1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 53 #include <net/bpf.h> 54 55 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 56 [IEEE80211_MODE_AUTO] = "auto", 57 [IEEE80211_MODE_11A] = "11a", 58 [IEEE80211_MODE_11B] = "11b", 59 [IEEE80211_MODE_11G] = "11g", 60 [IEEE80211_MODE_FH] = "FH", 61 [IEEE80211_MODE_TURBO_A] = "turboA", 62 [IEEE80211_MODE_TURBO_G] = "turboG", 63 [IEEE80211_MODE_STURBO_A] = "sturboA", 64 [IEEE80211_MODE_HALF] = "half", 65 [IEEE80211_MODE_QUARTER] = "quarter", 66 [IEEE80211_MODE_11NA] = "11na", 67 [IEEE80211_MODE_11NG] = "11ng", 68 }; 69 /* map ieee80211_opmode to the corresponding capability bit */ 70 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 71 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 72 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 73 [IEEE80211_M_STA] = IEEE80211_C_STA, 74 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 75 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 76 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 77 #ifdef IEEE80211_SUPPORT_MESH 78 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 79 #endif 80 }; 81 82 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 83 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 84 85 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 86 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 87 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 88 static int ieee80211_media_setup(struct ieee80211com *ic, 89 struct ifmedia *media, int caps, int addsta, 90 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 91 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 92 static int ieee80211com_media_change(struct ifnet *); 93 static int media_status(enum ieee80211_opmode, 94 const struct ieee80211_channel *); 95 96 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 97 98 /* 99 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 100 */ 101 #define B(r) ((r) | IEEE80211_RATE_BASIC) 102 static const struct ieee80211_rateset ieee80211_rateset_11a = 103 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 104 static const struct ieee80211_rateset ieee80211_rateset_half = 105 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 106 static const struct ieee80211_rateset ieee80211_rateset_quarter = 107 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 108 static const struct ieee80211_rateset ieee80211_rateset_11b = 109 { 4, { B(2), B(4), B(11), B(22) } }; 110 /* NB: OFDM rates are handled specially based on mode */ 111 static const struct ieee80211_rateset ieee80211_rateset_11g = 112 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 113 #undef B 114 115 /* 116 * Fill in 802.11 available channel set, mark 117 * all available channels as active, and pick 118 * a default channel if not already specified. 119 */ 120 static void 121 ieee80211_chan_init(struct ieee80211com *ic) 122 { 123 #define DEFAULTRATES(m, def) do { \ 124 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 125 ic->ic_sup_rates[m] = def; \ 126 } while (0) 127 struct ieee80211_channel *c; 128 int i; 129 130 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 131 ("invalid number of channels specified: %u", ic->ic_nchans)); 132 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 133 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 134 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 135 for (i = 0; i < ic->ic_nchans; i++) { 136 c = &ic->ic_channels[i]; 137 KASSERT(c->ic_flags != 0, ("channel with no flags")); 138 /* 139 * Help drivers that work only with frequencies by filling 140 * in IEEE channel #'s if not already calculated. Note this 141 * mimics similar work done in ieee80211_setregdomain when 142 * changing regulatory state. 143 */ 144 if (c->ic_ieee == 0) 145 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 146 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 147 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 148 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 149 c->ic_flags); 150 /* default max tx power to max regulatory */ 151 if (c->ic_maxpower == 0) 152 c->ic_maxpower = 2*c->ic_maxregpower; 153 setbit(ic->ic_chan_avail, c->ic_ieee); 154 /* 155 * Identify mode capabilities. 156 */ 157 if (IEEE80211_IS_CHAN_A(c)) 158 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 159 if (IEEE80211_IS_CHAN_B(c)) 160 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 161 if (IEEE80211_IS_CHAN_ANYG(c)) 162 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 163 if (IEEE80211_IS_CHAN_FHSS(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 165 if (IEEE80211_IS_CHAN_108A(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 167 if (IEEE80211_IS_CHAN_108G(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 169 if (IEEE80211_IS_CHAN_ST(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 171 if (IEEE80211_IS_CHAN_HALF(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 173 if (IEEE80211_IS_CHAN_QUARTER(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 175 if (IEEE80211_IS_CHAN_HTA(c)) 176 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 177 if (IEEE80211_IS_CHAN_HTG(c)) 178 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 179 } 180 /* initialize candidate channels to all available */ 181 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 182 sizeof(ic->ic_chan_avail)); 183 184 /* sort channel table to allow lookup optimizations */ 185 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 186 187 /* invalidate any previous state */ 188 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 189 ic->ic_prevchan = NULL; 190 ic->ic_csa_newchan = NULL; 191 /* arbitrarily pick the first channel */ 192 ic->ic_curchan = &ic->ic_channels[0]; 193 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 194 195 /* fillin well-known rate sets if driver has not specified */ 196 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 197 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 198 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 199 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 200 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 201 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 202 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 203 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 204 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 205 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 206 207 /* 208 * Set auto mode to reset active channel state and any desired channel. 209 */ 210 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 211 #undef DEFAULTRATES 212 } 213 214 static void 215 null_update_mcast(struct ifnet *ifp) 216 { 217 if_printf(ifp, "need multicast update callback\n"); 218 } 219 220 static void 221 null_update_promisc(struct ifnet *ifp) 222 { 223 if_printf(ifp, "need promiscuous mode update callback\n"); 224 } 225 226 static int 227 null_transmit(struct ifnet *ifp, struct mbuf *m) 228 { 229 m_freem(m); 230 ifp->if_oerrors++; 231 return EACCES; /* XXX EIO/EPERM? */ 232 } 233 234 static int 235 null_output(struct ifnet *ifp, struct mbuf *m, 236 struct sockaddr *dst, struct route *ro) 237 { 238 if_printf(ifp, "discard raw packet\n"); 239 return null_transmit(ifp, m); 240 } 241 242 static void 243 null_input(struct ifnet *ifp, struct mbuf *m) 244 { 245 if_printf(ifp, "if_input should not be called\n"); 246 m_freem(m); 247 } 248 249 /* 250 * Attach/setup the common net80211 state. Called by 251 * the driver on attach to prior to creating any vap's. 252 */ 253 void 254 ieee80211_ifattach(struct ieee80211com *ic, 255 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 256 { 257 struct ifnet *ifp = ic->ic_ifp; 258 struct sockaddr_dl *sdl; 259 struct ifaddr *ifa; 260 261 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 262 263 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 264 TAILQ_INIT(&ic->ic_vaps); 265 266 /* Create a taskqueue for all state changes */ 267 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 268 taskqueue_thread_enqueue, &ic->ic_tq); 269 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq", 270 ifp->if_xname); 271 /* 272 * Fill in 802.11 available channel set, mark all 273 * available channels as active, and pick a default 274 * channel if not already specified. 275 */ 276 ieee80211_media_init(ic); 277 278 ic->ic_update_mcast = null_update_mcast; 279 ic->ic_update_promisc = null_update_promisc; 280 281 ic->ic_hash_key = arc4random(); 282 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 283 ic->ic_lintval = ic->ic_bintval; 284 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 285 286 ieee80211_crypto_attach(ic); 287 ieee80211_node_attach(ic); 288 ieee80211_power_attach(ic); 289 ieee80211_proto_attach(ic); 290 #ifdef IEEE80211_SUPPORT_SUPERG 291 ieee80211_superg_attach(ic); 292 #endif 293 ieee80211_ht_attach(ic); 294 ieee80211_scan_attach(ic); 295 ieee80211_regdomain_attach(ic); 296 ieee80211_dfs_attach(ic); 297 298 ieee80211_sysctl_attach(ic); 299 300 ifp->if_addrlen = IEEE80211_ADDR_LEN; 301 ifp->if_hdrlen = 0; 302 if_attach(ifp); 303 ifp->if_mtu = IEEE80211_MTU_MAX; 304 ifp->if_broadcastaddr = ieee80211broadcastaddr; 305 ifp->if_output = null_output; 306 ifp->if_input = null_input; /* just in case */ 307 ifp->if_resolvemulti = NULL; /* NB: callers check */ 308 309 ifa = ifaddr_byindex(ifp->if_index); 310 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 311 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 312 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 313 sdl->sdl_alen = IEEE80211_ADDR_LEN; 314 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 315 ifa_free(ifa); 316 } 317 318 /* 319 * Detach net80211 state on device detach. Tear down 320 * all vap's and reclaim all common state prior to the 321 * device state going away. Note we may call back into 322 * driver; it must be prepared for this. 323 */ 324 void 325 ieee80211_ifdetach(struct ieee80211com *ic) 326 { 327 struct ifnet *ifp = ic->ic_ifp; 328 struct ieee80211vap *vap; 329 330 if_detach(ifp); 331 332 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 333 ieee80211_vap_destroy(vap); 334 ieee80211_waitfor_parent(ic); 335 336 ieee80211_sysctl_detach(ic); 337 ieee80211_dfs_detach(ic); 338 ieee80211_regdomain_detach(ic); 339 ieee80211_scan_detach(ic); 340 #ifdef IEEE80211_SUPPORT_SUPERG 341 ieee80211_superg_detach(ic); 342 #endif 343 ieee80211_ht_detach(ic); 344 /* NB: must be called before ieee80211_node_detach */ 345 ieee80211_proto_detach(ic); 346 ieee80211_crypto_detach(ic); 347 ieee80211_power_detach(ic); 348 ieee80211_node_detach(ic); 349 350 ifmedia_removeall(&ic->ic_media); 351 taskqueue_free(ic->ic_tq); 352 IEEE80211_LOCK_DESTROY(ic); 353 } 354 355 /* 356 * Default reset method for use with the ioctl support. This 357 * method is invoked after any state change in the 802.11 358 * layer that should be propagated to the hardware but not 359 * require re-initialization of the 802.11 state machine (e.g 360 * rescanning for an ap). We always return ENETRESET which 361 * should cause the driver to re-initialize the device. Drivers 362 * can override this method to implement more optimized support. 363 */ 364 static int 365 default_reset(struct ieee80211vap *vap, u_long cmd) 366 { 367 return ENETRESET; 368 } 369 370 /* 371 * Prepare a vap for use. Drivers use this call to 372 * setup net80211 state in new vap's prior attaching 373 * them with ieee80211_vap_attach (below). 374 */ 375 int 376 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 377 const char name[IFNAMSIZ], int unit, int opmode, int flags, 378 const uint8_t bssid[IEEE80211_ADDR_LEN], 379 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 380 { 381 struct ifnet *ifp; 382 383 ifp = if_alloc(IFT_ETHER); 384 if (ifp == NULL) { 385 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 386 __func__); 387 return ENOMEM; 388 } 389 if_initname(ifp, name, unit); 390 ifp->if_softc = vap; /* back pointer */ 391 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 392 ifp->if_start = ieee80211_start; 393 ifp->if_ioctl = ieee80211_ioctl; 394 ifp->if_init = ieee80211_init; 395 /* NB: input+output filled in by ether_ifattach */ 396 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 397 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 398 IFQ_SET_READY(&ifp->if_snd); 399 400 vap->iv_ifp = ifp; 401 vap->iv_ic = ic; 402 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 403 vap->iv_flags_ext = ic->ic_flags_ext; 404 vap->iv_flags_ven = ic->ic_flags_ven; 405 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 406 vap->iv_htcaps = ic->ic_htcaps; 407 vap->iv_opmode = opmode; 408 vap->iv_caps |= ieee80211_opcap[opmode]; 409 switch (opmode) { 410 case IEEE80211_M_WDS: 411 /* 412 * WDS links must specify the bssid of the far end. 413 * For legacy operation this is a static relationship. 414 * For non-legacy operation the station must associate 415 * and be authorized to pass traffic. Plumbing the 416 * vap to the proper node happens when the vap 417 * transitions to RUN state. 418 */ 419 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 420 vap->iv_flags |= IEEE80211_F_DESBSSID; 421 if (flags & IEEE80211_CLONE_WDSLEGACY) 422 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 423 break; 424 #ifdef IEEE80211_SUPPORT_TDMA 425 case IEEE80211_M_AHDEMO: 426 if (flags & IEEE80211_CLONE_TDMA) { 427 /* NB: checked before clone operation allowed */ 428 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 429 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 430 /* 431 * Propagate TDMA capability to mark vap; this 432 * cannot be removed and is used to distinguish 433 * regular ahdemo operation from ahdemo+tdma. 434 */ 435 vap->iv_caps |= IEEE80211_C_TDMA; 436 } 437 break; 438 #endif 439 } 440 /* auto-enable s/w beacon miss support */ 441 if (flags & IEEE80211_CLONE_NOBEACONS) 442 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 443 /* 444 * Enable various functionality by default if we're 445 * capable; the driver can override us if it knows better. 446 */ 447 if (vap->iv_caps & IEEE80211_C_WME) 448 vap->iv_flags |= IEEE80211_F_WME; 449 if (vap->iv_caps & IEEE80211_C_BURST) 450 vap->iv_flags |= IEEE80211_F_BURST; 451 /* NB: bg scanning only makes sense for station mode right now */ 452 if (vap->iv_opmode == IEEE80211_M_STA && 453 (vap->iv_caps & IEEE80211_C_BGSCAN)) 454 vap->iv_flags |= IEEE80211_F_BGSCAN; 455 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 456 /* NB: DFS support only makes sense for ap mode right now */ 457 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 458 (vap->iv_caps & IEEE80211_C_DFS)) 459 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 460 461 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 462 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 463 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 464 /* 465 * Install a default reset method for the ioctl support; 466 * the driver can override this. 467 */ 468 vap->iv_reset = default_reset; 469 470 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 471 472 ieee80211_sysctl_vattach(vap); 473 ieee80211_crypto_vattach(vap); 474 ieee80211_node_vattach(vap); 475 ieee80211_power_vattach(vap); 476 ieee80211_proto_vattach(vap); 477 #ifdef IEEE80211_SUPPORT_SUPERG 478 ieee80211_superg_vattach(vap); 479 #endif 480 ieee80211_ht_vattach(vap); 481 ieee80211_scan_vattach(vap); 482 ieee80211_regdomain_vattach(vap); 483 ieee80211_radiotap_vattach(vap); 484 485 return 0; 486 } 487 488 /* 489 * Activate a vap. State should have been prepared with a 490 * call to ieee80211_vap_setup and by the driver. On return 491 * from this call the vap is ready for use. 492 */ 493 int 494 ieee80211_vap_attach(struct ieee80211vap *vap, 495 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 496 { 497 struct ifnet *ifp = vap->iv_ifp; 498 struct ieee80211com *ic = vap->iv_ic; 499 struct ifmediareq imr; 500 int maxrate; 501 502 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 503 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 504 __func__, ieee80211_opmode_name[vap->iv_opmode], 505 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 506 507 /* 508 * Do late attach work that cannot happen until after 509 * the driver has had a chance to override defaults. 510 */ 511 ieee80211_node_latevattach(vap); 512 ieee80211_power_latevattach(vap); 513 514 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 515 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 516 ieee80211_media_status(ifp, &imr); 517 /* NB: strip explicit mode; we're actually in autoselect */ 518 ifmedia_set(&vap->iv_media, 519 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 520 if (maxrate) 521 ifp->if_baudrate = IF_Mbps(maxrate); 522 523 ether_ifattach(ifp, vap->iv_myaddr); 524 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 525 /* NB: disallow transmit */ 526 ifp->if_transmit = null_transmit; 527 ifp->if_output = null_output; 528 } else { 529 /* hook output method setup by ether_ifattach */ 530 vap->iv_output = ifp->if_output; 531 ifp->if_output = ieee80211_output; 532 } 533 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 534 535 IEEE80211_LOCK(ic); 536 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 537 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 538 #ifdef IEEE80211_SUPPORT_SUPERG 539 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 540 #endif 541 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 542 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 543 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 544 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 545 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 546 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 547 IEEE80211_UNLOCK(ic); 548 549 return 1; 550 } 551 552 /* 553 * Tear down vap state and reclaim the ifnet. 554 * The driver is assumed to have prepared for 555 * this; e.g. by turning off interrupts for the 556 * underlying device. 557 */ 558 void 559 ieee80211_vap_detach(struct ieee80211vap *vap) 560 { 561 struct ieee80211com *ic = vap->iv_ic; 562 struct ifnet *ifp = vap->iv_ifp; 563 564 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 565 __func__, ieee80211_opmode_name[vap->iv_opmode], 566 ic->ic_ifp->if_xname); 567 568 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 569 ether_ifdetach(ifp); 570 571 ieee80211_stop(vap); 572 573 /* 574 * Flush any deferred vap tasks. 575 */ 576 ieee80211_draintask(ic, &vap->iv_nstate_task); 577 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 578 579 /* XXX band-aid until ifnet handles this for us */ 580 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 581 582 IEEE80211_LOCK(ic); 583 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 584 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 585 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 586 #ifdef IEEE80211_SUPPORT_SUPERG 587 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 588 #endif 589 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 590 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 591 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 592 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 593 /* NB: this handles the bpfdetach done below */ 594 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 595 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 596 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 597 IEEE80211_UNLOCK(ic); 598 599 ifmedia_removeall(&vap->iv_media); 600 601 ieee80211_radiotap_vdetach(vap); 602 ieee80211_regdomain_vdetach(vap); 603 ieee80211_scan_vdetach(vap); 604 #ifdef IEEE80211_SUPPORT_SUPERG 605 ieee80211_superg_vdetach(vap); 606 #endif 607 ieee80211_ht_vdetach(vap); 608 /* NB: must be before ieee80211_node_vdetach */ 609 ieee80211_proto_vdetach(vap); 610 ieee80211_crypto_vdetach(vap); 611 ieee80211_power_vdetach(vap); 612 ieee80211_node_vdetach(vap); 613 ieee80211_sysctl_vdetach(vap); 614 615 if_free(ifp); 616 } 617 618 /* 619 * Synchronize flag bit state in the parent ifnet structure 620 * according to the state of all vap ifnet's. This is used, 621 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 622 */ 623 void 624 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 625 { 626 struct ifnet *ifp = ic->ic_ifp; 627 struct ieee80211vap *vap; 628 int bit, oflags; 629 630 IEEE80211_LOCK_ASSERT(ic); 631 632 bit = 0; 633 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 634 if (vap->iv_ifp->if_flags & flag) { 635 /* 636 * XXX the bridge sets PROMISC but we don't want to 637 * enable it on the device, discard here so all the 638 * drivers don't need to special-case it 639 */ 640 if (flag == IFF_PROMISC && 641 !(vap->iv_opmode == IEEE80211_M_MONITOR || 642 (vap->iv_opmode == IEEE80211_M_AHDEMO && 643 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 644 continue; 645 bit = 1; 646 break; 647 } 648 oflags = ifp->if_flags; 649 if (bit) 650 ifp->if_flags |= flag; 651 else 652 ifp->if_flags &= ~flag; 653 if ((ifp->if_flags ^ oflags) & flag) { 654 /* XXX should we return 1/0 and let caller do this? */ 655 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 656 if (flag == IFF_PROMISC) 657 ieee80211_runtask(ic, &ic->ic_promisc_task); 658 else if (flag == IFF_ALLMULTI) 659 ieee80211_runtask(ic, &ic->ic_mcast_task); 660 } 661 } 662 } 663 664 /* 665 * Synchronize flag bit state in the com structure 666 * according to the state of all vap's. This is used, 667 * for example, to handle state changes via ioctls. 668 */ 669 static void 670 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 671 { 672 struct ieee80211vap *vap; 673 int bit; 674 675 IEEE80211_LOCK_ASSERT(ic); 676 677 bit = 0; 678 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 679 if (vap->iv_flags & flag) { 680 bit = 1; 681 break; 682 } 683 if (bit) 684 ic->ic_flags |= flag; 685 else 686 ic->ic_flags &= ~flag; 687 } 688 689 void 690 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 691 { 692 struct ieee80211com *ic = vap->iv_ic; 693 694 IEEE80211_LOCK(ic); 695 if (flag < 0) { 696 flag = -flag; 697 vap->iv_flags &= ~flag; 698 } else 699 vap->iv_flags |= flag; 700 ieee80211_syncflag_locked(ic, flag); 701 IEEE80211_UNLOCK(ic); 702 } 703 704 /* 705 * Synchronize flags_ht bit state in the com structure 706 * according to the state of all vap's. This is used, 707 * for example, to handle state changes via ioctls. 708 */ 709 static void 710 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 711 { 712 struct ieee80211vap *vap; 713 int bit; 714 715 IEEE80211_LOCK_ASSERT(ic); 716 717 bit = 0; 718 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 719 if (vap->iv_flags_ht & flag) { 720 bit = 1; 721 break; 722 } 723 if (bit) 724 ic->ic_flags_ht |= flag; 725 else 726 ic->ic_flags_ht &= ~flag; 727 } 728 729 void 730 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 731 { 732 struct ieee80211com *ic = vap->iv_ic; 733 734 IEEE80211_LOCK(ic); 735 if (flag < 0) { 736 flag = -flag; 737 vap->iv_flags_ht &= ~flag; 738 } else 739 vap->iv_flags_ht |= flag; 740 ieee80211_syncflag_ht_locked(ic, flag); 741 IEEE80211_UNLOCK(ic); 742 } 743 744 /* 745 * Synchronize flags_ext bit state in the com structure 746 * according to the state of all vap's. This is used, 747 * for example, to handle state changes via ioctls. 748 */ 749 static void 750 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 751 { 752 struct ieee80211vap *vap; 753 int bit; 754 755 IEEE80211_LOCK_ASSERT(ic); 756 757 bit = 0; 758 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 759 if (vap->iv_flags_ext & flag) { 760 bit = 1; 761 break; 762 } 763 if (bit) 764 ic->ic_flags_ext |= flag; 765 else 766 ic->ic_flags_ext &= ~flag; 767 } 768 769 void 770 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 771 { 772 struct ieee80211com *ic = vap->iv_ic; 773 774 IEEE80211_LOCK(ic); 775 if (flag < 0) { 776 flag = -flag; 777 vap->iv_flags_ext &= ~flag; 778 } else 779 vap->iv_flags_ext |= flag; 780 ieee80211_syncflag_ext_locked(ic, flag); 781 IEEE80211_UNLOCK(ic); 782 } 783 784 static __inline int 785 mapgsm(u_int freq, u_int flags) 786 { 787 freq *= 10; 788 if (flags & IEEE80211_CHAN_QUARTER) 789 freq += 5; 790 else if (flags & IEEE80211_CHAN_HALF) 791 freq += 10; 792 else 793 freq += 20; 794 /* NB: there is no 907/20 wide but leave room */ 795 return (freq - 906*10) / 5; 796 } 797 798 static __inline int 799 mappsb(u_int freq, u_int flags) 800 { 801 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 802 } 803 804 /* 805 * Convert MHz frequency to IEEE channel number. 806 */ 807 int 808 ieee80211_mhz2ieee(u_int freq, u_int flags) 809 { 810 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 811 if (flags & IEEE80211_CHAN_GSM) 812 return mapgsm(freq, flags); 813 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 814 if (freq == 2484) 815 return 14; 816 if (freq < 2484) 817 return ((int) freq - 2407) / 5; 818 else 819 return 15 + ((freq - 2512) / 20); 820 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 821 if (freq <= 5000) { 822 /* XXX check regdomain? */ 823 if (IS_FREQ_IN_PSB(freq)) 824 return mappsb(freq, flags); 825 return (freq - 4000) / 5; 826 } else 827 return (freq - 5000) / 5; 828 } else { /* either, guess */ 829 if (freq == 2484) 830 return 14; 831 if (freq < 2484) { 832 if (907 <= freq && freq <= 922) 833 return mapgsm(freq, flags); 834 return ((int) freq - 2407) / 5; 835 } 836 if (freq < 5000) { 837 if (IS_FREQ_IN_PSB(freq)) 838 return mappsb(freq, flags); 839 else if (freq > 4900) 840 return (freq - 4000) / 5; 841 else 842 return 15 + ((freq - 2512) / 20); 843 } 844 return (freq - 5000) / 5; 845 } 846 #undef IS_FREQ_IN_PSB 847 } 848 849 /* 850 * Convert channel to IEEE channel number. 851 */ 852 int 853 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 854 { 855 if (c == NULL) { 856 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 857 return 0; /* XXX */ 858 } 859 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 860 } 861 862 /* 863 * Convert IEEE channel number to MHz frequency. 864 */ 865 u_int 866 ieee80211_ieee2mhz(u_int chan, u_int flags) 867 { 868 if (flags & IEEE80211_CHAN_GSM) 869 return 907 + 5 * (chan / 10); 870 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 871 if (chan == 14) 872 return 2484; 873 if (chan < 14) 874 return 2407 + chan*5; 875 else 876 return 2512 + ((chan-15)*20); 877 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 878 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 879 chan -= 37; 880 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 881 } 882 return 5000 + (chan*5); 883 } else { /* either, guess */ 884 /* XXX can't distinguish PSB+GSM channels */ 885 if (chan == 14) 886 return 2484; 887 if (chan < 14) /* 0-13 */ 888 return 2407 + chan*5; 889 if (chan < 27) /* 15-26 */ 890 return 2512 + ((chan-15)*20); 891 return 5000 + (chan*5); 892 } 893 } 894 895 /* 896 * Locate a channel given a frequency+flags. We cache 897 * the previous lookup to optimize switching between two 898 * channels--as happens with dynamic turbo. 899 */ 900 struct ieee80211_channel * 901 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 902 { 903 struct ieee80211_channel *c; 904 int i; 905 906 flags &= IEEE80211_CHAN_ALLTURBO; 907 c = ic->ic_prevchan; 908 if (c != NULL && c->ic_freq == freq && 909 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 910 return c; 911 /* brute force search */ 912 for (i = 0; i < ic->ic_nchans; i++) { 913 c = &ic->ic_channels[i]; 914 if (c->ic_freq == freq && 915 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 916 return c; 917 } 918 return NULL; 919 } 920 921 /* 922 * Locate a channel given a channel number+flags. We cache 923 * the previous lookup to optimize switching between two 924 * channels--as happens with dynamic turbo. 925 */ 926 struct ieee80211_channel * 927 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 928 { 929 struct ieee80211_channel *c; 930 int i; 931 932 flags &= IEEE80211_CHAN_ALLTURBO; 933 c = ic->ic_prevchan; 934 if (c != NULL && c->ic_ieee == ieee && 935 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 936 return c; 937 /* brute force search */ 938 for (i = 0; i < ic->ic_nchans; i++) { 939 c = &ic->ic_channels[i]; 940 if (c->ic_ieee == ieee && 941 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 942 return c; 943 } 944 return NULL; 945 } 946 947 static void 948 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 949 { 950 #define ADD(_ic, _s, _o) \ 951 ifmedia_add(media, \ 952 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 953 static const u_int mopts[IEEE80211_MODE_MAX] = { 954 [IEEE80211_MODE_AUTO] = IFM_AUTO, 955 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 956 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 957 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 958 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 959 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 960 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 961 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 962 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 963 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 964 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 965 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 966 }; 967 u_int mopt; 968 969 mopt = mopts[mode]; 970 if (addsta) 971 ADD(ic, mword, mopt); /* STA mode has no cap */ 972 if (caps & IEEE80211_C_IBSS) 973 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 974 if (caps & IEEE80211_C_HOSTAP) 975 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 976 if (caps & IEEE80211_C_AHDEMO) 977 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 978 if (caps & IEEE80211_C_MONITOR) 979 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 980 if (caps & IEEE80211_C_WDS) 981 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 982 if (caps & IEEE80211_C_MBSS) 983 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 984 #undef ADD 985 } 986 987 /* 988 * Setup the media data structures according to the channel and 989 * rate tables. 990 */ 991 static int 992 ieee80211_media_setup(struct ieee80211com *ic, 993 struct ifmedia *media, int caps, int addsta, 994 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 995 { 996 int i, j, mode, rate, maxrate, mword, r; 997 const struct ieee80211_rateset *rs; 998 struct ieee80211_rateset allrates; 999 1000 /* 1001 * Fill in media characteristics. 1002 */ 1003 ifmedia_init(media, 0, media_change, media_stat); 1004 maxrate = 0; 1005 /* 1006 * Add media for legacy operating modes. 1007 */ 1008 memset(&allrates, 0, sizeof(allrates)); 1009 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1010 if (isclr(ic->ic_modecaps, mode)) 1011 continue; 1012 addmedia(media, caps, addsta, mode, IFM_AUTO); 1013 if (mode == IEEE80211_MODE_AUTO) 1014 continue; 1015 rs = &ic->ic_sup_rates[mode]; 1016 for (i = 0; i < rs->rs_nrates; i++) { 1017 rate = rs->rs_rates[i]; 1018 mword = ieee80211_rate2media(ic, rate, mode); 1019 if (mword == 0) 1020 continue; 1021 addmedia(media, caps, addsta, mode, mword); 1022 /* 1023 * Add legacy rate to the collection of all rates. 1024 */ 1025 r = rate & IEEE80211_RATE_VAL; 1026 for (j = 0; j < allrates.rs_nrates; j++) 1027 if (allrates.rs_rates[j] == r) 1028 break; 1029 if (j == allrates.rs_nrates) { 1030 /* unique, add to the set */ 1031 allrates.rs_rates[j] = r; 1032 allrates.rs_nrates++; 1033 } 1034 rate = (rate & IEEE80211_RATE_VAL) / 2; 1035 if (rate > maxrate) 1036 maxrate = rate; 1037 } 1038 } 1039 for (i = 0; i < allrates.rs_nrates; i++) { 1040 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1041 IEEE80211_MODE_AUTO); 1042 if (mword == 0) 1043 continue; 1044 /* NB: remove media options from mword */ 1045 addmedia(media, caps, addsta, 1046 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1047 } 1048 /* 1049 * Add HT/11n media. Note that we do not have enough 1050 * bits in the media subtype to express the MCS so we 1051 * use a "placeholder" media subtype and any fixed MCS 1052 * must be specified with a different mechanism. 1053 */ 1054 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1055 if (isclr(ic->ic_modecaps, mode)) 1056 continue; 1057 addmedia(media, caps, addsta, mode, IFM_AUTO); 1058 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1059 } 1060 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1061 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1062 addmedia(media, caps, addsta, 1063 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1064 /* XXX could walk htrates */ 1065 /* XXX known array size */ 1066 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1067 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1068 } 1069 return maxrate; 1070 } 1071 1072 void 1073 ieee80211_media_init(struct ieee80211com *ic) 1074 { 1075 struct ifnet *ifp = ic->ic_ifp; 1076 int maxrate; 1077 1078 /* NB: this works because the structure is initialized to zero */ 1079 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1080 /* 1081 * We are re-initializing the channel list; clear 1082 * the existing media state as the media routines 1083 * don't suppress duplicates. 1084 */ 1085 ifmedia_removeall(&ic->ic_media); 1086 } 1087 ieee80211_chan_init(ic); 1088 1089 /* 1090 * Recalculate media settings in case new channel list changes 1091 * the set of available modes. 1092 */ 1093 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1094 ieee80211com_media_change, ieee80211com_media_status); 1095 /* NB: strip explicit mode; we're actually in autoselect */ 1096 ifmedia_set(&ic->ic_media, 1097 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1098 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1099 if (maxrate) 1100 ifp->if_baudrate = IF_Mbps(maxrate); 1101 1102 /* XXX need to propagate new media settings to vap's */ 1103 } 1104 1105 /* XXX inline or eliminate? */ 1106 const struct ieee80211_rateset * 1107 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1108 { 1109 /* XXX does this work for 11ng basic rates? */ 1110 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1111 } 1112 1113 void 1114 ieee80211_announce(struct ieee80211com *ic) 1115 { 1116 struct ifnet *ifp = ic->ic_ifp; 1117 int i, mode, rate, mword; 1118 const struct ieee80211_rateset *rs; 1119 1120 /* NB: skip AUTO since it has no rates */ 1121 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1122 if (isclr(ic->ic_modecaps, mode)) 1123 continue; 1124 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1125 rs = &ic->ic_sup_rates[mode]; 1126 for (i = 0; i < rs->rs_nrates; i++) { 1127 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1128 if (mword == 0) 1129 continue; 1130 rate = ieee80211_media2rate(mword); 1131 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1132 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1133 } 1134 printf("\n"); 1135 } 1136 ieee80211_ht_announce(ic); 1137 } 1138 1139 void 1140 ieee80211_announce_channels(struct ieee80211com *ic) 1141 { 1142 const struct ieee80211_channel *c; 1143 char type; 1144 int i, cw; 1145 1146 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1147 for (i = 0; i < ic->ic_nchans; i++) { 1148 c = &ic->ic_channels[i]; 1149 if (IEEE80211_IS_CHAN_ST(c)) 1150 type = 'S'; 1151 else if (IEEE80211_IS_CHAN_108A(c)) 1152 type = 'T'; 1153 else if (IEEE80211_IS_CHAN_108G(c)) 1154 type = 'G'; 1155 else if (IEEE80211_IS_CHAN_HT(c)) 1156 type = 'n'; 1157 else if (IEEE80211_IS_CHAN_A(c)) 1158 type = 'a'; 1159 else if (IEEE80211_IS_CHAN_ANYG(c)) 1160 type = 'g'; 1161 else if (IEEE80211_IS_CHAN_B(c)) 1162 type = 'b'; 1163 else 1164 type = 'f'; 1165 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1166 cw = 40; 1167 else if (IEEE80211_IS_CHAN_HALF(c)) 1168 cw = 10; 1169 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1170 cw = 5; 1171 else 1172 cw = 20; 1173 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1174 , c->ic_ieee, c->ic_freq, type 1175 , cw 1176 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1177 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1178 , c->ic_maxregpower 1179 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1180 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1181 ); 1182 } 1183 } 1184 1185 static int 1186 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1187 { 1188 switch (IFM_MODE(ime->ifm_media)) { 1189 case IFM_IEEE80211_11A: 1190 *mode = IEEE80211_MODE_11A; 1191 break; 1192 case IFM_IEEE80211_11B: 1193 *mode = IEEE80211_MODE_11B; 1194 break; 1195 case IFM_IEEE80211_11G: 1196 *mode = IEEE80211_MODE_11G; 1197 break; 1198 case IFM_IEEE80211_FH: 1199 *mode = IEEE80211_MODE_FH; 1200 break; 1201 case IFM_IEEE80211_11NA: 1202 *mode = IEEE80211_MODE_11NA; 1203 break; 1204 case IFM_IEEE80211_11NG: 1205 *mode = IEEE80211_MODE_11NG; 1206 break; 1207 case IFM_AUTO: 1208 *mode = IEEE80211_MODE_AUTO; 1209 break; 1210 default: 1211 return 0; 1212 } 1213 /* 1214 * Turbo mode is an ``option''. 1215 * XXX does not apply to AUTO 1216 */ 1217 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1218 if (*mode == IEEE80211_MODE_11A) { 1219 if (flags & IEEE80211_F_TURBOP) 1220 *mode = IEEE80211_MODE_TURBO_A; 1221 else 1222 *mode = IEEE80211_MODE_STURBO_A; 1223 } else if (*mode == IEEE80211_MODE_11G) 1224 *mode = IEEE80211_MODE_TURBO_G; 1225 else 1226 return 0; 1227 } 1228 /* XXX HT40 +/- */ 1229 return 1; 1230 } 1231 1232 /* 1233 * Handle a media change request on the underlying interface. 1234 */ 1235 int 1236 ieee80211com_media_change(struct ifnet *ifp) 1237 { 1238 return EINVAL; 1239 } 1240 1241 /* 1242 * Handle a media change request on the vap interface. 1243 */ 1244 int 1245 ieee80211_media_change(struct ifnet *ifp) 1246 { 1247 struct ieee80211vap *vap = ifp->if_softc; 1248 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1249 uint16_t newmode; 1250 1251 if (!media2mode(ime, vap->iv_flags, &newmode)) 1252 return EINVAL; 1253 if (vap->iv_des_mode != newmode) { 1254 vap->iv_des_mode = newmode; 1255 /* XXX kick state machine if up+running */ 1256 } 1257 return 0; 1258 } 1259 1260 /* 1261 * Common code to calculate the media status word 1262 * from the operating mode and channel state. 1263 */ 1264 static int 1265 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1266 { 1267 int status; 1268 1269 status = IFM_IEEE80211; 1270 switch (opmode) { 1271 case IEEE80211_M_STA: 1272 break; 1273 case IEEE80211_M_IBSS: 1274 status |= IFM_IEEE80211_ADHOC; 1275 break; 1276 case IEEE80211_M_HOSTAP: 1277 status |= IFM_IEEE80211_HOSTAP; 1278 break; 1279 case IEEE80211_M_MONITOR: 1280 status |= IFM_IEEE80211_MONITOR; 1281 break; 1282 case IEEE80211_M_AHDEMO: 1283 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1284 break; 1285 case IEEE80211_M_WDS: 1286 status |= IFM_IEEE80211_WDS; 1287 break; 1288 case IEEE80211_M_MBSS: 1289 status |= IFM_IEEE80211_MBSS; 1290 break; 1291 } 1292 if (IEEE80211_IS_CHAN_HTA(chan)) { 1293 status |= IFM_IEEE80211_11NA; 1294 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1295 status |= IFM_IEEE80211_11NG; 1296 } else if (IEEE80211_IS_CHAN_A(chan)) { 1297 status |= IFM_IEEE80211_11A; 1298 } else if (IEEE80211_IS_CHAN_B(chan)) { 1299 status |= IFM_IEEE80211_11B; 1300 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1301 status |= IFM_IEEE80211_11G; 1302 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1303 status |= IFM_IEEE80211_FH; 1304 } 1305 /* XXX else complain? */ 1306 1307 if (IEEE80211_IS_CHAN_TURBO(chan)) 1308 status |= IFM_IEEE80211_TURBO; 1309 #if 0 1310 if (IEEE80211_IS_CHAN_HT20(chan)) 1311 status |= IFM_IEEE80211_HT20; 1312 if (IEEE80211_IS_CHAN_HT40(chan)) 1313 status |= IFM_IEEE80211_HT40; 1314 #endif 1315 return status; 1316 } 1317 1318 static void 1319 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1320 { 1321 struct ieee80211com *ic = ifp->if_l2com; 1322 struct ieee80211vap *vap; 1323 1324 imr->ifm_status = IFM_AVALID; 1325 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1326 if (vap->iv_ifp->if_flags & IFF_UP) { 1327 imr->ifm_status |= IFM_ACTIVE; 1328 break; 1329 } 1330 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1331 if (imr->ifm_status & IFM_ACTIVE) 1332 imr->ifm_current = imr->ifm_active; 1333 } 1334 1335 void 1336 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1337 { 1338 struct ieee80211vap *vap = ifp->if_softc; 1339 struct ieee80211com *ic = vap->iv_ic; 1340 enum ieee80211_phymode mode; 1341 1342 imr->ifm_status = IFM_AVALID; 1343 /* 1344 * NB: use the current channel's mode to lock down a xmit 1345 * rate only when running; otherwise we may have a mismatch 1346 * in which case the rate will not be convertible. 1347 */ 1348 if (vap->iv_state == IEEE80211_S_RUN) { 1349 imr->ifm_status |= IFM_ACTIVE; 1350 mode = ieee80211_chan2mode(ic->ic_curchan); 1351 } else 1352 mode = IEEE80211_MODE_AUTO; 1353 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1354 /* 1355 * Calculate a current rate if possible. 1356 */ 1357 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1358 /* 1359 * A fixed rate is set, report that. 1360 */ 1361 imr->ifm_active |= ieee80211_rate2media(ic, 1362 vap->iv_txparms[mode].ucastrate, mode); 1363 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1364 /* 1365 * In station mode report the current transmit rate. 1366 */ 1367 imr->ifm_active |= ieee80211_rate2media(ic, 1368 vap->iv_bss->ni_txrate, mode); 1369 } else 1370 imr->ifm_active |= IFM_AUTO; 1371 if (imr->ifm_status & IFM_ACTIVE) 1372 imr->ifm_current = imr->ifm_active; 1373 } 1374 1375 /* 1376 * Set the current phy mode and recalculate the active channel 1377 * set based on the available channels for this mode. Also 1378 * select a new default/current channel if the current one is 1379 * inappropriate for this mode. 1380 */ 1381 int 1382 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1383 { 1384 /* 1385 * Adjust basic rates in 11b/11g supported rate set. 1386 * Note that if operating on a hal/quarter rate channel 1387 * this is a noop as those rates sets are different 1388 * and used instead. 1389 */ 1390 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1391 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1392 1393 ic->ic_curmode = mode; 1394 ieee80211_reset_erp(ic); /* reset ERP state */ 1395 1396 return 0; 1397 } 1398 1399 /* 1400 * Return the phy mode for with the specified channel. 1401 */ 1402 enum ieee80211_phymode 1403 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1404 { 1405 1406 if (IEEE80211_IS_CHAN_HTA(chan)) 1407 return IEEE80211_MODE_11NA; 1408 else if (IEEE80211_IS_CHAN_HTG(chan)) 1409 return IEEE80211_MODE_11NG; 1410 else if (IEEE80211_IS_CHAN_108G(chan)) 1411 return IEEE80211_MODE_TURBO_G; 1412 else if (IEEE80211_IS_CHAN_ST(chan)) 1413 return IEEE80211_MODE_STURBO_A; 1414 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1415 return IEEE80211_MODE_TURBO_A; 1416 else if (IEEE80211_IS_CHAN_HALF(chan)) 1417 return IEEE80211_MODE_HALF; 1418 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1419 return IEEE80211_MODE_QUARTER; 1420 else if (IEEE80211_IS_CHAN_A(chan)) 1421 return IEEE80211_MODE_11A; 1422 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1423 return IEEE80211_MODE_11G; 1424 else if (IEEE80211_IS_CHAN_B(chan)) 1425 return IEEE80211_MODE_11B; 1426 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1427 return IEEE80211_MODE_FH; 1428 1429 /* NB: should not get here */ 1430 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1431 __func__, chan->ic_freq, chan->ic_flags); 1432 return IEEE80211_MODE_11B; 1433 } 1434 1435 struct ratemedia { 1436 u_int match; /* rate + mode */ 1437 u_int media; /* if_media rate */ 1438 }; 1439 1440 static int 1441 findmedia(const struct ratemedia rates[], int n, u_int match) 1442 { 1443 int i; 1444 1445 for (i = 0; i < n; i++) 1446 if (rates[i].match == match) 1447 return rates[i].media; 1448 return IFM_AUTO; 1449 } 1450 1451 /* 1452 * Convert IEEE80211 rate value to ifmedia subtype. 1453 * Rate is either a legacy rate in units of 0.5Mbps 1454 * or an MCS index. 1455 */ 1456 int 1457 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1458 { 1459 #define N(a) (sizeof(a) / sizeof(a[0])) 1460 static const struct ratemedia rates[] = { 1461 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1462 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1463 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1464 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1465 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1466 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1467 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1468 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1469 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1470 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1471 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1472 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1473 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1474 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1475 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1476 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1477 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1478 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1479 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1480 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1481 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1482 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1483 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1484 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1485 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1486 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1487 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1488 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1489 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1490 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1491 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1492 }; 1493 static const struct ratemedia htrates[] = { 1494 { 0, IFM_IEEE80211_MCS }, 1495 { 1, IFM_IEEE80211_MCS }, 1496 { 2, IFM_IEEE80211_MCS }, 1497 { 3, IFM_IEEE80211_MCS }, 1498 { 4, IFM_IEEE80211_MCS }, 1499 { 5, IFM_IEEE80211_MCS }, 1500 { 6, IFM_IEEE80211_MCS }, 1501 { 7, IFM_IEEE80211_MCS }, 1502 { 8, IFM_IEEE80211_MCS }, 1503 { 9, IFM_IEEE80211_MCS }, 1504 { 10, IFM_IEEE80211_MCS }, 1505 { 11, IFM_IEEE80211_MCS }, 1506 { 12, IFM_IEEE80211_MCS }, 1507 { 13, IFM_IEEE80211_MCS }, 1508 { 14, IFM_IEEE80211_MCS }, 1509 { 15, IFM_IEEE80211_MCS }, 1510 }; 1511 int m; 1512 1513 /* 1514 * Check 11n rates first for match as an MCS. 1515 */ 1516 if (mode == IEEE80211_MODE_11NA) { 1517 if (rate & IEEE80211_RATE_MCS) { 1518 rate &= ~IEEE80211_RATE_MCS; 1519 m = findmedia(htrates, N(htrates), rate); 1520 if (m != IFM_AUTO) 1521 return m | IFM_IEEE80211_11NA; 1522 } 1523 } else if (mode == IEEE80211_MODE_11NG) { 1524 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1525 if (rate & IEEE80211_RATE_MCS) { 1526 rate &= ~IEEE80211_RATE_MCS; 1527 m = findmedia(htrates, N(htrates), rate); 1528 if (m != IFM_AUTO) 1529 return m | IFM_IEEE80211_11NG; 1530 } 1531 } 1532 rate &= IEEE80211_RATE_VAL; 1533 switch (mode) { 1534 case IEEE80211_MODE_11A: 1535 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1536 case IEEE80211_MODE_QUARTER: 1537 case IEEE80211_MODE_11NA: 1538 case IEEE80211_MODE_TURBO_A: 1539 case IEEE80211_MODE_STURBO_A: 1540 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1541 case IEEE80211_MODE_11B: 1542 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1543 case IEEE80211_MODE_FH: 1544 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1545 case IEEE80211_MODE_AUTO: 1546 /* NB: ic may be NULL for some drivers */ 1547 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1548 return findmedia(rates, N(rates), 1549 rate | IFM_IEEE80211_FH); 1550 /* NB: hack, 11g matches both 11b+11a rates */ 1551 /* fall thru... */ 1552 case IEEE80211_MODE_11G: 1553 case IEEE80211_MODE_11NG: 1554 case IEEE80211_MODE_TURBO_G: 1555 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1556 } 1557 return IFM_AUTO; 1558 #undef N 1559 } 1560 1561 int 1562 ieee80211_media2rate(int mword) 1563 { 1564 #define N(a) (sizeof(a) / sizeof(a[0])) 1565 static const int ieeerates[] = { 1566 -1, /* IFM_AUTO */ 1567 0, /* IFM_MANUAL */ 1568 0, /* IFM_NONE */ 1569 2, /* IFM_IEEE80211_FH1 */ 1570 4, /* IFM_IEEE80211_FH2 */ 1571 2, /* IFM_IEEE80211_DS1 */ 1572 4, /* IFM_IEEE80211_DS2 */ 1573 11, /* IFM_IEEE80211_DS5 */ 1574 22, /* IFM_IEEE80211_DS11 */ 1575 44, /* IFM_IEEE80211_DS22 */ 1576 12, /* IFM_IEEE80211_OFDM6 */ 1577 18, /* IFM_IEEE80211_OFDM9 */ 1578 24, /* IFM_IEEE80211_OFDM12 */ 1579 36, /* IFM_IEEE80211_OFDM18 */ 1580 48, /* IFM_IEEE80211_OFDM24 */ 1581 72, /* IFM_IEEE80211_OFDM36 */ 1582 96, /* IFM_IEEE80211_OFDM48 */ 1583 108, /* IFM_IEEE80211_OFDM54 */ 1584 144, /* IFM_IEEE80211_OFDM72 */ 1585 0, /* IFM_IEEE80211_DS354k */ 1586 0, /* IFM_IEEE80211_DS512k */ 1587 6, /* IFM_IEEE80211_OFDM3 */ 1588 9, /* IFM_IEEE80211_OFDM4 */ 1589 54, /* IFM_IEEE80211_OFDM27 */ 1590 -1, /* IFM_IEEE80211_MCS */ 1591 }; 1592 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1593 ieeerates[IFM_SUBTYPE(mword)] : 0; 1594 #undef N 1595 } 1596 1597 /* 1598 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1599 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1600 */ 1601 #define mix(a, b, c) \ 1602 do { \ 1603 a -= b; a -= c; a ^= (c >> 13); \ 1604 b -= c; b -= a; b ^= (a << 8); \ 1605 c -= a; c -= b; c ^= (b >> 13); \ 1606 a -= b; a -= c; a ^= (c >> 12); \ 1607 b -= c; b -= a; b ^= (a << 16); \ 1608 c -= a; c -= b; c ^= (b >> 5); \ 1609 a -= b; a -= c; a ^= (c >> 3); \ 1610 b -= c; b -= a; b ^= (a << 10); \ 1611 c -= a; c -= b; c ^= (b >> 15); \ 1612 } while (/*CONSTCOND*/0) 1613 1614 uint32_t 1615 ieee80211_mac_hash(const struct ieee80211com *ic, 1616 const uint8_t addr[IEEE80211_ADDR_LEN]) 1617 { 1618 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1619 1620 b += addr[5] << 8; 1621 b += addr[4]; 1622 a += addr[3] << 24; 1623 a += addr[2] << 16; 1624 a += addr[1] << 8; 1625 a += addr[0]; 1626 1627 mix(a, b, c); 1628 1629 return c; 1630 } 1631 #undef mix 1632