xref: /freebsd/sys/net80211/ieee80211.c (revision e9ac41698b2f322d55ccf9da50a3596edb2c1800)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_private.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #include <net80211/ieee80211_ratectl.h>
58 #include <net80211/ieee80211_vht.h>
59 
60 #include <net/bpf.h>
61 
62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
63 	[IEEE80211_MODE_AUTO]	  = "auto",
64 	[IEEE80211_MODE_11A]	  = "11a",
65 	[IEEE80211_MODE_11B]	  = "11b",
66 	[IEEE80211_MODE_11G]	  = "11g",
67 	[IEEE80211_MODE_FH]	  = "FH",
68 	[IEEE80211_MODE_TURBO_A]  = "turboA",
69 	[IEEE80211_MODE_TURBO_G]  = "turboG",
70 	[IEEE80211_MODE_STURBO_A] = "sturboA",
71 	[IEEE80211_MODE_HALF]	  = "half",
72 	[IEEE80211_MODE_QUARTER]  = "quarter",
73 	[IEEE80211_MODE_11NA]	  = "11na",
74 	[IEEE80211_MODE_11NG]	  = "11ng",
75 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
76 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
77 };
78 /* map ieee80211_opmode to the corresponding capability bit */
79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
80 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
81 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
82 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
83 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
84 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
85 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
86 #ifdef IEEE80211_SUPPORT_MESH
87 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
88 #endif
89 };
90 
91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
92 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
93 
94 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
98 static	int ieee80211_media_setup(struct ieee80211com *ic,
99 		struct ifmedia *media, int caps, int addsta,
100 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
101 static	int media_status(enum ieee80211_opmode,
102 		const struct ieee80211_channel *);
103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
104 
105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
106 
107 /*
108  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
109  */
110 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
111 static const struct ieee80211_rateset ieee80211_rateset_11a =
112 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
113 static const struct ieee80211_rateset ieee80211_rateset_half =
114 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
115 static const struct ieee80211_rateset ieee80211_rateset_quarter =
116 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
117 static const struct ieee80211_rateset ieee80211_rateset_11b =
118 	{ 4, { B(2), B(4), B(11), B(22) } };
119 /* NB: OFDM rates are handled specially based on mode */
120 static const struct ieee80211_rateset ieee80211_rateset_11g =
121 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
122 #undef B
123 
124 static int set_vht_extchan(struct ieee80211_channel *c);
125 
126 /*
127  * Fill in 802.11 available channel set, mark
128  * all available channels as active, and pick
129  * a default channel if not already specified.
130  */
131 void
132 ieee80211_chan_init(struct ieee80211com *ic)
133 {
134 #define	DEFAULTRATES(m, def) do { \
135 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
136 		ic->ic_sup_rates[m] = def; \
137 } while (0)
138 	struct ieee80211_channel *c;
139 	int i;
140 
141 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
142 		("invalid number of channels specified: %u", ic->ic_nchans));
143 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
144 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
145 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
146 	for (i = 0; i < ic->ic_nchans; i++) {
147 		c = &ic->ic_channels[i];
148 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
149 		/*
150 		 * Help drivers that work only with frequencies by filling
151 		 * in IEEE channel #'s if not already calculated.  Note this
152 		 * mimics similar work done in ieee80211_setregdomain when
153 		 * changing regulatory state.
154 		 */
155 		if (c->ic_ieee == 0)
156 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
157 
158 		/*
159 		 * Setup the HT40/VHT40 upper/lower bits.
160 		 * The VHT80/... math is done elsewhere.
161 		 */
162 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
163 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
164 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
165 			    c->ic_flags);
166 
167 		/* Update VHT math */
168 		/*
169 		 * XXX VHT again, note that this assumes VHT80/... channels
170 		 * are legit already.
171 		 */
172 		set_vht_extchan(c);
173 
174 		/* default max tx power to max regulatory */
175 		if (c->ic_maxpower == 0)
176 			c->ic_maxpower = 2*c->ic_maxregpower;
177 		setbit(ic->ic_chan_avail, c->ic_ieee);
178 		/*
179 		 * Identify mode capabilities.
180 		 */
181 		if (IEEE80211_IS_CHAN_A(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
183 		if (IEEE80211_IS_CHAN_B(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
185 		if (IEEE80211_IS_CHAN_ANYG(c))
186 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
187 		if (IEEE80211_IS_CHAN_FHSS(c))
188 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
189 		if (IEEE80211_IS_CHAN_108A(c))
190 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
191 		if (IEEE80211_IS_CHAN_108G(c))
192 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
193 		if (IEEE80211_IS_CHAN_ST(c))
194 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
195 		if (IEEE80211_IS_CHAN_HALF(c))
196 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
197 		if (IEEE80211_IS_CHAN_QUARTER(c))
198 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
199 		if (IEEE80211_IS_CHAN_HTA(c))
200 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
201 		if (IEEE80211_IS_CHAN_HTG(c))
202 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
203 		if (IEEE80211_IS_CHAN_VHTA(c))
204 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
205 		if (IEEE80211_IS_CHAN_VHTG(c))
206 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
207 	}
208 	/* initialize candidate channels to all available */
209 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
210 		sizeof(ic->ic_chan_avail));
211 
212 	/* sort channel table to allow lookup optimizations */
213 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
214 
215 	/* invalidate any previous state */
216 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
217 	ic->ic_prevchan = NULL;
218 	ic->ic_csa_newchan = NULL;
219 	/* arbitrarily pick the first channel */
220 	ic->ic_curchan = &ic->ic_channels[0];
221 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
222 
223 	/* fillin well-known rate sets if driver has not specified */
224 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
225 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
226 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
227 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
229 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
230 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
231 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
232 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
233 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
234 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
236 
237 	/*
238 	 * Setup required information to fill the mcsset field, if driver did
239 	 * not. Assume a 2T2R setup for historic reasons.
240 	 */
241 	if (ic->ic_rxstream == 0)
242 		ic->ic_rxstream = 2;
243 	if (ic->ic_txstream == 0)
244 		ic->ic_txstream = 2;
245 
246 	ieee80211_init_suphtrates(ic);
247 
248 	/*
249 	 * Set auto mode to reset active channel state and any desired channel.
250 	 */
251 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
252 #undef DEFAULTRATES
253 }
254 
255 static void
256 null_update_mcast(struct ieee80211com *ic)
257 {
258 
259 	ic_printf(ic, "need multicast update callback\n");
260 }
261 
262 static void
263 null_update_promisc(struct ieee80211com *ic)
264 {
265 
266 	ic_printf(ic, "need promiscuous mode update callback\n");
267 }
268 
269 static void
270 null_update_chw(struct ieee80211com *ic)
271 {
272 
273 	ic_printf(ic, "%s: need callback\n", __func__);
274 }
275 
276 int
277 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
278 {
279 	va_list ap;
280 	int retval;
281 
282 	retval = printf("%s: ", ic->ic_name);
283 	va_start(ap, fmt);
284 	retval += vprintf(fmt, ap);
285 	va_end(ap);
286 	return (retval);
287 }
288 
289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
290 static struct mtx ic_list_mtx;
291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
292 
293 static int
294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
295 {
296 	struct ieee80211com *ic;
297 	struct sbuf sb;
298 	char *sp;
299 	int error;
300 
301 	error = sysctl_wire_old_buffer(req, 0);
302 	if (error)
303 		return (error);
304 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
305 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
306 	sp = "";
307 	mtx_lock(&ic_list_mtx);
308 	LIST_FOREACH(ic, &ic_head, ic_next) {
309 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
310 		sp = " ";
311 	}
312 	mtx_unlock(&ic_list_mtx);
313 	error = sbuf_finish(&sb);
314 	sbuf_delete(&sb);
315 	return (error);
316 }
317 
318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
319     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
320     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
321 
322 /*
323  * Attach/setup the common net80211 state.  Called by
324  * the driver on attach to prior to creating any vap's.
325  */
326 void
327 ieee80211_ifattach(struct ieee80211com *ic)
328 {
329 
330 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
331 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
332 	TAILQ_INIT(&ic->ic_vaps);
333 
334 	/* Create a taskqueue for all state changes */
335 	ic->ic_tq = taskqueue_create("ic_taskq",
336 	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
337 	    taskqueue_thread_enqueue, &ic->ic_tq);
338 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 	    ic->ic_name);
340 	ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
341 	ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
342 	/*
343 	 * Fill in 802.11 available channel set, mark all
344 	 * available channels as active, and pick a default
345 	 * channel if not already specified.
346 	 */
347 	ieee80211_chan_init(ic);
348 
349 	ic->ic_update_mcast = null_update_mcast;
350 	ic->ic_update_promisc = null_update_promisc;
351 	ic->ic_update_chw = null_update_chw;
352 
353 	ic->ic_hash_key = arc4random();
354 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 	ic->ic_lintval = ic->ic_bintval;
356 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357 
358 	ieee80211_crypto_attach(ic);
359 	ieee80211_node_attach(ic);
360 	ieee80211_power_attach(ic);
361 	ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 	ieee80211_superg_attach(ic);
364 #endif
365 	ieee80211_ht_attach(ic);
366 	ieee80211_vht_attach(ic);
367 	ieee80211_scan_attach(ic);
368 	ieee80211_regdomain_attach(ic);
369 	ieee80211_dfs_attach(ic);
370 
371 	ieee80211_sysctl_attach(ic);
372 
373 	mtx_lock(&ic_list_mtx);
374 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 	mtx_unlock(&ic_list_mtx);
376 }
377 
378 /*
379  * Detach net80211 state on device detach.  Tear down
380  * all vap's and reclaim all common state prior to the
381  * device state going away.  Note we may call back into
382  * driver; it must be prepared for this.
383  */
384 void
385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 	struct ieee80211vap *vap;
388 
389 	/*
390 	 * We use this as an indicator that ifattach never had a chance to be
391 	 * called, e.g. early driver attach failed and ifdetach was called
392 	 * during subsequent detach.  Never fear, for we have nothing to do
393 	 * here.
394 	 */
395 	if (ic->ic_tq == NULL)
396 		return;
397 
398 	mtx_lock(&ic_list_mtx);
399 	LIST_REMOVE(ic, ic_next);
400 	mtx_unlock(&ic_list_mtx);
401 
402 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403 
404 	/*
405 	 * The VAP is responsible for setting and clearing
406 	 * the VIMAGE context.
407 	 */
408 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409 		ieee80211_com_vdetach(vap);
410 		ieee80211_vap_destroy(vap);
411 	}
412 	ieee80211_waitfor_parent(ic);
413 
414 	ieee80211_sysctl_detach(ic);
415 	ieee80211_dfs_detach(ic);
416 	ieee80211_regdomain_detach(ic);
417 	ieee80211_scan_detach(ic);
418 #ifdef IEEE80211_SUPPORT_SUPERG
419 	ieee80211_superg_detach(ic);
420 #endif
421 	ieee80211_vht_detach(ic);
422 	ieee80211_ht_detach(ic);
423 	/* NB: must be called before ieee80211_node_detach */
424 	ieee80211_proto_detach(ic);
425 	ieee80211_crypto_detach(ic);
426 	ieee80211_power_detach(ic);
427 	ieee80211_node_detach(ic);
428 
429 	counter_u64_free(ic->ic_ierrors);
430 	counter_u64_free(ic->ic_oerrors);
431 
432 	taskqueue_free(ic->ic_tq);
433 	IEEE80211_TX_LOCK_DESTROY(ic);
434 	IEEE80211_LOCK_DESTROY(ic);
435 }
436 
437 /*
438  * Called by drivers during attach to set the supported
439  * cipher set for software encryption.
440  */
441 void
442 ieee80211_set_software_ciphers(struct ieee80211com *ic,
443     uint32_t cipher_suite)
444 {
445 	ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
446 }
447 
448 /*
449  * Called by drivers during attach to set the supported
450  * cipher set for hardware encryption.
451  */
452 void
453 ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
454     uint32_t cipher_suite)
455 {
456 	ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
457 }
458 
459 /*
460  * Called by drivers during attach to set the supported
461  * key management suites by the driver/hardware.
462  */
463 void
464 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
465     uint32_t keymgmt_set)
466 {
467 	ieee80211_crypto_set_supported_driver_keymgmt(ic,
468 	    keymgmt_set);
469 }
470 
471 struct ieee80211com *
472 ieee80211_find_com(const char *name)
473 {
474 	struct ieee80211com *ic;
475 
476 	mtx_lock(&ic_list_mtx);
477 	LIST_FOREACH(ic, &ic_head, ic_next)
478 		if (strcmp(ic->ic_name, name) == 0)
479 			break;
480 	mtx_unlock(&ic_list_mtx);
481 
482 	return (ic);
483 }
484 
485 void
486 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
487 {
488 	struct ieee80211com *ic;
489 
490 	mtx_lock(&ic_list_mtx);
491 	LIST_FOREACH(ic, &ic_head, ic_next)
492 		(*f)(arg, ic);
493 	mtx_unlock(&ic_list_mtx);
494 }
495 
496 /*
497  * Default reset method for use with the ioctl support.  This
498  * method is invoked after any state change in the 802.11
499  * layer that should be propagated to the hardware but not
500  * require re-initialization of the 802.11 state machine (e.g
501  * rescanning for an ap).  We always return ENETRESET which
502  * should cause the driver to re-initialize the device. Drivers
503  * can override this method to implement more optimized support.
504  */
505 static int
506 default_reset(struct ieee80211vap *vap, u_long cmd)
507 {
508 	return ENETRESET;
509 }
510 
511 /*
512  * Default for updating the VAP default TX key index.
513  *
514  * Drivers that support TX offload as well as hardware encryption offload
515  * may need to be informed of key index changes separate from the key
516  * update.
517  */
518 static void
519 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
520 {
521 
522 	/* XXX assert validity */
523 	/* XXX assert we're in a key update block */
524 	vap->iv_def_txkey = kid;
525 }
526 
527 /*
528  * Add underlying device errors to vap errors.
529  */
530 static uint64_t
531 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
532 {
533 	struct ieee80211vap *vap = ifp->if_softc;
534 	struct ieee80211com *ic = vap->iv_ic;
535 	uint64_t rv;
536 
537 	rv = if_get_counter_default(ifp, cnt);
538 	switch (cnt) {
539 	case IFCOUNTER_OERRORS:
540 		rv += counter_u64_fetch(ic->ic_oerrors);
541 		break;
542 	case IFCOUNTER_IERRORS:
543 		rv += counter_u64_fetch(ic->ic_ierrors);
544 		break;
545 	default:
546 		break;
547 	}
548 
549 	return (rv);
550 }
551 
552 /*
553  * Prepare a vap for use.  Drivers use this call to
554  * setup net80211 state in new vap's prior attaching
555  * them with ieee80211_vap_attach (below).
556  */
557 int
558 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
559     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
560     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
561 {
562 	struct ifnet *ifp;
563 
564 	ifp = if_alloc(IFT_ETHER);
565 	if_initname(ifp, name, unit);
566 	ifp->if_softc = vap;			/* back pointer */
567 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
568 	ifp->if_transmit = ieee80211_vap_transmit;
569 	ifp->if_qflush = ieee80211_vap_qflush;
570 	ifp->if_ioctl = ieee80211_ioctl;
571 	ifp->if_init = ieee80211_init;
572 	ifp->if_get_counter = ieee80211_get_counter;
573 
574 	vap->iv_ifp = ifp;
575 	vap->iv_ic = ic;
576 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
577 	vap->iv_flags_ext = ic->ic_flags_ext;
578 	vap->iv_flags_ven = ic->ic_flags_ven;
579 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
580 
581 	/* 11n capabilities - XXX methodize */
582 	vap->iv_htcaps = ic->ic_htcaps;
583 	vap->iv_htextcaps = ic->ic_htextcaps;
584 
585 	/* 11ac capabilities - XXX methodize */
586 	vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
587 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
588 
589 	vap->iv_opmode = opmode;
590 	vap->iv_caps |= ieee80211_opcap[opmode];
591 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
592 	switch (opmode) {
593 	case IEEE80211_M_WDS:
594 		/*
595 		 * WDS links must specify the bssid of the far end.
596 		 * For legacy operation this is a static relationship.
597 		 * For non-legacy operation the station must associate
598 		 * and be authorized to pass traffic.  Plumbing the
599 		 * vap to the proper node happens when the vap
600 		 * transitions to RUN state.
601 		 */
602 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
603 		vap->iv_flags |= IEEE80211_F_DESBSSID;
604 		if (flags & IEEE80211_CLONE_WDSLEGACY)
605 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
606 		break;
607 #ifdef IEEE80211_SUPPORT_TDMA
608 	case IEEE80211_M_AHDEMO:
609 		if (flags & IEEE80211_CLONE_TDMA) {
610 			/* NB: checked before clone operation allowed */
611 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
612 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
613 			/*
614 			 * Propagate TDMA capability to mark vap; this
615 			 * cannot be removed and is used to distinguish
616 			 * regular ahdemo operation from ahdemo+tdma.
617 			 */
618 			vap->iv_caps |= IEEE80211_C_TDMA;
619 		}
620 		break;
621 #endif
622 	default:
623 		break;
624 	}
625 	/* auto-enable s/w beacon miss support */
626 	if (flags & IEEE80211_CLONE_NOBEACONS)
627 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
628 	/* auto-generated or user supplied MAC address */
629 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
630 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
631 	/*
632 	 * Enable various functionality by default if we're
633 	 * capable; the driver can override us if it knows better.
634 	 */
635 	if (vap->iv_caps & IEEE80211_C_WME)
636 		vap->iv_flags |= IEEE80211_F_WME;
637 	if (vap->iv_caps & IEEE80211_C_BURST)
638 		vap->iv_flags |= IEEE80211_F_BURST;
639 	/* NB: bg scanning only makes sense for station mode right now */
640 	if (vap->iv_opmode == IEEE80211_M_STA &&
641 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
642 		vap->iv_flags |= IEEE80211_F_BGSCAN;
643 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
644 	/* NB: DFS support only makes sense for ap mode right now */
645 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
646 	    (vap->iv_caps & IEEE80211_C_DFS))
647 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
648 	/* NB: only flip on U-APSD for hostap/sta for now */
649 	if ((vap->iv_opmode == IEEE80211_M_STA)
650 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
651 		if (vap->iv_caps & IEEE80211_C_UAPSD)
652 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
653 	}
654 
655 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
656 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
657 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
658 	/*
659 	 * Install a default reset method for the ioctl support;
660 	 * the driver can override this.
661 	 */
662 	vap->iv_reset = default_reset;
663 
664 	/*
665 	 * Install a default crypto key update method, the driver
666 	 * can override this.
667 	 */
668 	vap->iv_update_deftxkey = default_update_deftxkey;
669 
670 	ieee80211_sysctl_vattach(vap);
671 	ieee80211_crypto_vattach(vap);
672 	ieee80211_node_vattach(vap);
673 	ieee80211_power_vattach(vap);
674 	ieee80211_proto_vattach(vap);
675 #ifdef IEEE80211_SUPPORT_SUPERG
676 	ieee80211_superg_vattach(vap);
677 #endif
678 	ieee80211_ht_vattach(vap);
679 	ieee80211_vht_vattach(vap);
680 	ieee80211_scan_vattach(vap);
681 	ieee80211_regdomain_vattach(vap);
682 	ieee80211_radiotap_vattach(vap);
683 	ieee80211_vap_reset_erp(vap);
684 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
685 
686 	return 0;
687 }
688 
689 /*
690  * Activate a vap.  State should have been prepared with a
691  * call to ieee80211_vap_setup and by the driver.  On return
692  * from this call the vap is ready for use.
693  */
694 int
695 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
696     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
697 {
698 	struct ifnet *ifp = vap->iv_ifp;
699 	struct ieee80211com *ic = vap->iv_ic;
700 	struct ifmediareq imr;
701 	int maxrate;
702 
703 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
704 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
705 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
706 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
707 
708 	/*
709 	 * Do late attach work that cannot happen until after
710 	 * the driver has had a chance to override defaults.
711 	 */
712 	ieee80211_node_latevattach(vap);
713 	ieee80211_power_latevattach(vap);
714 
715 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
716 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
717 	ieee80211_media_status(ifp, &imr);
718 	/* NB: strip explicit mode; we're actually in autoselect */
719 	ifmedia_set(&vap->iv_media,
720 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
721 	if (maxrate)
722 		ifp->if_baudrate = IF_Mbps(maxrate);
723 
724 	ether_ifattach(ifp, macaddr);
725 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
726 	/* hook output method setup by ether_ifattach */
727 	vap->iv_output = ifp->if_output;
728 	ifp->if_output = ieee80211_output;
729 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
730 
731 	IEEE80211_LOCK(ic);
732 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
733 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
734 #ifdef IEEE80211_SUPPORT_SUPERG
735 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
736 #endif
737 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
738 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
739 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
740 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
741 
742 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
743 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
744 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
745 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
746 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
747 	IEEE80211_UNLOCK(ic);
748 
749 	return 1;
750 }
751 
752 /*
753  * Tear down vap state and reclaim the ifnet.
754  * The driver is assumed to have prepared for
755  * this; e.g. by turning off interrupts for the
756  * underlying device.
757  */
758 void
759 ieee80211_vap_detach(struct ieee80211vap *vap)
760 {
761 	struct ieee80211com *ic = vap->iv_ic;
762 	struct ifnet *ifp = vap->iv_ifp;
763 	int i;
764 
765 	CURVNET_SET(ifp->if_vnet);
766 
767 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
768 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
769 
770 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
771 	ether_ifdetach(ifp);
772 
773 	ieee80211_stop(vap);
774 
775 	/*
776 	 * Flush any deferred vap tasks.
777 	 */
778 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
779 		ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
780 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
781 	ieee80211_draintask(ic, &vap->iv_wme_task);
782 	ieee80211_draintask(ic, &ic->ic_parent_task);
783 
784 	/* XXX band-aid until ifnet handles this for us */
785 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
786 
787 	IEEE80211_LOCK(ic);
788 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
789 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
790 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
791 #ifdef IEEE80211_SUPPORT_SUPERG
792 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
793 #endif
794 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
795 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
796 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
797 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
798 
799 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
800 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
801 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
802 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
803 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
804 
805 	/* NB: this handles the bpfdetach done below */
806 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
807 	if (vap->iv_ifflags & IFF_PROMISC)
808 		ieee80211_promisc(vap, false);
809 	if (vap->iv_ifflags & IFF_ALLMULTI)
810 		ieee80211_allmulti(vap, false);
811 	IEEE80211_UNLOCK(ic);
812 
813 	ifmedia_removeall(&vap->iv_media);
814 
815 	ieee80211_radiotap_vdetach(vap);
816 	ieee80211_regdomain_vdetach(vap);
817 	ieee80211_scan_vdetach(vap);
818 #ifdef IEEE80211_SUPPORT_SUPERG
819 	ieee80211_superg_vdetach(vap);
820 #endif
821 	ieee80211_vht_vdetach(vap);
822 	ieee80211_ht_vdetach(vap);
823 	/* NB: must be before ieee80211_node_vdetach */
824 	ieee80211_proto_vdetach(vap);
825 	ieee80211_crypto_vdetach(vap);
826 	ieee80211_power_vdetach(vap);
827 	ieee80211_node_vdetach(vap);
828 	ieee80211_sysctl_vdetach(vap);
829 
830 	if_free(ifp);
831 
832 	CURVNET_RESTORE();
833 }
834 
835 /*
836  * Count number of vaps in promisc, and issue promisc on
837  * parent respectively.
838  */
839 void
840 ieee80211_promisc(struct ieee80211vap *vap, bool on)
841 {
842 	struct ieee80211com *ic = vap->iv_ic;
843 
844 	IEEE80211_LOCK_ASSERT(ic);
845 
846 	if (on) {
847 		if (++ic->ic_promisc == 1)
848 			ieee80211_runtask(ic, &ic->ic_promisc_task);
849 	} else {
850 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
851 		    __func__, ic));
852 		if (--ic->ic_promisc == 0)
853 			ieee80211_runtask(ic, &ic->ic_promisc_task);
854 	}
855 }
856 
857 /*
858  * Count number of vaps in allmulti, and issue allmulti on
859  * parent respectively.
860  */
861 void
862 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
863 {
864 	struct ieee80211com *ic = vap->iv_ic;
865 
866 	IEEE80211_LOCK_ASSERT(ic);
867 
868 	if (on) {
869 		if (++ic->ic_allmulti == 1)
870 			ieee80211_runtask(ic, &ic->ic_mcast_task);
871 	} else {
872 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
873 		    __func__, ic));
874 		if (--ic->ic_allmulti == 0)
875 			ieee80211_runtask(ic, &ic->ic_mcast_task);
876 	}
877 }
878 
879 /*
880  * Synchronize flag bit state in the com structure
881  * according to the state of all vap's.  This is used,
882  * for example, to handle state changes via ioctls.
883  */
884 static void
885 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
886 {
887 	struct ieee80211vap *vap;
888 	int bit;
889 
890 	IEEE80211_LOCK_ASSERT(ic);
891 
892 	bit = 0;
893 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
894 		if (vap->iv_flags & flag) {
895 			bit = 1;
896 			break;
897 		}
898 	if (bit)
899 		ic->ic_flags |= flag;
900 	else
901 		ic->ic_flags &= ~flag;
902 }
903 
904 void
905 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
906 {
907 	struct ieee80211com *ic = vap->iv_ic;
908 
909 	IEEE80211_LOCK(ic);
910 	if (flag < 0) {
911 		flag = -flag;
912 		vap->iv_flags &= ~flag;
913 	} else
914 		vap->iv_flags |= flag;
915 	ieee80211_syncflag_locked(ic, flag);
916 	IEEE80211_UNLOCK(ic);
917 }
918 
919 /*
920  * Synchronize flags_ht bit state in the com structure
921  * according to the state of all vap's.  This is used,
922  * for example, to handle state changes via ioctls.
923  */
924 static void
925 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
926 {
927 	struct ieee80211vap *vap;
928 	int bit;
929 
930 	IEEE80211_LOCK_ASSERT(ic);
931 
932 	bit = 0;
933 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
934 		if (vap->iv_flags_ht & flag) {
935 			bit = 1;
936 			break;
937 		}
938 	if (bit)
939 		ic->ic_flags_ht |= flag;
940 	else
941 		ic->ic_flags_ht &= ~flag;
942 }
943 
944 void
945 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
946 {
947 	struct ieee80211com *ic = vap->iv_ic;
948 
949 	IEEE80211_LOCK(ic);
950 	if (flag < 0) {
951 		flag = -flag;
952 		vap->iv_flags_ht &= ~flag;
953 	} else
954 		vap->iv_flags_ht |= flag;
955 	ieee80211_syncflag_ht_locked(ic, flag);
956 	IEEE80211_UNLOCK(ic);
957 }
958 
959 /*
960  * Synchronize flags_vht bit state in the com structure
961  * according to the state of all vap's.  This is used,
962  * for example, to handle state changes via ioctls.
963  */
964 static void
965 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
966 {
967 	struct ieee80211vap *vap;
968 	int bit;
969 
970 	IEEE80211_LOCK_ASSERT(ic);
971 
972 	bit = 0;
973 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
974 		if (vap->iv_vht_flags & flag) {
975 			bit = 1;
976 			break;
977 		}
978 	if (bit)
979 		ic->ic_vht_flags |= flag;
980 	else
981 		ic->ic_vht_flags &= ~flag;
982 }
983 
984 void
985 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
986 {
987 	struct ieee80211com *ic = vap->iv_ic;
988 
989 	IEEE80211_LOCK(ic);
990 	if (flag < 0) {
991 		flag = -flag;
992 		vap->iv_vht_flags &= ~flag;
993 	} else
994 		vap->iv_vht_flags |= flag;
995 	ieee80211_syncflag_vht_locked(ic, flag);
996 	IEEE80211_UNLOCK(ic);
997 }
998 
999 /*
1000  * Synchronize flags_ext bit state in the com structure
1001  * according to the state of all vap's.  This is used,
1002  * for example, to handle state changes via ioctls.
1003  */
1004 static void
1005 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
1006 {
1007 	struct ieee80211vap *vap;
1008 	int bit;
1009 
1010 	IEEE80211_LOCK_ASSERT(ic);
1011 
1012 	bit = 0;
1013 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1014 		if (vap->iv_flags_ext & flag) {
1015 			bit = 1;
1016 			break;
1017 		}
1018 	if (bit)
1019 		ic->ic_flags_ext |= flag;
1020 	else
1021 		ic->ic_flags_ext &= ~flag;
1022 }
1023 
1024 void
1025 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1026 {
1027 	struct ieee80211com *ic = vap->iv_ic;
1028 
1029 	IEEE80211_LOCK(ic);
1030 	if (flag < 0) {
1031 		flag = -flag;
1032 		vap->iv_flags_ext &= ~flag;
1033 	} else
1034 		vap->iv_flags_ext |= flag;
1035 	ieee80211_syncflag_ext_locked(ic, flag);
1036 	IEEE80211_UNLOCK(ic);
1037 }
1038 
1039 static __inline int
1040 mapgsm(u_int freq, u_int flags)
1041 {
1042 	freq *= 10;
1043 	if (flags & IEEE80211_CHAN_QUARTER)
1044 		freq += 5;
1045 	else if (flags & IEEE80211_CHAN_HALF)
1046 		freq += 10;
1047 	else
1048 		freq += 20;
1049 	/* NB: there is no 907/20 wide but leave room */
1050 	return (freq - 906*10) / 5;
1051 }
1052 
1053 static __inline int
1054 mappsb(u_int freq, u_int flags)
1055 {
1056 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1057 }
1058 
1059 /*
1060  * Convert MHz frequency to IEEE channel number.
1061  */
1062 int
1063 ieee80211_mhz2ieee(u_int freq, u_int flags)
1064 {
1065 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1066 	if (flags & IEEE80211_CHAN_GSM)
1067 		return mapgsm(freq, flags);
1068 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1069 		if (freq == 2484)
1070 			return 14;
1071 		if (freq < 2484)
1072 			return ((int) freq - 2407) / 5;
1073 		else
1074 			return 15 + ((freq - 2512) / 20);
1075 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1076 		if (freq <= 5000) {
1077 			/* XXX check regdomain? */
1078 			if (IS_FREQ_IN_PSB(freq))
1079 				return mappsb(freq, flags);
1080 			return (freq - 4000) / 5;
1081 		} else
1082 			return (freq - 5000) / 5;
1083 	} else {				/* either, guess */
1084 		if (freq == 2484)
1085 			return 14;
1086 		if (freq < 2484) {
1087 			if (907 <= freq && freq <= 922)
1088 				return mapgsm(freq, flags);
1089 			return ((int) freq - 2407) / 5;
1090 		}
1091 		if (freq < 5000) {
1092 			if (IS_FREQ_IN_PSB(freq))
1093 				return mappsb(freq, flags);
1094 			else if (freq > 4900)
1095 				return (freq - 4000) / 5;
1096 			else
1097 				return 15 + ((freq - 2512) / 20);
1098 		}
1099 		return (freq - 5000) / 5;
1100 	}
1101 #undef IS_FREQ_IN_PSB
1102 }
1103 
1104 /*
1105  * Convert channel to IEEE channel number.
1106  */
1107 int
1108 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1109 {
1110 	if (c == NULL) {
1111 		ic_printf(ic, "invalid channel (NULL)\n");
1112 		return 0;		/* XXX */
1113 	}
1114 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1115 }
1116 
1117 /*
1118  * Convert IEEE channel number to MHz frequency.
1119  */
1120 u_int
1121 ieee80211_ieee2mhz(u_int chan, u_int flags)
1122 {
1123 	if (flags & IEEE80211_CHAN_GSM)
1124 		return 907 + 5 * (chan / 10);
1125 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1126 		if (chan == 14)
1127 			return 2484;
1128 		if (chan < 14)
1129 			return 2407 + chan*5;
1130 		else
1131 			return 2512 + ((chan-15)*20);
1132 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1133 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1134 			chan -= 37;
1135 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1136 		}
1137 		return 5000 + (chan*5);
1138 	} else {				/* either, guess */
1139 		/* XXX can't distinguish PSB+GSM channels */
1140 		if (chan == 14)
1141 			return 2484;
1142 		if (chan < 14)			/* 0-13 */
1143 			return 2407 + chan*5;
1144 		if (chan < 27)			/* 15-26 */
1145 			return 2512 + ((chan-15)*20);
1146 		return 5000 + (chan*5);
1147 	}
1148 }
1149 
1150 static __inline void
1151 set_extchan(struct ieee80211_channel *c)
1152 {
1153 
1154 	/*
1155 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1156 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1157 	 */
1158 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1159 		c->ic_extieee = c->ic_ieee + 4;
1160 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1161 		c->ic_extieee = c->ic_ieee - 4;
1162 	else
1163 		c->ic_extieee = 0;
1164 }
1165 
1166 /*
1167  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1168  *
1169  * This for now uses a hard-coded list of 80MHz wide channels.
1170  *
1171  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1172  * wide channel we've already decided upon.
1173  *
1174  * For VHT80 and VHT160, there are only a small number of fixed
1175  * 80/160MHz wide channels, so we just use those.
1176  *
1177  * This is all likely very very wrong - both the regulatory code
1178  * and this code needs to ensure that all four channels are
1179  * available and valid before the VHT80 (and eight for VHT160) channel
1180  * is created.
1181  */
1182 
1183 struct vht_chan_range {
1184 	uint16_t freq_start;
1185 	uint16_t freq_end;
1186 };
1187 
1188 struct vht_chan_range vht80_chan_ranges[] = {
1189 	{ 5170, 5250 },
1190 	{ 5250, 5330 },
1191 	{ 5490, 5570 },
1192 	{ 5570, 5650 },
1193 	{ 5650, 5730 },
1194 	{ 5735, 5815 },
1195 	{ 0, 0 }
1196 };
1197 
1198 struct vht_chan_range vht160_chan_ranges[] = {
1199 	{ 5170, 5330 },
1200 	{ 5490, 5650 },
1201 	{ 0, 0 }
1202 };
1203 
1204 static int
1205 set_vht_extchan(struct ieee80211_channel *c)
1206 {
1207 	int i;
1208 
1209 	if (! IEEE80211_IS_CHAN_VHT(c))
1210 		return (0);
1211 
1212 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1213 		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1214 		    __func__, c->ic_ieee, c->ic_flags);
1215 	}
1216 
1217 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1218 		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1219 			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1220 			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1221 				int midpoint;
1222 
1223 				midpoint = vht160_chan_ranges[i].freq_start + 80;
1224 				c->ic_vht_ch_freq1 =
1225 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1226 				c->ic_vht_ch_freq2 = 0;
1227 #if 0
1228 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1229 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1230 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1231 #endif
1232 				return (1);
1233 			}
1234 		}
1235 		return (0);
1236 	}
1237 
1238 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1239 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1240 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1241 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1242 				int midpoint;
1243 
1244 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1245 				c->ic_vht_ch_freq1 =
1246 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1247 				c->ic_vht_ch_freq2 = 0;
1248 #if 0
1249 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1250 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1251 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1252 #endif
1253 				return (1);
1254 			}
1255 		}
1256 		return (0);
1257 	}
1258 
1259 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1260 		if (IEEE80211_IS_CHAN_HT40U(c))
1261 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1262 		else if (IEEE80211_IS_CHAN_HT40D(c))
1263 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1264 		else
1265 			return (0);
1266 		return (1);
1267 	}
1268 
1269 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1270 		c->ic_vht_ch_freq1 = c->ic_ieee;
1271 		return (1);
1272 	}
1273 
1274 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1275 	    __func__, c->ic_ieee, c->ic_flags);
1276 
1277 	return (0);
1278 }
1279 
1280 /*
1281  * Return whether the current channel could possibly be a part of
1282  * a VHT80/VHT160 channel.
1283  *
1284  * This doesn't check that the whole range is in the allowed list
1285  * according to regulatory.
1286  */
1287 static bool
1288 is_vht160_valid_freq(uint16_t freq)
1289 {
1290 	int i;
1291 
1292 	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1293 		if (freq >= vht160_chan_ranges[i].freq_start &&
1294 		    freq < vht160_chan_ranges[i].freq_end)
1295 			return (true);
1296 	}
1297 	return (false);
1298 }
1299 
1300 static int
1301 is_vht80_valid_freq(uint16_t freq)
1302 {
1303 	int i;
1304 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1305 		if (freq >= vht80_chan_ranges[i].freq_start &&
1306 		    freq < vht80_chan_ranges[i].freq_end)
1307 			return (1);
1308 	}
1309 	return (0);
1310 }
1311 
1312 static int
1313 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1314     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1315 {
1316 	struct ieee80211_channel *c;
1317 
1318 	if (*nchans >= maxchans)
1319 		return (ENOBUFS);
1320 
1321 #if 0
1322 	printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1323 	    __func__, *nchans, maxchans, ieee, freq, flags);
1324 #endif
1325 
1326 	c = &chans[(*nchans)++];
1327 	c->ic_ieee = ieee;
1328 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1329 	c->ic_maxregpower = maxregpower;
1330 	c->ic_maxpower = 2 * maxregpower;
1331 	c->ic_flags = flags;
1332 	c->ic_vht_ch_freq1 = 0;
1333 	c->ic_vht_ch_freq2 = 0;
1334 	set_extchan(c);
1335 	set_vht_extchan(c);
1336 
1337 	return (0);
1338 }
1339 
1340 static int
1341 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1342     uint32_t flags)
1343 {
1344 	struct ieee80211_channel *c;
1345 
1346 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1347 
1348 	if (*nchans >= maxchans)
1349 		return (ENOBUFS);
1350 
1351 #if 0
1352 	printf("%s: %d of %d: flags=0x%08x\n",
1353 	    __func__, *nchans, maxchans, flags);
1354 #endif
1355 
1356 	c = &chans[(*nchans)++];
1357 	c[0] = c[-1];
1358 	c->ic_flags = flags;
1359 	c->ic_vht_ch_freq1 = 0;
1360 	c->ic_vht_ch_freq2 = 0;
1361 	set_extchan(c);
1362 	set_vht_extchan(c);
1363 
1364 	return (0);
1365 }
1366 
1367 /*
1368  * XXX VHT-2GHz
1369  */
1370 static void
1371 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1372 {
1373 	int nmodes;
1374 
1375 	nmodes = 0;
1376 	if (isset(bands, IEEE80211_MODE_11B))
1377 		flags[nmodes++] = IEEE80211_CHAN_B;
1378 	if (isset(bands, IEEE80211_MODE_11G))
1379 		flags[nmodes++] = IEEE80211_CHAN_G;
1380 	if (isset(bands, IEEE80211_MODE_11NG))
1381 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1382 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1383 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1384 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1385 	}
1386 	flags[nmodes] = 0;
1387 }
1388 
1389 static void
1390 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1391 {
1392 	int nmodes;
1393 
1394 	/*
1395 	 * The addchan_list() function seems to expect the flags array to
1396 	 * be in channel width order, so the VHT bits are interspersed
1397 	 * as appropriate to maintain said order.
1398 	 *
1399 	 * It also assumes HT40U is before HT40D.
1400 	 */
1401 	nmodes = 0;
1402 
1403 	/* 20MHz */
1404 	if (isset(bands, IEEE80211_MODE_11A))
1405 		flags[nmodes++] = IEEE80211_CHAN_A;
1406 	if (isset(bands, IEEE80211_MODE_11NA))
1407 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1408 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1409 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1410 		    IEEE80211_CHAN_VHT20;
1411 	}
1412 
1413 	/* 40MHz */
1414 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1415 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1416 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1417 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1418 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1419 		    IEEE80211_CHAN_VHT40U;
1420 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1421 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1422 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1423 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1424 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1425 		    IEEE80211_CHAN_VHT40D;
1426 
1427 	/* 80MHz */
1428 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1429 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1430 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1431 		    IEEE80211_CHAN_VHT80;
1432 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1433 		    IEEE80211_CHAN_VHT80;
1434 	}
1435 
1436 	/* VHT160 */
1437 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1438 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1439 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1440 		    IEEE80211_CHAN_VHT160;
1441 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1442 		    IEEE80211_CHAN_VHT160;
1443 	}
1444 
1445 	/* VHT80+80 */
1446 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1447 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1448 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1449 		    IEEE80211_CHAN_VHT80P80;
1450 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1451 		    IEEE80211_CHAN_VHT80P80;
1452 	}
1453 
1454 	flags[nmodes] = 0;
1455 }
1456 
1457 static void
1458 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1459 {
1460 
1461 	flags[0] = 0;
1462 	if (isset(bands, IEEE80211_MODE_11A) ||
1463 	    isset(bands, IEEE80211_MODE_11NA) ||
1464 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1465 		if (isset(bands, IEEE80211_MODE_11B) ||
1466 		    isset(bands, IEEE80211_MODE_11G) ||
1467 		    isset(bands, IEEE80211_MODE_11NG) ||
1468 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1469 			return;
1470 
1471 		getflags_5ghz(bands, flags, cbw_flags);
1472 	} else
1473 		getflags_2ghz(bands, flags, cbw_flags);
1474 }
1475 
1476 /*
1477  * Add one 20 MHz channel into specified channel list.
1478  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1479  * channels if you have any B/G/N band bit set.
1480  * The _cbw() variant does also support HT40/VHT80/160/80+80.
1481  */
1482 int
1483 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1484     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1485     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1486 {
1487 	uint32_t flags[IEEE80211_MODE_MAX];
1488 	int i, error;
1489 
1490 	getflags(bands, flags, cbw_flags);
1491 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1492 
1493 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1494 	    flags[0] | chan_flags);
1495 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1496 		error = copychan_prev(chans, maxchans, nchans,
1497 		    flags[i] | chan_flags);
1498 	}
1499 
1500 	return (error);
1501 }
1502 
1503 int
1504 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1505     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1506     uint32_t chan_flags, const uint8_t bands[])
1507 {
1508 
1509 	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1510 	    maxregpower, chan_flags, bands, 0));
1511 }
1512 
1513 static struct ieee80211_channel *
1514 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1515     uint32_t flags)
1516 {
1517 	struct ieee80211_channel *c;
1518 	int i;
1519 
1520 	flags &= IEEE80211_CHAN_ALLTURBO;
1521 	/* brute force search */
1522 	for (i = 0; i < nchans; i++) {
1523 		c = &chans[i];
1524 		if (c->ic_freq == freq &&
1525 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1526 			return c;
1527 	}
1528 	return NULL;
1529 }
1530 
1531 /*
1532  * Add 40 MHz channel pair into specified channel list.
1533  */
1534 /* XXX VHT */
1535 int
1536 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1537     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1538 {
1539 	struct ieee80211_channel *cent, *extc;
1540 	uint16_t freq;
1541 	int error;
1542 
1543 	freq = ieee80211_ieee2mhz(ieee, flags);
1544 
1545 	/*
1546 	 * Each entry defines an HT40 channel pair; find the
1547 	 * center channel, then the extension channel above.
1548 	 */
1549 	flags |= IEEE80211_CHAN_HT20;
1550 	cent = findchannel(chans, *nchans, freq, flags);
1551 	if (cent == NULL)
1552 		return (EINVAL);
1553 
1554 	extc = findchannel(chans, *nchans, freq + 20, flags);
1555 	if (extc == NULL)
1556 		return (ENOENT);
1557 
1558 	flags &= ~IEEE80211_CHAN_HT;
1559 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1560 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1561 	if (error != 0)
1562 		return (error);
1563 
1564 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1565 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1566 
1567 	return (error);
1568 }
1569 
1570 /*
1571  * Fetch the center frequency for the primary channel.
1572  */
1573 uint32_t
1574 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1575 {
1576 
1577 	return (c->ic_freq);
1578 }
1579 
1580 /*
1581  * Fetch the center frequency for the primary BAND channel.
1582  *
1583  * For 5, 10, 20MHz channels it'll be the normally configured channel
1584  * frequency.
1585  *
1586  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1587  * wide channel, not the centre of the primary channel (that's ic_freq).
1588  *
1589  * For 80+80MHz channels this will be the centre of the primary
1590  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1591  */
1592 uint32_t
1593 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1594 {
1595 
1596 	/*
1597 	 * VHT - use the pre-calculated centre frequency
1598 	 * of the given channel.
1599 	 */
1600 	if (IEEE80211_IS_CHAN_VHT(c))
1601 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1602 
1603 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1604 		return (c->ic_freq + 10);
1605 	}
1606 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1607 		return (c->ic_freq - 10);
1608 	}
1609 
1610 	return (c->ic_freq);
1611 }
1612 
1613 /*
1614  * For now, no 80+80 support; it will likely always return 0.
1615  */
1616 uint32_t
1617 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1618 {
1619 
1620 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1621 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1622 
1623 	return (0);
1624 }
1625 
1626 /*
1627  * Adds channels into specified channel list (ieee[] array must be sorted).
1628  * Channels are already sorted.
1629  */
1630 static int
1631 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1632     const uint8_t ieee[], int nieee, uint32_t flags[])
1633 {
1634 	uint16_t freq;
1635 	int i, j, error;
1636 	int is_vht;
1637 
1638 	for (i = 0; i < nieee; i++) {
1639 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1640 		for (j = 0; flags[j] != 0; j++) {
1641 			/*
1642 			 * Notes:
1643 			 * + HT40 and VHT40 channels occur together, so
1644 			 *   we need to be careful that we actually allow that.
1645 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1646 			 *   make sure it's not skipped because of the overlap
1647 			 *   check used for (V)HT40.
1648 			 */
1649 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1650 
1651 			/* XXX TODO FIXME VHT80P80. */
1652 
1653 			/* Test for VHT160 analogue to the VHT80 below. */
1654 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1655 				if (! is_vht160_valid_freq(freq))
1656 					continue;
1657 
1658 			/*
1659 			 * Test for VHT80.
1660 			 * XXX This is all very broken right now.
1661 			 * What we /should/ do is:
1662 			 *
1663 			 * + check that the frequency is in the list of
1664 			 *   allowed VHT80 ranges; and
1665 			 * + the other 3 channels in the list are actually
1666 			 *   also available.
1667 			 */
1668 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1669 				if (! is_vht80_valid_freq(freq))
1670 					continue;
1671 
1672 			/*
1673 			 * Test for (V)HT40.
1674 			 *
1675 			 * This is also a fall through from VHT80; as we only
1676 			 * allow a VHT80 channel if the VHT40 combination is
1677 			 * also valid.  If the VHT40 form is not valid then
1678 			 * we certainly can't do VHT80..
1679 			 */
1680 			if (flags[j] & IEEE80211_CHAN_HT40D)
1681 				/*
1682 				 * Can't have a "lower" channel if we are the
1683 				 * first channel.
1684 				 *
1685 				 * Can't have a "lower" channel if it's below/
1686 				 * within 20MHz of the first channel.
1687 				 *
1688 				 * Can't have a "lower" channel if the channel
1689 				 * below it is not 20MHz away.
1690 				 */
1691 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1692 				    freq - 20 !=
1693 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1694 					continue;
1695 			if (flags[j] & IEEE80211_CHAN_HT40U)
1696 				/*
1697 				 * Can't have an "upper" channel if we are
1698 				 * the last channel.
1699 				 *
1700 				 * Can't have an "upper" channel be above the
1701 				 * last channel in the list.
1702 				 *
1703 				 * Can't have an "upper" channel if the next
1704 				 * channel according to the math isn't 20MHz
1705 				 * away.  (Likely for channel 13/14.)
1706 				 */
1707 				if (i == nieee - 1 ||
1708 				    ieee[i] + 4 > ieee[nieee - 1] ||
1709 				    freq + 20 !=
1710 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1711 					continue;
1712 
1713 			if (j == 0) {
1714 				error = addchan(chans, maxchans, nchans,
1715 				    ieee[i], freq, 0, flags[j]);
1716 			} else {
1717 				error = copychan_prev(chans, maxchans, nchans,
1718 				    flags[j]);
1719 			}
1720 			if (error != 0)
1721 				return (error);
1722 		}
1723 	}
1724 
1725 	return (0);
1726 }
1727 
1728 int
1729 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1730     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1731     int cbw_flags)
1732 {
1733 	uint32_t flags[IEEE80211_MODE_MAX];
1734 
1735 	/* XXX no VHT for now */
1736 	getflags_2ghz(bands, flags, cbw_flags);
1737 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1738 
1739 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1740 }
1741 
1742 int
1743 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1744     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1745 {
1746 	const uint8_t default_chan_list[] =
1747 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1748 
1749 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1750 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1751 }
1752 
1753 int
1754 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1755     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1756     int cbw_flags)
1757 {
1758 	/*
1759 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1760 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1761 	 */
1762 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1763 
1764 	getflags_5ghz(bands, flags, cbw_flags);
1765 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1766 
1767 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1768 }
1769 
1770 /*
1771  * Locate a channel given a frequency+flags.  We cache
1772  * the previous lookup to optimize switching between two
1773  * channels--as happens with dynamic turbo.
1774  */
1775 struct ieee80211_channel *
1776 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1777 {
1778 	struct ieee80211_channel *c;
1779 
1780 	flags &= IEEE80211_CHAN_ALLTURBO;
1781 	c = ic->ic_prevchan;
1782 	if (c != NULL && c->ic_freq == freq &&
1783 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1784 		return c;
1785 	/* brute force search */
1786 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1787 }
1788 
1789 /*
1790  * Locate a channel given a channel number+flags.  We cache
1791  * the previous lookup to optimize switching between two
1792  * channels--as happens with dynamic turbo.
1793  */
1794 struct ieee80211_channel *
1795 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1796 {
1797 	struct ieee80211_channel *c;
1798 	int i;
1799 
1800 	flags &= IEEE80211_CHAN_ALLTURBO;
1801 	c = ic->ic_prevchan;
1802 	if (c != NULL && c->ic_ieee == ieee &&
1803 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1804 		return c;
1805 	/* brute force search */
1806 	for (i = 0; i < ic->ic_nchans; i++) {
1807 		c = &ic->ic_channels[i];
1808 		if (c->ic_ieee == ieee &&
1809 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1810 			return c;
1811 	}
1812 	return NULL;
1813 }
1814 
1815 /*
1816  * Lookup a channel suitable for the given rx status.
1817  *
1818  * This is used to find a channel for a frame (eg beacon, probe
1819  * response) based purely on the received PHY information.
1820  *
1821  * For now it tries to do it based on R_FREQ / R_IEEE.
1822  * This is enough for 11bg and 11a (and thus 11ng/11na)
1823  * but it will not be enough for GSM, PSB channels and the
1824  * like.  It also doesn't know about legacy-turbog and
1825  * legacy-turbo modes, which some offload NICs actually
1826  * support in weird ways.
1827  *
1828  * Takes the ic and rxstatus; returns the channel or NULL
1829  * if not found.
1830  *
1831  * XXX TODO: Add support for that when the need arises.
1832  */
1833 struct ieee80211_channel *
1834 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1835     const struct ieee80211_rx_stats *rxs)
1836 {
1837 	struct ieee80211com *ic = vap->iv_ic;
1838 	uint32_t flags;
1839 	struct ieee80211_channel *c;
1840 
1841 	if (rxs == NULL)
1842 		return (NULL);
1843 
1844 	/*
1845 	 * Strictly speaking we only use freq for now,
1846 	 * however later on we may wish to just store
1847 	 * the ieee for verification.
1848 	 */
1849 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1850 		return (NULL);
1851 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1852 		return (NULL);
1853 	if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1854 		return (NULL);
1855 
1856 	/*
1857 	 * If the rx status contains a valid ieee/freq, then
1858 	 * ensure we populate the correct channel information
1859 	 * in rxchan before passing it up to the scan infrastructure.
1860 	 * Offload NICs will pass up beacons from all channels
1861 	 * during background scans.
1862 	 */
1863 
1864 	/* Determine a band */
1865 	switch (rxs->c_band) {
1866 	case IEEE80211_CHAN_2GHZ:
1867 		flags = IEEE80211_CHAN_G;
1868 		break;
1869 	case IEEE80211_CHAN_5GHZ:
1870 		flags = IEEE80211_CHAN_A;
1871 		break;
1872 	default:
1873 		if (rxs->c_freq < 3000) {
1874 			flags = IEEE80211_CHAN_G;
1875 		} else {
1876 			flags = IEEE80211_CHAN_A;
1877 		}
1878 		break;
1879 	}
1880 
1881 	/* Channel lookup */
1882 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1883 
1884 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1885 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1886 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1887 
1888 	return (c);
1889 }
1890 
1891 static void
1892 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1893 {
1894 #define	ADD(_ic, _s, _o) \
1895 	ifmedia_add(media, \
1896 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1897 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1898 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1899 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1900 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1901 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1902 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1903 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1904 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1905 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1906 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1907 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1908 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1909 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1910 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1911 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1912 	};
1913 	u_int mopt;
1914 
1915 	mopt = mopts[mode];
1916 	if (addsta)
1917 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1918 	if (caps & IEEE80211_C_IBSS)
1919 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1920 	if (caps & IEEE80211_C_HOSTAP)
1921 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1922 	if (caps & IEEE80211_C_AHDEMO)
1923 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1924 	if (caps & IEEE80211_C_MONITOR)
1925 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1926 	if (caps & IEEE80211_C_WDS)
1927 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1928 	if (caps & IEEE80211_C_MBSS)
1929 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1930 #undef ADD
1931 }
1932 
1933 /*
1934  * Setup the media data structures according to the channel and
1935  * rate tables.
1936  */
1937 static int
1938 ieee80211_media_setup(struct ieee80211com *ic,
1939 	struct ifmedia *media, int caps, int addsta,
1940 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1941 {
1942 	int i, j, rate, maxrate, mword, r;
1943 	enum ieee80211_phymode mode;
1944 	const struct ieee80211_rateset *rs;
1945 	struct ieee80211_rateset allrates;
1946 
1947 	/*
1948 	 * Fill in media characteristics.
1949 	 */
1950 	ifmedia_init(media, 0, media_change, media_stat);
1951 	maxrate = 0;
1952 	/*
1953 	 * Add media for legacy operating modes.
1954 	 */
1955 	memset(&allrates, 0, sizeof(allrates));
1956 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1957 		if (isclr(ic->ic_modecaps, mode))
1958 			continue;
1959 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1960 		if (mode == IEEE80211_MODE_AUTO)
1961 			continue;
1962 		rs = &ic->ic_sup_rates[mode];
1963 		for (i = 0; i < rs->rs_nrates; i++) {
1964 			rate = rs->rs_rates[i];
1965 			mword = ieee80211_rate2media(ic, rate, mode);
1966 			if (mword == 0)
1967 				continue;
1968 			addmedia(media, caps, addsta, mode, mword);
1969 			/*
1970 			 * Add legacy rate to the collection of all rates.
1971 			 */
1972 			r = rate & IEEE80211_RATE_VAL;
1973 			for (j = 0; j < allrates.rs_nrates; j++)
1974 				if (allrates.rs_rates[j] == r)
1975 					break;
1976 			if (j == allrates.rs_nrates) {
1977 				/* unique, add to the set */
1978 				allrates.rs_rates[j] = r;
1979 				allrates.rs_nrates++;
1980 			}
1981 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1982 			if (rate > maxrate)
1983 				maxrate = rate;
1984 		}
1985 	}
1986 	for (i = 0; i < allrates.rs_nrates; i++) {
1987 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1988 				IEEE80211_MODE_AUTO);
1989 		if (mword == 0)
1990 			continue;
1991 		/* NB: remove media options from mword */
1992 		addmedia(media, caps, addsta,
1993 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1994 	}
1995 	/*
1996 	 * Add HT/11n media.  Note that we do not have enough
1997 	 * bits in the media subtype to express the MCS so we
1998 	 * use a "placeholder" media subtype and any fixed MCS
1999 	 * must be specified with a different mechanism.
2000 	 */
2001 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
2002 		if (isclr(ic->ic_modecaps, mode))
2003 			continue;
2004 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2005 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2006 	}
2007 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2008 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2009 		addmedia(media, caps, addsta,
2010 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2011 		i = ic->ic_txstream * 8 - 1;
2012 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2013 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2014 			rate = ieee80211_htrates[i].ht40_rate_400ns;
2015 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2016 			rate = ieee80211_htrates[i].ht40_rate_800ns;
2017 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2018 			rate = ieee80211_htrates[i].ht20_rate_400ns;
2019 		else
2020 			rate = ieee80211_htrates[i].ht20_rate_800ns;
2021 		if (rate > maxrate)
2022 			maxrate = rate;
2023 	}
2024 
2025 	/*
2026 	 * Add VHT media.
2027 	 * XXX-BZ skip "VHT_2GHZ" for now.
2028 	 */
2029 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2030 	    mode++) {
2031 		if (isclr(ic->ic_modecaps, mode))
2032 			continue;
2033 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2034 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2035 	}
2036 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2037 	       addmedia(media, caps, addsta,
2038 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2039 
2040 		/* XXX TODO: VHT maxrate */
2041 	}
2042 
2043 	return maxrate;
2044 }
2045 
2046 /* XXX inline or eliminate? */
2047 const struct ieee80211_rateset *
2048 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2049 {
2050 	/* XXX does this work for 11ng basic rates? */
2051 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2052 }
2053 
2054 /* XXX inline or eliminate? */
2055 const struct ieee80211_htrateset *
2056 ieee80211_get_suphtrates(struct ieee80211com *ic,
2057     const struct ieee80211_channel *c)
2058 {
2059 	return &ic->ic_sup_htrates;
2060 }
2061 
2062 void
2063 ieee80211_announce(struct ieee80211com *ic)
2064 {
2065 	int i, rate, mword;
2066 	enum ieee80211_phymode mode;
2067 	const struct ieee80211_rateset *rs;
2068 
2069 	/* NB: skip AUTO since it has no rates */
2070 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2071 		if (isclr(ic->ic_modecaps, mode))
2072 			continue;
2073 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2074 		rs = &ic->ic_sup_rates[mode];
2075 		for (i = 0; i < rs->rs_nrates; i++) {
2076 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2077 			if (mword == 0)
2078 				continue;
2079 			rate = ieee80211_media2rate(mword);
2080 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
2081 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2082 		}
2083 		printf("\n");
2084 	}
2085 	ieee80211_ht_announce(ic);
2086 	ieee80211_vht_announce(ic);
2087 }
2088 
2089 void
2090 ieee80211_announce_channels(struct ieee80211com *ic)
2091 {
2092 	const struct ieee80211_channel *c;
2093 	char type;
2094 	int i, cw;
2095 
2096 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2097 	for (i = 0; i < ic->ic_nchans; i++) {
2098 		c = &ic->ic_channels[i];
2099 		if (IEEE80211_IS_CHAN_ST(c))
2100 			type = 'S';
2101 		else if (IEEE80211_IS_CHAN_108A(c))
2102 			type = 'T';
2103 		else if (IEEE80211_IS_CHAN_108G(c))
2104 			type = 'G';
2105 		else if (IEEE80211_IS_CHAN_HT(c))
2106 			type = 'n';
2107 		else if (IEEE80211_IS_CHAN_A(c))
2108 			type = 'a';
2109 		else if (IEEE80211_IS_CHAN_ANYG(c))
2110 			type = 'g';
2111 		else if (IEEE80211_IS_CHAN_B(c))
2112 			type = 'b';
2113 		else
2114 			type = 'f';
2115 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2116 			cw = 40;
2117 		else if (IEEE80211_IS_CHAN_HALF(c))
2118 			cw = 10;
2119 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2120 			cw = 5;
2121 		else
2122 			cw = 20;
2123 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2124 			, c->ic_ieee, c->ic_freq, type
2125 			, cw
2126 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2127 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2128 			, c->ic_maxregpower
2129 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2130 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2131 		);
2132 	}
2133 }
2134 
2135 static int
2136 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2137 {
2138 	switch (IFM_MODE(ime->ifm_media)) {
2139 	case IFM_IEEE80211_11A:
2140 		*mode = IEEE80211_MODE_11A;
2141 		break;
2142 	case IFM_IEEE80211_11B:
2143 		*mode = IEEE80211_MODE_11B;
2144 		break;
2145 	case IFM_IEEE80211_11G:
2146 		*mode = IEEE80211_MODE_11G;
2147 		break;
2148 	case IFM_IEEE80211_FH:
2149 		*mode = IEEE80211_MODE_FH;
2150 		break;
2151 	case IFM_IEEE80211_11NA:
2152 		*mode = IEEE80211_MODE_11NA;
2153 		break;
2154 	case IFM_IEEE80211_11NG:
2155 		*mode = IEEE80211_MODE_11NG;
2156 		break;
2157 	case IFM_IEEE80211_VHT2G:
2158 		*mode = IEEE80211_MODE_VHT_2GHZ;
2159 		break;
2160 	case IFM_IEEE80211_VHT5G:
2161 		*mode = IEEE80211_MODE_VHT_5GHZ;
2162 		break;
2163 	case IFM_AUTO:
2164 		*mode = IEEE80211_MODE_AUTO;
2165 		break;
2166 	default:
2167 		return 0;
2168 	}
2169 	/*
2170 	 * Turbo mode is an ``option''.
2171 	 * XXX does not apply to AUTO
2172 	 */
2173 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2174 		if (*mode == IEEE80211_MODE_11A) {
2175 			if (flags & IEEE80211_F_TURBOP)
2176 				*mode = IEEE80211_MODE_TURBO_A;
2177 			else
2178 				*mode = IEEE80211_MODE_STURBO_A;
2179 		} else if (*mode == IEEE80211_MODE_11G)
2180 			*mode = IEEE80211_MODE_TURBO_G;
2181 		else
2182 			return 0;
2183 	}
2184 	/* XXX HT40 +/- */
2185 	return 1;
2186 }
2187 
2188 /*
2189  * Handle a media change request on the vap interface.
2190  */
2191 int
2192 ieee80211_media_change(struct ifnet *ifp)
2193 {
2194 	struct ieee80211vap *vap = ifp->if_softc;
2195 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2196 	uint16_t newmode;
2197 
2198 	if (!media2mode(ime, vap->iv_flags, &newmode))
2199 		return EINVAL;
2200 	if (vap->iv_des_mode != newmode) {
2201 		vap->iv_des_mode = newmode;
2202 		/* XXX kick state machine if up+running */
2203 	}
2204 	return 0;
2205 }
2206 
2207 /*
2208  * Common code to calculate the media status word
2209  * from the operating mode and channel state.
2210  */
2211 static int
2212 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2213 {
2214 	int status;
2215 
2216 	status = IFM_IEEE80211;
2217 	switch (opmode) {
2218 	case IEEE80211_M_STA:
2219 		break;
2220 	case IEEE80211_M_IBSS:
2221 		status |= IFM_IEEE80211_ADHOC;
2222 		break;
2223 	case IEEE80211_M_HOSTAP:
2224 		status |= IFM_IEEE80211_HOSTAP;
2225 		break;
2226 	case IEEE80211_M_MONITOR:
2227 		status |= IFM_IEEE80211_MONITOR;
2228 		break;
2229 	case IEEE80211_M_AHDEMO:
2230 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2231 		break;
2232 	case IEEE80211_M_WDS:
2233 		status |= IFM_IEEE80211_WDS;
2234 		break;
2235 	case IEEE80211_M_MBSS:
2236 		status |= IFM_IEEE80211_MBSS;
2237 		break;
2238 	}
2239 	if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2240 		status |= IFM_IEEE80211_VHT5G;
2241 	} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2242 		status |= IFM_IEEE80211_VHT2G;
2243 	} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2244 		status |= IFM_IEEE80211_11NA;
2245 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2246 		status |= IFM_IEEE80211_11NG;
2247 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2248 		status |= IFM_IEEE80211_11A;
2249 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2250 		status |= IFM_IEEE80211_11B;
2251 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2252 		status |= IFM_IEEE80211_11G;
2253 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2254 		status |= IFM_IEEE80211_FH;
2255 	}
2256 	/* XXX else complain? */
2257 
2258 	if (IEEE80211_IS_CHAN_TURBO(chan))
2259 		status |= IFM_IEEE80211_TURBO;
2260 #if 0
2261 	if (IEEE80211_IS_CHAN_HT20(chan))
2262 		status |= IFM_IEEE80211_HT20;
2263 	if (IEEE80211_IS_CHAN_HT40(chan))
2264 		status |= IFM_IEEE80211_HT40;
2265 #endif
2266 	return status;
2267 }
2268 
2269 void
2270 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2271 {
2272 	struct ieee80211vap *vap = ifp->if_softc;
2273 	struct ieee80211com *ic = vap->iv_ic;
2274 	enum ieee80211_phymode mode;
2275 
2276 	imr->ifm_status = IFM_AVALID;
2277 	/*
2278 	 * NB: use the current channel's mode to lock down a xmit
2279 	 * rate only when running; otherwise we may have a mismatch
2280 	 * in which case the rate will not be convertible.
2281 	 */
2282 	if (vap->iv_state == IEEE80211_S_RUN ||
2283 	    vap->iv_state == IEEE80211_S_SLEEP) {
2284 		imr->ifm_status |= IFM_ACTIVE;
2285 		mode = ieee80211_chan2mode(ic->ic_curchan);
2286 	} else
2287 		mode = IEEE80211_MODE_AUTO;
2288 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2289 	/*
2290 	 * Calculate a current rate if possible.
2291 	 */
2292 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2293 		/*
2294 		 * A fixed rate is set, report that.
2295 		 */
2296 		imr->ifm_active |= ieee80211_rate2media(ic,
2297 			vap->iv_txparms[mode].ucastrate, mode);
2298 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2299 		/*
2300 		 * In station mode report the current transmit rate.
2301 		 */
2302 		imr->ifm_active |= ieee80211_rate2media(ic,
2303 			vap->iv_bss->ni_txrate, mode);
2304 	} else
2305 		imr->ifm_active |= IFM_AUTO;
2306 	if (imr->ifm_status & IFM_ACTIVE)
2307 		imr->ifm_current = imr->ifm_active;
2308 }
2309 
2310 /*
2311  * Set the current phy mode and recalculate the active channel
2312  * set based on the available channels for this mode.  Also
2313  * select a new default/current channel if the current one is
2314  * inappropriate for this mode.
2315  */
2316 int
2317 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2318 {
2319 	/*
2320 	 * Adjust basic rates in 11b/11g supported rate set.
2321 	 * Note that if operating on a hal/quarter rate channel
2322 	 * this is a noop as those rates sets are different
2323 	 * and used instead.
2324 	 */
2325 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2326 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2327 
2328 	ic->ic_curmode = mode;
2329 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2330 
2331 	return 0;
2332 }
2333 
2334 /*
2335  * Return the phy mode for with the specified channel.
2336  */
2337 enum ieee80211_phymode
2338 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2339 {
2340 
2341 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2342 		return IEEE80211_MODE_VHT_2GHZ;
2343 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2344 		return IEEE80211_MODE_VHT_5GHZ;
2345 	else if (IEEE80211_IS_CHAN_HTA(chan))
2346 		return IEEE80211_MODE_11NA;
2347 	else if (IEEE80211_IS_CHAN_HTG(chan))
2348 		return IEEE80211_MODE_11NG;
2349 	else if (IEEE80211_IS_CHAN_108G(chan))
2350 		return IEEE80211_MODE_TURBO_G;
2351 	else if (IEEE80211_IS_CHAN_ST(chan))
2352 		return IEEE80211_MODE_STURBO_A;
2353 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2354 		return IEEE80211_MODE_TURBO_A;
2355 	else if (IEEE80211_IS_CHAN_HALF(chan))
2356 		return IEEE80211_MODE_HALF;
2357 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2358 		return IEEE80211_MODE_QUARTER;
2359 	else if (IEEE80211_IS_CHAN_A(chan))
2360 		return IEEE80211_MODE_11A;
2361 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2362 		return IEEE80211_MODE_11G;
2363 	else if (IEEE80211_IS_CHAN_B(chan))
2364 		return IEEE80211_MODE_11B;
2365 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2366 		return IEEE80211_MODE_FH;
2367 
2368 	/* NB: should not get here */
2369 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2370 		__func__, chan->ic_freq, chan->ic_flags);
2371 	return IEEE80211_MODE_11B;
2372 }
2373 
2374 struct ratemedia {
2375 	u_int	match;	/* rate + mode */
2376 	u_int	media;	/* if_media rate */
2377 };
2378 
2379 static int
2380 findmedia(const struct ratemedia rates[], int n, u_int match)
2381 {
2382 	int i;
2383 
2384 	for (i = 0; i < n; i++)
2385 		if (rates[i].match == match)
2386 			return rates[i].media;
2387 	return IFM_AUTO;
2388 }
2389 
2390 /*
2391  * Convert IEEE80211 rate value to ifmedia subtype.
2392  * Rate is either a legacy rate in units of 0.5Mbps
2393  * or an MCS index.
2394  */
2395 int
2396 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2397 {
2398 	static const struct ratemedia rates[] = {
2399 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2400 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2401 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2402 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2403 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2404 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2405 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2406 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2407 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2408 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2409 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2410 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2411 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2412 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2413 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2414 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2415 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2416 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2417 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2418 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2419 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2420 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2421 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2422 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2423 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2424 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2425 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2426 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2427 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2428 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2429 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2430 	};
2431 	static const struct ratemedia htrates[] = {
2432 		{   0, IFM_IEEE80211_MCS },
2433 		{   1, IFM_IEEE80211_MCS },
2434 		{   2, IFM_IEEE80211_MCS },
2435 		{   3, IFM_IEEE80211_MCS },
2436 		{   4, IFM_IEEE80211_MCS },
2437 		{   5, IFM_IEEE80211_MCS },
2438 		{   6, IFM_IEEE80211_MCS },
2439 		{   7, IFM_IEEE80211_MCS },
2440 		{   8, IFM_IEEE80211_MCS },
2441 		{   9, IFM_IEEE80211_MCS },
2442 		{  10, IFM_IEEE80211_MCS },
2443 		{  11, IFM_IEEE80211_MCS },
2444 		{  12, IFM_IEEE80211_MCS },
2445 		{  13, IFM_IEEE80211_MCS },
2446 		{  14, IFM_IEEE80211_MCS },
2447 		{  15, IFM_IEEE80211_MCS },
2448 		{  16, IFM_IEEE80211_MCS },
2449 		{  17, IFM_IEEE80211_MCS },
2450 		{  18, IFM_IEEE80211_MCS },
2451 		{  19, IFM_IEEE80211_MCS },
2452 		{  20, IFM_IEEE80211_MCS },
2453 		{  21, IFM_IEEE80211_MCS },
2454 		{  22, IFM_IEEE80211_MCS },
2455 		{  23, IFM_IEEE80211_MCS },
2456 		{  24, IFM_IEEE80211_MCS },
2457 		{  25, IFM_IEEE80211_MCS },
2458 		{  26, IFM_IEEE80211_MCS },
2459 		{  27, IFM_IEEE80211_MCS },
2460 		{  28, IFM_IEEE80211_MCS },
2461 		{  29, IFM_IEEE80211_MCS },
2462 		{  30, IFM_IEEE80211_MCS },
2463 		{  31, IFM_IEEE80211_MCS },
2464 		{  32, IFM_IEEE80211_MCS },
2465 		{  33, IFM_IEEE80211_MCS },
2466 		{  34, IFM_IEEE80211_MCS },
2467 		{  35, IFM_IEEE80211_MCS },
2468 		{  36, IFM_IEEE80211_MCS },
2469 		{  37, IFM_IEEE80211_MCS },
2470 		{  38, IFM_IEEE80211_MCS },
2471 		{  39, IFM_IEEE80211_MCS },
2472 		{  40, IFM_IEEE80211_MCS },
2473 		{  41, IFM_IEEE80211_MCS },
2474 		{  42, IFM_IEEE80211_MCS },
2475 		{  43, IFM_IEEE80211_MCS },
2476 		{  44, IFM_IEEE80211_MCS },
2477 		{  45, IFM_IEEE80211_MCS },
2478 		{  46, IFM_IEEE80211_MCS },
2479 		{  47, IFM_IEEE80211_MCS },
2480 		{  48, IFM_IEEE80211_MCS },
2481 		{  49, IFM_IEEE80211_MCS },
2482 		{  50, IFM_IEEE80211_MCS },
2483 		{  51, IFM_IEEE80211_MCS },
2484 		{  52, IFM_IEEE80211_MCS },
2485 		{  53, IFM_IEEE80211_MCS },
2486 		{  54, IFM_IEEE80211_MCS },
2487 		{  55, IFM_IEEE80211_MCS },
2488 		{  56, IFM_IEEE80211_MCS },
2489 		{  57, IFM_IEEE80211_MCS },
2490 		{  58, IFM_IEEE80211_MCS },
2491 		{  59, IFM_IEEE80211_MCS },
2492 		{  60, IFM_IEEE80211_MCS },
2493 		{  61, IFM_IEEE80211_MCS },
2494 		{  62, IFM_IEEE80211_MCS },
2495 		{  63, IFM_IEEE80211_MCS },
2496 		{  64, IFM_IEEE80211_MCS },
2497 		{  65, IFM_IEEE80211_MCS },
2498 		{  66, IFM_IEEE80211_MCS },
2499 		{  67, IFM_IEEE80211_MCS },
2500 		{  68, IFM_IEEE80211_MCS },
2501 		{  69, IFM_IEEE80211_MCS },
2502 		{  70, IFM_IEEE80211_MCS },
2503 		{  71, IFM_IEEE80211_MCS },
2504 		{  72, IFM_IEEE80211_MCS },
2505 		{  73, IFM_IEEE80211_MCS },
2506 		{  74, IFM_IEEE80211_MCS },
2507 		{  75, IFM_IEEE80211_MCS },
2508 		{  76, IFM_IEEE80211_MCS },
2509 	};
2510 	static const struct ratemedia vhtrates[] = {
2511 		{   0, IFM_IEEE80211_VHT },
2512 		{   1, IFM_IEEE80211_VHT },
2513 		{   2, IFM_IEEE80211_VHT },
2514 		{   3, IFM_IEEE80211_VHT },
2515 		{   4, IFM_IEEE80211_VHT },
2516 		{   5, IFM_IEEE80211_VHT },
2517 		{   6, IFM_IEEE80211_VHT },
2518 		{   7, IFM_IEEE80211_VHT },
2519 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2520 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2521 #if 0
2522 		/* Some QCA and BRCM seem to support this; offspec. */
2523 		{  10, IFM_IEEE80211_VHT },
2524 		{  11, IFM_IEEE80211_VHT },
2525 #endif
2526 	};
2527 	int m;
2528 
2529 	/*
2530 	 * Check 11ac/11n rates first for match as an MCS.
2531 	 */
2532 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2533 		if (rate & IFM_IEEE80211_VHT) {
2534 			rate &= ~IFM_IEEE80211_VHT;
2535 			m = findmedia(vhtrates, nitems(vhtrates), rate);
2536 			if (m != IFM_AUTO)
2537 				return (m | IFM_IEEE80211_VHT);
2538 		}
2539 	} else if (mode == IEEE80211_MODE_11NA) {
2540 		if (rate & IEEE80211_RATE_MCS) {
2541 			rate &= ~IEEE80211_RATE_MCS;
2542 			m = findmedia(htrates, nitems(htrates), rate);
2543 			if (m != IFM_AUTO)
2544 				return m | IFM_IEEE80211_11NA;
2545 		}
2546 	} else if (mode == IEEE80211_MODE_11NG) {
2547 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2548 		if (rate & IEEE80211_RATE_MCS) {
2549 			rate &= ~IEEE80211_RATE_MCS;
2550 			m = findmedia(htrates, nitems(htrates), rate);
2551 			if (m != IFM_AUTO)
2552 				return m | IFM_IEEE80211_11NG;
2553 		}
2554 	}
2555 	rate &= IEEE80211_RATE_VAL;
2556 	switch (mode) {
2557 	case IEEE80211_MODE_11A:
2558 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2559 	case IEEE80211_MODE_QUARTER:
2560 	case IEEE80211_MODE_11NA:
2561 	case IEEE80211_MODE_TURBO_A:
2562 	case IEEE80211_MODE_STURBO_A:
2563 		return findmedia(rates, nitems(rates),
2564 		    rate | IFM_IEEE80211_11A);
2565 	case IEEE80211_MODE_11B:
2566 		return findmedia(rates, nitems(rates),
2567 		    rate | IFM_IEEE80211_11B);
2568 	case IEEE80211_MODE_FH:
2569 		return findmedia(rates, nitems(rates),
2570 		    rate | IFM_IEEE80211_FH);
2571 	case IEEE80211_MODE_AUTO:
2572 		/* NB: ic may be NULL for some drivers */
2573 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2574 			return findmedia(rates, nitems(rates),
2575 			    rate | IFM_IEEE80211_FH);
2576 		/* NB: hack, 11g matches both 11b+11a rates */
2577 		/* fall thru... */
2578 	case IEEE80211_MODE_11G:
2579 	case IEEE80211_MODE_11NG:
2580 	case IEEE80211_MODE_TURBO_G:
2581 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2582 	case IEEE80211_MODE_VHT_2GHZ:
2583 	case IEEE80211_MODE_VHT_5GHZ:
2584 		/* XXX TODO: need to figure out mapping for VHT rates */
2585 		return IFM_AUTO;
2586 	}
2587 	return IFM_AUTO;
2588 }
2589 
2590 int
2591 ieee80211_media2rate(int mword)
2592 {
2593 	static const int ieeerates[] = {
2594 		-1,		/* IFM_AUTO */
2595 		0,		/* IFM_MANUAL */
2596 		0,		/* IFM_NONE */
2597 		2,		/* IFM_IEEE80211_FH1 */
2598 		4,		/* IFM_IEEE80211_FH2 */
2599 		2,		/* IFM_IEEE80211_DS1 */
2600 		4,		/* IFM_IEEE80211_DS2 */
2601 		11,		/* IFM_IEEE80211_DS5 */
2602 		22,		/* IFM_IEEE80211_DS11 */
2603 		44,		/* IFM_IEEE80211_DS22 */
2604 		12,		/* IFM_IEEE80211_OFDM6 */
2605 		18,		/* IFM_IEEE80211_OFDM9 */
2606 		24,		/* IFM_IEEE80211_OFDM12 */
2607 		36,		/* IFM_IEEE80211_OFDM18 */
2608 		48,		/* IFM_IEEE80211_OFDM24 */
2609 		72,		/* IFM_IEEE80211_OFDM36 */
2610 		96,		/* IFM_IEEE80211_OFDM48 */
2611 		108,		/* IFM_IEEE80211_OFDM54 */
2612 		144,		/* IFM_IEEE80211_OFDM72 */
2613 		0,		/* IFM_IEEE80211_DS354k */
2614 		0,		/* IFM_IEEE80211_DS512k */
2615 		6,		/* IFM_IEEE80211_OFDM3 */
2616 		9,		/* IFM_IEEE80211_OFDM4 */
2617 		54,		/* IFM_IEEE80211_OFDM27 */
2618 		-1,		/* IFM_IEEE80211_MCS */
2619 		-1,		/* IFM_IEEE80211_VHT */
2620 	};
2621 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2622 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2623 }
2624 
2625 /*
2626  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2627  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2628  */
2629 #define	mix(a, b, c)							\
2630 do {									\
2631 	a -= b; a -= c; a ^= (c >> 13);					\
2632 	b -= c; b -= a; b ^= (a << 8);					\
2633 	c -= a; c -= b; c ^= (b >> 13);					\
2634 	a -= b; a -= c; a ^= (c >> 12);					\
2635 	b -= c; b -= a; b ^= (a << 16);					\
2636 	c -= a; c -= b; c ^= (b >> 5);					\
2637 	a -= b; a -= c; a ^= (c >> 3);					\
2638 	b -= c; b -= a; b ^= (a << 10);					\
2639 	c -= a; c -= b; c ^= (b >> 15);					\
2640 } while (/*CONSTCOND*/0)
2641 
2642 uint32_t
2643 ieee80211_mac_hash(const struct ieee80211com *ic,
2644 	const uint8_t addr[IEEE80211_ADDR_LEN])
2645 {
2646 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2647 
2648 	b += addr[5] << 8;
2649 	b += addr[4];
2650 	a += addr[3] << 24;
2651 	a += addr[2] << 16;
2652 	a += addr[1] << 8;
2653 	a += addr[0];
2654 
2655 	mix(a, b, c);
2656 
2657 	return c;
2658 }
2659 #undef mix
2660 
2661 char
2662 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2663 {
2664 	if (IEEE80211_IS_CHAN_ST(c))
2665 		return 'S';
2666 	if (IEEE80211_IS_CHAN_108A(c))
2667 		return 'T';
2668 	if (IEEE80211_IS_CHAN_108G(c))
2669 		return 'G';
2670 	if (IEEE80211_IS_CHAN_VHT(c))
2671 		return 'v';
2672 	if (IEEE80211_IS_CHAN_HT(c))
2673 		return 'n';
2674 	if (IEEE80211_IS_CHAN_A(c))
2675 		return 'a';
2676 	if (IEEE80211_IS_CHAN_ANYG(c))
2677 		return 'g';
2678 	if (IEEE80211_IS_CHAN_B(c))
2679 		return 'b';
2680 	return 'f';
2681 }
2682 
2683 /*
2684  * Determine whether the given key in the given VAP is a global key.
2685  * (key index 0..3, shared between all stations on a VAP.)
2686  *
2687  * This is either a WEP key or a GROUP key.
2688  *
2689  * Note this will NOT return true if it is a IGTK key.
2690  */
2691 bool
2692 ieee80211_is_key_global(const struct ieee80211vap *vap,
2693     const struct ieee80211_key *key)
2694 {
2695 	return (&vap->iv_nw_keys[0] <= key &&
2696 	    key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]);
2697 }
2698 
2699 /*
2700  * Determine whether the given key in the given VAP is a unicast key.
2701  */
2702 bool
2703 ieee80211_is_key_unicast(const struct ieee80211vap *vap,
2704     const struct ieee80211_key *key)
2705 {
2706 	/*
2707 	 * This is a short-cut for now; eventually we will need
2708 	 * to support multiple unicast keys, IGTK, etc) so we
2709 	 * will absolutely need to fix the key flags.
2710 	 */
2711 	return (!ieee80211_is_key_global(vap, key));
2712 }
2713