xref: /freebsd/sys/net80211/ieee80211.c (revision e9961ea164968bf2bdab210eab69201b4bf2cb37)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_private.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #include <net80211/ieee80211_ratectl.h>
58 #include <net80211/ieee80211_vht.h>
59 
60 #include <net/bpf.h>
61 
62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
63 	[IEEE80211_MODE_AUTO]	  = "auto",
64 	[IEEE80211_MODE_11A]	  = "11a",
65 	[IEEE80211_MODE_11B]	  = "11b",
66 	[IEEE80211_MODE_11G]	  = "11g",
67 	[IEEE80211_MODE_FH]	  = "FH",
68 	[IEEE80211_MODE_TURBO_A]  = "turboA",
69 	[IEEE80211_MODE_TURBO_G]  = "turboG",
70 	[IEEE80211_MODE_STURBO_A] = "sturboA",
71 	[IEEE80211_MODE_HALF]	  = "half",
72 	[IEEE80211_MODE_QUARTER]  = "quarter",
73 	[IEEE80211_MODE_11NA]	  = "11na",
74 	[IEEE80211_MODE_11NG]	  = "11ng",
75 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
76 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
77 };
78 /* map ieee80211_opmode to the corresponding capability bit */
79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
80 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
81 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
82 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
83 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
84 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
85 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
86 #ifdef IEEE80211_SUPPORT_MESH
87 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
88 #endif
89 };
90 
91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
92 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
93 
94 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
98 static	int ieee80211_media_setup(struct ieee80211com *ic,
99 		struct ifmedia *media, int caps, int addsta,
100 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
101 static	int media_status(enum ieee80211_opmode,
102 		const struct ieee80211_channel *);
103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
104 
105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
106 
107 /*
108  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
109  */
110 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
111 static const struct ieee80211_rateset ieee80211_rateset_11a =
112 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
113 static const struct ieee80211_rateset ieee80211_rateset_half =
114 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
115 static const struct ieee80211_rateset ieee80211_rateset_quarter =
116 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
117 static const struct ieee80211_rateset ieee80211_rateset_11b =
118 	{ 4, { B(2), B(4), B(11), B(22) } };
119 /* NB: OFDM rates are handled specially based on mode */
120 static const struct ieee80211_rateset ieee80211_rateset_11g =
121 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
122 #undef B
123 
124 static int set_vht_extchan(struct ieee80211_channel *c);
125 
126 /*
127  * Fill in 802.11 available channel set, mark
128  * all available channels as active, and pick
129  * a default channel if not already specified.
130  */
131 void
132 ieee80211_chan_init(struct ieee80211com *ic)
133 {
134 #define	DEFAULTRATES(m, def) do { \
135 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
136 		ic->ic_sup_rates[m] = def; \
137 } while (0)
138 	struct ieee80211_channel *c;
139 	int i;
140 
141 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
142 		("invalid number of channels specified: %u", ic->ic_nchans));
143 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
144 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
145 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
146 	for (i = 0; i < ic->ic_nchans; i++) {
147 		c = &ic->ic_channels[i];
148 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
149 		/*
150 		 * Help drivers that work only with frequencies by filling
151 		 * in IEEE channel #'s if not already calculated.  Note this
152 		 * mimics similar work done in ieee80211_setregdomain when
153 		 * changing regulatory state.
154 		 */
155 		if (c->ic_ieee == 0)
156 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
157 
158 		/*
159 		 * Setup the HT40/VHT40 upper/lower bits.
160 		 * The VHT80/... math is done elsewhere.
161 		 */
162 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
163 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
164 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
165 			    c->ic_flags);
166 
167 		/* Update VHT math */
168 		/*
169 		 * XXX VHT again, note that this assumes VHT80/... channels
170 		 * are legit already.
171 		 */
172 		set_vht_extchan(c);
173 
174 		/* default max tx power to max regulatory */
175 		if (c->ic_maxpower == 0)
176 			c->ic_maxpower = 2*c->ic_maxregpower;
177 		setbit(ic->ic_chan_avail, c->ic_ieee);
178 		/*
179 		 * Identify mode capabilities.
180 		 */
181 		if (IEEE80211_IS_CHAN_A(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
183 		if (IEEE80211_IS_CHAN_B(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
185 		if (IEEE80211_IS_CHAN_ANYG(c))
186 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
187 		if (IEEE80211_IS_CHAN_FHSS(c))
188 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
189 		if (IEEE80211_IS_CHAN_108A(c))
190 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
191 		if (IEEE80211_IS_CHAN_108G(c))
192 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
193 		if (IEEE80211_IS_CHAN_ST(c))
194 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
195 		if (IEEE80211_IS_CHAN_HALF(c))
196 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
197 		if (IEEE80211_IS_CHAN_QUARTER(c))
198 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
199 		if (IEEE80211_IS_CHAN_HTA(c))
200 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
201 		if (IEEE80211_IS_CHAN_HTG(c))
202 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
203 		if (IEEE80211_IS_CHAN_VHTA(c))
204 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
205 		if (IEEE80211_IS_CHAN_VHTG(c))
206 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
207 	}
208 	/* initialize candidate channels to all available */
209 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
210 		sizeof(ic->ic_chan_avail));
211 
212 	/* sort channel table to allow lookup optimizations */
213 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
214 
215 	/* invalidate any previous state */
216 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
217 	ic->ic_prevchan = NULL;
218 	ic->ic_csa_newchan = NULL;
219 	/* arbitrarily pick the first channel */
220 	ic->ic_curchan = &ic->ic_channels[0];
221 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
222 
223 	/* fillin well-known rate sets if driver has not specified */
224 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
225 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
226 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
227 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
229 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
230 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
231 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
232 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
233 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
234 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
236 
237 	/*
238 	 * Setup required information to fill the mcsset field, if driver did
239 	 * not. Assume a 2T2R setup for historic reasons.
240 	 */
241 	if (ic->ic_rxstream == 0)
242 		ic->ic_rxstream = 2;
243 	if (ic->ic_txstream == 0)
244 		ic->ic_txstream = 2;
245 
246 	ieee80211_init_suphtrates(ic);
247 
248 	/*
249 	 * Set auto mode to reset active channel state and any desired channel.
250 	 */
251 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
252 #undef DEFAULTRATES
253 }
254 
255 static void
256 null_update_mcast(struct ieee80211com *ic)
257 {
258 
259 	ic_printf(ic, "need multicast update callback\n");
260 }
261 
262 static void
263 null_update_promisc(struct ieee80211com *ic)
264 {
265 
266 	ic_printf(ic, "need promiscuous mode update callback\n");
267 }
268 
269 static void
270 null_update_chw(struct ieee80211com *ic)
271 {
272 
273 	ic_printf(ic, "%s: need callback\n", __func__);
274 }
275 
276 int
277 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
278 {
279 	va_list ap;
280 	int retval;
281 
282 	retval = printf("%s: ", ic->ic_name);
283 	va_start(ap, fmt);
284 	retval += vprintf(fmt, ap);
285 	va_end(ap);
286 	return (retval);
287 }
288 
289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
290 static struct mtx ic_list_mtx;
291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
292 
293 static int
294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
295 {
296 	struct ieee80211com *ic;
297 	struct sbuf sb;
298 	char *sp;
299 	int error;
300 
301 	error = sysctl_wire_old_buffer(req, 0);
302 	if (error)
303 		return (error);
304 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
305 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
306 	sp = "";
307 	mtx_lock(&ic_list_mtx);
308 	LIST_FOREACH(ic, &ic_head, ic_next) {
309 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
310 		sp = " ";
311 	}
312 	mtx_unlock(&ic_list_mtx);
313 	error = sbuf_finish(&sb);
314 	sbuf_delete(&sb);
315 	return (error);
316 }
317 
318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
319     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
320     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
321 
322 /*
323  * Attach/setup the common net80211 state.  Called by
324  * the driver on attach to prior to creating any vap's.
325  */
326 void
327 ieee80211_ifattach(struct ieee80211com *ic)
328 {
329 
330 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
331 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
332 	TAILQ_INIT(&ic->ic_vaps);
333 
334 	/* Create a taskqueue for all state changes */
335 	ic->ic_tq = taskqueue_create("ic_taskq",
336 	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
337 	    taskqueue_thread_enqueue, &ic->ic_tq);
338 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 	    ic->ic_name);
340 	ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
341 	ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
342 	/*
343 	 * Fill in 802.11 available channel set, mark all
344 	 * available channels as active, and pick a default
345 	 * channel if not already specified.
346 	 */
347 	ieee80211_chan_init(ic);
348 
349 	ic->ic_update_mcast = null_update_mcast;
350 	ic->ic_update_promisc = null_update_promisc;
351 	ic->ic_update_chw = null_update_chw;
352 
353 	ic->ic_hash_key = arc4random();
354 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 	ic->ic_lintval = ic->ic_bintval;
356 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357 
358 	ieee80211_crypto_attach(ic);
359 	ieee80211_node_attach(ic);
360 	ieee80211_power_attach(ic);
361 	ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 	ieee80211_superg_attach(ic);
364 #endif
365 	ieee80211_ht_attach(ic);
366 	ieee80211_vht_attach(ic);
367 	ieee80211_scan_attach(ic);
368 	ieee80211_regdomain_attach(ic);
369 	ieee80211_dfs_attach(ic);
370 
371 	ieee80211_sysctl_attach(ic);
372 
373 	mtx_lock(&ic_list_mtx);
374 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 	mtx_unlock(&ic_list_mtx);
376 }
377 
378 /*
379  * Detach net80211 state on device detach.  Tear down
380  * all vap's and reclaim all common state prior to the
381  * device state going away.  Note we may call back into
382  * driver; it must be prepared for this.
383  */
384 void
385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 	struct ieee80211vap *vap;
388 
389 	/*
390 	 * We use this as an indicator that ifattach never had a chance to be
391 	 * called, e.g. early driver attach failed and ifdetach was called
392 	 * during subsequent detach.  Never fear, for we have nothing to do
393 	 * here.
394 	 */
395 	if (ic->ic_tq == NULL)
396 		return;
397 
398 	mtx_lock(&ic_list_mtx);
399 	LIST_REMOVE(ic, ic_next);
400 	mtx_unlock(&ic_list_mtx);
401 
402 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403 
404 	/*
405 	 * The VAP is responsible for setting and clearing
406 	 * the VIMAGE context.
407 	 */
408 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409 		ieee80211_com_vdetach(vap);
410 		ieee80211_vap_destroy(vap);
411 	}
412 	ieee80211_waitfor_parent(ic);
413 
414 	ieee80211_sysctl_detach(ic);
415 	ieee80211_dfs_detach(ic);
416 	ieee80211_regdomain_detach(ic);
417 	ieee80211_scan_detach(ic);
418 #ifdef IEEE80211_SUPPORT_SUPERG
419 	ieee80211_superg_detach(ic);
420 #endif
421 	ieee80211_vht_detach(ic);
422 	ieee80211_ht_detach(ic);
423 	/* NB: must be called before ieee80211_node_detach */
424 	ieee80211_proto_detach(ic);
425 	ieee80211_crypto_detach(ic);
426 	ieee80211_power_detach(ic);
427 	ieee80211_node_detach(ic);
428 
429 	counter_u64_free(ic->ic_ierrors);
430 	counter_u64_free(ic->ic_oerrors);
431 
432 	taskqueue_free(ic->ic_tq);
433 	IEEE80211_TX_LOCK_DESTROY(ic);
434 	IEEE80211_LOCK_DESTROY(ic);
435 }
436 
437 /*
438  * Called by drivers during attach to set the supported
439  * cipher set for software encryption.
440  */
441 void
442 ieee80211_set_software_ciphers(struct ieee80211com *ic,
443     uint32_t cipher_suite)
444 {
445 	ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
446 }
447 
448 /*
449  * Called by drivers during attach to set the supported
450  * cipher set for hardware encryption.
451  */
452 void
453 ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
454     uint32_t cipher_suite)
455 {
456 	ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
457 }
458 
459 struct ieee80211com *
460 ieee80211_find_com(const char *name)
461 {
462 	struct ieee80211com *ic;
463 
464 	mtx_lock(&ic_list_mtx);
465 	LIST_FOREACH(ic, &ic_head, ic_next)
466 		if (strcmp(ic->ic_name, name) == 0)
467 			break;
468 	mtx_unlock(&ic_list_mtx);
469 
470 	return (ic);
471 }
472 
473 void
474 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
475 {
476 	struct ieee80211com *ic;
477 
478 	mtx_lock(&ic_list_mtx);
479 	LIST_FOREACH(ic, &ic_head, ic_next)
480 		(*f)(arg, ic);
481 	mtx_unlock(&ic_list_mtx);
482 }
483 
484 /*
485  * Default reset method for use with the ioctl support.  This
486  * method is invoked after any state change in the 802.11
487  * layer that should be propagated to the hardware but not
488  * require re-initialization of the 802.11 state machine (e.g
489  * rescanning for an ap).  We always return ENETRESET which
490  * should cause the driver to re-initialize the device. Drivers
491  * can override this method to implement more optimized support.
492  */
493 static int
494 default_reset(struct ieee80211vap *vap, u_long cmd)
495 {
496 	return ENETRESET;
497 }
498 
499 /*
500  * Default for updating the VAP default TX key index.
501  *
502  * Drivers that support TX offload as well as hardware encryption offload
503  * may need to be informed of key index changes separate from the key
504  * update.
505  */
506 static void
507 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
508 {
509 
510 	/* XXX assert validity */
511 	/* XXX assert we're in a key update block */
512 	vap->iv_def_txkey = kid;
513 }
514 
515 /*
516  * Add underlying device errors to vap errors.
517  */
518 static uint64_t
519 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
520 {
521 	struct ieee80211vap *vap = ifp->if_softc;
522 	struct ieee80211com *ic = vap->iv_ic;
523 	uint64_t rv;
524 
525 	rv = if_get_counter_default(ifp, cnt);
526 	switch (cnt) {
527 	case IFCOUNTER_OERRORS:
528 		rv += counter_u64_fetch(ic->ic_oerrors);
529 		break;
530 	case IFCOUNTER_IERRORS:
531 		rv += counter_u64_fetch(ic->ic_ierrors);
532 		break;
533 	default:
534 		break;
535 	}
536 
537 	return (rv);
538 }
539 
540 /*
541  * Prepare a vap for use.  Drivers use this call to
542  * setup net80211 state in new vap's prior attaching
543  * them with ieee80211_vap_attach (below).
544  */
545 int
546 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
547     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
548     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
549 {
550 	struct ifnet *ifp;
551 
552 	ifp = if_alloc(IFT_ETHER);
553 	if (ifp == NULL) {
554 		ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
555 		return ENOMEM;
556 	}
557 	if_initname(ifp, name, unit);
558 	ifp->if_softc = vap;			/* back pointer */
559 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
560 	ifp->if_transmit = ieee80211_vap_transmit;
561 	ifp->if_qflush = ieee80211_vap_qflush;
562 	ifp->if_ioctl = ieee80211_ioctl;
563 	ifp->if_init = ieee80211_init;
564 	ifp->if_get_counter = ieee80211_get_counter;
565 
566 	vap->iv_ifp = ifp;
567 	vap->iv_ic = ic;
568 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
569 	vap->iv_flags_ext = ic->ic_flags_ext;
570 	vap->iv_flags_ven = ic->ic_flags_ven;
571 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
572 
573 	/* 11n capabilities - XXX methodize */
574 	vap->iv_htcaps = ic->ic_htcaps;
575 	vap->iv_htextcaps = ic->ic_htextcaps;
576 
577 	/* 11ac capabilities - XXX methodize */
578 	vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
579 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
580 
581 	vap->iv_opmode = opmode;
582 	vap->iv_caps |= ieee80211_opcap[opmode];
583 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
584 	switch (opmode) {
585 	case IEEE80211_M_WDS:
586 		/*
587 		 * WDS links must specify the bssid of the far end.
588 		 * For legacy operation this is a static relationship.
589 		 * For non-legacy operation the station must associate
590 		 * and be authorized to pass traffic.  Plumbing the
591 		 * vap to the proper node happens when the vap
592 		 * transitions to RUN state.
593 		 */
594 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
595 		vap->iv_flags |= IEEE80211_F_DESBSSID;
596 		if (flags & IEEE80211_CLONE_WDSLEGACY)
597 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
598 		break;
599 #ifdef IEEE80211_SUPPORT_TDMA
600 	case IEEE80211_M_AHDEMO:
601 		if (flags & IEEE80211_CLONE_TDMA) {
602 			/* NB: checked before clone operation allowed */
603 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
604 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
605 			/*
606 			 * Propagate TDMA capability to mark vap; this
607 			 * cannot be removed and is used to distinguish
608 			 * regular ahdemo operation from ahdemo+tdma.
609 			 */
610 			vap->iv_caps |= IEEE80211_C_TDMA;
611 		}
612 		break;
613 #endif
614 	default:
615 		break;
616 	}
617 	/* auto-enable s/w beacon miss support */
618 	if (flags & IEEE80211_CLONE_NOBEACONS)
619 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
620 	/* auto-generated or user supplied MAC address */
621 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
622 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
623 	/*
624 	 * Enable various functionality by default if we're
625 	 * capable; the driver can override us if it knows better.
626 	 */
627 	if (vap->iv_caps & IEEE80211_C_WME)
628 		vap->iv_flags |= IEEE80211_F_WME;
629 	if (vap->iv_caps & IEEE80211_C_BURST)
630 		vap->iv_flags |= IEEE80211_F_BURST;
631 	/* NB: bg scanning only makes sense for station mode right now */
632 	if (vap->iv_opmode == IEEE80211_M_STA &&
633 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
634 		vap->iv_flags |= IEEE80211_F_BGSCAN;
635 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
636 	/* NB: DFS support only makes sense for ap mode right now */
637 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
638 	    (vap->iv_caps & IEEE80211_C_DFS))
639 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
640 	/* NB: only flip on U-APSD for hostap/sta for now */
641 	if ((vap->iv_opmode == IEEE80211_M_STA)
642 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
643 		if (vap->iv_caps & IEEE80211_C_UAPSD)
644 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
645 	}
646 
647 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
648 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
649 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
650 	/*
651 	 * Install a default reset method for the ioctl support;
652 	 * the driver can override this.
653 	 */
654 	vap->iv_reset = default_reset;
655 
656 	/*
657 	 * Install a default crypto key update method, the driver
658 	 * can override this.
659 	 */
660 	vap->iv_update_deftxkey = default_update_deftxkey;
661 
662 	ieee80211_sysctl_vattach(vap);
663 	ieee80211_crypto_vattach(vap);
664 	ieee80211_node_vattach(vap);
665 	ieee80211_power_vattach(vap);
666 	ieee80211_proto_vattach(vap);
667 #ifdef IEEE80211_SUPPORT_SUPERG
668 	ieee80211_superg_vattach(vap);
669 #endif
670 	ieee80211_ht_vattach(vap);
671 	ieee80211_vht_vattach(vap);
672 	ieee80211_scan_vattach(vap);
673 	ieee80211_regdomain_vattach(vap);
674 	ieee80211_radiotap_vattach(vap);
675 	ieee80211_vap_reset_erp(vap);
676 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
677 
678 	return 0;
679 }
680 
681 /*
682  * Activate a vap.  State should have been prepared with a
683  * call to ieee80211_vap_setup and by the driver.  On return
684  * from this call the vap is ready for use.
685  */
686 int
687 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
688     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
689 {
690 	struct ifnet *ifp = vap->iv_ifp;
691 	struct ieee80211com *ic = vap->iv_ic;
692 	struct ifmediareq imr;
693 	int maxrate;
694 
695 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
696 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
697 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
698 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
699 
700 	/*
701 	 * Do late attach work that cannot happen until after
702 	 * the driver has had a chance to override defaults.
703 	 */
704 	ieee80211_node_latevattach(vap);
705 	ieee80211_power_latevattach(vap);
706 
707 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
708 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
709 	ieee80211_media_status(ifp, &imr);
710 	/* NB: strip explicit mode; we're actually in autoselect */
711 	ifmedia_set(&vap->iv_media,
712 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
713 	if (maxrate)
714 		ifp->if_baudrate = IF_Mbps(maxrate);
715 
716 	ether_ifattach(ifp, macaddr);
717 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
718 	/* hook output method setup by ether_ifattach */
719 	vap->iv_output = ifp->if_output;
720 	ifp->if_output = ieee80211_output;
721 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
722 
723 	IEEE80211_LOCK(ic);
724 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
725 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
726 #ifdef IEEE80211_SUPPORT_SUPERG
727 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
728 #endif
729 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
730 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
731 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
732 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
733 
734 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
735 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
736 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
737 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
738 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
739 	IEEE80211_UNLOCK(ic);
740 
741 	return 1;
742 }
743 
744 /*
745  * Tear down vap state and reclaim the ifnet.
746  * The driver is assumed to have prepared for
747  * this; e.g. by turning off interrupts for the
748  * underlying device.
749  */
750 void
751 ieee80211_vap_detach(struct ieee80211vap *vap)
752 {
753 	struct ieee80211com *ic = vap->iv_ic;
754 	struct ifnet *ifp = vap->iv_ifp;
755 	int i;
756 
757 	CURVNET_SET(ifp->if_vnet);
758 
759 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
760 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
761 
762 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
763 	ether_ifdetach(ifp);
764 
765 	ieee80211_stop(vap);
766 
767 	/*
768 	 * Flush any deferred vap tasks.
769 	 */
770 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
771 		ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
772 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
773 	ieee80211_draintask(ic, &vap->iv_wme_task);
774 	ieee80211_draintask(ic, &ic->ic_parent_task);
775 
776 	/* XXX band-aid until ifnet handles this for us */
777 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
778 
779 	IEEE80211_LOCK(ic);
780 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
781 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
782 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
783 #ifdef IEEE80211_SUPPORT_SUPERG
784 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
785 #endif
786 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
787 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
788 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
789 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
790 
791 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
792 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
793 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
794 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
795 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
796 
797 	/* NB: this handles the bpfdetach done below */
798 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
799 	if (vap->iv_ifflags & IFF_PROMISC)
800 		ieee80211_promisc(vap, false);
801 	if (vap->iv_ifflags & IFF_ALLMULTI)
802 		ieee80211_allmulti(vap, false);
803 	IEEE80211_UNLOCK(ic);
804 
805 	ifmedia_removeall(&vap->iv_media);
806 
807 	ieee80211_radiotap_vdetach(vap);
808 	ieee80211_regdomain_vdetach(vap);
809 	ieee80211_scan_vdetach(vap);
810 #ifdef IEEE80211_SUPPORT_SUPERG
811 	ieee80211_superg_vdetach(vap);
812 #endif
813 	ieee80211_vht_vdetach(vap);
814 	ieee80211_ht_vdetach(vap);
815 	/* NB: must be before ieee80211_node_vdetach */
816 	ieee80211_proto_vdetach(vap);
817 	ieee80211_crypto_vdetach(vap);
818 	ieee80211_power_vdetach(vap);
819 	ieee80211_node_vdetach(vap);
820 	ieee80211_sysctl_vdetach(vap);
821 
822 	if_free(ifp);
823 
824 	CURVNET_RESTORE();
825 }
826 
827 /*
828  * Count number of vaps in promisc, and issue promisc on
829  * parent respectively.
830  */
831 void
832 ieee80211_promisc(struct ieee80211vap *vap, bool on)
833 {
834 	struct ieee80211com *ic = vap->iv_ic;
835 
836 	IEEE80211_LOCK_ASSERT(ic);
837 
838 	if (on) {
839 		if (++ic->ic_promisc == 1)
840 			ieee80211_runtask(ic, &ic->ic_promisc_task);
841 	} else {
842 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
843 		    __func__, ic));
844 		if (--ic->ic_promisc == 0)
845 			ieee80211_runtask(ic, &ic->ic_promisc_task);
846 	}
847 }
848 
849 /*
850  * Count number of vaps in allmulti, and issue allmulti on
851  * parent respectively.
852  */
853 void
854 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
855 {
856 	struct ieee80211com *ic = vap->iv_ic;
857 
858 	IEEE80211_LOCK_ASSERT(ic);
859 
860 	if (on) {
861 		if (++ic->ic_allmulti == 1)
862 			ieee80211_runtask(ic, &ic->ic_mcast_task);
863 	} else {
864 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
865 		    __func__, ic));
866 		if (--ic->ic_allmulti == 0)
867 			ieee80211_runtask(ic, &ic->ic_mcast_task);
868 	}
869 }
870 
871 /*
872  * Synchronize flag bit state in the com structure
873  * according to the state of all vap's.  This is used,
874  * for example, to handle state changes via ioctls.
875  */
876 static void
877 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
878 {
879 	struct ieee80211vap *vap;
880 	int bit;
881 
882 	IEEE80211_LOCK_ASSERT(ic);
883 
884 	bit = 0;
885 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
886 		if (vap->iv_flags & flag) {
887 			bit = 1;
888 			break;
889 		}
890 	if (bit)
891 		ic->ic_flags |= flag;
892 	else
893 		ic->ic_flags &= ~flag;
894 }
895 
896 void
897 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
898 {
899 	struct ieee80211com *ic = vap->iv_ic;
900 
901 	IEEE80211_LOCK(ic);
902 	if (flag < 0) {
903 		flag = -flag;
904 		vap->iv_flags &= ~flag;
905 	} else
906 		vap->iv_flags |= flag;
907 	ieee80211_syncflag_locked(ic, flag);
908 	IEEE80211_UNLOCK(ic);
909 }
910 
911 /*
912  * Synchronize flags_ht bit state in the com structure
913  * according to the state of all vap's.  This is used,
914  * for example, to handle state changes via ioctls.
915  */
916 static void
917 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
918 {
919 	struct ieee80211vap *vap;
920 	int bit;
921 
922 	IEEE80211_LOCK_ASSERT(ic);
923 
924 	bit = 0;
925 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
926 		if (vap->iv_flags_ht & flag) {
927 			bit = 1;
928 			break;
929 		}
930 	if (bit)
931 		ic->ic_flags_ht |= flag;
932 	else
933 		ic->ic_flags_ht &= ~flag;
934 }
935 
936 void
937 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
938 {
939 	struct ieee80211com *ic = vap->iv_ic;
940 
941 	IEEE80211_LOCK(ic);
942 	if (flag < 0) {
943 		flag = -flag;
944 		vap->iv_flags_ht &= ~flag;
945 	} else
946 		vap->iv_flags_ht |= flag;
947 	ieee80211_syncflag_ht_locked(ic, flag);
948 	IEEE80211_UNLOCK(ic);
949 }
950 
951 /*
952  * Synchronize flags_vht bit state in the com structure
953  * according to the state of all vap's.  This is used,
954  * for example, to handle state changes via ioctls.
955  */
956 static void
957 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
958 {
959 	struct ieee80211vap *vap;
960 	int bit;
961 
962 	IEEE80211_LOCK_ASSERT(ic);
963 
964 	bit = 0;
965 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
966 		if (vap->iv_vht_flags & flag) {
967 			bit = 1;
968 			break;
969 		}
970 	if (bit)
971 		ic->ic_vht_flags |= flag;
972 	else
973 		ic->ic_vht_flags &= ~flag;
974 }
975 
976 void
977 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
978 {
979 	struct ieee80211com *ic = vap->iv_ic;
980 
981 	IEEE80211_LOCK(ic);
982 	if (flag < 0) {
983 		flag = -flag;
984 		vap->iv_vht_flags &= ~flag;
985 	} else
986 		vap->iv_vht_flags |= flag;
987 	ieee80211_syncflag_vht_locked(ic, flag);
988 	IEEE80211_UNLOCK(ic);
989 }
990 
991 /*
992  * Synchronize flags_ext bit state in the com structure
993  * according to the state of all vap's.  This is used,
994  * for example, to handle state changes via ioctls.
995  */
996 static void
997 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
998 {
999 	struct ieee80211vap *vap;
1000 	int bit;
1001 
1002 	IEEE80211_LOCK_ASSERT(ic);
1003 
1004 	bit = 0;
1005 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1006 		if (vap->iv_flags_ext & flag) {
1007 			bit = 1;
1008 			break;
1009 		}
1010 	if (bit)
1011 		ic->ic_flags_ext |= flag;
1012 	else
1013 		ic->ic_flags_ext &= ~flag;
1014 }
1015 
1016 void
1017 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1018 {
1019 	struct ieee80211com *ic = vap->iv_ic;
1020 
1021 	IEEE80211_LOCK(ic);
1022 	if (flag < 0) {
1023 		flag = -flag;
1024 		vap->iv_flags_ext &= ~flag;
1025 	} else
1026 		vap->iv_flags_ext |= flag;
1027 	ieee80211_syncflag_ext_locked(ic, flag);
1028 	IEEE80211_UNLOCK(ic);
1029 }
1030 
1031 static __inline int
1032 mapgsm(u_int freq, u_int flags)
1033 {
1034 	freq *= 10;
1035 	if (flags & IEEE80211_CHAN_QUARTER)
1036 		freq += 5;
1037 	else if (flags & IEEE80211_CHAN_HALF)
1038 		freq += 10;
1039 	else
1040 		freq += 20;
1041 	/* NB: there is no 907/20 wide but leave room */
1042 	return (freq - 906*10) / 5;
1043 }
1044 
1045 static __inline int
1046 mappsb(u_int freq, u_int flags)
1047 {
1048 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1049 }
1050 
1051 /*
1052  * Convert MHz frequency to IEEE channel number.
1053  */
1054 int
1055 ieee80211_mhz2ieee(u_int freq, u_int flags)
1056 {
1057 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1058 	if (flags & IEEE80211_CHAN_GSM)
1059 		return mapgsm(freq, flags);
1060 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1061 		if (freq == 2484)
1062 			return 14;
1063 		if (freq < 2484)
1064 			return ((int) freq - 2407) / 5;
1065 		else
1066 			return 15 + ((freq - 2512) / 20);
1067 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1068 		if (freq <= 5000) {
1069 			/* XXX check regdomain? */
1070 			if (IS_FREQ_IN_PSB(freq))
1071 				return mappsb(freq, flags);
1072 			return (freq - 4000) / 5;
1073 		} else
1074 			return (freq - 5000) / 5;
1075 	} else {				/* either, guess */
1076 		if (freq == 2484)
1077 			return 14;
1078 		if (freq < 2484) {
1079 			if (907 <= freq && freq <= 922)
1080 				return mapgsm(freq, flags);
1081 			return ((int) freq - 2407) / 5;
1082 		}
1083 		if (freq < 5000) {
1084 			if (IS_FREQ_IN_PSB(freq))
1085 				return mappsb(freq, flags);
1086 			else if (freq > 4900)
1087 				return (freq - 4000) / 5;
1088 			else
1089 				return 15 + ((freq - 2512) / 20);
1090 		}
1091 		return (freq - 5000) / 5;
1092 	}
1093 #undef IS_FREQ_IN_PSB
1094 }
1095 
1096 /*
1097  * Convert channel to IEEE channel number.
1098  */
1099 int
1100 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1101 {
1102 	if (c == NULL) {
1103 		ic_printf(ic, "invalid channel (NULL)\n");
1104 		return 0;		/* XXX */
1105 	}
1106 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1107 }
1108 
1109 /*
1110  * Convert IEEE channel number to MHz frequency.
1111  */
1112 u_int
1113 ieee80211_ieee2mhz(u_int chan, u_int flags)
1114 {
1115 	if (flags & IEEE80211_CHAN_GSM)
1116 		return 907 + 5 * (chan / 10);
1117 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1118 		if (chan == 14)
1119 			return 2484;
1120 		if (chan < 14)
1121 			return 2407 + chan*5;
1122 		else
1123 			return 2512 + ((chan-15)*20);
1124 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1125 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1126 			chan -= 37;
1127 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1128 		}
1129 		return 5000 + (chan*5);
1130 	} else {				/* either, guess */
1131 		/* XXX can't distinguish PSB+GSM channels */
1132 		if (chan == 14)
1133 			return 2484;
1134 		if (chan < 14)			/* 0-13 */
1135 			return 2407 + chan*5;
1136 		if (chan < 27)			/* 15-26 */
1137 			return 2512 + ((chan-15)*20);
1138 		return 5000 + (chan*5);
1139 	}
1140 }
1141 
1142 static __inline void
1143 set_extchan(struct ieee80211_channel *c)
1144 {
1145 
1146 	/*
1147 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1148 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1149 	 */
1150 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1151 		c->ic_extieee = c->ic_ieee + 4;
1152 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1153 		c->ic_extieee = c->ic_ieee - 4;
1154 	else
1155 		c->ic_extieee = 0;
1156 }
1157 
1158 /*
1159  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1160  *
1161  * This for now uses a hard-coded list of 80MHz wide channels.
1162  *
1163  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1164  * wide channel we've already decided upon.
1165  *
1166  * For VHT80 and VHT160, there are only a small number of fixed
1167  * 80/160MHz wide channels, so we just use those.
1168  *
1169  * This is all likely very very wrong - both the regulatory code
1170  * and this code needs to ensure that all four channels are
1171  * available and valid before the VHT80 (and eight for VHT160) channel
1172  * is created.
1173  */
1174 
1175 struct vht_chan_range {
1176 	uint16_t freq_start;
1177 	uint16_t freq_end;
1178 };
1179 
1180 struct vht_chan_range vht80_chan_ranges[] = {
1181 	{ 5170, 5250 },
1182 	{ 5250, 5330 },
1183 	{ 5490, 5570 },
1184 	{ 5570, 5650 },
1185 	{ 5650, 5730 },
1186 	{ 5735, 5815 },
1187 	{ 0, 0 }
1188 };
1189 
1190 struct vht_chan_range vht160_chan_ranges[] = {
1191 	{ 5170, 5330 },
1192 	{ 5490, 5650 },
1193 	{ 0, 0 }
1194 };
1195 
1196 static int
1197 set_vht_extchan(struct ieee80211_channel *c)
1198 {
1199 	int i;
1200 
1201 	if (! IEEE80211_IS_CHAN_VHT(c))
1202 		return (0);
1203 
1204 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1205 		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1206 		    __func__, c->ic_ieee, c->ic_flags);
1207 	}
1208 
1209 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1210 		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1211 			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1212 			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1213 				int midpoint;
1214 
1215 				midpoint = vht160_chan_ranges[i].freq_start + 80;
1216 				c->ic_vht_ch_freq1 =
1217 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1218 				c->ic_vht_ch_freq2 = 0;
1219 #if 0
1220 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1221 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1222 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1223 #endif
1224 				return (1);
1225 			}
1226 		}
1227 		return (0);
1228 	}
1229 
1230 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1231 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1232 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1233 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1234 				int midpoint;
1235 
1236 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1237 				c->ic_vht_ch_freq1 =
1238 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1239 				c->ic_vht_ch_freq2 = 0;
1240 #if 0
1241 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1242 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1243 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1244 #endif
1245 				return (1);
1246 			}
1247 		}
1248 		return (0);
1249 	}
1250 
1251 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1252 		if (IEEE80211_IS_CHAN_HT40U(c))
1253 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1254 		else if (IEEE80211_IS_CHAN_HT40D(c))
1255 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1256 		else
1257 			return (0);
1258 		return (1);
1259 	}
1260 
1261 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1262 		c->ic_vht_ch_freq1 = c->ic_ieee;
1263 		return (1);
1264 	}
1265 
1266 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1267 	    __func__, c->ic_ieee, c->ic_flags);
1268 
1269 	return (0);
1270 }
1271 
1272 /*
1273  * Return whether the current channel could possibly be a part of
1274  * a VHT80/VHT160 channel.
1275  *
1276  * This doesn't check that the whole range is in the allowed list
1277  * according to regulatory.
1278  */
1279 static bool
1280 is_vht160_valid_freq(uint16_t freq)
1281 {
1282 	int i;
1283 
1284 	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1285 		if (freq >= vht160_chan_ranges[i].freq_start &&
1286 		    freq < vht160_chan_ranges[i].freq_end)
1287 			return (true);
1288 	}
1289 	return (false);
1290 }
1291 
1292 static int
1293 is_vht80_valid_freq(uint16_t freq)
1294 {
1295 	int i;
1296 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1297 		if (freq >= vht80_chan_ranges[i].freq_start &&
1298 		    freq < vht80_chan_ranges[i].freq_end)
1299 			return (1);
1300 	}
1301 	return (0);
1302 }
1303 
1304 static int
1305 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1306     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1307 {
1308 	struct ieee80211_channel *c;
1309 
1310 	if (*nchans >= maxchans)
1311 		return (ENOBUFS);
1312 
1313 #if 0
1314 	printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1315 	    __func__, *nchans, maxchans, ieee, freq, flags);
1316 #endif
1317 
1318 	c = &chans[(*nchans)++];
1319 	c->ic_ieee = ieee;
1320 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1321 	c->ic_maxregpower = maxregpower;
1322 	c->ic_maxpower = 2 * maxregpower;
1323 	c->ic_flags = flags;
1324 	c->ic_vht_ch_freq1 = 0;
1325 	c->ic_vht_ch_freq2 = 0;
1326 	set_extchan(c);
1327 	set_vht_extchan(c);
1328 
1329 	return (0);
1330 }
1331 
1332 static int
1333 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1334     uint32_t flags)
1335 {
1336 	struct ieee80211_channel *c;
1337 
1338 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1339 
1340 	if (*nchans >= maxchans)
1341 		return (ENOBUFS);
1342 
1343 #if 0
1344 	printf("%s: %d of %d: flags=0x%08x\n",
1345 	    __func__, *nchans, maxchans, flags);
1346 #endif
1347 
1348 	c = &chans[(*nchans)++];
1349 	c[0] = c[-1];
1350 	c->ic_flags = flags;
1351 	c->ic_vht_ch_freq1 = 0;
1352 	c->ic_vht_ch_freq2 = 0;
1353 	set_extchan(c);
1354 	set_vht_extchan(c);
1355 
1356 	return (0);
1357 }
1358 
1359 /*
1360  * XXX VHT-2GHz
1361  */
1362 static void
1363 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1364 {
1365 	int nmodes;
1366 
1367 	nmodes = 0;
1368 	if (isset(bands, IEEE80211_MODE_11B))
1369 		flags[nmodes++] = IEEE80211_CHAN_B;
1370 	if (isset(bands, IEEE80211_MODE_11G))
1371 		flags[nmodes++] = IEEE80211_CHAN_G;
1372 	if (isset(bands, IEEE80211_MODE_11NG))
1373 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1374 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1375 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1376 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1377 	}
1378 	flags[nmodes] = 0;
1379 }
1380 
1381 static void
1382 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1383 {
1384 	int nmodes;
1385 
1386 	/*
1387 	 * The addchan_list() function seems to expect the flags array to
1388 	 * be in channel width order, so the VHT bits are interspersed
1389 	 * as appropriate to maintain said order.
1390 	 *
1391 	 * It also assumes HT40U is before HT40D.
1392 	 */
1393 	nmodes = 0;
1394 
1395 	/* 20MHz */
1396 	if (isset(bands, IEEE80211_MODE_11A))
1397 		flags[nmodes++] = IEEE80211_CHAN_A;
1398 	if (isset(bands, IEEE80211_MODE_11NA))
1399 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1400 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1401 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1402 		    IEEE80211_CHAN_VHT20;
1403 	}
1404 
1405 	/* 40MHz */
1406 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1407 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1408 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1409 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1410 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1411 		    IEEE80211_CHAN_VHT40U;
1412 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1413 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1414 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1415 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1416 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1417 		    IEEE80211_CHAN_VHT40D;
1418 
1419 	/* 80MHz */
1420 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1421 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1422 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1423 		    IEEE80211_CHAN_VHT80;
1424 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1425 		    IEEE80211_CHAN_VHT80;
1426 	}
1427 
1428 	/* VHT160 */
1429 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1430 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1431 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1432 		    IEEE80211_CHAN_VHT160;
1433 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1434 		    IEEE80211_CHAN_VHT160;
1435 	}
1436 
1437 	/* VHT80+80 */
1438 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1439 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1440 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1441 		    IEEE80211_CHAN_VHT80P80;
1442 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1443 		    IEEE80211_CHAN_VHT80P80;
1444 	}
1445 
1446 	flags[nmodes] = 0;
1447 }
1448 
1449 static void
1450 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1451 {
1452 
1453 	flags[0] = 0;
1454 	if (isset(bands, IEEE80211_MODE_11A) ||
1455 	    isset(bands, IEEE80211_MODE_11NA) ||
1456 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1457 		if (isset(bands, IEEE80211_MODE_11B) ||
1458 		    isset(bands, IEEE80211_MODE_11G) ||
1459 		    isset(bands, IEEE80211_MODE_11NG) ||
1460 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1461 			return;
1462 
1463 		getflags_5ghz(bands, flags, cbw_flags);
1464 	} else
1465 		getflags_2ghz(bands, flags, cbw_flags);
1466 }
1467 
1468 /*
1469  * Add one 20 MHz channel into specified channel list.
1470  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1471  * channels if you have any B/G/N band bit set.
1472  * The _cbw() variant does also support HT40/VHT80/160/80+80.
1473  */
1474 int
1475 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1476     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1477     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1478 {
1479 	uint32_t flags[IEEE80211_MODE_MAX];
1480 	int i, error;
1481 
1482 	getflags(bands, flags, cbw_flags);
1483 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1484 
1485 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1486 	    flags[0] | chan_flags);
1487 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1488 		error = copychan_prev(chans, maxchans, nchans,
1489 		    flags[i] | chan_flags);
1490 	}
1491 
1492 	return (error);
1493 }
1494 
1495 int
1496 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1497     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1498     uint32_t chan_flags, const uint8_t bands[])
1499 {
1500 
1501 	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1502 	    maxregpower, chan_flags, bands, 0));
1503 }
1504 
1505 static struct ieee80211_channel *
1506 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1507     uint32_t flags)
1508 {
1509 	struct ieee80211_channel *c;
1510 	int i;
1511 
1512 	flags &= IEEE80211_CHAN_ALLTURBO;
1513 	/* brute force search */
1514 	for (i = 0; i < nchans; i++) {
1515 		c = &chans[i];
1516 		if (c->ic_freq == freq &&
1517 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1518 			return c;
1519 	}
1520 	return NULL;
1521 }
1522 
1523 /*
1524  * Add 40 MHz channel pair into specified channel list.
1525  */
1526 /* XXX VHT */
1527 int
1528 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1529     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1530 {
1531 	struct ieee80211_channel *cent, *extc;
1532 	uint16_t freq;
1533 	int error;
1534 
1535 	freq = ieee80211_ieee2mhz(ieee, flags);
1536 
1537 	/*
1538 	 * Each entry defines an HT40 channel pair; find the
1539 	 * center channel, then the extension channel above.
1540 	 */
1541 	flags |= IEEE80211_CHAN_HT20;
1542 	cent = findchannel(chans, *nchans, freq, flags);
1543 	if (cent == NULL)
1544 		return (EINVAL);
1545 
1546 	extc = findchannel(chans, *nchans, freq + 20, flags);
1547 	if (extc == NULL)
1548 		return (ENOENT);
1549 
1550 	flags &= ~IEEE80211_CHAN_HT;
1551 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1552 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1553 	if (error != 0)
1554 		return (error);
1555 
1556 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1557 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1558 
1559 	return (error);
1560 }
1561 
1562 /*
1563  * Fetch the center frequency for the primary channel.
1564  */
1565 uint32_t
1566 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1567 {
1568 
1569 	return (c->ic_freq);
1570 }
1571 
1572 /*
1573  * Fetch the center frequency for the primary BAND channel.
1574  *
1575  * For 5, 10, 20MHz channels it'll be the normally configured channel
1576  * frequency.
1577  *
1578  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1579  * wide channel, not the centre of the primary channel (that's ic_freq).
1580  *
1581  * For 80+80MHz channels this will be the centre of the primary
1582  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1583  */
1584 uint32_t
1585 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1586 {
1587 
1588 	/*
1589 	 * VHT - use the pre-calculated centre frequency
1590 	 * of the given channel.
1591 	 */
1592 	if (IEEE80211_IS_CHAN_VHT(c))
1593 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1594 
1595 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1596 		return (c->ic_freq + 10);
1597 	}
1598 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1599 		return (c->ic_freq - 10);
1600 	}
1601 
1602 	return (c->ic_freq);
1603 }
1604 
1605 /*
1606  * For now, no 80+80 support; it will likely always return 0.
1607  */
1608 uint32_t
1609 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1610 {
1611 
1612 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1613 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1614 
1615 	return (0);
1616 }
1617 
1618 /*
1619  * Adds channels into specified channel list (ieee[] array must be sorted).
1620  * Channels are already sorted.
1621  */
1622 static int
1623 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1624     const uint8_t ieee[], int nieee, uint32_t flags[])
1625 {
1626 	uint16_t freq;
1627 	int i, j, error;
1628 	int is_vht;
1629 
1630 	for (i = 0; i < nieee; i++) {
1631 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1632 		for (j = 0; flags[j] != 0; j++) {
1633 			/*
1634 			 * Notes:
1635 			 * + HT40 and VHT40 channels occur together, so
1636 			 *   we need to be careful that we actually allow that.
1637 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1638 			 *   make sure it's not skipped because of the overlap
1639 			 *   check used for (V)HT40.
1640 			 */
1641 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1642 
1643 			/* XXX TODO FIXME VHT80P80. */
1644 
1645 			/* Test for VHT160 analogue to the VHT80 below. */
1646 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1647 				if (! is_vht160_valid_freq(freq))
1648 					continue;
1649 
1650 			/*
1651 			 * Test for VHT80.
1652 			 * XXX This is all very broken right now.
1653 			 * What we /should/ do is:
1654 			 *
1655 			 * + check that the frequency is in the list of
1656 			 *   allowed VHT80 ranges; and
1657 			 * + the other 3 channels in the list are actually
1658 			 *   also available.
1659 			 */
1660 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1661 				if (! is_vht80_valid_freq(freq))
1662 					continue;
1663 
1664 			/*
1665 			 * Test for (V)HT40.
1666 			 *
1667 			 * This is also a fall through from VHT80; as we only
1668 			 * allow a VHT80 channel if the VHT40 combination is
1669 			 * also valid.  If the VHT40 form is not valid then
1670 			 * we certainly can't do VHT80..
1671 			 */
1672 			if (flags[j] & IEEE80211_CHAN_HT40D)
1673 				/*
1674 				 * Can't have a "lower" channel if we are the
1675 				 * first channel.
1676 				 *
1677 				 * Can't have a "lower" channel if it's below/
1678 				 * within 20MHz of the first channel.
1679 				 *
1680 				 * Can't have a "lower" channel if the channel
1681 				 * below it is not 20MHz away.
1682 				 */
1683 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1684 				    freq - 20 !=
1685 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1686 					continue;
1687 			if (flags[j] & IEEE80211_CHAN_HT40U)
1688 				/*
1689 				 * Can't have an "upper" channel if we are
1690 				 * the last channel.
1691 				 *
1692 				 * Can't have an "upper" channel be above the
1693 				 * last channel in the list.
1694 				 *
1695 				 * Can't have an "upper" channel if the next
1696 				 * channel according to the math isn't 20MHz
1697 				 * away.  (Likely for channel 13/14.)
1698 				 */
1699 				if (i == nieee - 1 ||
1700 				    ieee[i] + 4 > ieee[nieee - 1] ||
1701 				    freq + 20 !=
1702 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1703 					continue;
1704 
1705 			if (j == 0) {
1706 				error = addchan(chans, maxchans, nchans,
1707 				    ieee[i], freq, 0, flags[j]);
1708 			} else {
1709 				error = copychan_prev(chans, maxchans, nchans,
1710 				    flags[j]);
1711 			}
1712 			if (error != 0)
1713 				return (error);
1714 		}
1715 	}
1716 
1717 	return (0);
1718 }
1719 
1720 int
1721 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1722     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1723     int cbw_flags)
1724 {
1725 	uint32_t flags[IEEE80211_MODE_MAX];
1726 
1727 	/* XXX no VHT for now */
1728 	getflags_2ghz(bands, flags, cbw_flags);
1729 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1730 
1731 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1732 }
1733 
1734 int
1735 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1736     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1737 {
1738 	const uint8_t default_chan_list[] =
1739 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1740 
1741 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1742 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1743 }
1744 
1745 int
1746 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1747     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1748     int cbw_flags)
1749 {
1750 	/*
1751 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1752 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1753 	 */
1754 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1755 
1756 	getflags_5ghz(bands, flags, cbw_flags);
1757 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1758 
1759 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1760 }
1761 
1762 /*
1763  * Locate a channel given a frequency+flags.  We cache
1764  * the previous lookup to optimize switching between two
1765  * channels--as happens with dynamic turbo.
1766  */
1767 struct ieee80211_channel *
1768 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1769 {
1770 	struct ieee80211_channel *c;
1771 
1772 	flags &= IEEE80211_CHAN_ALLTURBO;
1773 	c = ic->ic_prevchan;
1774 	if (c != NULL && c->ic_freq == freq &&
1775 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1776 		return c;
1777 	/* brute force search */
1778 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1779 }
1780 
1781 /*
1782  * Locate a channel given a channel number+flags.  We cache
1783  * the previous lookup to optimize switching between two
1784  * channels--as happens with dynamic turbo.
1785  */
1786 struct ieee80211_channel *
1787 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1788 {
1789 	struct ieee80211_channel *c;
1790 	int i;
1791 
1792 	flags &= IEEE80211_CHAN_ALLTURBO;
1793 	c = ic->ic_prevchan;
1794 	if (c != NULL && c->ic_ieee == ieee &&
1795 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1796 		return c;
1797 	/* brute force search */
1798 	for (i = 0; i < ic->ic_nchans; i++) {
1799 		c = &ic->ic_channels[i];
1800 		if (c->ic_ieee == ieee &&
1801 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1802 			return c;
1803 	}
1804 	return NULL;
1805 }
1806 
1807 /*
1808  * Lookup a channel suitable for the given rx status.
1809  *
1810  * This is used to find a channel for a frame (eg beacon, probe
1811  * response) based purely on the received PHY information.
1812  *
1813  * For now it tries to do it based on R_FREQ / R_IEEE.
1814  * This is enough for 11bg and 11a (and thus 11ng/11na)
1815  * but it will not be enough for GSM, PSB channels and the
1816  * like.  It also doesn't know about legacy-turbog and
1817  * legacy-turbo modes, which some offload NICs actually
1818  * support in weird ways.
1819  *
1820  * Takes the ic and rxstatus; returns the channel or NULL
1821  * if not found.
1822  *
1823  * XXX TODO: Add support for that when the need arises.
1824  */
1825 struct ieee80211_channel *
1826 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1827     const struct ieee80211_rx_stats *rxs)
1828 {
1829 	struct ieee80211com *ic = vap->iv_ic;
1830 	uint32_t flags;
1831 	struct ieee80211_channel *c;
1832 
1833 	if (rxs == NULL)
1834 		return (NULL);
1835 
1836 	/*
1837 	 * Strictly speaking we only use freq for now,
1838 	 * however later on we may wish to just store
1839 	 * the ieee for verification.
1840 	 */
1841 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1842 		return (NULL);
1843 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1844 		return (NULL);
1845 	if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1846 		return (NULL);
1847 
1848 	/*
1849 	 * If the rx status contains a valid ieee/freq, then
1850 	 * ensure we populate the correct channel information
1851 	 * in rxchan before passing it up to the scan infrastructure.
1852 	 * Offload NICs will pass up beacons from all channels
1853 	 * during background scans.
1854 	 */
1855 
1856 	/* Determine a band */
1857 	switch (rxs->c_band) {
1858 	case IEEE80211_CHAN_2GHZ:
1859 		flags = IEEE80211_CHAN_G;
1860 		break;
1861 	case IEEE80211_CHAN_5GHZ:
1862 		flags = IEEE80211_CHAN_A;
1863 		break;
1864 	default:
1865 		if (rxs->c_freq < 3000) {
1866 			flags = IEEE80211_CHAN_G;
1867 		} else {
1868 			flags = IEEE80211_CHAN_A;
1869 		}
1870 		break;
1871 	}
1872 
1873 	/* Channel lookup */
1874 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1875 
1876 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1877 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1878 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1879 
1880 	return (c);
1881 }
1882 
1883 static void
1884 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1885 {
1886 #define	ADD(_ic, _s, _o) \
1887 	ifmedia_add(media, \
1888 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1889 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1890 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1891 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1892 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1893 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1894 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1895 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1896 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1897 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1898 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1899 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1900 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1901 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1902 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1903 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1904 	};
1905 	u_int mopt;
1906 
1907 	mopt = mopts[mode];
1908 	if (addsta)
1909 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1910 	if (caps & IEEE80211_C_IBSS)
1911 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1912 	if (caps & IEEE80211_C_HOSTAP)
1913 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1914 	if (caps & IEEE80211_C_AHDEMO)
1915 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1916 	if (caps & IEEE80211_C_MONITOR)
1917 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1918 	if (caps & IEEE80211_C_WDS)
1919 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1920 	if (caps & IEEE80211_C_MBSS)
1921 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1922 #undef ADD
1923 }
1924 
1925 /*
1926  * Setup the media data structures according to the channel and
1927  * rate tables.
1928  */
1929 static int
1930 ieee80211_media_setup(struct ieee80211com *ic,
1931 	struct ifmedia *media, int caps, int addsta,
1932 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1933 {
1934 	int i, j, rate, maxrate, mword, r;
1935 	enum ieee80211_phymode mode;
1936 	const struct ieee80211_rateset *rs;
1937 	struct ieee80211_rateset allrates;
1938 
1939 	/*
1940 	 * Fill in media characteristics.
1941 	 */
1942 	ifmedia_init(media, 0, media_change, media_stat);
1943 	maxrate = 0;
1944 	/*
1945 	 * Add media for legacy operating modes.
1946 	 */
1947 	memset(&allrates, 0, sizeof(allrates));
1948 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1949 		if (isclr(ic->ic_modecaps, mode))
1950 			continue;
1951 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1952 		if (mode == IEEE80211_MODE_AUTO)
1953 			continue;
1954 		rs = &ic->ic_sup_rates[mode];
1955 		for (i = 0; i < rs->rs_nrates; i++) {
1956 			rate = rs->rs_rates[i];
1957 			mword = ieee80211_rate2media(ic, rate, mode);
1958 			if (mword == 0)
1959 				continue;
1960 			addmedia(media, caps, addsta, mode, mword);
1961 			/*
1962 			 * Add legacy rate to the collection of all rates.
1963 			 */
1964 			r = rate & IEEE80211_RATE_VAL;
1965 			for (j = 0; j < allrates.rs_nrates; j++)
1966 				if (allrates.rs_rates[j] == r)
1967 					break;
1968 			if (j == allrates.rs_nrates) {
1969 				/* unique, add to the set */
1970 				allrates.rs_rates[j] = r;
1971 				allrates.rs_nrates++;
1972 			}
1973 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1974 			if (rate > maxrate)
1975 				maxrate = rate;
1976 		}
1977 	}
1978 	for (i = 0; i < allrates.rs_nrates; i++) {
1979 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1980 				IEEE80211_MODE_AUTO);
1981 		if (mword == 0)
1982 			continue;
1983 		/* NB: remove media options from mword */
1984 		addmedia(media, caps, addsta,
1985 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1986 	}
1987 	/*
1988 	 * Add HT/11n media.  Note that we do not have enough
1989 	 * bits in the media subtype to express the MCS so we
1990 	 * use a "placeholder" media subtype and any fixed MCS
1991 	 * must be specified with a different mechanism.
1992 	 */
1993 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1994 		if (isclr(ic->ic_modecaps, mode))
1995 			continue;
1996 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1997 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1998 	}
1999 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2000 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2001 		addmedia(media, caps, addsta,
2002 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2003 		i = ic->ic_txstream * 8 - 1;
2004 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2005 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2006 			rate = ieee80211_htrates[i].ht40_rate_400ns;
2007 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2008 			rate = ieee80211_htrates[i].ht40_rate_800ns;
2009 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2010 			rate = ieee80211_htrates[i].ht20_rate_400ns;
2011 		else
2012 			rate = ieee80211_htrates[i].ht20_rate_800ns;
2013 		if (rate > maxrate)
2014 			maxrate = rate;
2015 	}
2016 
2017 	/*
2018 	 * Add VHT media.
2019 	 * XXX-BZ skip "VHT_2GHZ" for now.
2020 	 */
2021 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2022 	    mode++) {
2023 		if (isclr(ic->ic_modecaps, mode))
2024 			continue;
2025 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2026 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2027 	}
2028 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2029 	       addmedia(media, caps, addsta,
2030 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2031 
2032 		/* XXX TODO: VHT maxrate */
2033 	}
2034 
2035 	return maxrate;
2036 }
2037 
2038 /* XXX inline or eliminate? */
2039 const struct ieee80211_rateset *
2040 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2041 {
2042 	/* XXX does this work for 11ng basic rates? */
2043 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2044 }
2045 
2046 /* XXX inline or eliminate? */
2047 const struct ieee80211_htrateset *
2048 ieee80211_get_suphtrates(struct ieee80211com *ic,
2049     const struct ieee80211_channel *c)
2050 {
2051 	return &ic->ic_sup_htrates;
2052 }
2053 
2054 void
2055 ieee80211_announce(struct ieee80211com *ic)
2056 {
2057 	int i, rate, mword;
2058 	enum ieee80211_phymode mode;
2059 	const struct ieee80211_rateset *rs;
2060 
2061 	/* NB: skip AUTO since it has no rates */
2062 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2063 		if (isclr(ic->ic_modecaps, mode))
2064 			continue;
2065 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2066 		rs = &ic->ic_sup_rates[mode];
2067 		for (i = 0; i < rs->rs_nrates; i++) {
2068 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2069 			if (mword == 0)
2070 				continue;
2071 			rate = ieee80211_media2rate(mword);
2072 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
2073 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2074 		}
2075 		printf("\n");
2076 	}
2077 	ieee80211_ht_announce(ic);
2078 	ieee80211_vht_announce(ic);
2079 }
2080 
2081 void
2082 ieee80211_announce_channels(struct ieee80211com *ic)
2083 {
2084 	const struct ieee80211_channel *c;
2085 	char type;
2086 	int i, cw;
2087 
2088 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2089 	for (i = 0; i < ic->ic_nchans; i++) {
2090 		c = &ic->ic_channels[i];
2091 		if (IEEE80211_IS_CHAN_ST(c))
2092 			type = 'S';
2093 		else if (IEEE80211_IS_CHAN_108A(c))
2094 			type = 'T';
2095 		else if (IEEE80211_IS_CHAN_108G(c))
2096 			type = 'G';
2097 		else if (IEEE80211_IS_CHAN_HT(c))
2098 			type = 'n';
2099 		else if (IEEE80211_IS_CHAN_A(c))
2100 			type = 'a';
2101 		else if (IEEE80211_IS_CHAN_ANYG(c))
2102 			type = 'g';
2103 		else if (IEEE80211_IS_CHAN_B(c))
2104 			type = 'b';
2105 		else
2106 			type = 'f';
2107 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2108 			cw = 40;
2109 		else if (IEEE80211_IS_CHAN_HALF(c))
2110 			cw = 10;
2111 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2112 			cw = 5;
2113 		else
2114 			cw = 20;
2115 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2116 			, c->ic_ieee, c->ic_freq, type
2117 			, cw
2118 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2119 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2120 			, c->ic_maxregpower
2121 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2122 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2123 		);
2124 	}
2125 }
2126 
2127 static int
2128 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2129 {
2130 	switch (IFM_MODE(ime->ifm_media)) {
2131 	case IFM_IEEE80211_11A:
2132 		*mode = IEEE80211_MODE_11A;
2133 		break;
2134 	case IFM_IEEE80211_11B:
2135 		*mode = IEEE80211_MODE_11B;
2136 		break;
2137 	case IFM_IEEE80211_11G:
2138 		*mode = IEEE80211_MODE_11G;
2139 		break;
2140 	case IFM_IEEE80211_FH:
2141 		*mode = IEEE80211_MODE_FH;
2142 		break;
2143 	case IFM_IEEE80211_11NA:
2144 		*mode = IEEE80211_MODE_11NA;
2145 		break;
2146 	case IFM_IEEE80211_11NG:
2147 		*mode = IEEE80211_MODE_11NG;
2148 		break;
2149 	case IFM_IEEE80211_VHT2G:
2150 		*mode = IEEE80211_MODE_VHT_2GHZ;
2151 		break;
2152 	case IFM_IEEE80211_VHT5G:
2153 		*mode = IEEE80211_MODE_VHT_5GHZ;
2154 		break;
2155 	case IFM_AUTO:
2156 		*mode = IEEE80211_MODE_AUTO;
2157 		break;
2158 	default:
2159 		return 0;
2160 	}
2161 	/*
2162 	 * Turbo mode is an ``option''.
2163 	 * XXX does not apply to AUTO
2164 	 */
2165 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2166 		if (*mode == IEEE80211_MODE_11A) {
2167 			if (flags & IEEE80211_F_TURBOP)
2168 				*mode = IEEE80211_MODE_TURBO_A;
2169 			else
2170 				*mode = IEEE80211_MODE_STURBO_A;
2171 		} else if (*mode == IEEE80211_MODE_11G)
2172 			*mode = IEEE80211_MODE_TURBO_G;
2173 		else
2174 			return 0;
2175 	}
2176 	/* XXX HT40 +/- */
2177 	return 1;
2178 }
2179 
2180 /*
2181  * Handle a media change request on the vap interface.
2182  */
2183 int
2184 ieee80211_media_change(struct ifnet *ifp)
2185 {
2186 	struct ieee80211vap *vap = ifp->if_softc;
2187 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2188 	uint16_t newmode;
2189 
2190 	if (!media2mode(ime, vap->iv_flags, &newmode))
2191 		return EINVAL;
2192 	if (vap->iv_des_mode != newmode) {
2193 		vap->iv_des_mode = newmode;
2194 		/* XXX kick state machine if up+running */
2195 	}
2196 	return 0;
2197 }
2198 
2199 /*
2200  * Common code to calculate the media status word
2201  * from the operating mode and channel state.
2202  */
2203 static int
2204 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2205 {
2206 	int status;
2207 
2208 	status = IFM_IEEE80211;
2209 	switch (opmode) {
2210 	case IEEE80211_M_STA:
2211 		break;
2212 	case IEEE80211_M_IBSS:
2213 		status |= IFM_IEEE80211_ADHOC;
2214 		break;
2215 	case IEEE80211_M_HOSTAP:
2216 		status |= IFM_IEEE80211_HOSTAP;
2217 		break;
2218 	case IEEE80211_M_MONITOR:
2219 		status |= IFM_IEEE80211_MONITOR;
2220 		break;
2221 	case IEEE80211_M_AHDEMO:
2222 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2223 		break;
2224 	case IEEE80211_M_WDS:
2225 		status |= IFM_IEEE80211_WDS;
2226 		break;
2227 	case IEEE80211_M_MBSS:
2228 		status |= IFM_IEEE80211_MBSS;
2229 		break;
2230 	}
2231 	if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2232 		status |= IFM_IEEE80211_VHT5G;
2233 	} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2234 		status |= IFM_IEEE80211_VHT2G;
2235 	} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2236 		status |= IFM_IEEE80211_11NA;
2237 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2238 		status |= IFM_IEEE80211_11NG;
2239 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2240 		status |= IFM_IEEE80211_11A;
2241 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2242 		status |= IFM_IEEE80211_11B;
2243 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2244 		status |= IFM_IEEE80211_11G;
2245 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2246 		status |= IFM_IEEE80211_FH;
2247 	}
2248 	/* XXX else complain? */
2249 
2250 	if (IEEE80211_IS_CHAN_TURBO(chan))
2251 		status |= IFM_IEEE80211_TURBO;
2252 #if 0
2253 	if (IEEE80211_IS_CHAN_HT20(chan))
2254 		status |= IFM_IEEE80211_HT20;
2255 	if (IEEE80211_IS_CHAN_HT40(chan))
2256 		status |= IFM_IEEE80211_HT40;
2257 #endif
2258 	return status;
2259 }
2260 
2261 void
2262 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2263 {
2264 	struct ieee80211vap *vap = ifp->if_softc;
2265 	struct ieee80211com *ic = vap->iv_ic;
2266 	enum ieee80211_phymode mode;
2267 
2268 	imr->ifm_status = IFM_AVALID;
2269 	/*
2270 	 * NB: use the current channel's mode to lock down a xmit
2271 	 * rate only when running; otherwise we may have a mismatch
2272 	 * in which case the rate will not be convertible.
2273 	 */
2274 	if (vap->iv_state == IEEE80211_S_RUN ||
2275 	    vap->iv_state == IEEE80211_S_SLEEP) {
2276 		imr->ifm_status |= IFM_ACTIVE;
2277 		mode = ieee80211_chan2mode(ic->ic_curchan);
2278 	} else
2279 		mode = IEEE80211_MODE_AUTO;
2280 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2281 	/*
2282 	 * Calculate a current rate if possible.
2283 	 */
2284 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2285 		/*
2286 		 * A fixed rate is set, report that.
2287 		 */
2288 		imr->ifm_active |= ieee80211_rate2media(ic,
2289 			vap->iv_txparms[mode].ucastrate, mode);
2290 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2291 		/*
2292 		 * In station mode report the current transmit rate.
2293 		 */
2294 		imr->ifm_active |= ieee80211_rate2media(ic,
2295 			vap->iv_bss->ni_txrate, mode);
2296 	} else
2297 		imr->ifm_active |= IFM_AUTO;
2298 	if (imr->ifm_status & IFM_ACTIVE)
2299 		imr->ifm_current = imr->ifm_active;
2300 }
2301 
2302 /*
2303  * Set the current phy mode and recalculate the active channel
2304  * set based on the available channels for this mode.  Also
2305  * select a new default/current channel if the current one is
2306  * inappropriate for this mode.
2307  */
2308 int
2309 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2310 {
2311 	/*
2312 	 * Adjust basic rates in 11b/11g supported rate set.
2313 	 * Note that if operating on a hal/quarter rate channel
2314 	 * this is a noop as those rates sets are different
2315 	 * and used instead.
2316 	 */
2317 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2318 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2319 
2320 	ic->ic_curmode = mode;
2321 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2322 
2323 	return 0;
2324 }
2325 
2326 /*
2327  * Return the phy mode for with the specified channel.
2328  */
2329 enum ieee80211_phymode
2330 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2331 {
2332 
2333 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2334 		return IEEE80211_MODE_VHT_2GHZ;
2335 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2336 		return IEEE80211_MODE_VHT_5GHZ;
2337 	else if (IEEE80211_IS_CHAN_HTA(chan))
2338 		return IEEE80211_MODE_11NA;
2339 	else if (IEEE80211_IS_CHAN_HTG(chan))
2340 		return IEEE80211_MODE_11NG;
2341 	else if (IEEE80211_IS_CHAN_108G(chan))
2342 		return IEEE80211_MODE_TURBO_G;
2343 	else if (IEEE80211_IS_CHAN_ST(chan))
2344 		return IEEE80211_MODE_STURBO_A;
2345 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2346 		return IEEE80211_MODE_TURBO_A;
2347 	else if (IEEE80211_IS_CHAN_HALF(chan))
2348 		return IEEE80211_MODE_HALF;
2349 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2350 		return IEEE80211_MODE_QUARTER;
2351 	else if (IEEE80211_IS_CHAN_A(chan))
2352 		return IEEE80211_MODE_11A;
2353 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2354 		return IEEE80211_MODE_11G;
2355 	else if (IEEE80211_IS_CHAN_B(chan))
2356 		return IEEE80211_MODE_11B;
2357 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2358 		return IEEE80211_MODE_FH;
2359 
2360 	/* NB: should not get here */
2361 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2362 		__func__, chan->ic_freq, chan->ic_flags);
2363 	return IEEE80211_MODE_11B;
2364 }
2365 
2366 struct ratemedia {
2367 	u_int	match;	/* rate + mode */
2368 	u_int	media;	/* if_media rate */
2369 };
2370 
2371 static int
2372 findmedia(const struct ratemedia rates[], int n, u_int match)
2373 {
2374 	int i;
2375 
2376 	for (i = 0; i < n; i++)
2377 		if (rates[i].match == match)
2378 			return rates[i].media;
2379 	return IFM_AUTO;
2380 }
2381 
2382 /*
2383  * Convert IEEE80211 rate value to ifmedia subtype.
2384  * Rate is either a legacy rate in units of 0.5Mbps
2385  * or an MCS index.
2386  */
2387 int
2388 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2389 {
2390 	static const struct ratemedia rates[] = {
2391 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2392 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2393 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2394 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2395 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2396 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2397 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2398 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2399 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2400 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2401 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2402 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2403 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2404 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2405 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2406 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2407 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2408 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2409 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2410 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2411 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2412 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2413 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2414 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2415 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2416 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2417 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2418 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2419 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2420 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2421 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2422 	};
2423 	static const struct ratemedia htrates[] = {
2424 		{   0, IFM_IEEE80211_MCS },
2425 		{   1, IFM_IEEE80211_MCS },
2426 		{   2, IFM_IEEE80211_MCS },
2427 		{   3, IFM_IEEE80211_MCS },
2428 		{   4, IFM_IEEE80211_MCS },
2429 		{   5, IFM_IEEE80211_MCS },
2430 		{   6, IFM_IEEE80211_MCS },
2431 		{   7, IFM_IEEE80211_MCS },
2432 		{   8, IFM_IEEE80211_MCS },
2433 		{   9, IFM_IEEE80211_MCS },
2434 		{  10, IFM_IEEE80211_MCS },
2435 		{  11, IFM_IEEE80211_MCS },
2436 		{  12, IFM_IEEE80211_MCS },
2437 		{  13, IFM_IEEE80211_MCS },
2438 		{  14, IFM_IEEE80211_MCS },
2439 		{  15, IFM_IEEE80211_MCS },
2440 		{  16, IFM_IEEE80211_MCS },
2441 		{  17, IFM_IEEE80211_MCS },
2442 		{  18, IFM_IEEE80211_MCS },
2443 		{  19, IFM_IEEE80211_MCS },
2444 		{  20, IFM_IEEE80211_MCS },
2445 		{  21, IFM_IEEE80211_MCS },
2446 		{  22, IFM_IEEE80211_MCS },
2447 		{  23, IFM_IEEE80211_MCS },
2448 		{  24, IFM_IEEE80211_MCS },
2449 		{  25, IFM_IEEE80211_MCS },
2450 		{  26, IFM_IEEE80211_MCS },
2451 		{  27, IFM_IEEE80211_MCS },
2452 		{  28, IFM_IEEE80211_MCS },
2453 		{  29, IFM_IEEE80211_MCS },
2454 		{  30, IFM_IEEE80211_MCS },
2455 		{  31, IFM_IEEE80211_MCS },
2456 		{  32, IFM_IEEE80211_MCS },
2457 		{  33, IFM_IEEE80211_MCS },
2458 		{  34, IFM_IEEE80211_MCS },
2459 		{  35, IFM_IEEE80211_MCS },
2460 		{  36, IFM_IEEE80211_MCS },
2461 		{  37, IFM_IEEE80211_MCS },
2462 		{  38, IFM_IEEE80211_MCS },
2463 		{  39, IFM_IEEE80211_MCS },
2464 		{  40, IFM_IEEE80211_MCS },
2465 		{  41, IFM_IEEE80211_MCS },
2466 		{  42, IFM_IEEE80211_MCS },
2467 		{  43, IFM_IEEE80211_MCS },
2468 		{  44, IFM_IEEE80211_MCS },
2469 		{  45, IFM_IEEE80211_MCS },
2470 		{  46, IFM_IEEE80211_MCS },
2471 		{  47, IFM_IEEE80211_MCS },
2472 		{  48, IFM_IEEE80211_MCS },
2473 		{  49, IFM_IEEE80211_MCS },
2474 		{  50, IFM_IEEE80211_MCS },
2475 		{  51, IFM_IEEE80211_MCS },
2476 		{  52, IFM_IEEE80211_MCS },
2477 		{  53, IFM_IEEE80211_MCS },
2478 		{  54, IFM_IEEE80211_MCS },
2479 		{  55, IFM_IEEE80211_MCS },
2480 		{  56, IFM_IEEE80211_MCS },
2481 		{  57, IFM_IEEE80211_MCS },
2482 		{  58, IFM_IEEE80211_MCS },
2483 		{  59, IFM_IEEE80211_MCS },
2484 		{  60, IFM_IEEE80211_MCS },
2485 		{  61, IFM_IEEE80211_MCS },
2486 		{  62, IFM_IEEE80211_MCS },
2487 		{  63, IFM_IEEE80211_MCS },
2488 		{  64, IFM_IEEE80211_MCS },
2489 		{  65, IFM_IEEE80211_MCS },
2490 		{  66, IFM_IEEE80211_MCS },
2491 		{  67, IFM_IEEE80211_MCS },
2492 		{  68, IFM_IEEE80211_MCS },
2493 		{  69, IFM_IEEE80211_MCS },
2494 		{  70, IFM_IEEE80211_MCS },
2495 		{  71, IFM_IEEE80211_MCS },
2496 		{  72, IFM_IEEE80211_MCS },
2497 		{  73, IFM_IEEE80211_MCS },
2498 		{  74, IFM_IEEE80211_MCS },
2499 		{  75, IFM_IEEE80211_MCS },
2500 		{  76, IFM_IEEE80211_MCS },
2501 	};
2502 	static const struct ratemedia vhtrates[] = {
2503 		{   0, IFM_IEEE80211_VHT },
2504 		{   1, IFM_IEEE80211_VHT },
2505 		{   2, IFM_IEEE80211_VHT },
2506 		{   3, IFM_IEEE80211_VHT },
2507 		{   4, IFM_IEEE80211_VHT },
2508 		{   5, IFM_IEEE80211_VHT },
2509 		{   6, IFM_IEEE80211_VHT },
2510 		{   7, IFM_IEEE80211_VHT },
2511 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2512 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2513 #if 0
2514 		/* Some QCA and BRCM seem to support this; offspec. */
2515 		{  10, IFM_IEEE80211_VHT },
2516 		{  11, IFM_IEEE80211_VHT },
2517 #endif
2518 	};
2519 	int m;
2520 
2521 	/*
2522 	 * Check 11ac/11n rates first for match as an MCS.
2523 	 */
2524 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2525 		if (rate & IFM_IEEE80211_VHT) {
2526 			rate &= ~IFM_IEEE80211_VHT;
2527 			m = findmedia(vhtrates, nitems(vhtrates), rate);
2528 			if (m != IFM_AUTO)
2529 				return (m | IFM_IEEE80211_VHT);
2530 		}
2531 	} else if (mode == IEEE80211_MODE_11NA) {
2532 		if (rate & IEEE80211_RATE_MCS) {
2533 			rate &= ~IEEE80211_RATE_MCS;
2534 			m = findmedia(htrates, nitems(htrates), rate);
2535 			if (m != IFM_AUTO)
2536 				return m | IFM_IEEE80211_11NA;
2537 		}
2538 	} else if (mode == IEEE80211_MODE_11NG) {
2539 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2540 		if (rate & IEEE80211_RATE_MCS) {
2541 			rate &= ~IEEE80211_RATE_MCS;
2542 			m = findmedia(htrates, nitems(htrates), rate);
2543 			if (m != IFM_AUTO)
2544 				return m | IFM_IEEE80211_11NG;
2545 		}
2546 	}
2547 	rate &= IEEE80211_RATE_VAL;
2548 	switch (mode) {
2549 	case IEEE80211_MODE_11A:
2550 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2551 	case IEEE80211_MODE_QUARTER:
2552 	case IEEE80211_MODE_11NA:
2553 	case IEEE80211_MODE_TURBO_A:
2554 	case IEEE80211_MODE_STURBO_A:
2555 		return findmedia(rates, nitems(rates),
2556 		    rate | IFM_IEEE80211_11A);
2557 	case IEEE80211_MODE_11B:
2558 		return findmedia(rates, nitems(rates),
2559 		    rate | IFM_IEEE80211_11B);
2560 	case IEEE80211_MODE_FH:
2561 		return findmedia(rates, nitems(rates),
2562 		    rate | IFM_IEEE80211_FH);
2563 	case IEEE80211_MODE_AUTO:
2564 		/* NB: ic may be NULL for some drivers */
2565 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2566 			return findmedia(rates, nitems(rates),
2567 			    rate | IFM_IEEE80211_FH);
2568 		/* NB: hack, 11g matches both 11b+11a rates */
2569 		/* fall thru... */
2570 	case IEEE80211_MODE_11G:
2571 	case IEEE80211_MODE_11NG:
2572 	case IEEE80211_MODE_TURBO_G:
2573 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2574 	case IEEE80211_MODE_VHT_2GHZ:
2575 	case IEEE80211_MODE_VHT_5GHZ:
2576 		/* XXX TODO: need to figure out mapping for VHT rates */
2577 		return IFM_AUTO;
2578 	}
2579 	return IFM_AUTO;
2580 }
2581 
2582 int
2583 ieee80211_media2rate(int mword)
2584 {
2585 	static const int ieeerates[] = {
2586 		-1,		/* IFM_AUTO */
2587 		0,		/* IFM_MANUAL */
2588 		0,		/* IFM_NONE */
2589 		2,		/* IFM_IEEE80211_FH1 */
2590 		4,		/* IFM_IEEE80211_FH2 */
2591 		2,		/* IFM_IEEE80211_DS1 */
2592 		4,		/* IFM_IEEE80211_DS2 */
2593 		11,		/* IFM_IEEE80211_DS5 */
2594 		22,		/* IFM_IEEE80211_DS11 */
2595 		44,		/* IFM_IEEE80211_DS22 */
2596 		12,		/* IFM_IEEE80211_OFDM6 */
2597 		18,		/* IFM_IEEE80211_OFDM9 */
2598 		24,		/* IFM_IEEE80211_OFDM12 */
2599 		36,		/* IFM_IEEE80211_OFDM18 */
2600 		48,		/* IFM_IEEE80211_OFDM24 */
2601 		72,		/* IFM_IEEE80211_OFDM36 */
2602 		96,		/* IFM_IEEE80211_OFDM48 */
2603 		108,		/* IFM_IEEE80211_OFDM54 */
2604 		144,		/* IFM_IEEE80211_OFDM72 */
2605 		0,		/* IFM_IEEE80211_DS354k */
2606 		0,		/* IFM_IEEE80211_DS512k */
2607 		6,		/* IFM_IEEE80211_OFDM3 */
2608 		9,		/* IFM_IEEE80211_OFDM4 */
2609 		54,		/* IFM_IEEE80211_OFDM27 */
2610 		-1,		/* IFM_IEEE80211_MCS */
2611 		-1,		/* IFM_IEEE80211_VHT */
2612 	};
2613 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2614 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2615 }
2616 
2617 /*
2618  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2619  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2620  */
2621 #define	mix(a, b, c)							\
2622 do {									\
2623 	a -= b; a -= c; a ^= (c >> 13);					\
2624 	b -= c; b -= a; b ^= (a << 8);					\
2625 	c -= a; c -= b; c ^= (b >> 13);					\
2626 	a -= b; a -= c; a ^= (c >> 12);					\
2627 	b -= c; b -= a; b ^= (a << 16);					\
2628 	c -= a; c -= b; c ^= (b >> 5);					\
2629 	a -= b; a -= c; a ^= (c >> 3);					\
2630 	b -= c; b -= a; b ^= (a << 10);					\
2631 	c -= a; c -= b; c ^= (b >> 15);					\
2632 } while (/*CONSTCOND*/0)
2633 
2634 uint32_t
2635 ieee80211_mac_hash(const struct ieee80211com *ic,
2636 	const uint8_t addr[IEEE80211_ADDR_LEN])
2637 {
2638 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2639 
2640 	b += addr[5] << 8;
2641 	b += addr[4];
2642 	a += addr[3] << 24;
2643 	a += addr[2] << 16;
2644 	a += addr[1] << 8;
2645 	a += addr[0];
2646 
2647 	mix(a, b, c);
2648 
2649 	return c;
2650 }
2651 #undef mix
2652 
2653 char
2654 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2655 {
2656 	if (IEEE80211_IS_CHAN_ST(c))
2657 		return 'S';
2658 	if (IEEE80211_IS_CHAN_108A(c))
2659 		return 'T';
2660 	if (IEEE80211_IS_CHAN_108G(c))
2661 		return 'G';
2662 	if (IEEE80211_IS_CHAN_VHT(c))
2663 		return 'v';
2664 	if (IEEE80211_IS_CHAN_HT(c))
2665 		return 'n';
2666 	if (IEEE80211_IS_CHAN_A(c))
2667 		return 'a';
2668 	if (IEEE80211_IS_CHAN_ANYG(c))
2669 		return 'g';
2670 	if (IEEE80211_IS_CHAN_B(c))
2671 		return 'b';
2672 	return 'f';
2673 }
2674