aad[2 * AES_BLOCK_LEN];
567 	uint8_t b0[AES_BLOCK_LEN], b[AES_BLOCK_LEN], a[AES_BLOCK_LEN];
568 	uint8_t mic[AES_BLOCK_LEN];
569 	size_t data_len;
570 	int i;
571 	uint8_t *pos;
572 	u_int space;
573 
574 	ctx->cc_vap->iv_stats.is_crypto_ccmp++;
575 
576 	wh = mtod(m, struct ieee80211_frame *);
577 	data_len = m->m_pkthdr.len - (hdrlen + ccmp.ic_header + ccmp.ic_trailer);
578 	ccmp_init_blocks(&ctx->cc_aes, wh, pn, data_len, b0, aad, a, b);
579 	m_copydata(m, m->m_pkthdr.len - ccmp.ic_trailer, ccmp.ic_trailer, mic);
580 	xor_block(mic, b, ccmp.ic_trailer);
581 
582 	i = 1;
583 	pos = mtod(m, uint8_t *) + hdrlen + ccmp.ic_header;
584 	space = m->m_len - (hdrlen + ccmp.ic_header);
585 	for (;;) {
586 		if (space > data_len)
587 			space = data_len;
588 		while (space >= AES_BLOCK_LEN) {
589 			CCMP_DECRYPT(i, b, b0, pos, a, AES_BLOCK_LEN);
590 			pos += AES_BLOCK_LEN, space -= AES_BLOCK_LEN;
591 			data_len -= AES_BLOCK_LEN;
592 			i++;
593 		}
594 		if (data_len <= 0)		/* no more data */
595 			break;
596 		m = m->m_next;
597 		if (m == NULL) {		/* last buffer */
598 			if (space != 0)		/* short last block */
599 				CCMP_DECRYPT(i, b, b0, pos, a, space);
600 			break;
601 		}
602 		if (space != 0) {
603 			uint8_t *pos_next;
604 			u_int space_next;
605 			u_int len;
606 
607 			/*
608 			 * Block straddles buffers, split references.  We
609 			 * do not handle splits that require >2 buffers
610 			 * since rx'd frames are never badly fragmented
611 			 * because drivers typically recv in clusters.
612 			 */
613 			pos_next = mtod(m, uint8_t *);
614 			len = min(data_len, AES_BLOCK_LEN);
615 			space_next = len > space ? len - space : 0;
616 			KASSERT(m->m_len >= space_next,
617 				("not enough data in following buffer, "
618 				"m_len %u need %u\n", m->m_len, space_next));
619 
620 			xor_block(b+space, pos_next, space_next);
621 			CCMP_DECRYPT(i, b, b0, pos, a, space);
622 			xor_block(pos_next, b+space, space_next);
623 			data_len -= len;
624 			i++;
625 
626 			pos = pos_next + space_next;
627 			space = m->m_len - space_next;
628 		} else {
629 			/*
630 			 * Setup for next buffer.
631 			 */
632 			pos = mtod(m, uint8_t *);
633 			space = m->m_len;
634 		}
635 	}
636 	if (memcmp(mic, a, ccmp.ic_trailer) != 0) {
637 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
638 		    "%s", "AES-CCM decrypt failed; MIC mismatch");
639 		vap->iv_stats.is_rx_ccmpmic++;
640 		return 0;
641 	}
642 	return 1;
643 }
644 #undef CCMP_DECRYPT
645 
646 /*
647  * Module glue.
648  */
649 IEEE80211_CRYPTO_MODULE(ccmp, 1);
650