1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/socket.h> 40 #include <sys/sbuf.h> 41 42 #include <machine/stdarg.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_private.h> 49 #include <net/if_types.h> 50 #include <net/ethernet.h> 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_regdomain.h> 54 #ifdef IEEE80211_SUPPORT_SUPERG 55 #include <net80211/ieee80211_superg.h> 56 #endif 57 #include <net80211/ieee80211_ratectl.h> 58 #include <net80211/ieee80211_vht.h> 59 60 #include <net/bpf.h> 61 62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 63 [IEEE80211_MODE_AUTO] = "auto", 64 [IEEE80211_MODE_11A] = "11a", 65 [IEEE80211_MODE_11B] = "11b", 66 [IEEE80211_MODE_11G] = "11g", 67 [IEEE80211_MODE_FH] = "FH", 68 [IEEE80211_MODE_TURBO_A] = "turboA", 69 [IEEE80211_MODE_TURBO_G] = "turboG", 70 [IEEE80211_MODE_STURBO_A] = "sturboA", 71 [IEEE80211_MODE_HALF] = "half", 72 [IEEE80211_MODE_QUARTER] = "quarter", 73 [IEEE80211_MODE_11NA] = "11na", 74 [IEEE80211_MODE_11NG] = "11ng", 75 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 76 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 77 }; 78 /* map ieee80211_opmode to the corresponding capability bit */ 79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 80 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 81 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 82 [IEEE80211_M_STA] = IEEE80211_C_STA, 83 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 84 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 85 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 86 #ifdef IEEE80211_SUPPORT_MESH 87 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 88 #endif 89 }; 90 91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 92 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 93 94 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 95 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 98 static int ieee80211_media_setup(struct ieee80211com *ic, 99 struct ifmedia *media, int caps, int addsta, 100 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 101 static int media_status(enum ieee80211_opmode, 102 const struct ieee80211_channel *); 103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 104 105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 106 107 /* 108 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 109 */ 110 #define B(r) ((r) | IEEE80211_RATE_BASIC) 111 static const struct ieee80211_rateset ieee80211_rateset_11a = 112 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 113 static const struct ieee80211_rateset ieee80211_rateset_half = 114 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 115 static const struct ieee80211_rateset ieee80211_rateset_quarter = 116 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 117 static const struct ieee80211_rateset ieee80211_rateset_11b = 118 { 4, { B(2), B(4), B(11), B(22) } }; 119 /* NB: OFDM rates are handled specially based on mode */ 120 static const struct ieee80211_rateset ieee80211_rateset_11g = 121 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 122 #undef B 123 124 static int set_vht_extchan(struct ieee80211_channel *c); 125 126 /* 127 * Fill in 802.11 available channel set, mark 128 * all available channels as active, and pick 129 * a default channel if not already specified. 130 */ 131 void 132 ieee80211_chan_init(struct ieee80211com *ic) 133 { 134 #define DEFAULTRATES(m, def) do { \ 135 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 136 ic->ic_sup_rates[m] = def; \ 137 } while (0) 138 struct ieee80211_channel *c; 139 int i; 140 141 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 142 ("invalid number of channels specified: %u", ic->ic_nchans)); 143 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 144 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 145 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 146 for (i = 0; i < ic->ic_nchans; i++) { 147 c = &ic->ic_channels[i]; 148 KASSERT(c->ic_flags != 0, ("channel with no flags")); 149 /* 150 * Help drivers that work only with frequencies by filling 151 * in IEEE channel #'s if not already calculated. Note this 152 * mimics similar work done in ieee80211_setregdomain when 153 * changing regulatory state. 154 */ 155 if (c->ic_ieee == 0) 156 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 157 158 /* 159 * Setup the HT40/VHT40 upper/lower bits. 160 * The VHT80/... math is done elsewhere. 161 */ 162 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 163 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 164 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 165 c->ic_flags); 166 167 /* Update VHT math */ 168 /* 169 * XXX VHT again, note that this assumes VHT80/... channels 170 * are legit already. 171 */ 172 set_vht_extchan(c); 173 174 /* default max tx power to max regulatory */ 175 if (c->ic_maxpower == 0) 176 c->ic_maxpower = 2*c->ic_maxregpower; 177 setbit(ic->ic_chan_avail, c->ic_ieee); 178 /* 179 * Identify mode capabilities. 180 */ 181 if (IEEE80211_IS_CHAN_A(c)) 182 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 183 if (IEEE80211_IS_CHAN_B(c)) 184 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 185 if (IEEE80211_IS_CHAN_ANYG(c)) 186 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 187 if (IEEE80211_IS_CHAN_FHSS(c)) 188 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 189 if (IEEE80211_IS_CHAN_108A(c)) 190 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 191 if (IEEE80211_IS_CHAN_108G(c)) 192 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 193 if (IEEE80211_IS_CHAN_ST(c)) 194 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 195 if (IEEE80211_IS_CHAN_HALF(c)) 196 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 197 if (IEEE80211_IS_CHAN_QUARTER(c)) 198 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 199 if (IEEE80211_IS_CHAN_HTA(c)) 200 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 201 if (IEEE80211_IS_CHAN_HTG(c)) 202 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 203 if (IEEE80211_IS_CHAN_VHTA(c)) 204 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 205 if (IEEE80211_IS_CHAN_VHTG(c)) 206 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 207 } 208 /* initialize candidate channels to all available */ 209 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 210 sizeof(ic->ic_chan_avail)); 211 212 /* sort channel table to allow lookup optimizations */ 213 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 214 215 /* invalidate any previous state */ 216 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 217 ic->ic_prevchan = NULL; 218 ic->ic_csa_newchan = NULL; 219 /* arbitrarily pick the first channel */ 220 ic->ic_curchan = &ic->ic_channels[0]; 221 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 222 223 /* fillin well-known rate sets if driver has not specified */ 224 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 225 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 226 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 227 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 229 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 230 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 231 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 232 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 233 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 234 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 236 237 /* 238 * Setup required information to fill the mcsset field, if driver did 239 * not. Assume a 2T2R setup for historic reasons. 240 */ 241 if (ic->ic_rxstream == 0) 242 ic->ic_rxstream = 2; 243 if (ic->ic_txstream == 0) 244 ic->ic_txstream = 2; 245 246 ieee80211_init_suphtrates(ic); 247 248 /* 249 * Set auto mode to reset active channel state and any desired channel. 250 */ 251 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 252 #undef DEFAULTRATES 253 } 254 255 static void 256 null_update_mcast(struct ieee80211com *ic) 257 { 258 259 ic_printf(ic, "need multicast update callback\n"); 260 } 261 262 static void 263 null_update_promisc(struct ieee80211com *ic) 264 { 265 266 ic_printf(ic, "need promiscuous mode update callback\n"); 267 } 268 269 static void 270 null_update_chw(struct ieee80211com *ic) 271 { 272 273 ic_printf(ic, "%s: need callback\n", __func__); 274 } 275 276 int 277 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 278 { 279 va_list ap; 280 int retval; 281 282 retval = printf("%s: ", ic->ic_name); 283 va_start(ap, fmt); 284 retval += vprintf(fmt, ap); 285 va_end(ap); 286 return (retval); 287 } 288 289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 290 static struct mtx ic_list_mtx; 291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 292 293 static int 294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 295 { 296 struct ieee80211com *ic; 297 struct sbuf sb; 298 char *sp; 299 int error; 300 301 error = sysctl_wire_old_buffer(req, 0); 302 if (error) 303 return (error); 304 sbuf_new_for_sysctl(&sb, NULL, 8, req); 305 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 306 sp = ""; 307 mtx_lock(&ic_list_mtx); 308 LIST_FOREACH(ic, &ic_head, ic_next) { 309 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 310 sp = " "; 311 } 312 mtx_unlock(&ic_list_mtx); 313 error = sbuf_finish(&sb); 314 sbuf_delete(&sb); 315 return (error); 316 } 317 318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 320 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 321 322 /* 323 * Attach/setup the common net80211 state. Called by 324 * the driver on attach to prior to creating any vap's. 325 */ 326 void 327 ieee80211_ifattach(struct ieee80211com *ic) 328 { 329 330 IEEE80211_LOCK_INIT(ic, ic->ic_name); 331 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 332 TAILQ_INIT(&ic->ic_vaps); 333 334 /* Create a taskqueue for all state changes */ 335 ic->ic_tq = taskqueue_create("ic_taskq", 336 IEEE80211_M_WAITOK | IEEE80211_M_ZERO, 337 taskqueue_thread_enqueue, &ic->ic_tq); 338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 339 ic->ic_name); 340 ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK); 341 ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK); 342 /* 343 * Fill in 802.11 available channel set, mark all 344 * available channels as active, and pick a default 345 * channel if not already specified. 346 */ 347 ieee80211_chan_init(ic); 348 349 ic->ic_update_mcast = null_update_mcast; 350 ic->ic_update_promisc = null_update_promisc; 351 ic->ic_update_chw = null_update_chw; 352 353 ic->ic_hash_key = arc4random(); 354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 355 ic->ic_lintval = ic->ic_bintval; 356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 357 358 ieee80211_crypto_attach(ic); 359 ieee80211_node_attach(ic); 360 ieee80211_power_attach(ic); 361 ieee80211_proto_attach(ic); 362 #ifdef IEEE80211_SUPPORT_SUPERG 363 ieee80211_superg_attach(ic); 364 #endif 365 ieee80211_ht_attach(ic); 366 ieee80211_vht_attach(ic); 367 ieee80211_scan_attach(ic); 368 ieee80211_regdomain_attach(ic); 369 ieee80211_dfs_attach(ic); 370 371 ieee80211_sysctl_attach(ic); 372 373 mtx_lock(&ic_list_mtx); 374 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 375 mtx_unlock(&ic_list_mtx); 376 } 377 378 /* 379 * Detach net80211 state on device detach. Tear down 380 * all vap's and reclaim all common state prior to the 381 * device state going away. Note we may call back into 382 * driver; it must be prepared for this. 383 */ 384 void 385 ieee80211_ifdetach(struct ieee80211com *ic) 386 { 387 struct ieee80211vap *vap; 388 389 /* 390 * We use this as an indicator that ifattach never had a chance to be 391 * called, e.g. early driver attach failed and ifdetach was called 392 * during subsequent detach. Never fear, for we have nothing to do 393 * here. 394 */ 395 if (ic->ic_tq == NULL) 396 return; 397 398 mtx_lock(&ic_list_mtx); 399 LIST_REMOVE(ic, ic_next); 400 mtx_unlock(&ic_list_mtx); 401 402 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 403 404 /* 405 * The VAP is responsible for setting and clearing 406 * the VIMAGE context. 407 */ 408 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 409 ieee80211_com_vdetach(vap); 410 ieee80211_vap_destroy(vap); 411 } 412 ieee80211_waitfor_parent(ic); 413 414 ieee80211_sysctl_detach(ic); 415 ieee80211_dfs_detach(ic); 416 ieee80211_regdomain_detach(ic); 417 ieee80211_scan_detach(ic); 418 #ifdef IEEE80211_SUPPORT_SUPERG 419 ieee80211_superg_detach(ic); 420 #endif 421 ieee80211_vht_detach(ic); 422 ieee80211_ht_detach(ic); 423 /* NB: must be called before ieee80211_node_detach */ 424 ieee80211_proto_detach(ic); 425 ieee80211_crypto_detach(ic); 426 ieee80211_power_detach(ic); 427 ieee80211_node_detach(ic); 428 429 counter_u64_free(ic->ic_ierrors); 430 counter_u64_free(ic->ic_oerrors); 431 432 taskqueue_free(ic->ic_tq); 433 IEEE80211_TX_LOCK_DESTROY(ic); 434 IEEE80211_LOCK_DESTROY(ic); 435 } 436 437 struct ieee80211com * 438 ieee80211_find_com(const char *name) 439 { 440 struct ieee80211com *ic; 441 442 mtx_lock(&ic_list_mtx); 443 LIST_FOREACH(ic, &ic_head, ic_next) 444 if (strcmp(ic->ic_name, name) == 0) 445 break; 446 mtx_unlock(&ic_list_mtx); 447 448 return (ic); 449 } 450 451 void 452 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 453 { 454 struct ieee80211com *ic; 455 456 mtx_lock(&ic_list_mtx); 457 LIST_FOREACH(ic, &ic_head, ic_next) 458 (*f)(arg, ic); 459 mtx_unlock(&ic_list_mtx); 460 } 461 462 /* 463 * Default reset method for use with the ioctl support. This 464 * method is invoked after any state change in the 802.11 465 * layer that should be propagated to the hardware but not 466 * require re-initialization of the 802.11 state machine (e.g 467 * rescanning for an ap). We always return ENETRESET which 468 * should cause the driver to re-initialize the device. Drivers 469 * can override this method to implement more optimized support. 470 */ 471 static int 472 default_reset(struct ieee80211vap *vap, u_long cmd) 473 { 474 return ENETRESET; 475 } 476 477 /* 478 * Default for updating the VAP default TX key index. 479 * 480 * Drivers that support TX offload as well as hardware encryption offload 481 * may need to be informed of key index changes separate from the key 482 * update. 483 */ 484 static void 485 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 486 { 487 488 /* XXX assert validity */ 489 /* XXX assert we're in a key update block */ 490 vap->iv_def_txkey = kid; 491 } 492 493 /* 494 * Add underlying device errors to vap errors. 495 */ 496 static uint64_t 497 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 498 { 499 struct ieee80211vap *vap = ifp->if_softc; 500 struct ieee80211com *ic = vap->iv_ic; 501 uint64_t rv; 502 503 rv = if_get_counter_default(ifp, cnt); 504 switch (cnt) { 505 case IFCOUNTER_OERRORS: 506 rv += counter_u64_fetch(ic->ic_oerrors); 507 break; 508 case IFCOUNTER_IERRORS: 509 rv += counter_u64_fetch(ic->ic_ierrors); 510 break; 511 default: 512 break; 513 } 514 515 return (rv); 516 } 517 518 /* 519 * Prepare a vap for use. Drivers use this call to 520 * setup net80211 state in new vap's prior attaching 521 * them with ieee80211_vap_attach (below). 522 */ 523 int 524 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 525 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 526 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 527 { 528 struct ifnet *ifp; 529 530 ifp = if_alloc(IFT_ETHER); 531 if (ifp == NULL) { 532 ic_printf(ic, "%s: unable to allocate ifnet\n", __func__); 533 return ENOMEM; 534 } 535 if_initname(ifp, name, unit); 536 ifp->if_softc = vap; /* back pointer */ 537 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 538 ifp->if_transmit = ieee80211_vap_transmit; 539 ifp->if_qflush = ieee80211_vap_qflush; 540 ifp->if_ioctl = ieee80211_ioctl; 541 ifp->if_init = ieee80211_init; 542 ifp->if_get_counter = ieee80211_get_counter; 543 544 vap->iv_ifp = ifp; 545 vap->iv_ic = ic; 546 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 547 vap->iv_flags_ext = ic->ic_flags_ext; 548 vap->iv_flags_ven = ic->ic_flags_ven; 549 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 550 551 /* 11n capabilities - XXX methodize */ 552 vap->iv_htcaps = ic->ic_htcaps; 553 vap->iv_htextcaps = ic->ic_htextcaps; 554 555 /* 11ac capabilities - XXX methodize */ 556 vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info; 557 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 558 559 vap->iv_opmode = opmode; 560 vap->iv_caps |= ieee80211_opcap[opmode]; 561 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 562 switch (opmode) { 563 case IEEE80211_M_WDS: 564 /* 565 * WDS links must specify the bssid of the far end. 566 * For legacy operation this is a static relationship. 567 * For non-legacy operation the station must associate 568 * and be authorized to pass traffic. Plumbing the 569 * vap to the proper node happens when the vap 570 * transitions to RUN state. 571 */ 572 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 573 vap->iv_flags |= IEEE80211_F_DESBSSID; 574 if (flags & IEEE80211_CLONE_WDSLEGACY) 575 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 576 break; 577 #ifdef IEEE80211_SUPPORT_TDMA 578 case IEEE80211_M_AHDEMO: 579 if (flags & IEEE80211_CLONE_TDMA) { 580 /* NB: checked before clone operation allowed */ 581 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 582 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 583 /* 584 * Propagate TDMA capability to mark vap; this 585 * cannot be removed and is used to distinguish 586 * regular ahdemo operation from ahdemo+tdma. 587 */ 588 vap->iv_caps |= IEEE80211_C_TDMA; 589 } 590 break; 591 #endif 592 default: 593 break; 594 } 595 /* auto-enable s/w beacon miss support */ 596 if (flags & IEEE80211_CLONE_NOBEACONS) 597 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 598 /* auto-generated or user supplied MAC address */ 599 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 600 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 601 /* 602 * Enable various functionality by default if we're 603 * capable; the driver can override us if it knows better. 604 */ 605 if (vap->iv_caps & IEEE80211_C_WME) 606 vap->iv_flags |= IEEE80211_F_WME; 607 if (vap->iv_caps & IEEE80211_C_BURST) 608 vap->iv_flags |= IEEE80211_F_BURST; 609 /* NB: bg scanning only makes sense for station mode right now */ 610 if (vap->iv_opmode == IEEE80211_M_STA && 611 (vap->iv_caps & IEEE80211_C_BGSCAN)) 612 vap->iv_flags |= IEEE80211_F_BGSCAN; 613 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 614 /* NB: DFS support only makes sense for ap mode right now */ 615 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 616 (vap->iv_caps & IEEE80211_C_DFS)) 617 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 618 /* NB: only flip on U-APSD for hostap/sta for now */ 619 if ((vap->iv_opmode == IEEE80211_M_STA) 620 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { 621 if (vap->iv_caps & IEEE80211_C_UAPSD) 622 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; 623 } 624 625 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 626 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 627 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 628 /* 629 * Install a default reset method for the ioctl support; 630 * the driver can override this. 631 */ 632 vap->iv_reset = default_reset; 633 634 /* 635 * Install a default crypto key update method, the driver 636 * can override this. 637 */ 638 vap->iv_update_deftxkey = default_update_deftxkey; 639 640 ieee80211_sysctl_vattach(vap); 641 ieee80211_crypto_vattach(vap); 642 ieee80211_node_vattach(vap); 643 ieee80211_power_vattach(vap); 644 ieee80211_proto_vattach(vap); 645 #ifdef IEEE80211_SUPPORT_SUPERG 646 ieee80211_superg_vattach(vap); 647 #endif 648 ieee80211_ht_vattach(vap); 649 ieee80211_vht_vattach(vap); 650 ieee80211_scan_vattach(vap); 651 ieee80211_regdomain_vattach(vap); 652 ieee80211_radiotap_vattach(vap); 653 ieee80211_vap_reset_erp(vap); 654 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 655 656 return 0; 657 } 658 659 /* 660 * Activate a vap. State should have been prepared with a 661 * call to ieee80211_vap_setup and by the driver. On return 662 * from this call the vap is ready for use. 663 */ 664 int 665 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 666 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 667 { 668 struct ifnet *ifp = vap->iv_ifp; 669 struct ieee80211com *ic = vap->iv_ic; 670 struct ifmediareq imr; 671 int maxrate; 672 673 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 674 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 675 __func__, ieee80211_opmode_name[vap->iv_opmode], 676 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 677 678 /* 679 * Do late attach work that cannot happen until after 680 * the driver has had a chance to override defaults. 681 */ 682 ieee80211_node_latevattach(vap); 683 ieee80211_power_latevattach(vap); 684 685 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 686 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 687 ieee80211_media_status(ifp, &imr); 688 /* NB: strip explicit mode; we're actually in autoselect */ 689 ifmedia_set(&vap->iv_media, 690 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 691 if (maxrate) 692 ifp->if_baudrate = IF_Mbps(maxrate); 693 694 ether_ifattach(ifp, macaddr); 695 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 696 /* hook output method setup by ether_ifattach */ 697 vap->iv_output = ifp->if_output; 698 ifp->if_output = ieee80211_output; 699 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 700 701 IEEE80211_LOCK(ic); 702 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 703 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 704 #ifdef IEEE80211_SUPPORT_SUPERG 705 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 706 #endif 707 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 708 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 709 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 710 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 711 712 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 713 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 714 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 715 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 716 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 717 IEEE80211_UNLOCK(ic); 718 719 return 1; 720 } 721 722 /* 723 * Tear down vap state and reclaim the ifnet. 724 * The driver is assumed to have prepared for 725 * this; e.g. by turning off interrupts for the 726 * underlying device. 727 */ 728 void 729 ieee80211_vap_detach(struct ieee80211vap *vap) 730 { 731 struct ieee80211com *ic = vap->iv_ic; 732 struct ifnet *ifp = vap->iv_ifp; 733 734 CURVNET_SET(ifp->if_vnet); 735 736 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 737 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 738 739 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 740 ether_ifdetach(ifp); 741 742 ieee80211_stop(vap); 743 744 /* 745 * Flush any deferred vap tasks. 746 */ 747 ieee80211_draintask(ic, &vap->iv_nstate_task); 748 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 749 ieee80211_draintask(ic, &vap->iv_wme_task); 750 ieee80211_draintask(ic, &ic->ic_parent_task); 751 752 /* XXX band-aid until ifnet handles this for us */ 753 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 754 755 IEEE80211_LOCK(ic); 756 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 757 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 758 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 759 #ifdef IEEE80211_SUPPORT_SUPERG 760 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 761 #endif 762 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 763 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 764 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 765 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 766 767 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 768 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 769 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 770 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 771 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 772 773 /* NB: this handles the bpfdetach done below */ 774 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 775 if (vap->iv_ifflags & IFF_PROMISC) 776 ieee80211_promisc(vap, false); 777 if (vap->iv_ifflags & IFF_ALLMULTI) 778 ieee80211_allmulti(vap, false); 779 IEEE80211_UNLOCK(ic); 780 781 ifmedia_removeall(&vap->iv_media); 782 783 ieee80211_radiotap_vdetach(vap); 784 ieee80211_regdomain_vdetach(vap); 785 ieee80211_scan_vdetach(vap); 786 #ifdef IEEE80211_SUPPORT_SUPERG 787 ieee80211_superg_vdetach(vap); 788 #endif 789 ieee80211_vht_vdetach(vap); 790 ieee80211_ht_vdetach(vap); 791 /* NB: must be before ieee80211_node_vdetach */ 792 ieee80211_proto_vdetach(vap); 793 ieee80211_crypto_vdetach(vap); 794 ieee80211_power_vdetach(vap); 795 ieee80211_node_vdetach(vap); 796 ieee80211_sysctl_vdetach(vap); 797 798 if_free(ifp); 799 800 CURVNET_RESTORE(); 801 } 802 803 /* 804 * Count number of vaps in promisc, and issue promisc on 805 * parent respectively. 806 */ 807 void 808 ieee80211_promisc(struct ieee80211vap *vap, bool on) 809 { 810 struct ieee80211com *ic = vap->iv_ic; 811 812 IEEE80211_LOCK_ASSERT(ic); 813 814 if (on) { 815 if (++ic->ic_promisc == 1) 816 ieee80211_runtask(ic, &ic->ic_promisc_task); 817 } else { 818 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 819 __func__, ic)); 820 if (--ic->ic_promisc == 0) 821 ieee80211_runtask(ic, &ic->ic_promisc_task); 822 } 823 } 824 825 /* 826 * Count number of vaps in allmulti, and issue allmulti on 827 * parent respectively. 828 */ 829 void 830 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 831 { 832 struct ieee80211com *ic = vap->iv_ic; 833 834 IEEE80211_LOCK_ASSERT(ic); 835 836 if (on) { 837 if (++ic->ic_allmulti == 1) 838 ieee80211_runtask(ic, &ic->ic_mcast_task); 839 } else { 840 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 841 __func__, ic)); 842 if (--ic->ic_allmulti == 0) 843 ieee80211_runtask(ic, &ic->ic_mcast_task); 844 } 845 } 846 847 /* 848 * Synchronize flag bit state in the com structure 849 * according to the state of all vap's. This is used, 850 * for example, to handle state changes via ioctls. 851 */ 852 static void 853 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 854 { 855 struct ieee80211vap *vap; 856 int bit; 857 858 IEEE80211_LOCK_ASSERT(ic); 859 860 bit = 0; 861 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 862 if (vap->iv_flags & flag) { 863 bit = 1; 864 break; 865 } 866 if (bit) 867 ic->ic_flags |= flag; 868 else 869 ic->ic_flags &= ~flag; 870 } 871 872 void 873 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 874 { 875 struct ieee80211com *ic = vap->iv_ic; 876 877 IEEE80211_LOCK(ic); 878 if (flag < 0) { 879 flag = -flag; 880 vap->iv_flags &= ~flag; 881 } else 882 vap->iv_flags |= flag; 883 ieee80211_syncflag_locked(ic, flag); 884 IEEE80211_UNLOCK(ic); 885 } 886 887 /* 888 * Synchronize flags_ht bit state in the com structure 889 * according to the state of all vap's. This is used, 890 * for example, to handle state changes via ioctls. 891 */ 892 static void 893 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 894 { 895 struct ieee80211vap *vap; 896 int bit; 897 898 IEEE80211_LOCK_ASSERT(ic); 899 900 bit = 0; 901 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 902 if (vap->iv_flags_ht & flag) { 903 bit = 1; 904 break; 905 } 906 if (bit) 907 ic->ic_flags_ht |= flag; 908 else 909 ic->ic_flags_ht &= ~flag; 910 } 911 912 void 913 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 914 { 915 struct ieee80211com *ic = vap->iv_ic; 916 917 IEEE80211_LOCK(ic); 918 if (flag < 0) { 919 flag = -flag; 920 vap->iv_flags_ht &= ~flag; 921 } else 922 vap->iv_flags_ht |= flag; 923 ieee80211_syncflag_ht_locked(ic, flag); 924 IEEE80211_UNLOCK(ic); 925 } 926 927 /* 928 * Synchronize flags_vht bit state in the com structure 929 * according to the state of all vap's. This is used, 930 * for example, to handle state changes via ioctls. 931 */ 932 static void 933 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 934 { 935 struct ieee80211vap *vap; 936 int bit; 937 938 IEEE80211_LOCK_ASSERT(ic); 939 940 bit = 0; 941 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 942 if (vap->iv_vht_flags & flag) { 943 bit = 1; 944 break; 945 } 946 if (bit) 947 ic->ic_vht_flags |= flag; 948 else 949 ic->ic_vht_flags &= ~flag; 950 } 951 952 void 953 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 954 { 955 struct ieee80211com *ic = vap->iv_ic; 956 957 IEEE80211_LOCK(ic); 958 if (flag < 0) { 959 flag = -flag; 960 vap->iv_vht_flags &= ~flag; 961 } else 962 vap->iv_vht_flags |= flag; 963 ieee80211_syncflag_vht_locked(ic, flag); 964 IEEE80211_UNLOCK(ic); 965 } 966 967 /* 968 * Synchronize flags_ext bit state in the com structure 969 * according to the state of all vap's. This is used, 970 * for example, to handle state changes via ioctls. 971 */ 972 static void 973 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 974 { 975 struct ieee80211vap *vap; 976 int bit; 977 978 IEEE80211_LOCK_ASSERT(ic); 979 980 bit = 0; 981 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 982 if (vap->iv_flags_ext & flag) { 983 bit = 1; 984 break; 985 } 986 if (bit) 987 ic->ic_flags_ext |= flag; 988 else 989 ic->ic_flags_ext &= ~flag; 990 } 991 992 void 993 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 994 { 995 struct ieee80211com *ic = vap->iv_ic; 996 997 IEEE80211_LOCK(ic); 998 if (flag < 0) { 999 flag = -flag; 1000 vap->iv_flags_ext &= ~flag; 1001 } else 1002 vap->iv_flags_ext |= flag; 1003 ieee80211_syncflag_ext_locked(ic, flag); 1004 IEEE80211_UNLOCK(ic); 1005 } 1006 1007 static __inline int 1008 mapgsm(u_int freq, u_int flags) 1009 { 1010 freq *= 10; 1011 if (flags & IEEE80211_CHAN_QUARTER) 1012 freq += 5; 1013 else if (flags & IEEE80211_CHAN_HALF) 1014 freq += 10; 1015 else 1016 freq += 20; 1017 /* NB: there is no 907/20 wide but leave room */ 1018 return (freq - 906*10) / 5; 1019 } 1020 1021 static __inline int 1022 mappsb(u_int freq, u_int flags) 1023 { 1024 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1025 } 1026 1027 /* 1028 * Convert MHz frequency to IEEE channel number. 1029 */ 1030 int 1031 ieee80211_mhz2ieee(u_int freq, u_int flags) 1032 { 1033 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1034 if (flags & IEEE80211_CHAN_GSM) 1035 return mapgsm(freq, flags); 1036 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1037 if (freq == 2484) 1038 return 14; 1039 if (freq < 2484) 1040 return ((int) freq - 2407) / 5; 1041 else 1042 return 15 + ((freq - 2512) / 20); 1043 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1044 if (freq <= 5000) { 1045 /* XXX check regdomain? */ 1046 if (IS_FREQ_IN_PSB(freq)) 1047 return mappsb(freq, flags); 1048 return (freq - 4000) / 5; 1049 } else 1050 return (freq - 5000) / 5; 1051 } else { /* either, guess */ 1052 if (freq == 2484) 1053 return 14; 1054 if (freq < 2484) { 1055 if (907 <= freq && freq <= 922) 1056 return mapgsm(freq, flags); 1057 return ((int) freq - 2407) / 5; 1058 } 1059 if (freq < 5000) { 1060 if (IS_FREQ_IN_PSB(freq)) 1061 return mappsb(freq, flags); 1062 else if (freq > 4900) 1063 return (freq - 4000) / 5; 1064 else 1065 return 15 + ((freq - 2512) / 20); 1066 } 1067 return (freq - 5000) / 5; 1068 } 1069 #undef IS_FREQ_IN_PSB 1070 } 1071 1072 /* 1073 * Convert channel to IEEE channel number. 1074 */ 1075 int 1076 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1077 { 1078 if (c == NULL) { 1079 ic_printf(ic, "invalid channel (NULL)\n"); 1080 return 0; /* XXX */ 1081 } 1082 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1083 } 1084 1085 /* 1086 * Convert IEEE channel number to MHz frequency. 1087 */ 1088 u_int 1089 ieee80211_ieee2mhz(u_int chan, u_int flags) 1090 { 1091 if (flags & IEEE80211_CHAN_GSM) 1092 return 907 + 5 * (chan / 10); 1093 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1094 if (chan == 14) 1095 return 2484; 1096 if (chan < 14) 1097 return 2407 + chan*5; 1098 else 1099 return 2512 + ((chan-15)*20); 1100 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1101 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1102 chan -= 37; 1103 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1104 } 1105 return 5000 + (chan*5); 1106 } else { /* either, guess */ 1107 /* XXX can't distinguish PSB+GSM channels */ 1108 if (chan == 14) 1109 return 2484; 1110 if (chan < 14) /* 0-13 */ 1111 return 2407 + chan*5; 1112 if (chan < 27) /* 15-26 */ 1113 return 2512 + ((chan-15)*20); 1114 return 5000 + (chan*5); 1115 } 1116 } 1117 1118 static __inline void 1119 set_extchan(struct ieee80211_channel *c) 1120 { 1121 1122 /* 1123 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1124 * "the secondary channel number shall be 'N + [1,-1] * 4' 1125 */ 1126 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1127 c->ic_extieee = c->ic_ieee + 4; 1128 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1129 c->ic_extieee = c->ic_ieee - 4; 1130 else 1131 c->ic_extieee = 0; 1132 } 1133 1134 /* 1135 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1136 * 1137 * This for now uses a hard-coded list of 80MHz wide channels. 1138 * 1139 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1140 * wide channel we've already decided upon. 1141 * 1142 * For VHT80 and VHT160, there are only a small number of fixed 1143 * 80/160MHz wide channels, so we just use those. 1144 * 1145 * This is all likely very very wrong - both the regulatory code 1146 * and this code needs to ensure that all four channels are 1147 * available and valid before the VHT80 (and eight for VHT160) channel 1148 * is created. 1149 */ 1150 1151 struct vht_chan_range { 1152 uint16_t freq_start; 1153 uint16_t freq_end; 1154 }; 1155 1156 struct vht_chan_range vht80_chan_ranges[] = { 1157 { 5170, 5250 }, 1158 { 5250, 5330 }, 1159 { 5490, 5570 }, 1160 { 5570, 5650 }, 1161 { 5650, 5730 }, 1162 { 5735, 5815 }, 1163 { 0, 0 } 1164 }; 1165 1166 struct vht_chan_range vht160_chan_ranges[] = { 1167 { 5170, 5330 }, 1168 { 5490, 5650 }, 1169 { 0, 0 } 1170 }; 1171 1172 static int 1173 set_vht_extchan(struct ieee80211_channel *c) 1174 { 1175 int i; 1176 1177 if (! IEEE80211_IS_CHAN_VHT(c)) 1178 return (0); 1179 1180 if (IEEE80211_IS_CHAN_VHT80P80(c)) { 1181 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", 1182 __func__, c->ic_ieee, c->ic_flags); 1183 } 1184 1185 if (IEEE80211_IS_CHAN_VHT160(c)) { 1186 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1187 if (c->ic_freq >= vht160_chan_ranges[i].freq_start && 1188 c->ic_freq < vht160_chan_ranges[i].freq_end) { 1189 int midpoint; 1190 1191 midpoint = vht160_chan_ranges[i].freq_start + 80; 1192 c->ic_vht_ch_freq1 = 1193 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1194 c->ic_vht_ch_freq2 = 0; 1195 #if 0 1196 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1197 __func__, c->ic_ieee, c->ic_freq, midpoint, 1198 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1199 #endif 1200 return (1); 1201 } 1202 } 1203 return (0); 1204 } 1205 1206 if (IEEE80211_IS_CHAN_VHT80(c)) { 1207 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1208 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1209 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1210 int midpoint; 1211 1212 midpoint = vht80_chan_ranges[i].freq_start + 40; 1213 c->ic_vht_ch_freq1 = 1214 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1215 c->ic_vht_ch_freq2 = 0; 1216 #if 0 1217 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1218 __func__, c->ic_ieee, c->ic_freq, midpoint, 1219 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1220 #endif 1221 return (1); 1222 } 1223 } 1224 return (0); 1225 } 1226 1227 if (IEEE80211_IS_CHAN_VHT40(c)) { 1228 if (IEEE80211_IS_CHAN_HT40U(c)) 1229 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1230 else if (IEEE80211_IS_CHAN_HT40D(c)) 1231 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1232 else 1233 return (0); 1234 return (1); 1235 } 1236 1237 if (IEEE80211_IS_CHAN_VHT20(c)) { 1238 c->ic_vht_ch_freq1 = c->ic_ieee; 1239 return (1); 1240 } 1241 1242 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1243 __func__, c->ic_ieee, c->ic_flags); 1244 1245 return (0); 1246 } 1247 1248 /* 1249 * Return whether the current channel could possibly be a part of 1250 * a VHT80/VHT160 channel. 1251 * 1252 * This doesn't check that the whole range is in the allowed list 1253 * according to regulatory. 1254 */ 1255 static bool 1256 is_vht160_valid_freq(uint16_t freq) 1257 { 1258 int i; 1259 1260 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1261 if (freq >= vht160_chan_ranges[i].freq_start && 1262 freq < vht160_chan_ranges[i].freq_end) 1263 return (true); 1264 } 1265 return (false); 1266 } 1267 1268 static int 1269 is_vht80_valid_freq(uint16_t freq) 1270 { 1271 int i; 1272 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1273 if (freq >= vht80_chan_ranges[i].freq_start && 1274 freq < vht80_chan_ranges[i].freq_end) 1275 return (1); 1276 } 1277 return (0); 1278 } 1279 1280 static int 1281 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1282 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1283 { 1284 struct ieee80211_channel *c; 1285 1286 if (*nchans >= maxchans) 1287 return (ENOBUFS); 1288 1289 #if 0 1290 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n", 1291 __func__, *nchans, maxchans, ieee, freq, flags); 1292 #endif 1293 1294 c = &chans[(*nchans)++]; 1295 c->ic_ieee = ieee; 1296 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1297 c->ic_maxregpower = maxregpower; 1298 c->ic_maxpower = 2 * maxregpower; 1299 c->ic_flags = flags; 1300 c->ic_vht_ch_freq1 = 0; 1301 c->ic_vht_ch_freq2 = 0; 1302 set_extchan(c); 1303 set_vht_extchan(c); 1304 1305 return (0); 1306 } 1307 1308 static int 1309 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1310 uint32_t flags) 1311 { 1312 struct ieee80211_channel *c; 1313 1314 KASSERT(*nchans > 0, ("channel list is empty\n")); 1315 1316 if (*nchans >= maxchans) 1317 return (ENOBUFS); 1318 1319 #if 0 1320 printf("%s: %d of %d: flags=0x%08x\n", 1321 __func__, *nchans, maxchans, flags); 1322 #endif 1323 1324 c = &chans[(*nchans)++]; 1325 c[0] = c[-1]; 1326 c->ic_flags = flags; 1327 c->ic_vht_ch_freq1 = 0; 1328 c->ic_vht_ch_freq2 = 0; 1329 set_extchan(c); 1330 set_vht_extchan(c); 1331 1332 return (0); 1333 } 1334 1335 /* 1336 * XXX VHT-2GHz 1337 */ 1338 static void 1339 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1340 { 1341 int nmodes; 1342 1343 nmodes = 0; 1344 if (isset(bands, IEEE80211_MODE_11B)) 1345 flags[nmodes++] = IEEE80211_CHAN_B; 1346 if (isset(bands, IEEE80211_MODE_11G)) 1347 flags[nmodes++] = IEEE80211_CHAN_G; 1348 if (isset(bands, IEEE80211_MODE_11NG)) 1349 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1350 if (cbw_flags & NET80211_CBW_FLAG_HT40) { 1351 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1352 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1353 } 1354 flags[nmodes] = 0; 1355 } 1356 1357 static void 1358 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1359 { 1360 int nmodes; 1361 1362 /* 1363 * The addchan_list() function seems to expect the flags array to 1364 * be in channel width order, so the VHT bits are interspersed 1365 * as appropriate to maintain said order. 1366 * 1367 * It also assumes HT40U is before HT40D. 1368 */ 1369 nmodes = 0; 1370 1371 /* 20MHz */ 1372 if (isset(bands, IEEE80211_MODE_11A)) 1373 flags[nmodes++] = IEEE80211_CHAN_A; 1374 if (isset(bands, IEEE80211_MODE_11NA)) 1375 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1376 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1377 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1378 IEEE80211_CHAN_VHT20; 1379 } 1380 1381 /* 40MHz */ 1382 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1383 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1384 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1385 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1386 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1387 IEEE80211_CHAN_VHT40U; 1388 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1389 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1390 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1391 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1392 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1393 IEEE80211_CHAN_VHT40D; 1394 1395 /* 80MHz */ 1396 if ((cbw_flags & NET80211_CBW_FLAG_VHT80) && 1397 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1398 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1399 IEEE80211_CHAN_VHT80; 1400 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1401 IEEE80211_CHAN_VHT80; 1402 } 1403 1404 /* VHT160 */ 1405 if ((cbw_flags & NET80211_CBW_FLAG_VHT160) && 1406 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1407 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1408 IEEE80211_CHAN_VHT160; 1409 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1410 IEEE80211_CHAN_VHT160; 1411 } 1412 1413 /* VHT80+80 */ 1414 if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) && 1415 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1416 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1417 IEEE80211_CHAN_VHT80P80; 1418 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1419 IEEE80211_CHAN_VHT80P80; 1420 } 1421 1422 flags[nmodes] = 0; 1423 } 1424 1425 static void 1426 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1427 { 1428 1429 flags[0] = 0; 1430 if (isset(bands, IEEE80211_MODE_11A) || 1431 isset(bands, IEEE80211_MODE_11NA) || 1432 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1433 if (isset(bands, IEEE80211_MODE_11B) || 1434 isset(bands, IEEE80211_MODE_11G) || 1435 isset(bands, IEEE80211_MODE_11NG) || 1436 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1437 return; 1438 1439 getflags_5ghz(bands, flags, cbw_flags); 1440 } else 1441 getflags_2ghz(bands, flags, cbw_flags); 1442 } 1443 1444 /* 1445 * Add one 20 MHz channel into specified channel list. 1446 * You MUST NOT mix bands when calling this. It will not add 5ghz 1447 * channels if you have any B/G/N band bit set. 1448 * The _cbw() variant does also support HT40/VHT80/160/80+80. 1449 */ 1450 int 1451 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans, 1452 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1453 uint32_t chan_flags, const uint8_t bands[], int cbw_flags) 1454 { 1455 uint32_t flags[IEEE80211_MODE_MAX]; 1456 int i, error; 1457 1458 getflags(bands, flags, cbw_flags); 1459 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1460 1461 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1462 flags[0] | chan_flags); 1463 for (i = 1; flags[i] != 0 && error == 0; i++) { 1464 error = copychan_prev(chans, maxchans, nchans, 1465 flags[i] | chan_flags); 1466 } 1467 1468 return (error); 1469 } 1470 1471 int 1472 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1473 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1474 uint32_t chan_flags, const uint8_t bands[]) 1475 { 1476 1477 return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq, 1478 maxregpower, chan_flags, bands, 0)); 1479 } 1480 1481 static struct ieee80211_channel * 1482 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1483 uint32_t flags) 1484 { 1485 struct ieee80211_channel *c; 1486 int i; 1487 1488 flags &= IEEE80211_CHAN_ALLTURBO; 1489 /* brute force search */ 1490 for (i = 0; i < nchans; i++) { 1491 c = &chans[i]; 1492 if (c->ic_freq == freq && 1493 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1494 return c; 1495 } 1496 return NULL; 1497 } 1498 1499 /* 1500 * Add 40 MHz channel pair into specified channel list. 1501 */ 1502 /* XXX VHT */ 1503 int 1504 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1505 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1506 { 1507 struct ieee80211_channel *cent, *extc; 1508 uint16_t freq; 1509 int error; 1510 1511 freq = ieee80211_ieee2mhz(ieee, flags); 1512 1513 /* 1514 * Each entry defines an HT40 channel pair; find the 1515 * center channel, then the extension channel above. 1516 */ 1517 flags |= IEEE80211_CHAN_HT20; 1518 cent = findchannel(chans, *nchans, freq, flags); 1519 if (cent == NULL) 1520 return (EINVAL); 1521 1522 extc = findchannel(chans, *nchans, freq + 20, flags); 1523 if (extc == NULL) 1524 return (ENOENT); 1525 1526 flags &= ~IEEE80211_CHAN_HT; 1527 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1528 maxregpower, flags | IEEE80211_CHAN_HT40U); 1529 if (error != 0) 1530 return (error); 1531 1532 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1533 maxregpower, flags | IEEE80211_CHAN_HT40D); 1534 1535 return (error); 1536 } 1537 1538 /* 1539 * Fetch the center frequency for the primary channel. 1540 */ 1541 uint32_t 1542 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1543 { 1544 1545 return (c->ic_freq); 1546 } 1547 1548 /* 1549 * Fetch the center frequency for the primary BAND channel. 1550 * 1551 * For 5, 10, 20MHz channels it'll be the normally configured channel 1552 * frequency. 1553 * 1554 * For 40MHz, 80MHz, 160MHz channels it will be the centre of the 1555 * wide channel, not the centre of the primary channel (that's ic_freq). 1556 * 1557 * For 80+80MHz channels this will be the centre of the primary 1558 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1559 */ 1560 uint32_t 1561 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1562 { 1563 1564 /* 1565 * VHT - use the pre-calculated centre frequency 1566 * of the given channel. 1567 */ 1568 if (IEEE80211_IS_CHAN_VHT(c)) 1569 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1570 1571 if (IEEE80211_IS_CHAN_HT40U(c)) { 1572 return (c->ic_freq + 10); 1573 } 1574 if (IEEE80211_IS_CHAN_HT40D(c)) { 1575 return (c->ic_freq - 10); 1576 } 1577 1578 return (c->ic_freq); 1579 } 1580 1581 /* 1582 * For now, no 80+80 support; it will likely always return 0. 1583 */ 1584 uint32_t 1585 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1586 { 1587 1588 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1589 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1590 1591 return (0); 1592 } 1593 1594 /* 1595 * Adds channels into specified channel list (ieee[] array must be sorted). 1596 * Channels are already sorted. 1597 */ 1598 static int 1599 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1600 const uint8_t ieee[], int nieee, uint32_t flags[]) 1601 { 1602 uint16_t freq; 1603 int i, j, error; 1604 int is_vht; 1605 1606 for (i = 0; i < nieee; i++) { 1607 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1608 for (j = 0; flags[j] != 0; j++) { 1609 /* 1610 * Notes: 1611 * + HT40 and VHT40 channels occur together, so 1612 * we need to be careful that we actually allow that. 1613 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1614 * make sure it's not skipped because of the overlap 1615 * check used for (V)HT40. 1616 */ 1617 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1618 1619 /* XXX TODO FIXME VHT80P80. */ 1620 1621 /* Test for VHT160 analogue to the VHT80 below. */ 1622 if (is_vht && flags[j] & IEEE80211_CHAN_VHT160) 1623 if (! is_vht160_valid_freq(freq)) 1624 continue; 1625 1626 /* 1627 * Test for VHT80. 1628 * XXX This is all very broken right now. 1629 * What we /should/ do is: 1630 * 1631 * + check that the frequency is in the list of 1632 * allowed VHT80 ranges; and 1633 * + the other 3 channels in the list are actually 1634 * also available. 1635 */ 1636 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1637 if (! is_vht80_valid_freq(freq)) 1638 continue; 1639 1640 /* 1641 * Test for (V)HT40. 1642 * 1643 * This is also a fall through from VHT80; as we only 1644 * allow a VHT80 channel if the VHT40 combination is 1645 * also valid. If the VHT40 form is not valid then 1646 * we certainly can't do VHT80.. 1647 */ 1648 if (flags[j] & IEEE80211_CHAN_HT40D) 1649 /* 1650 * Can't have a "lower" channel if we are the 1651 * first channel. 1652 * 1653 * Can't have a "lower" channel if it's below/ 1654 * within 20MHz of the first channel. 1655 * 1656 * Can't have a "lower" channel if the channel 1657 * below it is not 20MHz away. 1658 */ 1659 if (i == 0 || ieee[i] < ieee[0] + 4 || 1660 freq - 20 != 1661 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1662 continue; 1663 if (flags[j] & IEEE80211_CHAN_HT40U) 1664 /* 1665 * Can't have an "upper" channel if we are 1666 * the last channel. 1667 * 1668 * Can't have an "upper" channel be above the 1669 * last channel in the list. 1670 * 1671 * Can't have an "upper" channel if the next 1672 * channel according to the math isn't 20MHz 1673 * away. (Likely for channel 13/14.) 1674 */ 1675 if (i == nieee - 1 || 1676 ieee[i] + 4 > ieee[nieee - 1] || 1677 freq + 20 != 1678 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1679 continue; 1680 1681 if (j == 0) { 1682 error = addchan(chans, maxchans, nchans, 1683 ieee[i], freq, 0, flags[j]); 1684 } else { 1685 error = copychan_prev(chans, maxchans, nchans, 1686 flags[j]); 1687 } 1688 if (error != 0) 1689 return (error); 1690 } 1691 } 1692 1693 return (0); 1694 } 1695 1696 int 1697 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1698 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1699 int cbw_flags) 1700 { 1701 uint32_t flags[IEEE80211_MODE_MAX]; 1702 1703 /* XXX no VHT for now */ 1704 getflags_2ghz(bands, flags, cbw_flags); 1705 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1706 1707 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1708 } 1709 1710 int 1711 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1712 int maxchans, int *nchans, const uint8_t bands[], int cbw_flags) 1713 { 1714 const uint8_t default_chan_list[] = 1715 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1716 1717 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1718 default_chan_list, nitems(default_chan_list), bands, cbw_flags)); 1719 } 1720 1721 int 1722 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1723 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1724 int cbw_flags) 1725 { 1726 /* 1727 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all 1728 * uses of IEEE80211_MODE_MAX and add a new #define name for array size. 1729 */ 1730 uint32_t flags[2 * IEEE80211_MODE_MAX]; 1731 1732 getflags_5ghz(bands, flags, cbw_flags); 1733 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1734 1735 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1736 } 1737 1738 /* 1739 * Locate a channel given a frequency+flags. We cache 1740 * the previous lookup to optimize switching between two 1741 * channels--as happens with dynamic turbo. 1742 */ 1743 struct ieee80211_channel * 1744 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1745 { 1746 struct ieee80211_channel *c; 1747 1748 flags &= IEEE80211_CHAN_ALLTURBO; 1749 c = ic->ic_prevchan; 1750 if (c != NULL && c->ic_freq == freq && 1751 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1752 return c; 1753 /* brute force search */ 1754 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1755 } 1756 1757 /* 1758 * Locate a channel given a channel number+flags. We cache 1759 * the previous lookup to optimize switching between two 1760 * channels--as happens with dynamic turbo. 1761 */ 1762 struct ieee80211_channel * 1763 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1764 { 1765 struct ieee80211_channel *c; 1766 int i; 1767 1768 flags &= IEEE80211_CHAN_ALLTURBO; 1769 c = ic->ic_prevchan; 1770 if (c != NULL && c->ic_ieee == ieee && 1771 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1772 return c; 1773 /* brute force search */ 1774 for (i = 0; i < ic->ic_nchans; i++) { 1775 c = &ic->ic_channels[i]; 1776 if (c->ic_ieee == ieee && 1777 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1778 return c; 1779 } 1780 return NULL; 1781 } 1782 1783 /* 1784 * Lookup a channel suitable for the given rx status. 1785 * 1786 * This is used to find a channel for a frame (eg beacon, probe 1787 * response) based purely on the received PHY information. 1788 * 1789 * For now it tries to do it based on R_FREQ / R_IEEE. 1790 * This is enough for 11bg and 11a (and thus 11ng/11na) 1791 * but it will not be enough for GSM, PSB channels and the 1792 * like. It also doesn't know about legacy-turbog and 1793 * legacy-turbo modes, which some offload NICs actually 1794 * support in weird ways. 1795 * 1796 * Takes the ic and rxstatus; returns the channel or NULL 1797 * if not found. 1798 * 1799 * XXX TODO: Add support for that when the need arises. 1800 */ 1801 struct ieee80211_channel * 1802 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1803 const struct ieee80211_rx_stats *rxs) 1804 { 1805 struct ieee80211com *ic = vap->iv_ic; 1806 uint32_t flags; 1807 struct ieee80211_channel *c; 1808 1809 if (rxs == NULL) 1810 return (NULL); 1811 1812 /* 1813 * Strictly speaking we only use freq for now, 1814 * however later on we may wish to just store 1815 * the ieee for verification. 1816 */ 1817 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1818 return (NULL); 1819 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1820 return (NULL); 1821 if ((rxs->r_flags & IEEE80211_R_BAND) == 0) 1822 return (NULL); 1823 1824 /* 1825 * If the rx status contains a valid ieee/freq, then 1826 * ensure we populate the correct channel information 1827 * in rxchan before passing it up to the scan infrastructure. 1828 * Offload NICs will pass up beacons from all channels 1829 * during background scans. 1830 */ 1831 1832 /* Determine a band */ 1833 switch (rxs->c_band) { 1834 case IEEE80211_CHAN_2GHZ: 1835 flags = IEEE80211_CHAN_G; 1836 break; 1837 case IEEE80211_CHAN_5GHZ: 1838 flags = IEEE80211_CHAN_A; 1839 break; 1840 default: 1841 if (rxs->c_freq < 3000) { 1842 flags = IEEE80211_CHAN_G; 1843 } else { 1844 flags = IEEE80211_CHAN_A; 1845 } 1846 break; 1847 } 1848 1849 /* Channel lookup */ 1850 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1851 1852 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1853 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1854 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); 1855 1856 return (c); 1857 } 1858 1859 static void 1860 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1861 { 1862 #define ADD(_ic, _s, _o) \ 1863 ifmedia_add(media, \ 1864 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1865 static const u_int mopts[IEEE80211_MODE_MAX] = { 1866 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1867 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1868 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1869 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1870 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1871 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1872 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1873 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1874 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1875 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1876 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1877 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1878 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1879 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1880 }; 1881 u_int mopt; 1882 1883 mopt = mopts[mode]; 1884 if (addsta) 1885 ADD(ic, mword, mopt); /* STA mode has no cap */ 1886 if (caps & IEEE80211_C_IBSS) 1887 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1888 if (caps & IEEE80211_C_HOSTAP) 1889 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1890 if (caps & IEEE80211_C_AHDEMO) 1891 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1892 if (caps & IEEE80211_C_MONITOR) 1893 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1894 if (caps & IEEE80211_C_WDS) 1895 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1896 if (caps & IEEE80211_C_MBSS) 1897 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1898 #undef ADD 1899 } 1900 1901 /* 1902 * Setup the media data structures according to the channel and 1903 * rate tables. 1904 */ 1905 static int 1906 ieee80211_media_setup(struct ieee80211com *ic, 1907 struct ifmedia *media, int caps, int addsta, 1908 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1909 { 1910 int i, j, rate, maxrate, mword, r; 1911 enum ieee80211_phymode mode; 1912 const struct ieee80211_rateset *rs; 1913 struct ieee80211_rateset allrates; 1914 1915 /* 1916 * Fill in media characteristics. 1917 */ 1918 ifmedia_init(media, 0, media_change, media_stat); 1919 maxrate = 0; 1920 /* 1921 * Add media for legacy operating modes. 1922 */ 1923 memset(&allrates, 0, sizeof(allrates)); 1924 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1925 if (isclr(ic->ic_modecaps, mode)) 1926 continue; 1927 addmedia(media, caps, addsta, mode, IFM_AUTO); 1928 if (mode == IEEE80211_MODE_AUTO) 1929 continue; 1930 rs = &ic->ic_sup_rates[mode]; 1931 for (i = 0; i < rs->rs_nrates; i++) { 1932 rate = rs->rs_rates[i]; 1933 mword = ieee80211_rate2media(ic, rate, mode); 1934 if (mword == 0) 1935 continue; 1936 addmedia(media, caps, addsta, mode, mword); 1937 /* 1938 * Add legacy rate to the collection of all rates. 1939 */ 1940 r = rate & IEEE80211_RATE_VAL; 1941 for (j = 0; j < allrates.rs_nrates; j++) 1942 if (allrates.rs_rates[j] == r) 1943 break; 1944 if (j == allrates.rs_nrates) { 1945 /* unique, add to the set */ 1946 allrates.rs_rates[j] = r; 1947 allrates.rs_nrates++; 1948 } 1949 rate = (rate & IEEE80211_RATE_VAL) / 2; 1950 if (rate > maxrate) 1951 maxrate = rate; 1952 } 1953 } 1954 for (i = 0; i < allrates.rs_nrates; i++) { 1955 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1956 IEEE80211_MODE_AUTO); 1957 if (mword == 0) 1958 continue; 1959 /* NB: remove media options from mword */ 1960 addmedia(media, caps, addsta, 1961 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1962 } 1963 /* 1964 * Add HT/11n media. Note that we do not have enough 1965 * bits in the media subtype to express the MCS so we 1966 * use a "placeholder" media subtype and any fixed MCS 1967 * must be specified with a different mechanism. 1968 */ 1969 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1970 if (isclr(ic->ic_modecaps, mode)) 1971 continue; 1972 addmedia(media, caps, addsta, mode, IFM_AUTO); 1973 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1974 } 1975 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1976 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1977 addmedia(media, caps, addsta, 1978 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1979 i = ic->ic_txstream * 8 - 1; 1980 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1981 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1982 rate = ieee80211_htrates[i].ht40_rate_400ns; 1983 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1984 rate = ieee80211_htrates[i].ht40_rate_800ns; 1985 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1986 rate = ieee80211_htrates[i].ht20_rate_400ns; 1987 else 1988 rate = ieee80211_htrates[i].ht20_rate_800ns; 1989 if (rate > maxrate) 1990 maxrate = rate; 1991 } 1992 1993 /* 1994 * Add VHT media. 1995 * XXX-BZ skip "VHT_2GHZ" for now. 1996 */ 1997 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; 1998 mode++) { 1999 if (isclr(ic->ic_modecaps, mode)) 2000 continue; 2001 addmedia(media, caps, addsta, mode, IFM_AUTO); 2002 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 2003 } 2004 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { 2005 addmedia(media, caps, addsta, 2006 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); 2007 2008 /* XXX TODO: VHT maxrate */ 2009 } 2010 2011 return maxrate; 2012 } 2013 2014 /* XXX inline or eliminate? */ 2015 const struct ieee80211_rateset * 2016 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 2017 { 2018 /* XXX does this work for 11ng basic rates? */ 2019 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 2020 } 2021 2022 /* XXX inline or eliminate? */ 2023 const struct ieee80211_htrateset * 2024 ieee80211_get_suphtrates(struct ieee80211com *ic, 2025 const struct ieee80211_channel *c) 2026 { 2027 return &ic->ic_sup_htrates; 2028 } 2029 2030 void 2031 ieee80211_announce(struct ieee80211com *ic) 2032 { 2033 int i, rate, mword; 2034 enum ieee80211_phymode mode; 2035 const struct ieee80211_rateset *rs; 2036 2037 /* NB: skip AUTO since it has no rates */ 2038 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 2039 if (isclr(ic->ic_modecaps, mode)) 2040 continue; 2041 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 2042 rs = &ic->ic_sup_rates[mode]; 2043 for (i = 0; i < rs->rs_nrates; i++) { 2044 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 2045 if (mword == 0) 2046 continue; 2047 rate = ieee80211_media2rate(mword); 2048 printf("%s%d%sMbps", (i != 0 ? " " : ""), 2049 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 2050 } 2051 printf("\n"); 2052 } 2053 ieee80211_ht_announce(ic); 2054 ieee80211_vht_announce(ic); 2055 } 2056 2057 void 2058 ieee80211_announce_channels(struct ieee80211com *ic) 2059 { 2060 const struct ieee80211_channel *c; 2061 char type; 2062 int i, cw; 2063 2064 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 2065 for (i = 0; i < ic->ic_nchans; i++) { 2066 c = &ic->ic_channels[i]; 2067 if (IEEE80211_IS_CHAN_ST(c)) 2068 type = 'S'; 2069 else if (IEEE80211_IS_CHAN_108A(c)) 2070 type = 'T'; 2071 else if (IEEE80211_IS_CHAN_108G(c)) 2072 type = 'G'; 2073 else if (IEEE80211_IS_CHAN_HT(c)) 2074 type = 'n'; 2075 else if (IEEE80211_IS_CHAN_A(c)) 2076 type = 'a'; 2077 else if (IEEE80211_IS_CHAN_ANYG(c)) 2078 type = 'g'; 2079 else if (IEEE80211_IS_CHAN_B(c)) 2080 type = 'b'; 2081 else 2082 type = 'f'; 2083 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2084 cw = 40; 2085 else if (IEEE80211_IS_CHAN_HALF(c)) 2086 cw = 10; 2087 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2088 cw = 5; 2089 else 2090 cw = 20; 2091 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2092 , c->ic_ieee, c->ic_freq, type 2093 , cw 2094 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2095 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2096 , c->ic_maxregpower 2097 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2098 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2099 ); 2100 } 2101 } 2102 2103 static int 2104 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2105 { 2106 switch (IFM_MODE(ime->ifm_media)) { 2107 case IFM_IEEE80211_11A: 2108 *mode = IEEE80211_MODE_11A; 2109 break; 2110 case IFM_IEEE80211_11B: 2111 *mode = IEEE80211_MODE_11B; 2112 break; 2113 case IFM_IEEE80211_11G: 2114 *mode = IEEE80211_MODE_11G; 2115 break; 2116 case IFM_IEEE80211_FH: 2117 *mode = IEEE80211_MODE_FH; 2118 break; 2119 case IFM_IEEE80211_11NA: 2120 *mode = IEEE80211_MODE_11NA; 2121 break; 2122 case IFM_IEEE80211_11NG: 2123 *mode = IEEE80211_MODE_11NG; 2124 break; 2125 case IFM_IEEE80211_VHT2G: 2126 *mode = IEEE80211_MODE_VHT_2GHZ; 2127 break; 2128 case IFM_IEEE80211_VHT5G: 2129 *mode = IEEE80211_MODE_VHT_5GHZ; 2130 break; 2131 case IFM_AUTO: 2132 *mode = IEEE80211_MODE_AUTO; 2133 break; 2134 default: 2135 return 0; 2136 } 2137 /* 2138 * Turbo mode is an ``option''. 2139 * XXX does not apply to AUTO 2140 */ 2141 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2142 if (*mode == IEEE80211_MODE_11A) { 2143 if (flags & IEEE80211_F_TURBOP) 2144 *mode = IEEE80211_MODE_TURBO_A; 2145 else 2146 *mode = IEEE80211_MODE_STURBO_A; 2147 } else if (*mode == IEEE80211_MODE_11G) 2148 *mode = IEEE80211_MODE_TURBO_G; 2149 else 2150 return 0; 2151 } 2152 /* XXX HT40 +/- */ 2153 return 1; 2154 } 2155 2156 /* 2157 * Handle a media change request on the vap interface. 2158 */ 2159 int 2160 ieee80211_media_change(struct ifnet *ifp) 2161 { 2162 struct ieee80211vap *vap = ifp->if_softc; 2163 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2164 uint16_t newmode; 2165 2166 if (!media2mode(ime, vap->iv_flags, &newmode)) 2167 return EINVAL; 2168 if (vap->iv_des_mode != newmode) { 2169 vap->iv_des_mode = newmode; 2170 /* XXX kick state machine if up+running */ 2171 } 2172 return 0; 2173 } 2174 2175 /* 2176 * Common code to calculate the media status word 2177 * from the operating mode and channel state. 2178 */ 2179 static int 2180 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2181 { 2182 int status; 2183 2184 status = IFM_IEEE80211; 2185 switch (opmode) { 2186 case IEEE80211_M_STA: 2187 break; 2188 case IEEE80211_M_IBSS: 2189 status |= IFM_IEEE80211_ADHOC; 2190 break; 2191 case IEEE80211_M_HOSTAP: 2192 status |= IFM_IEEE80211_HOSTAP; 2193 break; 2194 case IEEE80211_M_MONITOR: 2195 status |= IFM_IEEE80211_MONITOR; 2196 break; 2197 case IEEE80211_M_AHDEMO: 2198 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2199 break; 2200 case IEEE80211_M_WDS: 2201 status |= IFM_IEEE80211_WDS; 2202 break; 2203 case IEEE80211_M_MBSS: 2204 status |= IFM_IEEE80211_MBSS; 2205 break; 2206 } 2207 if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) { 2208 status |= IFM_IEEE80211_VHT5G; 2209 } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) { 2210 status |= IFM_IEEE80211_VHT2G; 2211 } else if (IEEE80211_IS_CHAN_HTA(chan)) { 2212 status |= IFM_IEEE80211_11NA; 2213 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2214 status |= IFM_IEEE80211_11NG; 2215 } else if (IEEE80211_IS_CHAN_A(chan)) { 2216 status |= IFM_IEEE80211_11A; 2217 } else if (IEEE80211_IS_CHAN_B(chan)) { 2218 status |= IFM_IEEE80211_11B; 2219 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2220 status |= IFM_IEEE80211_11G; 2221 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2222 status |= IFM_IEEE80211_FH; 2223 } 2224 /* XXX else complain? */ 2225 2226 if (IEEE80211_IS_CHAN_TURBO(chan)) 2227 status |= IFM_IEEE80211_TURBO; 2228 #if 0 2229 if (IEEE80211_IS_CHAN_HT20(chan)) 2230 status |= IFM_IEEE80211_HT20; 2231 if (IEEE80211_IS_CHAN_HT40(chan)) 2232 status |= IFM_IEEE80211_HT40; 2233 #endif 2234 return status; 2235 } 2236 2237 void 2238 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2239 { 2240 struct ieee80211vap *vap = ifp->if_softc; 2241 struct ieee80211com *ic = vap->iv_ic; 2242 enum ieee80211_phymode mode; 2243 2244 imr->ifm_status = IFM_AVALID; 2245 /* 2246 * NB: use the current channel's mode to lock down a xmit 2247 * rate only when running; otherwise we may have a mismatch 2248 * in which case the rate will not be convertible. 2249 */ 2250 if (vap->iv_state == IEEE80211_S_RUN || 2251 vap->iv_state == IEEE80211_S_SLEEP) { 2252 imr->ifm_status |= IFM_ACTIVE; 2253 mode = ieee80211_chan2mode(ic->ic_curchan); 2254 } else 2255 mode = IEEE80211_MODE_AUTO; 2256 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2257 /* 2258 * Calculate a current rate if possible. 2259 */ 2260 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2261 /* 2262 * A fixed rate is set, report that. 2263 */ 2264 imr->ifm_active |= ieee80211_rate2media(ic, 2265 vap->iv_txparms[mode].ucastrate, mode); 2266 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2267 /* 2268 * In station mode report the current transmit rate. 2269 */ 2270 imr->ifm_active |= ieee80211_rate2media(ic, 2271 vap->iv_bss->ni_txrate, mode); 2272 } else 2273 imr->ifm_active |= IFM_AUTO; 2274 if (imr->ifm_status & IFM_ACTIVE) 2275 imr->ifm_current = imr->ifm_active; 2276 } 2277 2278 /* 2279 * Set the current phy mode and recalculate the active channel 2280 * set based on the available channels for this mode. Also 2281 * select a new default/current channel if the current one is 2282 * inappropriate for this mode. 2283 */ 2284 int 2285 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2286 { 2287 /* 2288 * Adjust basic rates in 11b/11g supported rate set. 2289 * Note that if operating on a hal/quarter rate channel 2290 * this is a noop as those rates sets are different 2291 * and used instead. 2292 */ 2293 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2294 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2295 2296 ic->ic_curmode = mode; 2297 ieee80211_reset_erp(ic); /* reset global ERP state */ 2298 2299 return 0; 2300 } 2301 2302 /* 2303 * Return the phy mode for with the specified channel. 2304 */ 2305 enum ieee80211_phymode 2306 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2307 { 2308 2309 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2310 return IEEE80211_MODE_VHT_2GHZ; 2311 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2312 return IEEE80211_MODE_VHT_5GHZ; 2313 else if (IEEE80211_IS_CHAN_HTA(chan)) 2314 return IEEE80211_MODE_11NA; 2315 else if (IEEE80211_IS_CHAN_HTG(chan)) 2316 return IEEE80211_MODE_11NG; 2317 else if (IEEE80211_IS_CHAN_108G(chan)) 2318 return IEEE80211_MODE_TURBO_G; 2319 else if (IEEE80211_IS_CHAN_ST(chan)) 2320 return IEEE80211_MODE_STURBO_A; 2321 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2322 return IEEE80211_MODE_TURBO_A; 2323 else if (IEEE80211_IS_CHAN_HALF(chan)) 2324 return IEEE80211_MODE_HALF; 2325 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2326 return IEEE80211_MODE_QUARTER; 2327 else if (IEEE80211_IS_CHAN_A(chan)) 2328 return IEEE80211_MODE_11A; 2329 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2330 return IEEE80211_MODE_11G; 2331 else if (IEEE80211_IS_CHAN_B(chan)) 2332 return IEEE80211_MODE_11B; 2333 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2334 return IEEE80211_MODE_FH; 2335 2336 /* NB: should not get here */ 2337 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2338 __func__, chan->ic_freq, chan->ic_flags); 2339 return IEEE80211_MODE_11B; 2340 } 2341 2342 struct ratemedia { 2343 u_int match; /* rate + mode */ 2344 u_int media; /* if_media rate */ 2345 }; 2346 2347 static int 2348 findmedia(const struct ratemedia rates[], int n, u_int match) 2349 { 2350 int i; 2351 2352 for (i = 0; i < n; i++) 2353 if (rates[i].match == match) 2354 return rates[i].media; 2355 return IFM_AUTO; 2356 } 2357 2358 /* 2359 * Convert IEEE80211 rate value to ifmedia subtype. 2360 * Rate is either a legacy rate in units of 0.5Mbps 2361 * or an MCS index. 2362 */ 2363 int 2364 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2365 { 2366 static const struct ratemedia rates[] = { 2367 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2368 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2369 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2370 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2371 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2372 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2373 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2374 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2375 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2376 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2377 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2378 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2379 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2380 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2381 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2382 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2383 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2384 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2385 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2386 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2387 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2388 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2389 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2390 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2391 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2392 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2393 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2394 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2395 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2396 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2397 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2398 }; 2399 static const struct ratemedia htrates[] = { 2400 { 0, IFM_IEEE80211_MCS }, 2401 { 1, IFM_IEEE80211_MCS }, 2402 { 2, IFM_IEEE80211_MCS }, 2403 { 3, IFM_IEEE80211_MCS }, 2404 { 4, IFM_IEEE80211_MCS }, 2405 { 5, IFM_IEEE80211_MCS }, 2406 { 6, IFM_IEEE80211_MCS }, 2407 { 7, IFM_IEEE80211_MCS }, 2408 { 8, IFM_IEEE80211_MCS }, 2409 { 9, IFM_IEEE80211_MCS }, 2410 { 10, IFM_IEEE80211_MCS }, 2411 { 11, IFM_IEEE80211_MCS }, 2412 { 12, IFM_IEEE80211_MCS }, 2413 { 13, IFM_IEEE80211_MCS }, 2414 { 14, IFM_IEEE80211_MCS }, 2415 { 15, IFM_IEEE80211_MCS }, 2416 { 16, IFM_IEEE80211_MCS }, 2417 { 17, IFM_IEEE80211_MCS }, 2418 { 18, IFM_IEEE80211_MCS }, 2419 { 19, IFM_IEEE80211_MCS }, 2420 { 20, IFM_IEEE80211_MCS }, 2421 { 21, IFM_IEEE80211_MCS }, 2422 { 22, IFM_IEEE80211_MCS }, 2423 { 23, IFM_IEEE80211_MCS }, 2424 { 24, IFM_IEEE80211_MCS }, 2425 { 25, IFM_IEEE80211_MCS }, 2426 { 26, IFM_IEEE80211_MCS }, 2427 { 27, IFM_IEEE80211_MCS }, 2428 { 28, IFM_IEEE80211_MCS }, 2429 { 29, IFM_IEEE80211_MCS }, 2430 { 30, IFM_IEEE80211_MCS }, 2431 { 31, IFM_IEEE80211_MCS }, 2432 { 32, IFM_IEEE80211_MCS }, 2433 { 33, IFM_IEEE80211_MCS }, 2434 { 34, IFM_IEEE80211_MCS }, 2435 { 35, IFM_IEEE80211_MCS }, 2436 { 36, IFM_IEEE80211_MCS }, 2437 { 37, IFM_IEEE80211_MCS }, 2438 { 38, IFM_IEEE80211_MCS }, 2439 { 39, IFM_IEEE80211_MCS }, 2440 { 40, IFM_IEEE80211_MCS }, 2441 { 41, IFM_IEEE80211_MCS }, 2442 { 42, IFM_IEEE80211_MCS }, 2443 { 43, IFM_IEEE80211_MCS }, 2444 { 44, IFM_IEEE80211_MCS }, 2445 { 45, IFM_IEEE80211_MCS }, 2446 { 46, IFM_IEEE80211_MCS }, 2447 { 47, IFM_IEEE80211_MCS }, 2448 { 48, IFM_IEEE80211_MCS }, 2449 { 49, IFM_IEEE80211_MCS }, 2450 { 50, IFM_IEEE80211_MCS }, 2451 { 51, IFM_IEEE80211_MCS }, 2452 { 52, IFM_IEEE80211_MCS }, 2453 { 53, IFM_IEEE80211_MCS }, 2454 { 54, IFM_IEEE80211_MCS }, 2455 { 55, IFM_IEEE80211_MCS }, 2456 { 56, IFM_IEEE80211_MCS }, 2457 { 57, IFM_IEEE80211_MCS }, 2458 { 58, IFM_IEEE80211_MCS }, 2459 { 59, IFM_IEEE80211_MCS }, 2460 { 60, IFM_IEEE80211_MCS }, 2461 { 61, IFM_IEEE80211_MCS }, 2462 { 62, IFM_IEEE80211_MCS }, 2463 { 63, IFM_IEEE80211_MCS }, 2464 { 64, IFM_IEEE80211_MCS }, 2465 { 65, IFM_IEEE80211_MCS }, 2466 { 66, IFM_IEEE80211_MCS }, 2467 { 67, IFM_IEEE80211_MCS }, 2468 { 68, IFM_IEEE80211_MCS }, 2469 { 69, IFM_IEEE80211_MCS }, 2470 { 70, IFM_IEEE80211_MCS }, 2471 { 71, IFM_IEEE80211_MCS }, 2472 { 72, IFM_IEEE80211_MCS }, 2473 { 73, IFM_IEEE80211_MCS }, 2474 { 74, IFM_IEEE80211_MCS }, 2475 { 75, IFM_IEEE80211_MCS }, 2476 { 76, IFM_IEEE80211_MCS }, 2477 }; 2478 static const struct ratemedia vhtrates[] = { 2479 { 0, IFM_IEEE80211_VHT }, 2480 { 1, IFM_IEEE80211_VHT }, 2481 { 2, IFM_IEEE80211_VHT }, 2482 { 3, IFM_IEEE80211_VHT }, 2483 { 4, IFM_IEEE80211_VHT }, 2484 { 5, IFM_IEEE80211_VHT }, 2485 { 6, IFM_IEEE80211_VHT }, 2486 { 7, IFM_IEEE80211_VHT }, 2487 { 8, IFM_IEEE80211_VHT }, /* Optional. */ 2488 { 9, IFM_IEEE80211_VHT }, /* Optional. */ 2489 #if 0 2490 /* Some QCA and BRCM seem to support this; offspec. */ 2491 { 10, IFM_IEEE80211_VHT }, 2492 { 11, IFM_IEEE80211_VHT }, 2493 #endif 2494 }; 2495 int m; 2496 2497 /* 2498 * Check 11ac/11n rates first for match as an MCS. 2499 */ 2500 if (mode == IEEE80211_MODE_VHT_5GHZ) { 2501 if (rate & IFM_IEEE80211_VHT) { 2502 rate &= ~IFM_IEEE80211_VHT; 2503 m = findmedia(vhtrates, nitems(vhtrates), rate); 2504 if (m != IFM_AUTO) 2505 return (m | IFM_IEEE80211_VHT); 2506 } 2507 } else if (mode == IEEE80211_MODE_11NA) { 2508 if (rate & IEEE80211_RATE_MCS) { 2509 rate &= ~IEEE80211_RATE_MCS; 2510 m = findmedia(htrates, nitems(htrates), rate); 2511 if (m != IFM_AUTO) 2512 return m | IFM_IEEE80211_11NA; 2513 } 2514 } else if (mode == IEEE80211_MODE_11NG) { 2515 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2516 if (rate & IEEE80211_RATE_MCS) { 2517 rate &= ~IEEE80211_RATE_MCS; 2518 m = findmedia(htrates, nitems(htrates), rate); 2519 if (m != IFM_AUTO) 2520 return m | IFM_IEEE80211_11NG; 2521 } 2522 } 2523 rate &= IEEE80211_RATE_VAL; 2524 switch (mode) { 2525 case IEEE80211_MODE_11A: 2526 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2527 case IEEE80211_MODE_QUARTER: 2528 case IEEE80211_MODE_11NA: 2529 case IEEE80211_MODE_TURBO_A: 2530 case IEEE80211_MODE_STURBO_A: 2531 return findmedia(rates, nitems(rates), 2532 rate | IFM_IEEE80211_11A); 2533 case IEEE80211_MODE_11B: 2534 return findmedia(rates, nitems(rates), 2535 rate | IFM_IEEE80211_11B); 2536 case IEEE80211_MODE_FH: 2537 return findmedia(rates, nitems(rates), 2538 rate | IFM_IEEE80211_FH); 2539 case IEEE80211_MODE_AUTO: 2540 /* NB: ic may be NULL for some drivers */ 2541 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2542 return findmedia(rates, nitems(rates), 2543 rate | IFM_IEEE80211_FH); 2544 /* NB: hack, 11g matches both 11b+11a rates */ 2545 /* fall thru... */ 2546 case IEEE80211_MODE_11G: 2547 case IEEE80211_MODE_11NG: 2548 case IEEE80211_MODE_TURBO_G: 2549 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2550 case IEEE80211_MODE_VHT_2GHZ: 2551 case IEEE80211_MODE_VHT_5GHZ: 2552 /* XXX TODO: need to figure out mapping for VHT rates */ 2553 return IFM_AUTO; 2554 } 2555 return IFM_AUTO; 2556 } 2557 2558 int 2559 ieee80211_media2rate(int mword) 2560 { 2561 static const int ieeerates[] = { 2562 -1, /* IFM_AUTO */ 2563 0, /* IFM_MANUAL */ 2564 0, /* IFM_NONE */ 2565 2, /* IFM_IEEE80211_FH1 */ 2566 4, /* IFM_IEEE80211_FH2 */ 2567 2, /* IFM_IEEE80211_DS1 */ 2568 4, /* IFM_IEEE80211_DS2 */ 2569 11, /* IFM_IEEE80211_DS5 */ 2570 22, /* IFM_IEEE80211_DS11 */ 2571 44, /* IFM_IEEE80211_DS22 */ 2572 12, /* IFM_IEEE80211_OFDM6 */ 2573 18, /* IFM_IEEE80211_OFDM9 */ 2574 24, /* IFM_IEEE80211_OFDM12 */ 2575 36, /* IFM_IEEE80211_OFDM18 */ 2576 48, /* IFM_IEEE80211_OFDM24 */ 2577 72, /* IFM_IEEE80211_OFDM36 */ 2578 96, /* IFM_IEEE80211_OFDM48 */ 2579 108, /* IFM_IEEE80211_OFDM54 */ 2580 144, /* IFM_IEEE80211_OFDM72 */ 2581 0, /* IFM_IEEE80211_DS354k */ 2582 0, /* IFM_IEEE80211_DS512k */ 2583 6, /* IFM_IEEE80211_OFDM3 */ 2584 9, /* IFM_IEEE80211_OFDM4 */ 2585 54, /* IFM_IEEE80211_OFDM27 */ 2586 -1, /* IFM_IEEE80211_MCS */ 2587 -1, /* IFM_IEEE80211_VHT */ 2588 }; 2589 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2590 ieeerates[IFM_SUBTYPE(mword)] : 0; 2591 } 2592 2593 /* 2594 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2595 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2596 */ 2597 #define mix(a, b, c) \ 2598 do { \ 2599 a -= b; a -= c; a ^= (c >> 13); \ 2600 b -= c; b -= a; b ^= (a << 8); \ 2601 c -= a; c -= b; c ^= (b >> 13); \ 2602 a -= b; a -= c; a ^= (c >> 12); \ 2603 b -= c; b -= a; b ^= (a << 16); \ 2604 c -= a; c -= b; c ^= (b >> 5); \ 2605 a -= b; a -= c; a ^= (c >> 3); \ 2606 b -= c; b -= a; b ^= (a << 10); \ 2607 c -= a; c -= b; c ^= (b >> 15); \ 2608 } while (/*CONSTCOND*/0) 2609 2610 uint32_t 2611 ieee80211_mac_hash(const struct ieee80211com *ic, 2612 const uint8_t addr[IEEE80211_ADDR_LEN]) 2613 { 2614 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2615 2616 b += addr[5] << 8; 2617 b += addr[4]; 2618 a += addr[3] << 24; 2619 a += addr[2] << 16; 2620 a += addr[1] << 8; 2621 a += addr[0]; 2622 2623 mix(a, b, c); 2624 2625 return c; 2626 } 2627 #undef mix 2628 2629 char 2630 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2631 { 2632 if (IEEE80211_IS_CHAN_ST(c)) 2633 return 'S'; 2634 if (IEEE80211_IS_CHAN_108A(c)) 2635 return 'T'; 2636 if (IEEE80211_IS_CHAN_108G(c)) 2637 return 'G'; 2638 if (IEEE80211_IS_CHAN_VHT(c)) 2639 return 'v'; 2640 if (IEEE80211_IS_CHAN_HT(c)) 2641 return 'n'; 2642 if (IEEE80211_IS_CHAN_A(c)) 2643 return 'a'; 2644 if (IEEE80211_IS_CHAN_ANYG(c)) 2645 return 'g'; 2646 if (IEEE80211_IS_CHAN_B(c)) 2647 return 'b'; 2648 return 'f'; 2649 } 2650