xref: /freebsd/sys/net80211/ieee80211_crypto.c (revision 3c4ba5f55438f7afd4f4b0b56f88f2bb505fd6a6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * IEEE 802.11 generic crypto support.
34  */
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 
42 #include <sys/socket.h>
43 
44 #include <net/if.h>
45 #include <net/if_media.h>
46 #include <net/ethernet.h>		/* XXX ETHER_HDR_LEN */
47 
48 #include <net80211/ieee80211_var.h>
49 
50 MALLOC_DEFINE(M_80211_CRYPTO, "80211crypto", "802.11 crypto state");
51 
52 static	int _ieee80211_crypto_delkey(struct ieee80211vap *,
53 		struct ieee80211_key *);
54 
55 /*
56  * Table of registered cipher modules.
57  */
58 static	const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX];
59 
60 /*
61  * Default "null" key management routines.
62  */
63 static int
64 null_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
65 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
66 {
67 	if (!(&vap->iv_nw_keys[0] <= k &&
68 	     k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
69 		/*
70 		 * Not in the global key table, the driver should handle this
71 		 * by allocating a slot in the h/w key table/cache.  In
72 		 * lieu of that return key slot 0 for any unicast key
73 		 * request.  We disallow the request if this is a group key.
74 		 * This default policy does the right thing for legacy hardware
75 		 * with a 4 key table.  It also handles devices that pass
76 		 * packets through untouched when marked with the WEP bit
77 		 * and key index 0.
78 		 */
79 		if (k->wk_flags & IEEE80211_KEY_GROUP)
80 			return 0;
81 		*keyix = 0;	/* NB: use key index 0 for ucast key */
82 	} else {
83 		*keyix = ieee80211_crypto_get_key_wepidx(vap, k);
84 	}
85 	*rxkeyix = IEEE80211_KEYIX_NONE;	/* XXX maybe *keyix? */
86 	return 1;
87 }
88 static int
89 null_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
90 {
91 	return 1;
92 }
93 static 	int
94 null_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
95 {
96 	return 1;
97 }
98 static void null_key_update(struct ieee80211vap *vap) {}
99 
100 /*
101  * Write-arounds for common operations.
102  */
103 static __inline void
104 cipher_detach(struct ieee80211_key *key)
105 {
106 	key->wk_cipher->ic_detach(key);
107 }
108 
109 static __inline void *
110 cipher_attach(struct ieee80211vap *vap, struct ieee80211_key *key)
111 {
112 	return key->wk_cipher->ic_attach(vap, key);
113 }
114 
115 /*
116  * Wrappers for driver key management methods.
117  */
118 static __inline int
119 dev_key_alloc(struct ieee80211vap *vap,
120 	struct ieee80211_key *key,
121 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
122 {
123 	return vap->iv_key_alloc(vap, key, keyix, rxkeyix);
124 }
125 
126 static __inline int
127 dev_key_delete(struct ieee80211vap *vap,
128 	const struct ieee80211_key *key)
129 {
130 	return vap->iv_key_delete(vap, key);
131 }
132 
133 static __inline int
134 dev_key_set(struct ieee80211vap *vap, const struct ieee80211_key *key)
135 {
136 	return vap->iv_key_set(vap, key);
137 }
138 
139 /*
140  * Setup crypto support for a device/shared instance.
141  */
142 void
143 ieee80211_crypto_attach(struct ieee80211com *ic)
144 {
145 	/* NB: we assume everything is pre-zero'd */
146 	ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none;
147 }
148 
149 /*
150  * Teardown crypto support.
151  */
152 void
153 ieee80211_crypto_detach(struct ieee80211com *ic)
154 {
155 }
156 
157 /*
158  * Setup crypto support for a vap.
159  */
160 void
161 ieee80211_crypto_vattach(struct ieee80211vap *vap)
162 {
163 	int i;
164 
165 	/* NB: we assume everything is pre-zero'd */
166 	vap->iv_max_keyix = IEEE80211_WEP_NKID;
167 	vap->iv_def_txkey = IEEE80211_KEYIX_NONE;
168 	for (i = 0; i < IEEE80211_WEP_NKID; i++)
169 		ieee80211_crypto_resetkey(vap, &vap->iv_nw_keys[i],
170 			IEEE80211_KEYIX_NONE);
171 	/*
172 	 * Initialize the driver key support routines to noop entries.
173 	 * This is useful especially for the cipher test modules.
174 	 */
175 	vap->iv_key_alloc = null_key_alloc;
176 	vap->iv_key_set = null_key_set;
177 	vap->iv_key_delete = null_key_delete;
178 	vap->iv_key_update_begin = null_key_update;
179 	vap->iv_key_update_end = null_key_update;
180 }
181 
182 /*
183  * Teardown crypto support for a vap.
184  */
185 void
186 ieee80211_crypto_vdetach(struct ieee80211vap *vap)
187 {
188 	ieee80211_crypto_delglobalkeys(vap);
189 }
190 
191 /*
192  * Register a crypto cipher module.
193  */
194 void
195 ieee80211_crypto_register(const struct ieee80211_cipher *cip)
196 {
197 	if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
198 		printf("%s: cipher %s has an invalid cipher index %u\n",
199 			__func__, cip->ic_name, cip->ic_cipher);
200 		return;
201 	}
202 	if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
203 		printf("%s: cipher %s registered with a different template\n",
204 			__func__, cip->ic_name);
205 		return;
206 	}
207 	ciphers[cip->ic_cipher] = cip;
208 }
209 
210 /*
211  * Unregister a crypto cipher module.
212  */
213 void
214 ieee80211_crypto_unregister(const struct ieee80211_cipher *cip)
215 {
216 	if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
217 		printf("%s: cipher %s has an invalid cipher index %u\n",
218 			__func__, cip->ic_name, cip->ic_cipher);
219 		return;
220 	}
221 	if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
222 		printf("%s: cipher %s registered with a different template\n",
223 			__func__, cip->ic_name);
224 		return;
225 	}
226 	/* NB: don't complain about not being registered */
227 	/* XXX disallow if references */
228 	ciphers[cip->ic_cipher] = NULL;
229 }
230 
231 int
232 ieee80211_crypto_available(u_int cipher)
233 {
234 	return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL;
235 }
236 
237 /* XXX well-known names! */
238 static const char *cipher_modnames[IEEE80211_CIPHER_MAX] = {
239 	[IEEE80211_CIPHER_WEP]	   = "wlan_wep",
240 	[IEEE80211_CIPHER_TKIP]	   = "wlan_tkip",
241 	[IEEE80211_CIPHER_AES_OCB] = "wlan_aes_ocb",
242 	[IEEE80211_CIPHER_AES_CCM] = "wlan_ccmp",
243 	[IEEE80211_CIPHER_TKIPMIC] = "#4",	/* NB: reserved */
244 	[IEEE80211_CIPHER_CKIP]	   = "wlan_ckip",
245 	[IEEE80211_CIPHER_NONE]	   = "wlan_none",
246 };
247 
248 /* NB: there must be no overlap between user-supplied and device-owned flags */
249 CTASSERT((IEEE80211_KEY_COMMON & IEEE80211_KEY_DEVICE) == 0);
250 
251 /*
252  * Establish a relationship between the specified key and cipher
253  * and, if necessary, allocate a hardware index from the driver.
254  * Note that when a fixed key index is required it must be specified.
255  *
256  * This must be the first call applied to a key; all the other key
257  * routines assume wk_cipher is setup.
258  *
259  * Locking must be handled by the caller using:
260  *	ieee80211_key_update_begin(vap);
261  *	ieee80211_key_update_end(vap);
262  */
263 int
264 ieee80211_crypto_newkey(struct ieee80211vap *vap,
265 	int cipher, int flags, struct ieee80211_key *key)
266 {
267 	struct ieee80211com *ic = vap->iv_ic;
268 	const struct ieee80211_cipher *cip;
269 	ieee80211_keyix keyix, rxkeyix;
270 	void *keyctx;
271 	int oflags;
272 
273 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
274 	    "%s: cipher %u flags 0x%x keyix %u\n",
275 	    __func__, cipher, flags, key->wk_keyix);
276 
277 	/*
278 	 * Validate cipher and set reference to cipher routines.
279 	 */
280 	if (cipher >= IEEE80211_CIPHER_MAX) {
281 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
282 		    "%s: invalid cipher %u\n", __func__, cipher);
283 		vap->iv_stats.is_crypto_badcipher++;
284 		return 0;
285 	}
286 	cip = ciphers[cipher];
287 	if (cip == NULL) {
288 		/*
289 		 * Auto-load cipher module if we have a well-known name
290 		 * for it.  It might be better to use string names rather
291 		 * than numbers and craft a module name based on the cipher
292 		 * name; e.g. wlan_cipher_<cipher-name>.
293 		 */
294 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
295 		    "%s: unregistered cipher %u, load module %s\n",
296 		    __func__, cipher, cipher_modnames[cipher]);
297 		ieee80211_load_module(cipher_modnames[cipher]);
298 		/*
299 		 * If cipher module loaded it should immediately
300 		 * call ieee80211_crypto_register which will fill
301 		 * in the entry in the ciphers array.
302 		 */
303 		cip = ciphers[cipher];
304 		if (cip == NULL) {
305 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
306 			    "%s: unable to load cipher %u, module %s\n",
307 			    __func__, cipher, cipher_modnames[cipher]);
308 			vap->iv_stats.is_crypto_nocipher++;
309 			return 0;
310 		}
311 	}
312 
313 	oflags = key->wk_flags;
314 	flags &= IEEE80211_KEY_COMMON;
315 	/* NB: preserve device attributes */
316 	flags |= (oflags & IEEE80211_KEY_DEVICE);
317 	/*
318 	 * If the hardware does not support the cipher then
319 	 * fallback to a host-based implementation.
320 	 */
321 	if ((ic->ic_cryptocaps & (1<<cipher)) == 0) {
322 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
323 		    "%s: no h/w support for cipher %s, falling back to s/w\n",
324 		    __func__, cip->ic_name);
325 		flags |= IEEE80211_KEY_SWCRYPT;
326 	}
327 	/*
328 	 * Hardware TKIP with software MIC is an important
329 	 * combination; we handle it by flagging each key,
330 	 * the cipher modules honor it.
331 	 */
332 	if (cipher == IEEE80211_CIPHER_TKIP &&
333 	    (ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIPMIC) == 0) {
334 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
335 		    "%s: no h/w support for TKIP MIC, falling back to s/w\n",
336 		    __func__);
337 		flags |= IEEE80211_KEY_SWMIC;
338 	}
339 
340 	/*
341 	 * Bind cipher to key instance.  Note we do this
342 	 * after checking the device capabilities so the
343 	 * cipher module can optimize space usage based on
344 	 * whether or not it needs to do the cipher work.
345 	 */
346 	if (key->wk_cipher != cip || key->wk_flags != flags) {
347 		/*
348 		 * Fillin the flags so cipher modules can see s/w
349 		 * crypto requirements and potentially allocate
350 		 * different state and/or attach different method
351 		 * pointers.
352 		 */
353 		key->wk_flags = flags;
354 		keyctx = cip->ic_attach(vap, key);
355 		if (keyctx == NULL) {
356 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
357 				"%s: unable to attach cipher %s\n",
358 				__func__, cip->ic_name);
359 			key->wk_flags = oflags;	/* restore old flags */
360 			vap->iv_stats.is_crypto_attachfail++;
361 			return 0;
362 		}
363 		cipher_detach(key);
364 		key->wk_cipher = cip;		/* XXX refcnt? */
365 		key->wk_private = keyctx;
366 	}
367 
368 	/*
369 	 * Ask the driver for a key index if we don't have one.
370 	 * Note that entries in the global key table always have
371 	 * an index; this means it's safe to call this routine
372 	 * for these entries just to setup the reference to the
373 	 * cipher template.  Note also that when using software
374 	 * crypto we also call the driver to give us a key index.
375 	 */
376 	if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) {
377 		if (!dev_key_alloc(vap, key, &keyix, &rxkeyix)) {
378 			/*
379 			 * Unable to setup driver state.
380 			 */
381 			vap->iv_stats.is_crypto_keyfail++;
382 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
383 			    "%s: unable to setup cipher %s\n",
384 			    __func__, cip->ic_name);
385 			return 0;
386 		}
387 		if (key->wk_flags != flags) {
388 			/*
389 			 * Driver overrode flags we setup; typically because
390 			 * resources were unavailable to handle _this_ key.
391 			 * Re-attach the cipher context to allow cipher
392 			 * modules to handle differing requirements.
393 			 */
394 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
395 			    "%s: driver override for cipher %s, flags "
396 			    "0x%x -> 0x%x\n", __func__, cip->ic_name,
397 			    oflags, key->wk_flags);
398 			keyctx = cip->ic_attach(vap, key);
399 			if (keyctx == NULL) {
400 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
401 				    "%s: unable to attach cipher %s with "
402 				    "flags 0x%x\n", __func__, cip->ic_name,
403 				    key->wk_flags);
404 				key->wk_flags = oflags;	/* restore old flags */
405 				vap->iv_stats.is_crypto_attachfail++;
406 				return 0;
407 			}
408 			cipher_detach(key);
409 			key->wk_cipher = cip;		/* XXX refcnt? */
410 			key->wk_private = keyctx;
411 		}
412 		key->wk_keyix = keyix;
413 		key->wk_rxkeyix = rxkeyix;
414 		key->wk_flags |= IEEE80211_KEY_DEVKEY;
415 	}
416 	return 1;
417 }
418 
419 /*
420  * Remove the key (no locking, for internal use).
421  */
422 static int
423 _ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key)
424 {
425 	KASSERT(key->wk_cipher != NULL, ("No cipher!"));
426 
427 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
428 	    "%s: %s keyix %u flags 0x%x rsc %ju tsc %ju len %u\n",
429 	    __func__, key->wk_cipher->ic_name,
430 	    key->wk_keyix, key->wk_flags,
431 	    key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc,
432 	    key->wk_keylen);
433 
434 	if (key->wk_flags & IEEE80211_KEY_DEVKEY) {
435 		/*
436 		 * Remove hardware entry.
437 		 */
438 		/* XXX key cache */
439 		if (!dev_key_delete(vap, key)) {
440 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
441 			    "%s: driver did not delete key index %u\n",
442 			    __func__, key->wk_keyix);
443 			vap->iv_stats.is_crypto_delkey++;
444 			/* XXX recovery? */
445 		}
446 	}
447 	cipher_detach(key);
448 	memset(key, 0, sizeof(*key));
449 	ieee80211_crypto_resetkey(vap, key, IEEE80211_KEYIX_NONE);
450 	return 1;
451 }
452 
453 /*
454  * Remove the specified key.
455  */
456 int
457 ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key)
458 {
459 	int status;
460 
461 	ieee80211_key_update_begin(vap);
462 	status = _ieee80211_crypto_delkey(vap, key);
463 	ieee80211_key_update_end(vap);
464 	return status;
465 }
466 
467 /*
468  * Clear the global key table.
469  */
470 void
471 ieee80211_crypto_delglobalkeys(struct ieee80211vap *vap)
472 {
473 	int i;
474 
475 	ieee80211_key_update_begin(vap);
476 	for (i = 0; i < IEEE80211_WEP_NKID; i++)
477 		(void) _ieee80211_crypto_delkey(vap, &vap->iv_nw_keys[i]);
478 	ieee80211_key_update_end(vap);
479 }
480 
481 /*
482  * Set the contents of the specified key.
483  *
484  * Locking must be handled by the caller using:
485  *	ieee80211_key_update_begin(vap);
486  *	ieee80211_key_update_end(vap);
487  */
488 int
489 ieee80211_crypto_setkey(struct ieee80211vap *vap, struct ieee80211_key *key)
490 {
491 	const struct ieee80211_cipher *cip = key->wk_cipher;
492 
493 	KASSERT(cip != NULL, ("No cipher!"));
494 
495 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
496 	    "%s: %s keyix %u flags 0x%x mac %s rsc %ju tsc %ju len %u\n",
497 	    __func__, cip->ic_name, key->wk_keyix,
498 	    key->wk_flags, ether_sprintf(key->wk_macaddr),
499 	    key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc,
500 	    key->wk_keylen);
501 
502 	if ((key->wk_flags & IEEE80211_KEY_DEVKEY)  == 0) {
503 		/* XXX nothing allocated, should not happen */
504 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
505 		    "%s: no device key setup done; should not happen!\n",
506 		    __func__);
507 		vap->iv_stats.is_crypto_setkey_nokey++;
508 		return 0;
509 	}
510 	/*
511 	 * Give cipher a chance to validate key contents.
512 	 * XXX should happen before modifying state.
513 	 */
514 	if (!cip->ic_setkey(key)) {
515 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
516 		    "%s: cipher %s rejected key index %u len %u flags 0x%x\n",
517 		    __func__, cip->ic_name, key->wk_keyix,
518 		    key->wk_keylen, key->wk_flags);
519 		vap->iv_stats.is_crypto_setkey_cipher++;
520 		return 0;
521 	}
522 	return dev_key_set(vap, key);
523 }
524 
525 /*
526  * Return index if the key is a WEP key (0..3); -1 otherwise.
527  *
528  * This is different to "get_keyid" which defaults to returning
529  * 0 for unicast keys; it assumes that it won't be used for WEP.
530  */
531 int
532 ieee80211_crypto_get_key_wepidx(const struct ieee80211vap *vap,
533     const struct ieee80211_key *k)
534 {
535 
536 	if (k >= &vap->iv_nw_keys[0] &&
537 	    k <  &vap->iv_nw_keys[IEEE80211_WEP_NKID])
538 		return (k - vap->iv_nw_keys);
539 	return (-1);
540 }
541 
542 /*
543  * Note: only supports a single unicast key (0).
544  */
545 uint8_t
546 ieee80211_crypto_get_keyid(struct ieee80211vap *vap, struct ieee80211_key *k)
547 {
548 	if (k >= &vap->iv_nw_keys[0] &&
549 	    k <  &vap->iv_nw_keys[IEEE80211_WEP_NKID])
550 		return (k - vap->iv_nw_keys);
551 	else
552 		return (0);
553 }
554 
555 struct ieee80211_key *
556 ieee80211_crypto_get_txkey(struct ieee80211_node *ni, struct mbuf *m)
557 {
558 	struct ieee80211vap *vap = ni->ni_vap;
559 	struct ieee80211_frame *wh;
560 
561 	/*
562 	 * Multicast traffic always uses the multicast key.
563 	 *
564 	 * Historically we would fall back to the default
565 	 * transmit key if there was no unicast key.  This
566 	 * behaviour was documented up to IEEE Std 802.11-2016,
567 	 * 12.9.2.2 Per-MSDU/Per-A-MSDU Tx pseudocode, in the
568 	 * 'else' case but is no longer in later versions of
569 	 * the standard.  Additionally falling back to the
570 	 * group key for unicast was a security risk.
571 	 */
572 	wh = mtod(m, struct ieee80211_frame *);
573 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
574 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE) {
575 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
576 			    wh->i_addr1,
577 			    "no default transmit key (%s) deftxkey %u",
578 			    __func__, vap->iv_def_txkey);
579 			vap->iv_stats.is_tx_nodefkey++;
580 			return NULL;
581 		}
582 		return &vap->iv_nw_keys[vap->iv_def_txkey];
583 	}
584 
585 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey))
586 		return NULL;
587 	return &ni->ni_ucastkey;
588 }
589 
590 /*
591  * Add privacy headers appropriate for the specified key.
592  */
593 struct ieee80211_key *
594 ieee80211_crypto_encap(struct ieee80211_node *ni, struct mbuf *m)
595 {
596 	struct ieee80211_key *k;
597 	const struct ieee80211_cipher *cip;
598 
599 	if ((k = ieee80211_crypto_get_txkey(ni, m)) != NULL) {
600 		cip = k->wk_cipher;
601 		return (cip->ic_encap(k, m) ? k : NULL);
602 	}
603 
604 	return NULL;
605 }
606 
607 /*
608  * Validate and strip privacy headers (and trailer) for a
609  * received frame that has the WEP/Privacy bit set.
610  */
611 int
612 ieee80211_crypto_decap(struct ieee80211_node *ni, struct mbuf *m, int hdrlen,
613     struct ieee80211_key **key)
614 {
615 #define	IEEE80211_WEP_HDRLEN	(IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN)
616 #define	IEEE80211_WEP_MINLEN \
617 	(sizeof(struct ieee80211_frame) + \
618 	IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN)
619 	struct ieee80211vap *vap = ni->ni_vap;
620 	struct ieee80211_key *k;
621 	struct ieee80211_frame *wh;
622 	const struct ieee80211_rx_stats *rxs;
623 	const struct ieee80211_cipher *cip;
624 	uint8_t keyid;
625 
626 	/*
627 	 * Check for hardware decryption and IV stripping.
628 	 * If the IV is stripped then we definitely can't find a key.
629 	 * Set the key to NULL but return true; upper layers
630 	 * will need to handle a NULL key for a successful
631 	 * decrypt.
632 	 */
633 	rxs = ieee80211_get_rx_params_ptr(m);
634 	if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) {
635 		if (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP) {
636 			/*
637 			 * Hardware decrypted, IV stripped.
638 			 * We can't find a key with a stripped IV.
639 			 * Return successful.
640 			 */
641 			*key = NULL;
642 			return (1);
643 		}
644 	}
645 
646 	/* NB: this minimum size data frame could be bigger */
647 	if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) {
648 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
649 			"%s: WEP data frame too short, len %u\n",
650 			__func__, m->m_pkthdr.len);
651 		vap->iv_stats.is_rx_tooshort++;	/* XXX need unique stat? */
652 		*key = NULL;
653 		return (0);
654 	}
655 
656 	/*
657 	 * Locate the key. If unicast and there is no unicast
658 	 * key then we fall back to the key id in the header.
659 	 * This assumes unicast keys are only configured when
660 	 * the key id in the header is meaningless (typically 0).
661 	 */
662 	wh = mtod(m, struct ieee80211_frame *);
663 	m_copydata(m, hdrlen + IEEE80211_WEP_IVLEN, sizeof(keyid), &keyid);
664 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
665 	    IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey))
666 		k = &vap->iv_nw_keys[keyid >> 6];
667 	else
668 		k = &ni->ni_ucastkey;
669 
670 	/*
671 	 * Insure crypto header is contiguous and long enough for all
672 	 * decap work.
673 	 */
674 	cip = k->wk_cipher;
675 	if (m->m_len < hdrlen + cip->ic_header) {
676 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
677 		    "frame is too short (%d < %u) for crypto decap",
678 		    cip->ic_name, m->m_len, hdrlen + cip->ic_header);
679 		vap->iv_stats.is_rx_tooshort++;
680 		*key = NULL;
681 		return (0);
682 	}
683 
684 	/*
685 	 * Attempt decryption.
686 	 *
687 	 * If we fail then don't return the key - return NULL
688 	 * and an error.
689 	 */
690 	if (cip->ic_decap(k, m, hdrlen)) {
691 		/* success */
692 		*key = k;
693 		return (1);
694 	}
695 
696 	/* Failure */
697 	*key = NULL;
698 	return (0);
699 #undef IEEE80211_WEP_MINLEN
700 #undef IEEE80211_WEP_HDRLEN
701 }
702 
703 /*
704  * Check and remove any MIC.
705  */
706 int
707 ieee80211_crypto_demic(struct ieee80211vap *vap, struct ieee80211_key *k,
708     struct mbuf *m, int force)
709 {
710 	const struct ieee80211_cipher *cip;
711 	const struct ieee80211_rx_stats *rxs;
712 	struct ieee80211_frame *wh;
713 
714 	rxs = ieee80211_get_rx_params_ptr(m);
715 	wh = mtod(m, struct ieee80211_frame *);
716 
717 	/*
718 	 * Handle demic / mic errors from hardware-decrypted offload devices.
719 	 */
720 	if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) {
721 		if (rxs->c_pktflags & IEEE80211_RX_F_FAIL_MIC) {
722 			/*
723 			 * Hardware has said MIC failed.  We don't care about
724 			 * whether it was stripped or not.
725 			 *
726 			 * Eventually - teach the demic methods in crypto
727 			 * modules to handle a NULL key and not to dereference
728 			 * it.
729 			 */
730 			ieee80211_notify_michael_failure(vap, wh, -1);
731 			return (0);
732 		}
733 
734 		if (rxs->c_pktflags & IEEE80211_RX_F_MMIC_STRIP) {
735 			/*
736 			 * Hardware has decrypted and not indicated a
737 			 * MIC failure and has stripped the MIC.
738 			 * We may not have a key, so for now just
739 			 * return OK.
740 			 */
741 			return (1);
742 		}
743 	}
744 
745 	/*
746 	 * If we don't have a key at this point then we don't
747 	 * have to demic anything.
748 	 */
749 	if (k == NULL)
750 		return (1);
751 
752 	cip = k->wk_cipher;
753 	return (cip->ic_miclen > 0 ? cip->ic_demic(k, m, force) : 1);
754 }
755 
756 static void
757 load_ucastkey(void *arg, struct ieee80211_node *ni)
758 {
759 	struct ieee80211vap *vap = ni->ni_vap;
760 	struct ieee80211_key *k;
761 
762 	if (vap->iv_state != IEEE80211_S_RUN)
763 		return;
764 	k = &ni->ni_ucastkey;
765 	if (k->wk_flags & IEEE80211_KEY_DEVKEY)
766 		dev_key_set(vap, k);
767 }
768 
769 /*
770  * Re-load all keys known to the 802.11 layer that may
771  * have hardware state backing them.  This is used by
772  * drivers on resume to push keys down into the device.
773  */
774 void
775 ieee80211_crypto_reload_keys(struct ieee80211com *ic)
776 {
777 	struct ieee80211vap *vap;
778 	int i;
779 
780 	/*
781 	 * Keys in the global key table of each vap.
782 	 */
783 	/* NB: used only during resume so don't lock for now */
784 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
785 		if (vap->iv_state != IEEE80211_S_RUN)
786 			continue;
787 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
788 			const struct ieee80211_key *k = &vap->iv_nw_keys[i];
789 			if (k->wk_flags & IEEE80211_KEY_DEVKEY)
790 				dev_key_set(vap, k);
791 		}
792 	}
793 	/*
794 	 * Unicast keys.
795 	 */
796 	ieee80211_iterate_nodes(&ic->ic_sta, load_ucastkey, NULL);
797 }
798 
799 /*
800  * Set the default key index for WEP, or KEYIX_NONE for no default TX key.
801  *
802  * This should be done as part of a key update block (iv_key_update_begin /
803  * iv_key_update_end.)
804  */
805 void
806 ieee80211_crypto_set_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
807 {
808 
809 	/* XXX TODO: assert we're in a key update block */
810 
811 	vap->iv_update_deftxkey(vap, kid);
812 }
813