xref: /freebsd/sys/net80211/ieee80211_crypto.c (revision b78ee15e9f04ae15c3e1200df974473167524d17)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic crypto support.
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/if.h>
43 #include <net/if_media.h>
44 #include <net/ethernet.h>		/* XXX ETHER_HDR_LEN */
45 
46 #include <net80211/ieee80211_var.h>
47 
48 MALLOC_DEFINE(M_80211_CRYPTO, "80211crypto", "802.11 crypto state");
49 
50 static	int _ieee80211_crypto_delkey(struct ieee80211vap *,
51 		struct ieee80211_key *);
52 
53 /*
54  * Table of registered cipher modules.
55  */
56 static	const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX];
57 
58 /*
59  * Default "null" key management routines.
60  */
61 static int
62 null_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
63 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
64 {
65 	if (!(&vap->iv_nw_keys[0] <= k &&
66 	     k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
67 		/*
68 		 * Not in the global key table, the driver should handle this
69 		 * by allocating a slot in the h/w key table/cache.  In
70 		 * lieu of that return key slot 0 for any unicast key
71 		 * request.  We disallow the request if this is a group key.
72 		 * This default policy does the right thing for legacy hardware
73 		 * with a 4 key table.  It also handles devices that pass
74 		 * packets through untouched when marked with the WEP bit
75 		 * and key index 0.
76 		 */
77 		if (k->wk_flags & IEEE80211_KEY_GROUP)
78 			return 0;
79 		*keyix = 0;	/* NB: use key index 0 for ucast key */
80 	} else {
81 		*keyix = k - vap->iv_nw_keys;
82 	}
83 	*rxkeyix = IEEE80211_KEYIX_NONE;	/* XXX maybe *keyix? */
84 	return 1;
85 }
86 static int
87 null_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
88 {
89 	return 1;
90 }
91 static 	int
92 null_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
93 	const uint8_t mac[IEEE80211_ADDR_LEN])
94 {
95 	return 1;
96 }
97 static void null_key_update(struct ieee80211vap *vap) {}
98 
99 /*
100  * Write-arounds for common operations.
101  */
102 static __inline void
103 cipher_detach(struct ieee80211_key *key)
104 {
105 	key->wk_cipher->ic_detach(key);
106 }
107 
108 static __inline void *
109 cipher_attach(struct ieee80211vap *vap, struct ieee80211_key *key)
110 {
111 	return key->wk_cipher->ic_attach(vap, key);
112 }
113 
114 /*
115  * Wrappers for driver key management methods.
116  */
117 static __inline int
118 dev_key_alloc(struct ieee80211vap *vap,
119 	struct ieee80211_key *key,
120 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
121 {
122 	return vap->iv_key_alloc(vap, key, keyix, rxkeyix);
123 }
124 
125 static __inline int
126 dev_key_delete(struct ieee80211vap *vap,
127 	const struct ieee80211_key *key)
128 {
129 	return vap->iv_key_delete(vap, key);
130 }
131 
132 static __inline int
133 dev_key_set(struct ieee80211vap *vap, const struct ieee80211_key *key)
134 {
135 	return vap->iv_key_set(vap, key, key->wk_macaddr);
136 }
137 
138 /*
139  * Setup crypto support for a device/shared instance.
140  */
141 void
142 ieee80211_crypto_attach(struct ieee80211com *ic)
143 {
144 	/* NB: we assume everything is pre-zero'd */
145 	ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none;
146 }
147 
148 /*
149  * Teardown crypto support.
150  */
151 void
152 ieee80211_crypto_detach(struct ieee80211com *ic)
153 {
154 }
155 
156 /*
157  * Setup crypto support for a vap.
158  */
159 void
160 ieee80211_crypto_vattach(struct ieee80211vap *vap)
161 {
162 	int i;
163 
164 	/* NB: we assume everything is pre-zero'd */
165 	vap->iv_max_keyix = IEEE80211_WEP_NKID;
166 	vap->iv_def_txkey = IEEE80211_KEYIX_NONE;
167 	for (i = 0; i < IEEE80211_WEP_NKID; i++)
168 		ieee80211_crypto_resetkey(vap, &vap->iv_nw_keys[i],
169 			IEEE80211_KEYIX_NONE);
170 	/*
171 	 * Initialize the driver key support routines to noop entries.
172 	 * This is useful especially for the cipher test modules.
173 	 */
174 	vap->iv_key_alloc = null_key_alloc;
175 	vap->iv_key_set = null_key_set;
176 	vap->iv_key_delete = null_key_delete;
177 	vap->iv_key_update_begin = null_key_update;
178 	vap->iv_key_update_end = null_key_update;
179 }
180 
181 /*
182  * Teardown crypto support for a vap.
183  */
184 void
185 ieee80211_crypto_vdetach(struct ieee80211vap *vap)
186 {
187 	ieee80211_crypto_delglobalkeys(vap);
188 }
189 
190 /*
191  * Register a crypto cipher module.
192  */
193 void
194 ieee80211_crypto_register(const struct ieee80211_cipher *cip)
195 {
196 	if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
197 		printf("%s: cipher %s has an invalid cipher index %u\n",
198 			__func__, cip->ic_name, cip->ic_cipher);
199 		return;
200 	}
201 	if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
202 		printf("%s: cipher %s registered with a different template\n",
203 			__func__, cip->ic_name);
204 		return;
205 	}
206 	ciphers[cip->ic_cipher] = cip;
207 }
208 
209 /*
210  * Unregister a crypto cipher module.
211  */
212 void
213 ieee80211_crypto_unregister(const struct ieee80211_cipher *cip)
214 {
215 	if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
216 		printf("%s: cipher %s has an invalid cipher index %u\n",
217 			__func__, cip->ic_name, cip->ic_cipher);
218 		return;
219 	}
220 	if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
221 		printf("%s: cipher %s registered with a different template\n",
222 			__func__, cip->ic_name);
223 		return;
224 	}
225 	/* NB: don't complain about not being registered */
226 	/* XXX disallow if references */
227 	ciphers[cip->ic_cipher] = NULL;
228 }
229 
230 int
231 ieee80211_crypto_available(u_int cipher)
232 {
233 	return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL;
234 }
235 
236 /* XXX well-known names! */
237 static const char *cipher_modnames[IEEE80211_CIPHER_MAX] = {
238 	[IEEE80211_CIPHER_WEP]	   = "wlan_wep",
239 	[IEEE80211_CIPHER_TKIP]	   = "wlan_tkip",
240 	[IEEE80211_CIPHER_AES_OCB] = "wlan_aes_ocb",
241 	[IEEE80211_CIPHER_AES_CCM] = "wlan_ccmp",
242 	[IEEE80211_CIPHER_TKIPMIC] = "#4",	/* NB: reserved */
243 	[IEEE80211_CIPHER_CKIP]	   = "wlan_ckip",
244 	[IEEE80211_CIPHER_NONE]	   = "wlan_none",
245 };
246 
247 /* NB: there must be no overlap between user-supplied and device-owned flags */
248 CTASSERT((IEEE80211_KEY_COMMON & IEEE80211_KEY_DEVICE) == 0);
249 
250 /*
251  * Establish a relationship between the specified key and cipher
252  * and, if necessary, allocate a hardware index from the driver.
253  * Note that when a fixed key index is required it must be specified.
254  *
255  * This must be the first call applied to a key; all the other key
256  * routines assume wk_cipher is setup.
257  *
258  * Locking must be handled by the caller using:
259  *	ieee80211_key_update_begin(vap);
260  *	ieee80211_key_update_end(vap);
261  */
262 int
263 ieee80211_crypto_newkey(struct ieee80211vap *vap,
264 	int cipher, int flags, struct ieee80211_key *key)
265 {
266 	struct ieee80211com *ic = vap->iv_ic;
267 	const struct ieee80211_cipher *cip;
268 	ieee80211_keyix keyix, rxkeyix;
269 	void *keyctx;
270 	int oflags;
271 
272 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
273 	    "%s: cipher %u flags 0x%x keyix %u\n",
274 	    __func__, cipher, flags, key->wk_keyix);
275 
276 	/*
277 	 * Validate cipher and set reference to cipher routines.
278 	 */
279 	if (cipher >= IEEE80211_CIPHER_MAX) {
280 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
281 		    "%s: invalid cipher %u\n", __func__, cipher);
282 		vap->iv_stats.is_crypto_badcipher++;
283 		return 0;
284 	}
285 	cip = ciphers[cipher];
286 	if (cip == NULL) {
287 		/*
288 		 * Auto-load cipher module if we have a well-known name
289 		 * for it.  It might be better to use string names rather
290 		 * than numbers and craft a module name based on the cipher
291 		 * name; e.g. wlan_cipher_<cipher-name>.
292 		 */
293 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
294 		    "%s: unregistered cipher %u, load module %s\n",
295 		    __func__, cipher, cipher_modnames[cipher]);
296 		ieee80211_load_module(cipher_modnames[cipher]);
297 		/*
298 		 * If cipher module loaded it should immediately
299 		 * call ieee80211_crypto_register which will fill
300 		 * in the entry in the ciphers array.
301 		 */
302 		cip = ciphers[cipher];
303 		if (cip == NULL) {
304 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
305 			    "%s: unable to load cipher %u, module %s\n",
306 			    __func__, cipher, cipher_modnames[cipher]);
307 			vap->iv_stats.is_crypto_nocipher++;
308 			return 0;
309 		}
310 	}
311 
312 	oflags = key->wk_flags;
313 	flags &= IEEE80211_KEY_COMMON;
314 	/* NB: preserve device attributes */
315 	flags |= (oflags & IEEE80211_KEY_DEVICE);
316 	/*
317 	 * If the hardware does not support the cipher then
318 	 * fallback to a host-based implementation.
319 	 */
320 	if ((ic->ic_cryptocaps & (1<<cipher)) == 0) {
321 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
322 		    "%s: no h/w support for cipher %s, falling back to s/w\n",
323 		    __func__, cip->ic_name);
324 		flags |= IEEE80211_KEY_SWCRYPT;
325 	}
326 	/*
327 	 * Hardware TKIP with software MIC is an important
328 	 * combination; we handle it by flagging each key,
329 	 * the cipher modules honor it.
330 	 */
331 	if (cipher == IEEE80211_CIPHER_TKIP &&
332 	    (ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIPMIC) == 0) {
333 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
334 		    "%s: no h/w support for TKIP MIC, falling back to s/w\n",
335 		    __func__);
336 		flags |= IEEE80211_KEY_SWMIC;
337 	}
338 
339 	/*
340 	 * Bind cipher to key instance.  Note we do this
341 	 * after checking the device capabilities so the
342 	 * cipher module can optimize space usage based on
343 	 * whether or not it needs to do the cipher work.
344 	 */
345 	if (key->wk_cipher != cip || key->wk_flags != flags) {
346 		/*
347 		 * Fillin the flags so cipher modules can see s/w
348 		 * crypto requirements and potentially allocate
349 		 * different state and/or attach different method
350 		 * pointers.
351 		 */
352 		key->wk_flags = flags;
353 		keyctx = cip->ic_attach(vap, key);
354 		if (keyctx == NULL) {
355 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
356 				"%s: unable to attach cipher %s\n",
357 				__func__, cip->ic_name);
358 			key->wk_flags = oflags;	/* restore old flags */
359 			vap->iv_stats.is_crypto_attachfail++;
360 			return 0;
361 		}
362 		cipher_detach(key);
363 		key->wk_cipher = cip;		/* XXX refcnt? */
364 		key->wk_private = keyctx;
365 	}
366 
367 	/*
368 	 * Ask the driver for a key index if we don't have one.
369 	 * Note that entries in the global key table always have
370 	 * an index; this means it's safe to call this routine
371 	 * for these entries just to setup the reference to the
372 	 * cipher template.  Note also that when using software
373 	 * crypto we also call the driver to give us a key index.
374 	 */
375 	if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) {
376 		if (!dev_key_alloc(vap, key, &keyix, &rxkeyix)) {
377 			/*
378 			 * Unable to setup driver state.
379 			 */
380 			vap->iv_stats.is_crypto_keyfail++;
381 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
382 			    "%s: unable to setup cipher %s\n",
383 			    __func__, cip->ic_name);
384 			return 0;
385 		}
386 		if (key->wk_flags != flags) {
387 			/*
388 			 * Driver overrode flags we setup; typically because
389 			 * resources were unavailable to handle _this_ key.
390 			 * Re-attach the cipher context to allow cipher
391 			 * modules to handle differing requirements.
392 			 */
393 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
394 			    "%s: driver override for cipher %s, flags "
395 			    "0x%x -> 0x%x\n", __func__, cip->ic_name,
396 			    oflags, key->wk_flags);
397 			keyctx = cip->ic_attach(vap, key);
398 			if (keyctx == NULL) {
399 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
400 				    "%s: unable to attach cipher %s with "
401 				    "flags 0x%x\n", __func__, cip->ic_name,
402 				    key->wk_flags);
403 				key->wk_flags = oflags;	/* restore old flags */
404 				vap->iv_stats.is_crypto_attachfail++;
405 				return 0;
406 			}
407 			cipher_detach(key);
408 			key->wk_cipher = cip;		/* XXX refcnt? */
409 			key->wk_private = keyctx;
410 		}
411 		key->wk_keyix = keyix;
412 		key->wk_rxkeyix = rxkeyix;
413 		key->wk_flags |= IEEE80211_KEY_DEVKEY;
414 	}
415 	return 1;
416 }
417 
418 /*
419  * Remove the key (no locking, for internal use).
420  */
421 static int
422 _ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key)
423 {
424 	KASSERT(key->wk_cipher != NULL, ("No cipher!"));
425 
426 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
427 	    "%s: %s keyix %u flags 0x%x rsc %ju tsc %ju len %u\n",
428 	    __func__, key->wk_cipher->ic_name,
429 	    key->wk_keyix, key->wk_flags,
430 	    key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc,
431 	    key->wk_keylen);
432 
433 	if (key->wk_flags & IEEE80211_KEY_DEVKEY) {
434 		/*
435 		 * Remove hardware entry.
436 		 */
437 		/* XXX key cache */
438 		if (!dev_key_delete(vap, key)) {
439 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
440 			    "%s: driver did not delete key index %u\n",
441 			    __func__, key->wk_keyix);
442 			vap->iv_stats.is_crypto_delkey++;
443 			/* XXX recovery? */
444 		}
445 	}
446 	cipher_detach(key);
447 	memset(key, 0, sizeof(*key));
448 	ieee80211_crypto_resetkey(vap, key, IEEE80211_KEYIX_NONE);
449 	return 1;
450 }
451 
452 /*
453  * Remove the specified key.
454  */
455 int
456 ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key)
457 {
458 	int status;
459 
460 	ieee80211_key_update_begin(vap);
461 	status = _ieee80211_crypto_delkey(vap, key);
462 	ieee80211_key_update_end(vap);
463 	return status;
464 }
465 
466 /*
467  * Clear the global key table.
468  */
469 void
470 ieee80211_crypto_delglobalkeys(struct ieee80211vap *vap)
471 {
472 	int i;
473 
474 	ieee80211_key_update_begin(vap);
475 	for (i = 0; i < IEEE80211_WEP_NKID; i++)
476 		(void) _ieee80211_crypto_delkey(vap, &vap->iv_nw_keys[i]);
477 	ieee80211_key_update_end(vap);
478 }
479 
480 /*
481  * Set the contents of the specified key.
482  *
483  * Locking must be handled by the caller using:
484  *	ieee80211_key_update_begin(vap);
485  *	ieee80211_key_update_end(vap);
486  */
487 int
488 ieee80211_crypto_setkey(struct ieee80211vap *vap, struct ieee80211_key *key)
489 {
490 	const struct ieee80211_cipher *cip = key->wk_cipher;
491 
492 	KASSERT(cip != NULL, ("No cipher!"));
493 
494 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
495 	    "%s: %s keyix %u flags 0x%x mac %s rsc %ju tsc %ju len %u\n",
496 	    __func__, cip->ic_name, key->wk_keyix,
497 	    key->wk_flags, ether_sprintf(key->wk_macaddr),
498 	    key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc,
499 	    key->wk_keylen);
500 
501 	if ((key->wk_flags & IEEE80211_KEY_DEVKEY)  == 0) {
502 		/* XXX nothing allocated, should not happen */
503 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
504 		    "%s: no device key setup done; should not happen!\n",
505 		    __func__);
506 		vap->iv_stats.is_crypto_setkey_nokey++;
507 		return 0;
508 	}
509 	/*
510 	 * Give cipher a chance to validate key contents.
511 	 * XXX should happen before modifying state.
512 	 */
513 	if (!cip->ic_setkey(key)) {
514 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
515 		    "%s: cipher %s rejected key index %u len %u flags 0x%x\n",
516 		    __func__, cip->ic_name, key->wk_keyix,
517 		    key->wk_keylen, key->wk_flags);
518 		vap->iv_stats.is_crypto_setkey_cipher++;
519 		return 0;
520 	}
521 	return dev_key_set(vap, key);
522 }
523 
524 /*
525  * Add privacy headers appropriate for the specified key.
526  */
527 struct ieee80211_key *
528 ieee80211_crypto_encap(struct ieee80211_node *ni, struct mbuf *m)
529 {
530 	struct ieee80211vap *vap = ni->ni_vap;
531 	struct ieee80211_key *k;
532 	struct ieee80211_frame *wh;
533 	const struct ieee80211_cipher *cip;
534 	uint8_t keyid;
535 
536 	/*
537 	 * Multicast traffic always uses the multicast key.
538 	 * Otherwise if a unicast key is set we use that and
539 	 * it is always key index 0.  When no unicast key is
540 	 * set we fall back to the default transmit key.
541 	 */
542 	wh = mtod(m, struct ieee80211_frame *);
543 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
544 	    IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
545 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE) {
546 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
547 			    wh->i_addr1,
548 			    "no default transmit key (%s) deftxkey %u",
549 			    __func__, vap->iv_def_txkey);
550 			vap->iv_stats.is_tx_nodefkey++;
551 			return NULL;
552 		}
553 		keyid = vap->iv_def_txkey;
554 		k = &vap->iv_nw_keys[vap->iv_def_txkey];
555 	} else {
556 		keyid = 0;
557 		k = &ni->ni_ucastkey;
558 	}
559 	cip = k->wk_cipher;
560 	return (cip->ic_encap(k, m, keyid<<6) ? k : NULL);
561 }
562 
563 /*
564  * Validate and strip privacy headers (and trailer) for a
565  * received frame that has the WEP/Privacy bit set.
566  */
567 struct ieee80211_key *
568 ieee80211_crypto_decap(struct ieee80211_node *ni, struct mbuf *m, int hdrlen)
569 {
570 #define	IEEE80211_WEP_HDRLEN	(IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN)
571 #define	IEEE80211_WEP_MINLEN \
572 	(sizeof(struct ieee80211_frame) + \
573 	IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN)
574 	struct ieee80211vap *vap = ni->ni_vap;
575 	struct ieee80211_key *k;
576 	struct ieee80211_frame *wh;
577 	const struct ieee80211_cipher *cip;
578 	uint8_t keyid;
579 
580 	/* NB: this minimum size data frame could be bigger */
581 	if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) {
582 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
583 			"%s: WEP data frame too short, len %u\n",
584 			__func__, m->m_pkthdr.len);
585 		vap->iv_stats.is_rx_tooshort++;	/* XXX need unique stat? */
586 		return NULL;
587 	}
588 
589 	/*
590 	 * Locate the key. If unicast and there is no unicast
591 	 * key then we fall back to the key id in the header.
592 	 * This assumes unicast keys are only configured when
593 	 * the key id in the header is meaningless (typically 0).
594 	 */
595 	wh = mtod(m, struct ieee80211_frame *);
596 	m_copydata(m, hdrlen + IEEE80211_WEP_IVLEN, sizeof(keyid), &keyid);
597 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
598 	    IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey))
599 		k = &vap->iv_nw_keys[keyid >> 6];
600 	else
601 		k = &ni->ni_ucastkey;
602 
603 	/*
604 	 * Insure crypto header is contiguous for all decap work.
605 	 */
606 	cip = k->wk_cipher;
607 	if (m->m_len < hdrlen + cip->ic_header &&
608 	    (m = m_pullup(m, hdrlen + cip->ic_header)) == NULL) {
609 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
610 		    "unable to pullup %s header", cip->ic_name);
611 		vap->iv_stats.is_rx_wepfail++;	/* XXX */
612 		return NULL;
613 	}
614 
615 	return (cip->ic_decap(k, m, hdrlen) ? k : NULL);
616 #undef IEEE80211_WEP_MINLEN
617 #undef IEEE80211_WEP_HDRLEN
618 }
619 
620 static void
621 load_ucastkey(void *arg, struct ieee80211_node *ni)
622 {
623 	struct ieee80211vap *vap = ni->ni_vap;
624 	struct ieee80211_key *k;
625 
626 	if (vap->iv_state != IEEE80211_S_RUN)
627 		return;
628 	k = &ni->ni_ucastkey;
629 	if (k->wk_flags & IEEE80211_KEY_DEVKEY)
630 		dev_key_set(vap, k);
631 }
632 
633 /*
634  * Re-load all keys known to the 802.11 layer that may
635  * have hardware state backing them.  This is used by
636  * drivers on resume to push keys down into the device.
637  */
638 void
639 ieee80211_crypto_reload_keys(struct ieee80211com *ic)
640 {
641 	struct ieee80211vap *vap;
642 	int i;
643 
644 	/*
645 	 * Keys in the global key table of each vap.
646 	 */
647 	/* NB: used only during resume so don't lock for now */
648 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
649 		if (vap->iv_state != IEEE80211_S_RUN)
650 			continue;
651 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
652 			const struct ieee80211_key *k = &vap->iv_nw_keys[i];
653 			if (k->wk_flags & IEEE80211_KEY_DEVKEY)
654 				dev_key_set(vap, k);
655 		}
656 	}
657 	/*
658 	 * Unicast keys.
659 	 */
660 	ieee80211_iterate_nodes(&ic->ic_sta, load_ucastkey, NULL);
661 }
662