1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/socket.h> 40 #include <sys/sbuf.h> 41 42 #include <machine/stdarg.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_private.h> 49 #include <net/if_types.h> 50 #include <net/ethernet.h> 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_regdomain.h> 54 #ifdef IEEE80211_SUPPORT_SUPERG 55 #include <net80211/ieee80211_superg.h> 56 #endif 57 #include <net80211/ieee80211_ratectl.h> 58 #include <net80211/ieee80211_vht.h> 59 60 #include <net/bpf.h> 61 62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 63 [IEEE80211_MODE_AUTO] = "auto", 64 [IEEE80211_MODE_11A] = "11a", 65 [IEEE80211_MODE_11B] = "11b", 66 [IEEE80211_MODE_11G] = "11g", 67 [IEEE80211_MODE_FH] = "FH", 68 [IEEE80211_MODE_TURBO_A] = "turboA", 69 [IEEE80211_MODE_TURBO_G] = "turboG", 70 [IEEE80211_MODE_STURBO_A] = "sturboA", 71 [IEEE80211_MODE_HALF] = "half", 72 [IEEE80211_MODE_QUARTER] = "quarter", 73 [IEEE80211_MODE_11NA] = "11na", 74 [IEEE80211_MODE_11NG] = "11ng", 75 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 76 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 77 }; 78 /* map ieee80211_opmode to the corresponding capability bit */ 79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 80 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 81 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 82 [IEEE80211_M_STA] = IEEE80211_C_STA, 83 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 84 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 85 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 86 #ifdef IEEE80211_SUPPORT_MESH 87 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 88 #endif 89 }; 90 91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 92 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 93 94 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 95 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 98 static int ieee80211_media_setup(struct ieee80211com *ic, 99 struct ifmedia *media, int caps, int addsta, 100 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 101 static int media_status(enum ieee80211_opmode, 102 const struct ieee80211_channel *); 103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 104 105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 106 107 /* 108 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 109 */ 110 #define B(r) ((r) | IEEE80211_RATE_BASIC) 111 static const struct ieee80211_rateset ieee80211_rateset_11a = 112 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 113 static const struct ieee80211_rateset ieee80211_rateset_half = 114 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 115 static const struct ieee80211_rateset ieee80211_rateset_quarter = 116 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 117 static const struct ieee80211_rateset ieee80211_rateset_11b = 118 { 4, { B(2), B(4), B(11), B(22) } }; 119 /* NB: OFDM rates are handled specially based on mode */ 120 static const struct ieee80211_rateset ieee80211_rateset_11g = 121 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 122 #undef B 123 124 static int set_vht_extchan(struct ieee80211_channel *c); 125 126 /* 127 * Fill in 802.11 available channel set, mark 128 * all available channels as active, and pick 129 * a default channel if not already specified. 130 */ 131 void 132 ieee80211_chan_init(struct ieee80211com *ic) 133 { 134 #define DEFAULTRATES(m, def) do { \ 135 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 136 ic->ic_sup_rates[m] = def; \ 137 } while (0) 138 struct ieee80211_channel *c; 139 int i; 140 141 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 142 ("invalid number of channels specified: %u", ic->ic_nchans)); 143 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 144 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 145 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 146 for (i = 0; i < ic->ic_nchans; i++) { 147 c = &ic->ic_channels[i]; 148 KASSERT(c->ic_flags != 0, ("channel with no flags")); 149 /* 150 * Help drivers that work only with frequencies by filling 151 * in IEEE channel #'s if not already calculated. Note this 152 * mimics similar work done in ieee80211_setregdomain when 153 * changing regulatory state. 154 */ 155 if (c->ic_ieee == 0) 156 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 157 158 /* 159 * Setup the HT40/VHT40 upper/lower bits. 160 * The VHT80/... math is done elsewhere. 161 */ 162 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 163 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 164 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 165 c->ic_flags); 166 167 /* Update VHT math */ 168 /* 169 * XXX VHT again, note that this assumes VHT80/... channels 170 * are legit already. 171 */ 172 set_vht_extchan(c); 173 174 /* default max tx power to max regulatory */ 175 if (c->ic_maxpower == 0) 176 c->ic_maxpower = 2*c->ic_maxregpower; 177 setbit(ic->ic_chan_avail, c->ic_ieee); 178 /* 179 * Identify mode capabilities. 180 */ 181 if (IEEE80211_IS_CHAN_A(c)) 182 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 183 if (IEEE80211_IS_CHAN_B(c)) 184 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 185 if (IEEE80211_IS_CHAN_ANYG(c)) 186 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 187 if (IEEE80211_IS_CHAN_FHSS(c)) 188 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 189 if (IEEE80211_IS_CHAN_108A(c)) 190 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 191 if (IEEE80211_IS_CHAN_108G(c)) 192 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 193 if (IEEE80211_IS_CHAN_ST(c)) 194 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 195 if (IEEE80211_IS_CHAN_HALF(c)) 196 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 197 if (IEEE80211_IS_CHAN_QUARTER(c)) 198 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 199 if (IEEE80211_IS_CHAN_HTA(c)) 200 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 201 if (IEEE80211_IS_CHAN_HTG(c)) 202 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 203 if (IEEE80211_IS_CHAN_VHTA(c)) 204 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 205 if (IEEE80211_IS_CHAN_VHTG(c)) 206 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 207 } 208 /* initialize candidate channels to all available */ 209 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 210 sizeof(ic->ic_chan_avail)); 211 212 /* sort channel table to allow lookup optimizations */ 213 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 214 215 /* invalidate any previous state */ 216 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 217 ic->ic_prevchan = NULL; 218 ic->ic_csa_newchan = NULL; 219 /* arbitrarily pick the first channel */ 220 ic->ic_curchan = &ic->ic_channels[0]; 221 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 222 223 /* fillin well-known rate sets if driver has not specified */ 224 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 225 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 226 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 227 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 229 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 230 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 231 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 232 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 233 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 234 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 236 237 /* 238 * Setup required information to fill the mcsset field, if driver did 239 * not. Assume a 2T2R setup for historic reasons. 240 */ 241 if (ic->ic_rxstream == 0) 242 ic->ic_rxstream = 2; 243 if (ic->ic_txstream == 0) 244 ic->ic_txstream = 2; 245 246 ieee80211_init_suphtrates(ic); 247 248 /* 249 * Set auto mode to reset active channel state and any desired channel. 250 */ 251 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 252 #undef DEFAULTRATES 253 } 254 255 static void 256 null_update_mcast(struct ieee80211com *ic) 257 { 258 259 ic_printf(ic, "need multicast update callback\n"); 260 } 261 262 static void 263 null_update_promisc(struct ieee80211com *ic) 264 { 265 266 ic_printf(ic, "need promiscuous mode update callback\n"); 267 } 268 269 static void 270 null_update_chw(struct ieee80211com *ic) 271 { 272 273 ic_printf(ic, "%s: need callback\n", __func__); 274 } 275 276 int 277 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 278 { 279 va_list ap; 280 int retval; 281 282 retval = printf("%s: ", ic->ic_name); 283 va_start(ap, fmt); 284 retval += vprintf(fmt, ap); 285 va_end(ap); 286 return (retval); 287 } 288 289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 290 static struct mtx ic_list_mtx; 291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 292 293 static int 294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 295 { 296 struct ieee80211com *ic; 297 struct sbuf sb; 298 char *sp; 299 int error; 300 301 error = sysctl_wire_old_buffer(req, 0); 302 if (error) 303 return (error); 304 sbuf_new_for_sysctl(&sb, NULL, 8, req); 305 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 306 sp = ""; 307 mtx_lock(&ic_list_mtx); 308 LIST_FOREACH(ic, &ic_head, ic_next) { 309 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 310 sp = " "; 311 } 312 mtx_unlock(&ic_list_mtx); 313 error = sbuf_finish(&sb); 314 sbuf_delete(&sb); 315 return (error); 316 } 317 318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 320 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 321 322 /* 323 * Attach/setup the common net80211 state. Called by 324 * the driver on attach to prior to creating any vap's. 325 */ 326 void 327 ieee80211_ifattach(struct ieee80211com *ic) 328 { 329 330 IEEE80211_LOCK_INIT(ic, ic->ic_name); 331 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 332 TAILQ_INIT(&ic->ic_vaps); 333 334 /* Create a taskqueue for all state changes */ 335 ic->ic_tq = taskqueue_create("ic_taskq", 336 IEEE80211_M_WAITOK | IEEE80211_M_ZERO, 337 taskqueue_thread_enqueue, &ic->ic_tq); 338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 339 ic->ic_name); 340 ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK); 341 ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK); 342 /* 343 * Fill in 802.11 available channel set, mark all 344 * available channels as active, and pick a default 345 * channel if not already specified. 346 */ 347 ieee80211_chan_init(ic); 348 349 ic->ic_update_mcast = null_update_mcast; 350 ic->ic_update_promisc = null_update_promisc; 351 ic->ic_update_chw = null_update_chw; 352 353 ic->ic_hash_key = arc4random(); 354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 355 ic->ic_lintval = ic->ic_bintval; 356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 357 358 ieee80211_crypto_attach(ic); 359 ieee80211_node_attach(ic); 360 ieee80211_power_attach(ic); 361 ieee80211_proto_attach(ic); 362 #ifdef IEEE80211_SUPPORT_SUPERG 363 ieee80211_superg_attach(ic); 364 #endif 365 ieee80211_ht_attach(ic); 366 ieee80211_vht_attach(ic); 367 ieee80211_scan_attach(ic); 368 ieee80211_regdomain_attach(ic); 369 ieee80211_dfs_attach(ic); 370 371 ieee80211_sysctl_attach(ic); 372 373 mtx_lock(&ic_list_mtx); 374 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 375 mtx_unlock(&ic_list_mtx); 376 } 377 378 /* 379 * Detach net80211 state on device detach. Tear down 380 * all vap's and reclaim all common state prior to the 381 * device state going away. Note we may call back into 382 * driver; it must be prepared for this. 383 */ 384 void 385 ieee80211_ifdetach(struct ieee80211com *ic) 386 { 387 struct ieee80211vap *vap; 388 389 /* 390 * We use this as an indicator that ifattach never had a chance to be 391 * called, e.g. early driver attach failed and ifdetach was called 392 * during subsequent detach. Never fear, for we have nothing to do 393 * here. 394 */ 395 if (ic->ic_tq == NULL) 396 return; 397 398 mtx_lock(&ic_list_mtx); 399 LIST_REMOVE(ic, ic_next); 400 mtx_unlock(&ic_list_mtx); 401 402 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 403 404 /* 405 * The VAP is responsible for setting and clearing 406 * the VIMAGE context. 407 */ 408 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 409 ieee80211_com_vdetach(vap); 410 ieee80211_vap_destroy(vap); 411 } 412 ieee80211_waitfor_parent(ic); 413 414 ieee80211_sysctl_detach(ic); 415 ieee80211_dfs_detach(ic); 416 ieee80211_regdomain_detach(ic); 417 ieee80211_scan_detach(ic); 418 #ifdef IEEE80211_SUPPORT_SUPERG 419 ieee80211_superg_detach(ic); 420 #endif 421 ieee80211_vht_detach(ic); 422 ieee80211_ht_detach(ic); 423 /* NB: must be called before ieee80211_node_detach */ 424 ieee80211_proto_detach(ic); 425 ieee80211_crypto_detach(ic); 426 ieee80211_power_detach(ic); 427 ieee80211_node_detach(ic); 428 429 counter_u64_free(ic->ic_ierrors); 430 counter_u64_free(ic->ic_oerrors); 431 432 taskqueue_free(ic->ic_tq); 433 IEEE80211_TX_LOCK_DESTROY(ic); 434 IEEE80211_LOCK_DESTROY(ic); 435 } 436 437 /* 438 * Called by drivers during attach to set the supported 439 * cipher set for software encryption. 440 */ 441 void 442 ieee80211_set_software_ciphers(struct ieee80211com *ic, 443 uint32_t cipher_suite) 444 { 445 ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite); 446 } 447 448 /* 449 * Called by drivers during attach to set the supported 450 * cipher set for hardware encryption. 451 */ 452 void 453 ieee80211_set_hardware_ciphers(struct ieee80211com *ic, 454 uint32_t cipher_suite) 455 { 456 ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite); 457 } 458 459 struct ieee80211com * 460 ieee80211_find_com(const char *name) 461 { 462 struct ieee80211com *ic; 463 464 mtx_lock(&ic_list_mtx); 465 LIST_FOREACH(ic, &ic_head, ic_next) 466 if (strcmp(ic->ic_name, name) == 0) 467 break; 468 mtx_unlock(&ic_list_mtx); 469 470 return (ic); 471 } 472 473 void 474 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 475 { 476 struct ieee80211com *ic; 477 478 mtx_lock(&ic_list_mtx); 479 LIST_FOREACH(ic, &ic_head, ic_next) 480 (*f)(arg, ic); 481 mtx_unlock(&ic_list_mtx); 482 } 483 484 /* 485 * Default reset method for use with the ioctl support. This 486 * method is invoked after any state change in the 802.11 487 * layer that should be propagated to the hardware but not 488 * require re-initialization of the 802.11 state machine (e.g 489 * rescanning for an ap). We always return ENETRESET which 490 * should cause the driver to re-initialize the device. Drivers 491 * can override this method to implement more optimized support. 492 */ 493 static int 494 default_reset(struct ieee80211vap *vap, u_long cmd) 495 { 496 return ENETRESET; 497 } 498 499 /* 500 * Default for updating the VAP default TX key index. 501 * 502 * Drivers that support TX offload as well as hardware encryption offload 503 * may need to be informed of key index changes separate from the key 504 * update. 505 */ 506 static void 507 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 508 { 509 510 /* XXX assert validity */ 511 /* XXX assert we're in a key update block */ 512 vap->iv_def_txkey = kid; 513 } 514 515 /* 516 * Add underlying device errors to vap errors. 517 */ 518 static uint64_t 519 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 520 { 521 struct ieee80211vap *vap = ifp->if_softc; 522 struct ieee80211com *ic = vap->iv_ic; 523 uint64_t rv; 524 525 rv = if_get_counter_default(ifp, cnt); 526 switch (cnt) { 527 case IFCOUNTER_OERRORS: 528 rv += counter_u64_fetch(ic->ic_oerrors); 529 break; 530 case IFCOUNTER_IERRORS: 531 rv += counter_u64_fetch(ic->ic_ierrors); 532 break; 533 default: 534 break; 535 } 536 537 return (rv); 538 } 539 540 /* 541 * Prepare a vap for use. Drivers use this call to 542 * setup net80211 state in new vap's prior attaching 543 * them with ieee80211_vap_attach (below). 544 */ 545 int 546 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 547 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 548 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 549 { 550 struct ifnet *ifp; 551 552 ifp = if_alloc(IFT_ETHER); 553 if (ifp == NULL) { 554 ic_printf(ic, "%s: unable to allocate ifnet\n", __func__); 555 return ENOMEM; 556 } 557 if_initname(ifp, name, unit); 558 ifp->if_softc = vap; /* back pointer */ 559 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 560 ifp->if_transmit = ieee80211_vap_transmit; 561 ifp->if_qflush = ieee80211_vap_qflush; 562 ifp->if_ioctl = ieee80211_ioctl; 563 ifp->if_init = ieee80211_init; 564 ifp->if_get_counter = ieee80211_get_counter; 565 566 vap->iv_ifp = ifp; 567 vap->iv_ic = ic; 568 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 569 vap->iv_flags_ext = ic->ic_flags_ext; 570 vap->iv_flags_ven = ic->ic_flags_ven; 571 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 572 573 /* 11n capabilities - XXX methodize */ 574 vap->iv_htcaps = ic->ic_htcaps; 575 vap->iv_htextcaps = ic->ic_htextcaps; 576 577 /* 11ac capabilities - XXX methodize */ 578 vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info; 579 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 580 581 vap->iv_opmode = opmode; 582 vap->iv_caps |= ieee80211_opcap[opmode]; 583 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 584 switch (opmode) { 585 case IEEE80211_M_WDS: 586 /* 587 * WDS links must specify the bssid of the far end. 588 * For legacy operation this is a static relationship. 589 * For non-legacy operation the station must associate 590 * and be authorized to pass traffic. Plumbing the 591 * vap to the proper node happens when the vap 592 * transitions to RUN state. 593 */ 594 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 595 vap->iv_flags |= IEEE80211_F_DESBSSID; 596 if (flags & IEEE80211_CLONE_WDSLEGACY) 597 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 598 break; 599 #ifdef IEEE80211_SUPPORT_TDMA 600 case IEEE80211_M_AHDEMO: 601 if (flags & IEEE80211_CLONE_TDMA) { 602 /* NB: checked before clone operation allowed */ 603 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 604 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 605 /* 606 * Propagate TDMA capability to mark vap; this 607 * cannot be removed and is used to distinguish 608 * regular ahdemo operation from ahdemo+tdma. 609 */ 610 vap->iv_caps |= IEEE80211_C_TDMA; 611 } 612 break; 613 #endif 614 default: 615 break; 616 } 617 /* auto-enable s/w beacon miss support */ 618 if (flags & IEEE80211_CLONE_NOBEACONS) 619 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 620 /* auto-generated or user supplied MAC address */ 621 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 622 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 623 /* 624 * Enable various functionality by default if we're 625 * capable; the driver can override us if it knows better. 626 */ 627 if (vap->iv_caps & IEEE80211_C_WME) 628 vap->iv_flags |= IEEE80211_F_WME; 629 if (vap->iv_caps & IEEE80211_C_BURST) 630 vap->iv_flags |= IEEE80211_F_BURST; 631 /* NB: bg scanning only makes sense for station mode right now */ 632 if (vap->iv_opmode == IEEE80211_M_STA && 633 (vap->iv_caps & IEEE80211_C_BGSCAN)) 634 vap->iv_flags |= IEEE80211_F_BGSCAN; 635 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 636 /* NB: DFS support only makes sense for ap mode right now */ 637 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 638 (vap->iv_caps & IEEE80211_C_DFS)) 639 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 640 /* NB: only flip on U-APSD for hostap/sta for now */ 641 if ((vap->iv_opmode == IEEE80211_M_STA) 642 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { 643 if (vap->iv_caps & IEEE80211_C_UAPSD) 644 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; 645 } 646 647 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 648 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 649 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 650 /* 651 * Install a default reset method for the ioctl support; 652 * the driver can override this. 653 */ 654 vap->iv_reset = default_reset; 655 656 /* 657 * Install a default crypto key update method, the driver 658 * can override this. 659 */ 660 vap->iv_update_deftxkey = default_update_deftxkey; 661 662 ieee80211_sysctl_vattach(vap); 663 ieee80211_crypto_vattach(vap); 664 ieee80211_node_vattach(vap); 665 ieee80211_power_vattach(vap); 666 ieee80211_proto_vattach(vap); 667 #ifdef IEEE80211_SUPPORT_SUPERG 668 ieee80211_superg_vattach(vap); 669 #endif 670 ieee80211_ht_vattach(vap); 671 ieee80211_vht_vattach(vap); 672 ieee80211_scan_vattach(vap); 673 ieee80211_regdomain_vattach(vap); 674 ieee80211_radiotap_vattach(vap); 675 ieee80211_vap_reset_erp(vap); 676 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 677 678 return 0; 679 } 680 681 /* 682 * Activate a vap. State should have been prepared with a 683 * call to ieee80211_vap_setup and by the driver. On return 684 * from this call the vap is ready for use. 685 */ 686 int 687 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 688 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 689 { 690 struct ifnet *ifp = vap->iv_ifp; 691 struct ieee80211com *ic = vap->iv_ic; 692 struct ifmediareq imr; 693 int maxrate; 694 695 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 696 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 697 __func__, ieee80211_opmode_name[vap->iv_opmode], 698 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 699 700 /* 701 * Do late attach work that cannot happen until after 702 * the driver has had a chance to override defaults. 703 */ 704 ieee80211_node_latevattach(vap); 705 ieee80211_power_latevattach(vap); 706 707 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 708 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 709 ieee80211_media_status(ifp, &imr); 710 /* NB: strip explicit mode; we're actually in autoselect */ 711 ifmedia_set(&vap->iv_media, 712 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 713 if (maxrate) 714 ifp->if_baudrate = IF_Mbps(maxrate); 715 716 ether_ifattach(ifp, macaddr); 717 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 718 /* hook output method setup by ether_ifattach */ 719 vap->iv_output = ifp->if_output; 720 ifp->if_output = ieee80211_output; 721 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 722 723 IEEE80211_LOCK(ic); 724 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 725 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 726 #ifdef IEEE80211_SUPPORT_SUPERG 727 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 728 #endif 729 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 730 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 731 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 732 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 733 734 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 735 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 736 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 737 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 738 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 739 IEEE80211_UNLOCK(ic); 740 741 return 1; 742 } 743 744 /* 745 * Tear down vap state and reclaim the ifnet. 746 * The driver is assumed to have prepared for 747 * this; e.g. by turning off interrupts for the 748 * underlying device. 749 */ 750 void 751 ieee80211_vap_detach(struct ieee80211vap *vap) 752 { 753 struct ieee80211com *ic = vap->iv_ic; 754 struct ifnet *ifp = vap->iv_ifp; 755 int i; 756 757 CURVNET_SET(ifp->if_vnet); 758 759 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 760 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 761 762 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 763 ether_ifdetach(ifp); 764 765 ieee80211_stop(vap); 766 767 /* 768 * Flush any deferred vap tasks. 769 */ 770 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++) 771 ieee80211_draintask(ic, &vap->iv_nstate_task[i]); 772 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 773 ieee80211_draintask(ic, &vap->iv_wme_task); 774 ieee80211_draintask(ic, &ic->ic_parent_task); 775 776 /* XXX band-aid until ifnet handles this for us */ 777 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 778 779 IEEE80211_LOCK(ic); 780 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 781 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 782 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 783 #ifdef IEEE80211_SUPPORT_SUPERG 784 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 785 #endif 786 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 787 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 788 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 789 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 790 791 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 792 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 793 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 794 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 795 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 796 797 /* NB: this handles the bpfdetach done below */ 798 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 799 if (vap->iv_ifflags & IFF_PROMISC) 800 ieee80211_promisc(vap, false); 801 if (vap->iv_ifflags & IFF_ALLMULTI) 802 ieee80211_allmulti(vap, false); 803 IEEE80211_UNLOCK(ic); 804 805 ifmedia_removeall(&vap->iv_media); 806 807 ieee80211_radiotap_vdetach(vap); 808 ieee80211_regdomain_vdetach(vap); 809 ieee80211_scan_vdetach(vap); 810 #ifdef IEEE80211_SUPPORT_SUPERG 811 ieee80211_superg_vdetach(vap); 812 #endif 813 ieee80211_vht_vdetach(vap); 814 ieee80211_ht_vdetach(vap); 815 /* NB: must be before ieee80211_node_vdetach */ 816 ieee80211_proto_vdetach(vap); 817 ieee80211_crypto_vdetach(vap); 818 ieee80211_power_vdetach(vap); 819 ieee80211_node_vdetach(vap); 820 ieee80211_sysctl_vdetach(vap); 821 822 if_free(ifp); 823 824 CURVNET_RESTORE(); 825 } 826 827 /* 828 * Count number of vaps in promisc, and issue promisc on 829 * parent respectively. 830 */ 831 void 832 ieee80211_promisc(struct ieee80211vap *vap, bool on) 833 { 834 struct ieee80211com *ic = vap->iv_ic; 835 836 IEEE80211_LOCK_ASSERT(ic); 837 838 if (on) { 839 if (++ic->ic_promisc == 1) 840 ieee80211_runtask(ic, &ic->ic_promisc_task); 841 } else { 842 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 843 __func__, ic)); 844 if (--ic->ic_promisc == 0) 845 ieee80211_runtask(ic, &ic->ic_promisc_task); 846 } 847 } 848 849 /* 850 * Count number of vaps in allmulti, and issue allmulti on 851 * parent respectively. 852 */ 853 void 854 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 855 { 856 struct ieee80211com *ic = vap->iv_ic; 857 858 IEEE80211_LOCK_ASSERT(ic); 859 860 if (on) { 861 if (++ic->ic_allmulti == 1) 862 ieee80211_runtask(ic, &ic->ic_mcast_task); 863 } else { 864 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 865 __func__, ic)); 866 if (--ic->ic_allmulti == 0) 867 ieee80211_runtask(ic, &ic->ic_mcast_task); 868 } 869 } 870 871 /* 872 * Synchronize flag bit state in the com structure 873 * according to the state of all vap's. This is used, 874 * for example, to handle state changes via ioctls. 875 */ 876 static void 877 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 878 { 879 struct ieee80211vap *vap; 880 int bit; 881 882 IEEE80211_LOCK_ASSERT(ic); 883 884 bit = 0; 885 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 886 if (vap->iv_flags & flag) { 887 bit = 1; 888 break; 889 } 890 if (bit) 891 ic->ic_flags |= flag; 892 else 893 ic->ic_flags &= ~flag; 894 } 895 896 void 897 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 898 { 899 struct ieee80211com *ic = vap->iv_ic; 900 901 IEEE80211_LOCK(ic); 902 if (flag < 0) { 903 flag = -flag; 904 vap->iv_flags &= ~flag; 905 } else 906 vap->iv_flags |= flag; 907 ieee80211_syncflag_locked(ic, flag); 908 IEEE80211_UNLOCK(ic); 909 } 910 911 /* 912 * Synchronize flags_ht bit state in the com structure 913 * according to the state of all vap's. This is used, 914 * for example, to handle state changes via ioctls. 915 */ 916 static void 917 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 918 { 919 struct ieee80211vap *vap; 920 int bit; 921 922 IEEE80211_LOCK_ASSERT(ic); 923 924 bit = 0; 925 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 926 if (vap->iv_flags_ht & flag) { 927 bit = 1; 928 break; 929 } 930 if (bit) 931 ic->ic_flags_ht |= flag; 932 else 933 ic->ic_flags_ht &= ~flag; 934 } 935 936 void 937 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 938 { 939 struct ieee80211com *ic = vap->iv_ic; 940 941 IEEE80211_LOCK(ic); 942 if (flag < 0) { 943 flag = -flag; 944 vap->iv_flags_ht &= ~flag; 945 } else 946 vap->iv_flags_ht |= flag; 947 ieee80211_syncflag_ht_locked(ic, flag); 948 IEEE80211_UNLOCK(ic); 949 } 950 951 /* 952 * Synchronize flags_vht bit state in the com structure 953 * according to the state of all vap's. This is used, 954 * for example, to handle state changes via ioctls. 955 */ 956 static void 957 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 958 { 959 struct ieee80211vap *vap; 960 int bit; 961 962 IEEE80211_LOCK_ASSERT(ic); 963 964 bit = 0; 965 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 966 if (vap->iv_vht_flags & flag) { 967 bit = 1; 968 break; 969 } 970 if (bit) 971 ic->ic_vht_flags |= flag; 972 else 973 ic->ic_vht_flags &= ~flag; 974 } 975 976 void 977 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 978 { 979 struct ieee80211com *ic = vap->iv_ic; 980 981 IEEE80211_LOCK(ic); 982 if (flag < 0) { 983 flag = -flag; 984 vap->iv_vht_flags &= ~flag; 985 } else 986 vap->iv_vht_flags |= flag; 987 ieee80211_syncflag_vht_locked(ic, flag); 988 IEEE80211_UNLOCK(ic); 989 } 990 991 /* 992 * Synchronize flags_ext bit state in the com structure 993 * according to the state of all vap's. This is used, 994 * for example, to handle state changes via ioctls. 995 */ 996 static void 997 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 998 { 999 struct ieee80211vap *vap; 1000 int bit; 1001 1002 IEEE80211_LOCK_ASSERT(ic); 1003 1004 bit = 0; 1005 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1006 if (vap->iv_flags_ext & flag) { 1007 bit = 1; 1008 break; 1009 } 1010 if (bit) 1011 ic->ic_flags_ext |= flag; 1012 else 1013 ic->ic_flags_ext &= ~flag; 1014 } 1015 1016 void 1017 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 1018 { 1019 struct ieee80211com *ic = vap->iv_ic; 1020 1021 IEEE80211_LOCK(ic); 1022 if (flag < 0) { 1023 flag = -flag; 1024 vap->iv_flags_ext &= ~flag; 1025 } else 1026 vap->iv_flags_ext |= flag; 1027 ieee80211_syncflag_ext_locked(ic, flag); 1028 IEEE80211_UNLOCK(ic); 1029 } 1030 1031 static __inline int 1032 mapgsm(u_int freq, u_int flags) 1033 { 1034 freq *= 10; 1035 if (flags & IEEE80211_CHAN_QUARTER) 1036 freq += 5; 1037 else if (flags & IEEE80211_CHAN_HALF) 1038 freq += 10; 1039 else 1040 freq += 20; 1041 /* NB: there is no 907/20 wide but leave room */ 1042 return (freq - 906*10) / 5; 1043 } 1044 1045 static __inline int 1046 mappsb(u_int freq, u_int flags) 1047 { 1048 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1049 } 1050 1051 /* 1052 * Convert MHz frequency to IEEE channel number. 1053 */ 1054 int 1055 ieee80211_mhz2ieee(u_int freq, u_int flags) 1056 { 1057 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1058 if (flags & IEEE80211_CHAN_GSM) 1059 return mapgsm(freq, flags); 1060 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1061 if (freq == 2484) 1062 return 14; 1063 if (freq < 2484) 1064 return ((int) freq - 2407) / 5; 1065 else 1066 return 15 + ((freq - 2512) / 20); 1067 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1068 if (freq <= 5000) { 1069 /* XXX check regdomain? */ 1070 if (IS_FREQ_IN_PSB(freq)) 1071 return mappsb(freq, flags); 1072 return (freq - 4000) / 5; 1073 } else 1074 return (freq - 5000) / 5; 1075 } else { /* either, guess */ 1076 if (freq == 2484) 1077 return 14; 1078 if (freq < 2484) { 1079 if (907 <= freq && freq <= 922) 1080 return mapgsm(freq, flags); 1081 return ((int) freq - 2407) / 5; 1082 } 1083 if (freq < 5000) { 1084 if (IS_FREQ_IN_PSB(freq)) 1085 return mappsb(freq, flags); 1086 else if (freq > 4900) 1087 return (freq - 4000) / 5; 1088 else 1089 return 15 + ((freq - 2512) / 20); 1090 } 1091 return (freq - 5000) / 5; 1092 } 1093 #undef IS_FREQ_IN_PSB 1094 } 1095 1096 /* 1097 * Convert channel to IEEE channel number. 1098 */ 1099 int 1100 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1101 { 1102 if (c == NULL) { 1103 ic_printf(ic, "invalid channel (NULL)\n"); 1104 return 0; /* XXX */ 1105 } 1106 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1107 } 1108 1109 /* 1110 * Convert IEEE channel number to MHz frequency. 1111 */ 1112 u_int 1113 ieee80211_ieee2mhz(u_int chan, u_int flags) 1114 { 1115 if (flags & IEEE80211_CHAN_GSM) 1116 return 907 + 5 * (chan / 10); 1117 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1118 if (chan == 14) 1119 return 2484; 1120 if (chan < 14) 1121 return 2407 + chan*5; 1122 else 1123 return 2512 + ((chan-15)*20); 1124 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1125 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1126 chan -= 37; 1127 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1128 } 1129 return 5000 + (chan*5); 1130 } else { /* either, guess */ 1131 /* XXX can't distinguish PSB+GSM channels */ 1132 if (chan == 14) 1133 return 2484; 1134 if (chan < 14) /* 0-13 */ 1135 return 2407 + chan*5; 1136 if (chan < 27) /* 15-26 */ 1137 return 2512 + ((chan-15)*20); 1138 return 5000 + (chan*5); 1139 } 1140 } 1141 1142 static __inline void 1143 set_extchan(struct ieee80211_channel *c) 1144 { 1145 1146 /* 1147 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1148 * "the secondary channel number shall be 'N + [1,-1] * 4' 1149 */ 1150 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1151 c->ic_extieee = c->ic_ieee + 4; 1152 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1153 c->ic_extieee = c->ic_ieee - 4; 1154 else 1155 c->ic_extieee = 0; 1156 } 1157 1158 /* 1159 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1160 * 1161 * This for now uses a hard-coded list of 80MHz wide channels. 1162 * 1163 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1164 * wide channel we've already decided upon. 1165 * 1166 * For VHT80 and VHT160, there are only a small number of fixed 1167 * 80/160MHz wide channels, so we just use those. 1168 * 1169 * This is all likely very very wrong - both the regulatory code 1170 * and this code needs to ensure that all four channels are 1171 * available and valid before the VHT80 (and eight for VHT160) channel 1172 * is created. 1173 */ 1174 1175 struct vht_chan_range { 1176 uint16_t freq_start; 1177 uint16_t freq_end; 1178 }; 1179 1180 struct vht_chan_range vht80_chan_ranges[] = { 1181 { 5170, 5250 }, 1182 { 5250, 5330 }, 1183 { 5490, 5570 }, 1184 { 5570, 5650 }, 1185 { 5650, 5730 }, 1186 { 5735, 5815 }, 1187 { 0, 0 } 1188 }; 1189 1190 struct vht_chan_range vht160_chan_ranges[] = { 1191 { 5170, 5330 }, 1192 { 5490, 5650 }, 1193 { 0, 0 } 1194 }; 1195 1196 static int 1197 set_vht_extchan(struct ieee80211_channel *c) 1198 { 1199 int i; 1200 1201 if (! IEEE80211_IS_CHAN_VHT(c)) 1202 return (0); 1203 1204 if (IEEE80211_IS_CHAN_VHT80P80(c)) { 1205 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", 1206 __func__, c->ic_ieee, c->ic_flags); 1207 } 1208 1209 if (IEEE80211_IS_CHAN_VHT160(c)) { 1210 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1211 if (c->ic_freq >= vht160_chan_ranges[i].freq_start && 1212 c->ic_freq < vht160_chan_ranges[i].freq_end) { 1213 int midpoint; 1214 1215 midpoint = vht160_chan_ranges[i].freq_start + 80; 1216 c->ic_vht_ch_freq1 = 1217 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1218 c->ic_vht_ch_freq2 = 0; 1219 #if 0 1220 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1221 __func__, c->ic_ieee, c->ic_freq, midpoint, 1222 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1223 #endif 1224 return (1); 1225 } 1226 } 1227 return (0); 1228 } 1229 1230 if (IEEE80211_IS_CHAN_VHT80(c)) { 1231 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1232 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1233 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1234 int midpoint; 1235 1236 midpoint = vht80_chan_ranges[i].freq_start + 40; 1237 c->ic_vht_ch_freq1 = 1238 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1239 c->ic_vht_ch_freq2 = 0; 1240 #if 0 1241 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1242 __func__, c->ic_ieee, c->ic_freq, midpoint, 1243 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1244 #endif 1245 return (1); 1246 } 1247 } 1248 return (0); 1249 } 1250 1251 if (IEEE80211_IS_CHAN_VHT40(c)) { 1252 if (IEEE80211_IS_CHAN_HT40U(c)) 1253 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1254 else if (IEEE80211_IS_CHAN_HT40D(c)) 1255 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1256 else 1257 return (0); 1258 return (1); 1259 } 1260 1261 if (IEEE80211_IS_CHAN_VHT20(c)) { 1262 c->ic_vht_ch_freq1 = c->ic_ieee; 1263 return (1); 1264 } 1265 1266 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1267 __func__, c->ic_ieee, c->ic_flags); 1268 1269 return (0); 1270 } 1271 1272 /* 1273 * Return whether the current channel could possibly be a part of 1274 * a VHT80/VHT160 channel. 1275 * 1276 * This doesn't check that the whole range is in the allowed list 1277 * according to regulatory. 1278 */ 1279 static bool 1280 is_vht160_valid_freq(uint16_t freq) 1281 { 1282 int i; 1283 1284 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1285 if (freq >= vht160_chan_ranges[i].freq_start && 1286 freq < vht160_chan_ranges[i].freq_end) 1287 return (true); 1288 } 1289 return (false); 1290 } 1291 1292 static int 1293 is_vht80_valid_freq(uint16_t freq) 1294 { 1295 int i; 1296 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1297 if (freq >= vht80_chan_ranges[i].freq_start && 1298 freq < vht80_chan_ranges[i].freq_end) 1299 return (1); 1300 } 1301 return (0); 1302 } 1303 1304 static int 1305 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1306 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1307 { 1308 struct ieee80211_channel *c; 1309 1310 if (*nchans >= maxchans) 1311 return (ENOBUFS); 1312 1313 #if 0 1314 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n", 1315 __func__, *nchans, maxchans, ieee, freq, flags); 1316 #endif 1317 1318 c = &chans[(*nchans)++]; 1319 c->ic_ieee = ieee; 1320 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1321 c->ic_maxregpower = maxregpower; 1322 c->ic_maxpower = 2 * maxregpower; 1323 c->ic_flags = flags; 1324 c->ic_vht_ch_freq1 = 0; 1325 c->ic_vht_ch_freq2 = 0; 1326 set_extchan(c); 1327 set_vht_extchan(c); 1328 1329 return (0); 1330 } 1331 1332 static int 1333 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1334 uint32_t flags) 1335 { 1336 struct ieee80211_channel *c; 1337 1338 KASSERT(*nchans > 0, ("channel list is empty\n")); 1339 1340 if (*nchans >= maxchans) 1341 return (ENOBUFS); 1342 1343 #if 0 1344 printf("%s: %d of %d: flags=0x%08x\n", 1345 __func__, *nchans, maxchans, flags); 1346 #endif 1347 1348 c = &chans[(*nchans)++]; 1349 c[0] = c[-1]; 1350 c->ic_flags = flags; 1351 c->ic_vht_ch_freq1 = 0; 1352 c->ic_vht_ch_freq2 = 0; 1353 set_extchan(c); 1354 set_vht_extchan(c); 1355 1356 return (0); 1357 } 1358 1359 /* 1360 * XXX VHT-2GHz 1361 */ 1362 static void 1363 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1364 { 1365 int nmodes; 1366 1367 nmodes = 0; 1368 if (isset(bands, IEEE80211_MODE_11B)) 1369 flags[nmodes++] = IEEE80211_CHAN_B; 1370 if (isset(bands, IEEE80211_MODE_11G)) 1371 flags[nmodes++] = IEEE80211_CHAN_G; 1372 if (isset(bands, IEEE80211_MODE_11NG)) 1373 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1374 if (cbw_flags & NET80211_CBW_FLAG_HT40) { 1375 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1376 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1377 } 1378 flags[nmodes] = 0; 1379 } 1380 1381 static void 1382 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1383 { 1384 int nmodes; 1385 1386 /* 1387 * The addchan_list() function seems to expect the flags array to 1388 * be in channel width order, so the VHT bits are interspersed 1389 * as appropriate to maintain said order. 1390 * 1391 * It also assumes HT40U is before HT40D. 1392 */ 1393 nmodes = 0; 1394 1395 /* 20MHz */ 1396 if (isset(bands, IEEE80211_MODE_11A)) 1397 flags[nmodes++] = IEEE80211_CHAN_A; 1398 if (isset(bands, IEEE80211_MODE_11NA)) 1399 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1400 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1401 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1402 IEEE80211_CHAN_VHT20; 1403 } 1404 1405 /* 40MHz */ 1406 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1407 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1408 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1409 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1410 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1411 IEEE80211_CHAN_VHT40U; 1412 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1413 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1414 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1415 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1416 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1417 IEEE80211_CHAN_VHT40D; 1418 1419 /* 80MHz */ 1420 if ((cbw_flags & NET80211_CBW_FLAG_VHT80) && 1421 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1422 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1423 IEEE80211_CHAN_VHT80; 1424 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1425 IEEE80211_CHAN_VHT80; 1426 } 1427 1428 /* VHT160 */ 1429 if ((cbw_flags & NET80211_CBW_FLAG_VHT160) && 1430 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1431 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1432 IEEE80211_CHAN_VHT160; 1433 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1434 IEEE80211_CHAN_VHT160; 1435 } 1436 1437 /* VHT80+80 */ 1438 if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) && 1439 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1440 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1441 IEEE80211_CHAN_VHT80P80; 1442 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1443 IEEE80211_CHAN_VHT80P80; 1444 } 1445 1446 flags[nmodes] = 0; 1447 } 1448 1449 static void 1450 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1451 { 1452 1453 flags[0] = 0; 1454 if (isset(bands, IEEE80211_MODE_11A) || 1455 isset(bands, IEEE80211_MODE_11NA) || 1456 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1457 if (isset(bands, IEEE80211_MODE_11B) || 1458 isset(bands, IEEE80211_MODE_11G) || 1459 isset(bands, IEEE80211_MODE_11NG) || 1460 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1461 return; 1462 1463 getflags_5ghz(bands, flags, cbw_flags); 1464 } else 1465 getflags_2ghz(bands, flags, cbw_flags); 1466 } 1467 1468 /* 1469 * Add one 20 MHz channel into specified channel list. 1470 * You MUST NOT mix bands when calling this. It will not add 5ghz 1471 * channels if you have any B/G/N band bit set. 1472 * The _cbw() variant does also support HT40/VHT80/160/80+80. 1473 */ 1474 int 1475 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans, 1476 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1477 uint32_t chan_flags, const uint8_t bands[], int cbw_flags) 1478 { 1479 uint32_t flags[IEEE80211_MODE_MAX]; 1480 int i, error; 1481 1482 getflags(bands, flags, cbw_flags); 1483 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1484 1485 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1486 flags[0] | chan_flags); 1487 for (i = 1; flags[i] != 0 && error == 0; i++) { 1488 error = copychan_prev(chans, maxchans, nchans, 1489 flags[i] | chan_flags); 1490 } 1491 1492 return (error); 1493 } 1494 1495 int 1496 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1497 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1498 uint32_t chan_flags, const uint8_t bands[]) 1499 { 1500 1501 return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq, 1502 maxregpower, chan_flags, bands, 0)); 1503 } 1504 1505 static struct ieee80211_channel * 1506 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1507 uint32_t flags) 1508 { 1509 struct ieee80211_channel *c; 1510 int i; 1511 1512 flags &= IEEE80211_CHAN_ALLTURBO; 1513 /* brute force search */ 1514 for (i = 0; i < nchans; i++) { 1515 c = &chans[i]; 1516 if (c->ic_freq == freq && 1517 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1518 return c; 1519 } 1520 return NULL; 1521 } 1522 1523 /* 1524 * Add 40 MHz channel pair into specified channel list. 1525 */ 1526 /* XXX VHT */ 1527 int 1528 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1529 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1530 { 1531 struct ieee80211_channel *cent, *extc; 1532 uint16_t freq; 1533 int error; 1534 1535 freq = ieee80211_ieee2mhz(ieee, flags); 1536 1537 /* 1538 * Each entry defines an HT40 channel pair; find the 1539 * center channel, then the extension channel above. 1540 */ 1541 flags |= IEEE80211_CHAN_HT20; 1542 cent = findchannel(chans, *nchans, freq, flags); 1543 if (cent == NULL) 1544 return (EINVAL); 1545 1546 extc = findchannel(chans, *nchans, freq + 20, flags); 1547 if (extc == NULL) 1548 return (ENOENT); 1549 1550 flags &= ~IEEE80211_CHAN_HT; 1551 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1552 maxregpower, flags | IEEE80211_CHAN_HT40U); 1553 if (error != 0) 1554 return (error); 1555 1556 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1557 maxregpower, flags | IEEE80211_CHAN_HT40D); 1558 1559 return (error); 1560 } 1561 1562 /* 1563 * Fetch the center frequency for the primary channel. 1564 */ 1565 uint32_t 1566 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1567 { 1568 1569 return (c->ic_freq); 1570 } 1571 1572 /* 1573 * Fetch the center frequency for the primary BAND channel. 1574 * 1575 * For 5, 10, 20MHz channels it'll be the normally configured channel 1576 * frequency. 1577 * 1578 * For 40MHz, 80MHz, 160MHz channels it will be the centre of the 1579 * wide channel, not the centre of the primary channel (that's ic_freq). 1580 * 1581 * For 80+80MHz channels this will be the centre of the primary 1582 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1583 */ 1584 uint32_t 1585 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1586 { 1587 1588 /* 1589 * VHT - use the pre-calculated centre frequency 1590 * of the given channel. 1591 */ 1592 if (IEEE80211_IS_CHAN_VHT(c)) 1593 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1594 1595 if (IEEE80211_IS_CHAN_HT40U(c)) { 1596 return (c->ic_freq + 10); 1597 } 1598 if (IEEE80211_IS_CHAN_HT40D(c)) { 1599 return (c->ic_freq - 10); 1600 } 1601 1602 return (c->ic_freq); 1603 } 1604 1605 /* 1606 * For now, no 80+80 support; it will likely always return 0. 1607 */ 1608 uint32_t 1609 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1610 { 1611 1612 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1613 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1614 1615 return (0); 1616 } 1617 1618 /* 1619 * Adds channels into specified channel list (ieee[] array must be sorted). 1620 * Channels are already sorted. 1621 */ 1622 static int 1623 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1624 const uint8_t ieee[], int nieee, uint32_t flags[]) 1625 { 1626 uint16_t freq; 1627 int i, j, error; 1628 int is_vht; 1629 1630 for (i = 0; i < nieee; i++) { 1631 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1632 for (j = 0; flags[j] != 0; j++) { 1633 /* 1634 * Notes: 1635 * + HT40 and VHT40 channels occur together, so 1636 * we need to be careful that we actually allow that. 1637 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1638 * make sure it's not skipped because of the overlap 1639 * check used for (V)HT40. 1640 */ 1641 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1642 1643 /* XXX TODO FIXME VHT80P80. */ 1644 1645 /* Test for VHT160 analogue to the VHT80 below. */ 1646 if (is_vht && flags[j] & IEEE80211_CHAN_VHT160) 1647 if (! is_vht160_valid_freq(freq)) 1648 continue; 1649 1650 /* 1651 * Test for VHT80. 1652 * XXX This is all very broken right now. 1653 * What we /should/ do is: 1654 * 1655 * + check that the frequency is in the list of 1656 * allowed VHT80 ranges; and 1657 * + the other 3 channels in the list are actually 1658 * also available. 1659 */ 1660 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1661 if (! is_vht80_valid_freq(freq)) 1662 continue; 1663 1664 /* 1665 * Test for (V)HT40. 1666 * 1667 * This is also a fall through from VHT80; as we only 1668 * allow a VHT80 channel if the VHT40 combination is 1669 * also valid. If the VHT40 form is not valid then 1670 * we certainly can't do VHT80.. 1671 */ 1672 if (flags[j] & IEEE80211_CHAN_HT40D) 1673 /* 1674 * Can't have a "lower" channel if we are the 1675 * first channel. 1676 * 1677 * Can't have a "lower" channel if it's below/ 1678 * within 20MHz of the first channel. 1679 * 1680 * Can't have a "lower" channel if the channel 1681 * below it is not 20MHz away. 1682 */ 1683 if (i == 0 || ieee[i] < ieee[0] + 4 || 1684 freq - 20 != 1685 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1686 continue; 1687 if (flags[j] & IEEE80211_CHAN_HT40U) 1688 /* 1689 * Can't have an "upper" channel if we are 1690 * the last channel. 1691 * 1692 * Can't have an "upper" channel be above the 1693 * last channel in the list. 1694 * 1695 * Can't have an "upper" channel if the next 1696 * channel according to the math isn't 20MHz 1697 * away. (Likely for channel 13/14.) 1698 */ 1699 if (i == nieee - 1 || 1700 ieee[i] + 4 > ieee[nieee - 1] || 1701 freq + 20 != 1702 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1703 continue; 1704 1705 if (j == 0) { 1706 error = addchan(chans, maxchans, nchans, 1707 ieee[i], freq, 0, flags[j]); 1708 } else { 1709 error = copychan_prev(chans, maxchans, nchans, 1710 flags[j]); 1711 } 1712 if (error != 0) 1713 return (error); 1714 } 1715 } 1716 1717 return (0); 1718 } 1719 1720 int 1721 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1722 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1723 int cbw_flags) 1724 { 1725 uint32_t flags[IEEE80211_MODE_MAX]; 1726 1727 /* XXX no VHT for now */ 1728 getflags_2ghz(bands, flags, cbw_flags); 1729 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1730 1731 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1732 } 1733 1734 int 1735 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1736 int maxchans, int *nchans, const uint8_t bands[], int cbw_flags) 1737 { 1738 const uint8_t default_chan_list[] = 1739 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1740 1741 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1742 default_chan_list, nitems(default_chan_list), bands, cbw_flags)); 1743 } 1744 1745 int 1746 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1747 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1748 int cbw_flags) 1749 { 1750 /* 1751 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all 1752 * uses of IEEE80211_MODE_MAX and add a new #define name for array size. 1753 */ 1754 uint32_t flags[2 * IEEE80211_MODE_MAX]; 1755 1756 getflags_5ghz(bands, flags, cbw_flags); 1757 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1758 1759 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1760 } 1761 1762 /* 1763 * Locate a channel given a frequency+flags. We cache 1764 * the previous lookup to optimize switching between two 1765 * channels--as happens with dynamic turbo. 1766 */ 1767 struct ieee80211_channel * 1768 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1769 { 1770 struct ieee80211_channel *c; 1771 1772 flags &= IEEE80211_CHAN_ALLTURBO; 1773 c = ic->ic_prevchan; 1774 if (c != NULL && c->ic_freq == freq && 1775 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1776 return c; 1777 /* brute force search */ 1778 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1779 } 1780 1781 /* 1782 * Locate a channel given a channel number+flags. We cache 1783 * the previous lookup to optimize switching between two 1784 * channels--as happens with dynamic turbo. 1785 */ 1786 struct ieee80211_channel * 1787 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1788 { 1789 struct ieee80211_channel *c; 1790 int i; 1791 1792 flags &= IEEE80211_CHAN_ALLTURBO; 1793 c = ic->ic_prevchan; 1794 if (c != NULL && c->ic_ieee == ieee && 1795 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1796 return c; 1797 /* brute force search */ 1798 for (i = 0; i < ic->ic_nchans; i++) { 1799 c = &ic->ic_channels[i]; 1800 if (c->ic_ieee == ieee && 1801 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1802 return c; 1803 } 1804 return NULL; 1805 } 1806 1807 /* 1808 * Lookup a channel suitable for the given rx status. 1809 * 1810 * This is used to find a channel for a frame (eg beacon, probe 1811 * response) based purely on the received PHY information. 1812 * 1813 * For now it tries to do it based on R_FREQ / R_IEEE. 1814 * This is enough for 11bg and 11a (and thus 11ng/11na) 1815 * but it will not be enough for GSM, PSB channels and the 1816 * like. It also doesn't know about legacy-turbog and 1817 * legacy-turbo modes, which some offload NICs actually 1818 * support in weird ways. 1819 * 1820 * Takes the ic and rxstatus; returns the channel or NULL 1821 * if not found. 1822 * 1823 * XXX TODO: Add support for that when the need arises. 1824 */ 1825 struct ieee80211_channel * 1826 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1827 const struct ieee80211_rx_stats *rxs) 1828 { 1829 struct ieee80211com *ic = vap->iv_ic; 1830 uint32_t flags; 1831 struct ieee80211_channel *c; 1832 1833 if (rxs == NULL) 1834 return (NULL); 1835 1836 /* 1837 * Strictly speaking we only use freq for now, 1838 * however later on we may wish to just store 1839 * the ieee for verification. 1840 */ 1841 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1842 return (NULL); 1843 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1844 return (NULL); 1845 if ((rxs->r_flags & IEEE80211_R_BAND) == 0) 1846 return (NULL); 1847 1848 /* 1849 * If the rx status contains a valid ieee/freq, then 1850 * ensure we populate the correct channel information 1851 * in rxchan before passing it up to the scan infrastructure. 1852 * Offload NICs will pass up beacons from all channels 1853 * during background scans. 1854 */ 1855 1856 /* Determine a band */ 1857 switch (rxs->c_band) { 1858 case IEEE80211_CHAN_2GHZ: 1859 flags = IEEE80211_CHAN_G; 1860 break; 1861 case IEEE80211_CHAN_5GHZ: 1862 flags = IEEE80211_CHAN_A; 1863 break; 1864 default: 1865 if (rxs->c_freq < 3000) { 1866 flags = IEEE80211_CHAN_G; 1867 } else { 1868 flags = IEEE80211_CHAN_A; 1869 } 1870 break; 1871 } 1872 1873 /* Channel lookup */ 1874 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1875 1876 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1877 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1878 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); 1879 1880 return (c); 1881 } 1882 1883 static void 1884 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1885 { 1886 #define ADD(_ic, _s, _o) \ 1887 ifmedia_add(media, \ 1888 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1889 static const u_int mopts[IEEE80211_MODE_MAX] = { 1890 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1891 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1892 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1893 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1894 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1895 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1896 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1897 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1898 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1899 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1900 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1901 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1902 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1903 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1904 }; 1905 u_int mopt; 1906 1907 mopt = mopts[mode]; 1908 if (addsta) 1909 ADD(ic, mword, mopt); /* STA mode has no cap */ 1910 if (caps & IEEE80211_C_IBSS) 1911 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1912 if (caps & IEEE80211_C_HOSTAP) 1913 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1914 if (caps & IEEE80211_C_AHDEMO) 1915 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1916 if (caps & IEEE80211_C_MONITOR) 1917 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1918 if (caps & IEEE80211_C_WDS) 1919 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1920 if (caps & IEEE80211_C_MBSS) 1921 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1922 #undef ADD 1923 } 1924 1925 /* 1926 * Setup the media data structures according to the channel and 1927 * rate tables. 1928 */ 1929 static int 1930 ieee80211_media_setup(struct ieee80211com *ic, 1931 struct ifmedia *media, int caps, int addsta, 1932 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1933 { 1934 int i, j, rate, maxrate, mword, r; 1935 enum ieee80211_phymode mode; 1936 const struct ieee80211_rateset *rs; 1937 struct ieee80211_rateset allrates; 1938 1939 /* 1940 * Fill in media characteristics. 1941 */ 1942 ifmedia_init(media, 0, media_change, media_stat); 1943 maxrate = 0; 1944 /* 1945 * Add media for legacy operating modes. 1946 */ 1947 memset(&allrates, 0, sizeof(allrates)); 1948 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1949 if (isclr(ic->ic_modecaps, mode)) 1950 continue; 1951 addmedia(media, caps, addsta, mode, IFM_AUTO); 1952 if (mode == IEEE80211_MODE_AUTO) 1953 continue; 1954 rs = &ic->ic_sup_rates[mode]; 1955 for (i = 0; i < rs->rs_nrates; i++) { 1956 rate = rs->rs_rates[i]; 1957 mword = ieee80211_rate2media(ic, rate, mode); 1958 if (mword == 0) 1959 continue; 1960 addmedia(media, caps, addsta, mode, mword); 1961 /* 1962 * Add legacy rate to the collection of all rates. 1963 */ 1964 r = rate & IEEE80211_RATE_VAL; 1965 for (j = 0; j < allrates.rs_nrates; j++) 1966 if (allrates.rs_rates[j] == r) 1967 break; 1968 if (j == allrates.rs_nrates) { 1969 /* unique, add to the set */ 1970 allrates.rs_rates[j] = r; 1971 allrates.rs_nrates++; 1972 } 1973 rate = (rate & IEEE80211_RATE_VAL) / 2; 1974 if (rate > maxrate) 1975 maxrate = rate; 1976 } 1977 } 1978 for (i = 0; i < allrates.rs_nrates; i++) { 1979 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1980 IEEE80211_MODE_AUTO); 1981 if (mword == 0) 1982 continue; 1983 /* NB: remove media options from mword */ 1984 addmedia(media, caps, addsta, 1985 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1986 } 1987 /* 1988 * Add HT/11n media. Note that we do not have enough 1989 * bits in the media subtype to express the MCS so we 1990 * use a "placeholder" media subtype and any fixed MCS 1991 * must be specified with a different mechanism. 1992 */ 1993 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1994 if (isclr(ic->ic_modecaps, mode)) 1995 continue; 1996 addmedia(media, caps, addsta, mode, IFM_AUTO); 1997 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1998 } 1999 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 2000 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 2001 addmedia(media, caps, addsta, 2002 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 2003 i = ic->ic_txstream * 8 - 1; 2004 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2005 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 2006 rate = ieee80211_htrates[i].ht40_rate_400ns; 2007 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 2008 rate = ieee80211_htrates[i].ht40_rate_800ns; 2009 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 2010 rate = ieee80211_htrates[i].ht20_rate_400ns; 2011 else 2012 rate = ieee80211_htrates[i].ht20_rate_800ns; 2013 if (rate > maxrate) 2014 maxrate = rate; 2015 } 2016 2017 /* 2018 * Add VHT media. 2019 * XXX-BZ skip "VHT_2GHZ" for now. 2020 */ 2021 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; 2022 mode++) { 2023 if (isclr(ic->ic_modecaps, mode)) 2024 continue; 2025 addmedia(media, caps, addsta, mode, IFM_AUTO); 2026 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 2027 } 2028 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { 2029 addmedia(media, caps, addsta, 2030 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); 2031 2032 /* XXX TODO: VHT maxrate */ 2033 } 2034 2035 return maxrate; 2036 } 2037 2038 /* XXX inline or eliminate? */ 2039 const struct ieee80211_rateset * 2040 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 2041 { 2042 /* XXX does this work for 11ng basic rates? */ 2043 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 2044 } 2045 2046 /* XXX inline or eliminate? */ 2047 const struct ieee80211_htrateset * 2048 ieee80211_get_suphtrates(struct ieee80211com *ic, 2049 const struct ieee80211_channel *c) 2050 { 2051 return &ic->ic_sup_htrates; 2052 } 2053 2054 void 2055 ieee80211_announce(struct ieee80211com *ic) 2056 { 2057 int i, rate, mword; 2058 enum ieee80211_phymode mode; 2059 const struct ieee80211_rateset *rs; 2060 2061 /* NB: skip AUTO since it has no rates */ 2062 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 2063 if (isclr(ic->ic_modecaps, mode)) 2064 continue; 2065 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 2066 rs = &ic->ic_sup_rates[mode]; 2067 for (i = 0; i < rs->rs_nrates; i++) { 2068 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 2069 if (mword == 0) 2070 continue; 2071 rate = ieee80211_media2rate(mword); 2072 printf("%s%d%sMbps", (i != 0 ? " " : ""), 2073 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 2074 } 2075 printf("\n"); 2076 } 2077 ieee80211_ht_announce(ic); 2078 ieee80211_vht_announce(ic); 2079 } 2080 2081 void 2082 ieee80211_announce_channels(struct ieee80211com *ic) 2083 { 2084 const struct ieee80211_channel *c; 2085 char type; 2086 int i, cw; 2087 2088 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 2089 for (i = 0; i < ic->ic_nchans; i++) { 2090 c = &ic->ic_channels[i]; 2091 if (IEEE80211_IS_CHAN_ST(c)) 2092 type = 'S'; 2093 else if (IEEE80211_IS_CHAN_108A(c)) 2094 type = 'T'; 2095 else if (IEEE80211_IS_CHAN_108G(c)) 2096 type = 'G'; 2097 else if (IEEE80211_IS_CHAN_HT(c)) 2098 type = 'n'; 2099 else if (IEEE80211_IS_CHAN_A(c)) 2100 type = 'a'; 2101 else if (IEEE80211_IS_CHAN_ANYG(c)) 2102 type = 'g'; 2103 else if (IEEE80211_IS_CHAN_B(c)) 2104 type = 'b'; 2105 else 2106 type = 'f'; 2107 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2108 cw = 40; 2109 else if (IEEE80211_IS_CHAN_HALF(c)) 2110 cw = 10; 2111 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2112 cw = 5; 2113 else 2114 cw = 20; 2115 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2116 , c->ic_ieee, c->ic_freq, type 2117 , cw 2118 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2119 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2120 , c->ic_maxregpower 2121 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2122 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2123 ); 2124 } 2125 } 2126 2127 static int 2128 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2129 { 2130 switch (IFM_MODE(ime->ifm_media)) { 2131 case IFM_IEEE80211_11A: 2132 *mode = IEEE80211_MODE_11A; 2133 break; 2134 case IFM_IEEE80211_11B: 2135 *mode = IEEE80211_MODE_11B; 2136 break; 2137 case IFM_IEEE80211_11G: 2138 *mode = IEEE80211_MODE_11G; 2139 break; 2140 case IFM_IEEE80211_FH: 2141 *mode = IEEE80211_MODE_FH; 2142 break; 2143 case IFM_IEEE80211_11NA: 2144 *mode = IEEE80211_MODE_11NA; 2145 break; 2146 case IFM_IEEE80211_11NG: 2147 *mode = IEEE80211_MODE_11NG; 2148 break; 2149 case IFM_IEEE80211_VHT2G: 2150 *mode = IEEE80211_MODE_VHT_2GHZ; 2151 break; 2152 case IFM_IEEE80211_VHT5G: 2153 *mode = IEEE80211_MODE_VHT_5GHZ; 2154 break; 2155 case IFM_AUTO: 2156 *mode = IEEE80211_MODE_AUTO; 2157 break; 2158 default: 2159 return 0; 2160 } 2161 /* 2162 * Turbo mode is an ``option''. 2163 * XXX does not apply to AUTO 2164 */ 2165 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2166 if (*mode == IEEE80211_MODE_11A) { 2167 if (flags & IEEE80211_F_TURBOP) 2168 *mode = IEEE80211_MODE_TURBO_A; 2169 else 2170 *mode = IEEE80211_MODE_STURBO_A; 2171 } else if (*mode == IEEE80211_MODE_11G) 2172 *mode = IEEE80211_MODE_TURBO_G; 2173 else 2174 return 0; 2175 } 2176 /* XXX HT40 +/- */ 2177 return 1; 2178 } 2179 2180 /* 2181 * Handle a media change request on the vap interface. 2182 */ 2183 int 2184 ieee80211_media_change(struct ifnet *ifp) 2185 { 2186 struct ieee80211vap *vap = ifp->if_softc; 2187 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2188 uint16_t newmode; 2189 2190 if (!media2mode(ime, vap->iv_flags, &newmode)) 2191 return EINVAL; 2192 if (vap->iv_des_mode != newmode) { 2193 vap->iv_des_mode = newmode; 2194 /* XXX kick state machine if up+running */ 2195 } 2196 return 0; 2197 } 2198 2199 /* 2200 * Common code to calculate the media status word 2201 * from the operating mode and channel state. 2202 */ 2203 static int 2204 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2205 { 2206 int status; 2207 2208 status = IFM_IEEE80211; 2209 switch (opmode) { 2210 case IEEE80211_M_STA: 2211 break; 2212 case IEEE80211_M_IBSS: 2213 status |= IFM_IEEE80211_ADHOC; 2214 break; 2215 case IEEE80211_M_HOSTAP: 2216 status |= IFM_IEEE80211_HOSTAP; 2217 break; 2218 case IEEE80211_M_MONITOR: 2219 status |= IFM_IEEE80211_MONITOR; 2220 break; 2221 case IEEE80211_M_AHDEMO: 2222 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2223 break; 2224 case IEEE80211_M_WDS: 2225 status |= IFM_IEEE80211_WDS; 2226 break; 2227 case IEEE80211_M_MBSS: 2228 status |= IFM_IEEE80211_MBSS; 2229 break; 2230 } 2231 if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) { 2232 status |= IFM_IEEE80211_VHT5G; 2233 } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) { 2234 status |= IFM_IEEE80211_VHT2G; 2235 } else if (IEEE80211_IS_CHAN_HTA(chan)) { 2236 status |= IFM_IEEE80211_11NA; 2237 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2238 status |= IFM_IEEE80211_11NG; 2239 } else if (IEEE80211_IS_CHAN_A(chan)) { 2240 status |= IFM_IEEE80211_11A; 2241 } else if (IEEE80211_IS_CHAN_B(chan)) { 2242 status |= IFM_IEEE80211_11B; 2243 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2244 status |= IFM_IEEE80211_11G; 2245 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2246 status |= IFM_IEEE80211_FH; 2247 } 2248 /* XXX else complain? */ 2249 2250 if (IEEE80211_IS_CHAN_TURBO(chan)) 2251 status |= IFM_IEEE80211_TURBO; 2252 #if 0 2253 if (IEEE80211_IS_CHAN_HT20(chan)) 2254 status |= IFM_IEEE80211_HT20; 2255 if (IEEE80211_IS_CHAN_HT40(chan)) 2256 status |= IFM_IEEE80211_HT40; 2257 #endif 2258 return status; 2259 } 2260 2261 void 2262 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2263 { 2264 struct ieee80211vap *vap = ifp->if_softc; 2265 struct ieee80211com *ic = vap->iv_ic; 2266 enum ieee80211_phymode mode; 2267 2268 imr->ifm_status = IFM_AVALID; 2269 /* 2270 * NB: use the current channel's mode to lock down a xmit 2271 * rate only when running; otherwise we may have a mismatch 2272 * in which case the rate will not be convertible. 2273 */ 2274 if (vap->iv_state == IEEE80211_S_RUN || 2275 vap->iv_state == IEEE80211_S_SLEEP) { 2276 imr->ifm_status |= IFM_ACTIVE; 2277 mode = ieee80211_chan2mode(ic->ic_curchan); 2278 } else 2279 mode = IEEE80211_MODE_AUTO; 2280 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2281 /* 2282 * Calculate a current rate if possible. 2283 */ 2284 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2285 /* 2286 * A fixed rate is set, report that. 2287 */ 2288 imr->ifm_active |= ieee80211_rate2media(ic, 2289 vap->iv_txparms[mode].ucastrate, mode); 2290 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2291 /* 2292 * In station mode report the current transmit rate. 2293 */ 2294 imr->ifm_active |= ieee80211_rate2media(ic, 2295 vap->iv_bss->ni_txrate, mode); 2296 } else 2297 imr->ifm_active |= IFM_AUTO; 2298 if (imr->ifm_status & IFM_ACTIVE) 2299 imr->ifm_current = imr->ifm_active; 2300 } 2301 2302 /* 2303 * Set the current phy mode and recalculate the active channel 2304 * set based on the available channels for this mode. Also 2305 * select a new default/current channel if the current one is 2306 * inappropriate for this mode. 2307 */ 2308 int 2309 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2310 { 2311 /* 2312 * Adjust basic rates in 11b/11g supported rate set. 2313 * Note that if operating on a hal/quarter rate channel 2314 * this is a noop as those rates sets are different 2315 * and used instead. 2316 */ 2317 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2318 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2319 2320 ic->ic_curmode = mode; 2321 ieee80211_reset_erp(ic); /* reset global ERP state */ 2322 2323 return 0; 2324 } 2325 2326 /* 2327 * Return the phy mode for with the specified channel. 2328 */ 2329 enum ieee80211_phymode 2330 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2331 { 2332 2333 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2334 return IEEE80211_MODE_VHT_2GHZ; 2335 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2336 return IEEE80211_MODE_VHT_5GHZ; 2337 else if (IEEE80211_IS_CHAN_HTA(chan)) 2338 return IEEE80211_MODE_11NA; 2339 else if (IEEE80211_IS_CHAN_HTG(chan)) 2340 return IEEE80211_MODE_11NG; 2341 else if (IEEE80211_IS_CHAN_108G(chan)) 2342 return IEEE80211_MODE_TURBO_G; 2343 else if (IEEE80211_IS_CHAN_ST(chan)) 2344 return IEEE80211_MODE_STURBO_A; 2345 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2346 return IEEE80211_MODE_TURBO_A; 2347 else if (IEEE80211_IS_CHAN_HALF(chan)) 2348 return IEEE80211_MODE_HALF; 2349 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2350 return IEEE80211_MODE_QUARTER; 2351 else if (IEEE80211_IS_CHAN_A(chan)) 2352 return IEEE80211_MODE_11A; 2353 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2354 return IEEE80211_MODE_11G; 2355 else if (IEEE80211_IS_CHAN_B(chan)) 2356 return IEEE80211_MODE_11B; 2357 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2358 return IEEE80211_MODE_FH; 2359 2360 /* NB: should not get here */ 2361 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2362 __func__, chan->ic_freq, chan->ic_flags); 2363 return IEEE80211_MODE_11B; 2364 } 2365 2366 struct ratemedia { 2367 u_int match; /* rate + mode */ 2368 u_int media; /* if_media rate */ 2369 }; 2370 2371 static int 2372 findmedia(const struct ratemedia rates[], int n, u_int match) 2373 { 2374 int i; 2375 2376 for (i = 0; i < n; i++) 2377 if (rates[i].match == match) 2378 return rates[i].media; 2379 return IFM_AUTO; 2380 } 2381 2382 /* 2383 * Convert IEEE80211 rate value to ifmedia subtype. 2384 * Rate is either a legacy rate in units of 0.5Mbps 2385 * or an MCS index. 2386 */ 2387 int 2388 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2389 { 2390 static const struct ratemedia rates[] = { 2391 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2392 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2393 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2394 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2395 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2396 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2397 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2398 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2399 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2400 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2401 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2402 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2403 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2404 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2405 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2406 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2407 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2408 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2409 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2410 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2411 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2412 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2413 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2414 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2415 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2416 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2417 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2418 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2419 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2420 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2421 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2422 }; 2423 static const struct ratemedia htrates[] = { 2424 { 0, IFM_IEEE80211_MCS }, 2425 { 1, IFM_IEEE80211_MCS }, 2426 { 2, IFM_IEEE80211_MCS }, 2427 { 3, IFM_IEEE80211_MCS }, 2428 { 4, IFM_IEEE80211_MCS }, 2429 { 5, IFM_IEEE80211_MCS }, 2430 { 6, IFM_IEEE80211_MCS }, 2431 { 7, IFM_IEEE80211_MCS }, 2432 { 8, IFM_IEEE80211_MCS }, 2433 { 9, IFM_IEEE80211_MCS }, 2434 { 10, IFM_IEEE80211_MCS }, 2435 { 11, IFM_IEEE80211_MCS }, 2436 { 12, IFM_IEEE80211_MCS }, 2437 { 13, IFM_IEEE80211_MCS }, 2438 { 14, IFM_IEEE80211_MCS }, 2439 { 15, IFM_IEEE80211_MCS }, 2440 { 16, IFM_IEEE80211_MCS }, 2441 { 17, IFM_IEEE80211_MCS }, 2442 { 18, IFM_IEEE80211_MCS }, 2443 { 19, IFM_IEEE80211_MCS }, 2444 { 20, IFM_IEEE80211_MCS }, 2445 { 21, IFM_IEEE80211_MCS }, 2446 { 22, IFM_IEEE80211_MCS }, 2447 { 23, IFM_IEEE80211_MCS }, 2448 { 24, IFM_IEEE80211_MCS }, 2449 { 25, IFM_IEEE80211_MCS }, 2450 { 26, IFM_IEEE80211_MCS }, 2451 { 27, IFM_IEEE80211_MCS }, 2452 { 28, IFM_IEEE80211_MCS }, 2453 { 29, IFM_IEEE80211_MCS }, 2454 { 30, IFM_IEEE80211_MCS }, 2455 { 31, IFM_IEEE80211_MCS }, 2456 { 32, IFM_IEEE80211_MCS }, 2457 { 33, IFM_IEEE80211_MCS }, 2458 { 34, IFM_IEEE80211_MCS }, 2459 { 35, IFM_IEEE80211_MCS }, 2460 { 36, IFM_IEEE80211_MCS }, 2461 { 37, IFM_IEEE80211_MCS }, 2462 { 38, IFM_IEEE80211_MCS }, 2463 { 39, IFM_IEEE80211_MCS }, 2464 { 40, IFM_IEEE80211_MCS }, 2465 { 41, IFM_IEEE80211_MCS }, 2466 { 42, IFM_IEEE80211_MCS }, 2467 { 43, IFM_IEEE80211_MCS }, 2468 { 44, IFM_IEEE80211_MCS }, 2469 { 45, IFM_IEEE80211_MCS }, 2470 { 46, IFM_IEEE80211_MCS }, 2471 { 47, IFM_IEEE80211_MCS }, 2472 { 48, IFM_IEEE80211_MCS }, 2473 { 49, IFM_IEEE80211_MCS }, 2474 { 50, IFM_IEEE80211_MCS }, 2475 { 51, IFM_IEEE80211_MCS }, 2476 { 52, IFM_IEEE80211_MCS }, 2477 { 53, IFM_IEEE80211_MCS }, 2478 { 54, IFM_IEEE80211_MCS }, 2479 { 55, IFM_IEEE80211_MCS }, 2480 { 56, IFM_IEEE80211_MCS }, 2481 { 57, IFM_IEEE80211_MCS }, 2482 { 58, IFM_IEEE80211_MCS }, 2483 { 59, IFM_IEEE80211_MCS }, 2484 { 60, IFM_IEEE80211_MCS }, 2485 { 61, IFM_IEEE80211_MCS }, 2486 { 62, IFM_IEEE80211_MCS }, 2487 { 63, IFM_IEEE80211_MCS }, 2488 { 64, IFM_IEEE80211_MCS }, 2489 { 65, IFM_IEEE80211_MCS }, 2490 { 66, IFM_IEEE80211_MCS }, 2491 { 67, IFM_IEEE80211_MCS }, 2492 { 68, IFM_IEEE80211_MCS }, 2493 { 69, IFM_IEEE80211_MCS }, 2494 { 70, IFM_IEEE80211_MCS }, 2495 { 71, IFM_IEEE80211_MCS }, 2496 { 72, IFM_IEEE80211_MCS }, 2497 { 73, IFM_IEEE80211_MCS }, 2498 { 74, IFM_IEEE80211_MCS }, 2499 { 75, IFM_IEEE80211_MCS }, 2500 { 76, IFM_IEEE80211_MCS }, 2501 }; 2502 static const struct ratemedia vhtrates[] = { 2503 { 0, IFM_IEEE80211_VHT }, 2504 { 1, IFM_IEEE80211_VHT }, 2505 { 2, IFM_IEEE80211_VHT }, 2506 { 3, IFM_IEEE80211_VHT }, 2507 { 4, IFM_IEEE80211_VHT }, 2508 { 5, IFM_IEEE80211_VHT }, 2509 { 6, IFM_IEEE80211_VHT }, 2510 { 7, IFM_IEEE80211_VHT }, 2511 { 8, IFM_IEEE80211_VHT }, /* Optional. */ 2512 { 9, IFM_IEEE80211_VHT }, /* Optional. */ 2513 #if 0 2514 /* Some QCA and BRCM seem to support this; offspec. */ 2515 { 10, IFM_IEEE80211_VHT }, 2516 { 11, IFM_IEEE80211_VHT }, 2517 #endif 2518 }; 2519 int m; 2520 2521 /* 2522 * Check 11ac/11n rates first for match as an MCS. 2523 */ 2524 if (mode == IEEE80211_MODE_VHT_5GHZ) { 2525 if (rate & IFM_IEEE80211_VHT) { 2526 rate &= ~IFM_IEEE80211_VHT; 2527 m = findmedia(vhtrates, nitems(vhtrates), rate); 2528 if (m != IFM_AUTO) 2529 return (m | IFM_IEEE80211_VHT); 2530 } 2531 } else if (mode == IEEE80211_MODE_11NA) { 2532 if (rate & IEEE80211_RATE_MCS) { 2533 rate &= ~IEEE80211_RATE_MCS; 2534 m = findmedia(htrates, nitems(htrates), rate); 2535 if (m != IFM_AUTO) 2536 return m | IFM_IEEE80211_11NA; 2537 } 2538 } else if (mode == IEEE80211_MODE_11NG) { 2539 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2540 if (rate & IEEE80211_RATE_MCS) { 2541 rate &= ~IEEE80211_RATE_MCS; 2542 m = findmedia(htrates, nitems(htrates), rate); 2543 if (m != IFM_AUTO) 2544 return m | IFM_IEEE80211_11NG; 2545 } 2546 } 2547 rate &= IEEE80211_RATE_VAL; 2548 switch (mode) { 2549 case IEEE80211_MODE_11A: 2550 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2551 case IEEE80211_MODE_QUARTER: 2552 case IEEE80211_MODE_11NA: 2553 case IEEE80211_MODE_TURBO_A: 2554 case IEEE80211_MODE_STURBO_A: 2555 return findmedia(rates, nitems(rates), 2556 rate | IFM_IEEE80211_11A); 2557 case IEEE80211_MODE_11B: 2558 return findmedia(rates, nitems(rates), 2559 rate | IFM_IEEE80211_11B); 2560 case IEEE80211_MODE_FH: 2561 return findmedia(rates, nitems(rates), 2562 rate | IFM_IEEE80211_FH); 2563 case IEEE80211_MODE_AUTO: 2564 /* NB: ic may be NULL for some drivers */ 2565 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2566 return findmedia(rates, nitems(rates), 2567 rate | IFM_IEEE80211_FH); 2568 /* NB: hack, 11g matches both 11b+11a rates */ 2569 /* fall thru... */ 2570 case IEEE80211_MODE_11G: 2571 case IEEE80211_MODE_11NG: 2572 case IEEE80211_MODE_TURBO_G: 2573 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2574 case IEEE80211_MODE_VHT_2GHZ: 2575 case IEEE80211_MODE_VHT_5GHZ: 2576 /* XXX TODO: need to figure out mapping for VHT rates */ 2577 return IFM_AUTO; 2578 } 2579 return IFM_AUTO; 2580 } 2581 2582 int 2583 ieee80211_media2rate(int mword) 2584 { 2585 static const int ieeerates[] = { 2586 -1, /* IFM_AUTO */ 2587 0, /* IFM_MANUAL */ 2588 0, /* IFM_NONE */ 2589 2, /* IFM_IEEE80211_FH1 */ 2590 4, /* IFM_IEEE80211_FH2 */ 2591 2, /* IFM_IEEE80211_DS1 */ 2592 4, /* IFM_IEEE80211_DS2 */ 2593 11, /* IFM_IEEE80211_DS5 */ 2594 22, /* IFM_IEEE80211_DS11 */ 2595 44, /* IFM_IEEE80211_DS22 */ 2596 12, /* IFM_IEEE80211_OFDM6 */ 2597 18, /* IFM_IEEE80211_OFDM9 */ 2598 24, /* IFM_IEEE80211_OFDM12 */ 2599 36, /* IFM_IEEE80211_OFDM18 */ 2600 48, /* IFM_IEEE80211_OFDM24 */ 2601 72, /* IFM_IEEE80211_OFDM36 */ 2602 96, /* IFM_IEEE80211_OFDM48 */ 2603 108, /* IFM_IEEE80211_OFDM54 */ 2604 144, /* IFM_IEEE80211_OFDM72 */ 2605 0, /* IFM_IEEE80211_DS354k */ 2606 0, /* IFM_IEEE80211_DS512k */ 2607 6, /* IFM_IEEE80211_OFDM3 */ 2608 9, /* IFM_IEEE80211_OFDM4 */ 2609 54, /* IFM_IEEE80211_OFDM27 */ 2610 -1, /* IFM_IEEE80211_MCS */ 2611 -1, /* IFM_IEEE80211_VHT */ 2612 }; 2613 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2614 ieeerates[IFM_SUBTYPE(mword)] : 0; 2615 } 2616 2617 /* 2618 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2619 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2620 */ 2621 #define mix(a, b, c) \ 2622 do { \ 2623 a -= b; a -= c; a ^= (c >> 13); \ 2624 b -= c; b -= a; b ^= (a << 8); \ 2625 c -= a; c -= b; c ^= (b >> 13); \ 2626 a -= b; a -= c; a ^= (c >> 12); \ 2627 b -= c; b -= a; b ^= (a << 16); \ 2628 c -= a; c -= b; c ^= (b >> 5); \ 2629 a -= b; a -= c; a ^= (c >> 3); \ 2630 b -= c; b -= a; b ^= (a << 10); \ 2631 c -= a; c -= b; c ^= (b >> 15); \ 2632 } while (/*CONSTCOND*/0) 2633 2634 uint32_t 2635 ieee80211_mac_hash(const struct ieee80211com *ic, 2636 const uint8_t addr[IEEE80211_ADDR_LEN]) 2637 { 2638 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2639 2640 b += addr[5] << 8; 2641 b += addr[4]; 2642 a += addr[3] << 24; 2643 a += addr[2] << 16; 2644 a += addr[1] << 8; 2645 a += addr[0]; 2646 2647 mix(a, b, c); 2648 2649 return c; 2650 } 2651 #undef mix 2652 2653 char 2654 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2655 { 2656 if (IEEE80211_IS_CHAN_ST(c)) 2657 return 'S'; 2658 if (IEEE80211_IS_CHAN_108A(c)) 2659 return 'T'; 2660 if (IEEE80211_IS_CHAN_108G(c)) 2661 return 'G'; 2662 if (IEEE80211_IS_CHAN_VHT(c)) 2663 return 'v'; 2664 if (IEEE80211_IS_CHAN_HT(c)) 2665 return 'n'; 2666 if (IEEE80211_IS_CHAN_A(c)) 2667 return 'a'; 2668 if (IEEE80211_IS_CHAN_ANYG(c)) 2669 return 'g'; 2670 if (IEEE80211_IS_CHAN_B(c)) 2671 return 'b'; 2672 return 'f'; 2673 } 2674