xref: /freebsd/sys/net80211/ieee80211.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_private.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #include <net80211/ieee80211_ratectl.h>
58 #include <net80211/ieee80211_vht.h>
59 
60 #include <net/bpf.h>
61 
62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
63 	[IEEE80211_MODE_AUTO]	  = "auto",
64 	[IEEE80211_MODE_11A]	  = "11a",
65 	[IEEE80211_MODE_11B]	  = "11b",
66 	[IEEE80211_MODE_11G]	  = "11g",
67 	[IEEE80211_MODE_FH]	  = "FH",
68 	[IEEE80211_MODE_TURBO_A]  = "turboA",
69 	[IEEE80211_MODE_TURBO_G]  = "turboG",
70 	[IEEE80211_MODE_STURBO_A] = "sturboA",
71 	[IEEE80211_MODE_HALF]	  = "half",
72 	[IEEE80211_MODE_QUARTER]  = "quarter",
73 	[IEEE80211_MODE_11NA]	  = "11na",
74 	[IEEE80211_MODE_11NG]	  = "11ng",
75 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
76 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
77 };
78 /* map ieee80211_opmode to the corresponding capability bit */
79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
80 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
81 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
82 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
83 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
84 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
85 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
86 #ifdef IEEE80211_SUPPORT_MESH
87 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
88 #endif
89 };
90 
91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
92 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
93 
94 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
98 static	int ieee80211_media_setup(struct ieee80211com *ic,
99 		struct ifmedia *media, int caps, int addsta,
100 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
101 static	int media_status(enum ieee80211_opmode,
102 		const struct ieee80211_channel *);
103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
104 
105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
106 
107 /*
108  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
109  */
110 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
111 static const struct ieee80211_rateset ieee80211_rateset_11a =
112 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
113 static const struct ieee80211_rateset ieee80211_rateset_half =
114 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
115 static const struct ieee80211_rateset ieee80211_rateset_quarter =
116 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
117 static const struct ieee80211_rateset ieee80211_rateset_11b =
118 	{ 4, { B(2), B(4), B(11), B(22) } };
119 /* NB: OFDM rates are handled specially based on mode */
120 static const struct ieee80211_rateset ieee80211_rateset_11g =
121 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
122 #undef B
123 
124 static int set_vht_extchan(struct ieee80211_channel *c);
125 
126 /*
127  * Fill in 802.11 available channel set, mark
128  * all available channels as active, and pick
129  * a default channel if not already specified.
130  */
131 void
132 ieee80211_chan_init(struct ieee80211com *ic)
133 {
134 #define	DEFAULTRATES(m, def) do { \
135 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
136 		ic->ic_sup_rates[m] = def; \
137 } while (0)
138 	struct ieee80211_channel *c;
139 	int i;
140 
141 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
142 		("invalid number of channels specified: %u", ic->ic_nchans));
143 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
144 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
145 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
146 	for (i = 0; i < ic->ic_nchans; i++) {
147 		c = &ic->ic_channels[i];
148 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
149 		/*
150 		 * Help drivers that work only with frequencies by filling
151 		 * in IEEE channel #'s if not already calculated.  Note this
152 		 * mimics similar work done in ieee80211_setregdomain when
153 		 * changing regulatory state.
154 		 */
155 		if (c->ic_ieee == 0)
156 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
157 
158 		/*
159 		 * Setup the HT40/VHT40 upper/lower bits.
160 		 * The VHT80/... math is done elsewhere.
161 		 */
162 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
163 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
164 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
165 			    c->ic_flags);
166 
167 		/* Update VHT math */
168 		/*
169 		 * XXX VHT again, note that this assumes VHT80/... channels
170 		 * are legit already.
171 		 */
172 		set_vht_extchan(c);
173 
174 		/* default max tx power to max regulatory */
175 		if (c->ic_maxpower == 0)
176 			c->ic_maxpower = 2*c->ic_maxregpower;
177 		setbit(ic->ic_chan_avail, c->ic_ieee);
178 		/*
179 		 * Identify mode capabilities.
180 		 */
181 		if (IEEE80211_IS_CHAN_A(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
183 		if (IEEE80211_IS_CHAN_B(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
185 		if (IEEE80211_IS_CHAN_ANYG(c))
186 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
187 		if (IEEE80211_IS_CHAN_FHSS(c))
188 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
189 		if (IEEE80211_IS_CHAN_108A(c))
190 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
191 		if (IEEE80211_IS_CHAN_108G(c))
192 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
193 		if (IEEE80211_IS_CHAN_ST(c))
194 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
195 		if (IEEE80211_IS_CHAN_HALF(c))
196 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
197 		if (IEEE80211_IS_CHAN_QUARTER(c))
198 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
199 		if (IEEE80211_IS_CHAN_HTA(c))
200 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
201 		if (IEEE80211_IS_CHAN_HTG(c))
202 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
203 		if (IEEE80211_IS_CHAN_VHTA(c))
204 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
205 		if (IEEE80211_IS_CHAN_VHTG(c))
206 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
207 	}
208 	/* initialize candidate channels to all available */
209 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
210 		sizeof(ic->ic_chan_avail));
211 
212 	/* sort channel table to allow lookup optimizations */
213 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
214 
215 	/* invalidate any previous state */
216 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
217 	ic->ic_prevchan = NULL;
218 	ic->ic_csa_newchan = NULL;
219 	/* arbitrarily pick the first channel */
220 	ic->ic_curchan = &ic->ic_channels[0];
221 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
222 
223 	/* fillin well-known rate sets if driver has not specified */
224 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
225 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
226 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
227 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
229 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
230 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
231 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
232 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
233 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
234 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
236 
237 	/*
238 	 * Setup required information to fill the mcsset field, if driver did
239 	 * not. Assume a 2T2R setup for historic reasons.
240 	 */
241 	if (ic->ic_rxstream == 0)
242 		ic->ic_rxstream = 2;
243 	if (ic->ic_txstream == 0)
244 		ic->ic_txstream = 2;
245 
246 	ieee80211_init_suphtrates(ic);
247 
248 	/*
249 	 * Set auto mode to reset active channel state and any desired channel.
250 	 */
251 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
252 #undef DEFAULTRATES
253 }
254 
255 static void
256 null_update_mcast(struct ieee80211com *ic)
257 {
258 
259 	ic_printf(ic, "need multicast update callback\n");
260 }
261 
262 static void
263 null_update_promisc(struct ieee80211com *ic)
264 {
265 
266 	ic_printf(ic, "need promiscuous mode update callback\n");
267 }
268 
269 static void
270 null_update_chw(struct ieee80211com *ic)
271 {
272 
273 	ic_printf(ic, "%s: need callback\n", __func__);
274 }
275 
276 int
277 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
278 {
279 	va_list ap;
280 	int retval;
281 
282 	retval = printf("%s: ", ic->ic_name);
283 	va_start(ap, fmt);
284 	retval += vprintf(fmt, ap);
285 	va_end(ap);
286 	return (retval);
287 }
288 
289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
290 static struct mtx ic_list_mtx;
291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
292 
293 static int
294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
295 {
296 	struct ieee80211com *ic;
297 	struct sbuf sb;
298 	char *sp;
299 	int error;
300 
301 	error = sysctl_wire_old_buffer(req, 0);
302 	if (error)
303 		return (error);
304 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
305 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
306 	sp = "";
307 	mtx_lock(&ic_list_mtx);
308 	LIST_FOREACH(ic, &ic_head, ic_next) {
309 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
310 		sp = " ";
311 	}
312 	mtx_unlock(&ic_list_mtx);
313 	error = sbuf_finish(&sb);
314 	sbuf_delete(&sb);
315 	return (error);
316 }
317 
318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
319     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
320     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
321 
322 /*
323  * Attach/setup the common net80211 state.  Called by
324  * the driver on attach to prior to creating any vap's.
325  */
326 void
327 ieee80211_ifattach(struct ieee80211com *ic)
328 {
329 
330 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
331 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
332 	TAILQ_INIT(&ic->ic_vaps);
333 
334 	/* Create a taskqueue for all state changes */
335 	ic->ic_tq = taskqueue_create("ic_taskq",
336 	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
337 	    taskqueue_thread_enqueue, &ic->ic_tq);
338 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 	    ic->ic_name);
340 	ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
341 	ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
342 	/*
343 	 * Fill in 802.11 available channel set, mark all
344 	 * available channels as active, and pick a default
345 	 * channel if not already specified.
346 	 */
347 	ieee80211_chan_init(ic);
348 
349 	ic->ic_update_mcast = null_update_mcast;
350 	ic->ic_update_promisc = null_update_promisc;
351 	ic->ic_update_chw = null_update_chw;
352 
353 	ic->ic_hash_key = arc4random();
354 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 	ic->ic_lintval = ic->ic_bintval;
356 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357 
358 	ieee80211_crypto_attach(ic);
359 	ieee80211_node_attach(ic);
360 	ieee80211_power_attach(ic);
361 	ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 	ieee80211_superg_attach(ic);
364 #endif
365 	ieee80211_ht_attach(ic);
366 	ieee80211_vht_attach(ic);
367 	ieee80211_scan_attach(ic);
368 	ieee80211_regdomain_attach(ic);
369 	ieee80211_dfs_attach(ic);
370 
371 	ieee80211_sysctl_attach(ic);
372 
373 	mtx_lock(&ic_list_mtx);
374 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 	mtx_unlock(&ic_list_mtx);
376 }
377 
378 /*
379  * Detach net80211 state on device detach.  Tear down
380  * all vap's and reclaim all common state prior to the
381  * device state going away.  Note we may call back into
382  * driver; it must be prepared for this.
383  */
384 void
385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 	struct ieee80211vap *vap;
388 
389 	/*
390 	 * We use this as an indicator that ifattach never had a chance to be
391 	 * called, e.g. early driver attach failed and ifdetach was called
392 	 * during subsequent detach.  Never fear, for we have nothing to do
393 	 * here.
394 	 */
395 	if (ic->ic_tq == NULL)
396 		return;
397 
398 	mtx_lock(&ic_list_mtx);
399 	LIST_REMOVE(ic, ic_next);
400 	mtx_unlock(&ic_list_mtx);
401 
402 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403 
404 	/*
405 	 * The VAP is responsible for setting and clearing
406 	 * the VIMAGE context.
407 	 */
408 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409 		ieee80211_com_vdetach(vap);
410 		ieee80211_vap_destroy(vap);
411 	}
412 	ieee80211_waitfor_parent(ic);
413 
414 	ieee80211_sysctl_detach(ic);
415 	ieee80211_dfs_detach(ic);
416 	ieee80211_regdomain_detach(ic);
417 	ieee80211_scan_detach(ic);
418 #ifdef IEEE80211_SUPPORT_SUPERG
419 	ieee80211_superg_detach(ic);
420 #endif
421 	ieee80211_vht_detach(ic);
422 	ieee80211_ht_detach(ic);
423 	/* NB: must be called before ieee80211_node_detach */
424 	ieee80211_proto_detach(ic);
425 	ieee80211_crypto_detach(ic);
426 	ieee80211_power_detach(ic);
427 	ieee80211_node_detach(ic);
428 
429 	counter_u64_free(ic->ic_ierrors);
430 	counter_u64_free(ic->ic_oerrors);
431 
432 	taskqueue_free(ic->ic_tq);
433 	IEEE80211_TX_LOCK_DESTROY(ic);
434 	IEEE80211_LOCK_DESTROY(ic);
435 }
436 
437 /*
438  * Called by drivers during attach to set the supported
439  * cipher set for software encryption.
440  */
441 void
442 ieee80211_set_software_ciphers(struct ieee80211com *ic,
443     uint32_t cipher_suite)
444 {
445 	ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
446 }
447 
448 /*
449  * Called by drivers during attach to set the supported
450  * cipher set for hardware encryption.
451  */
452 void
453 ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
454     uint32_t cipher_suite)
455 {
456 	ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
457 }
458 
459 /*
460  * Called by drivers during attach to set the supported
461  * key management suites by the driver/hardware.
462  */
463 void
464 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
465     uint32_t keymgmt_set)
466 {
467 	ieee80211_crypto_set_supported_driver_keymgmt(ic,
468 	    keymgmt_set);
469 }
470 
471 struct ieee80211com *
472 ieee80211_find_com(const char *name)
473 {
474 	struct ieee80211com *ic;
475 
476 	mtx_lock(&ic_list_mtx);
477 	LIST_FOREACH(ic, &ic_head, ic_next)
478 		if (strcmp(ic->ic_name, name) == 0)
479 			break;
480 	mtx_unlock(&ic_list_mtx);
481 
482 	return (ic);
483 }
484 
485 void
486 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
487 {
488 	struct ieee80211com *ic;
489 
490 	mtx_lock(&ic_list_mtx);
491 	LIST_FOREACH(ic, &ic_head, ic_next)
492 		(*f)(arg, ic);
493 	mtx_unlock(&ic_list_mtx);
494 }
495 
496 /*
497  * Default reset method for use with the ioctl support.  This
498  * method is invoked after any state change in the 802.11
499  * layer that should be propagated to the hardware but not
500  * require re-initialization of the 802.11 state machine (e.g
501  * rescanning for an ap).  We always return ENETRESET which
502  * should cause the driver to re-initialize the device. Drivers
503  * can override this method to implement more optimized support.
504  */
505 static int
506 default_reset(struct ieee80211vap *vap, u_long cmd)
507 {
508 	return ENETRESET;
509 }
510 
511 /*
512  * Default for updating the VAP default TX key index.
513  *
514  * Drivers that support TX offload as well as hardware encryption offload
515  * may need to be informed of key index changes separate from the key
516  * update.
517  */
518 static void
519 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
520 {
521 
522 	/* XXX assert validity */
523 	/* XXX assert we're in a key update block */
524 	vap->iv_def_txkey = kid;
525 }
526 
527 /*
528  * Add underlying device errors to vap errors.
529  */
530 static uint64_t
531 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
532 {
533 	struct ieee80211vap *vap = ifp->if_softc;
534 	struct ieee80211com *ic = vap->iv_ic;
535 	uint64_t rv;
536 
537 	rv = if_get_counter_default(ifp, cnt);
538 	switch (cnt) {
539 	case IFCOUNTER_OERRORS:
540 		rv += counter_u64_fetch(ic->ic_oerrors);
541 		break;
542 	case IFCOUNTER_IERRORS:
543 		rv += counter_u64_fetch(ic->ic_ierrors);
544 		break;
545 	default:
546 		break;
547 	}
548 
549 	return (rv);
550 }
551 
552 /*
553  * Prepare a vap for use.  Drivers use this call to
554  * setup net80211 state in new vap's prior attaching
555  * them with ieee80211_vap_attach (below).
556  */
557 int
558 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
559     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
560     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
561 {
562 	struct ifnet *ifp;
563 
564 	ifp = if_alloc(IFT_ETHER);
565 	if_initname(ifp, name, unit);
566 	ifp->if_softc = vap;			/* back pointer */
567 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
568 	ifp->if_transmit = ieee80211_vap_transmit;
569 	ifp->if_qflush = ieee80211_vap_qflush;
570 	ifp->if_ioctl = ieee80211_ioctl;
571 	ifp->if_init = ieee80211_init;
572 	ifp->if_get_counter = ieee80211_get_counter;
573 
574 	vap->iv_ifp = ifp;
575 	vap->iv_ic = ic;
576 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
577 	vap->iv_flags_ext = ic->ic_flags_ext;
578 	vap->iv_flags_ven = ic->ic_flags_ven;
579 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
580 
581 	/* 11n capabilities - XXX methodize */
582 	vap->iv_htcaps = ic->ic_htcaps;
583 	vap->iv_htextcaps = ic->ic_htextcaps;
584 
585 	/* 11ac capabilities - XXX methodize */
586 	vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
587 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
588 
589 	vap->iv_opmode = opmode;
590 	vap->iv_caps |= ieee80211_opcap[opmode];
591 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
592 	switch (opmode) {
593 	case IEEE80211_M_WDS:
594 		/*
595 		 * WDS links must specify the bssid of the far end.
596 		 * For legacy operation this is a static relationship.
597 		 * For non-legacy operation the station must associate
598 		 * and be authorized to pass traffic.  Plumbing the
599 		 * vap to the proper node happens when the vap
600 		 * transitions to RUN state.
601 		 */
602 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
603 		vap->iv_flags |= IEEE80211_F_DESBSSID;
604 		if (flags & IEEE80211_CLONE_WDSLEGACY)
605 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
606 		break;
607 #ifdef IEEE80211_SUPPORT_TDMA
608 	case IEEE80211_M_AHDEMO:
609 		if (flags & IEEE80211_CLONE_TDMA) {
610 			/* NB: checked before clone operation allowed */
611 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
612 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
613 			/*
614 			 * Propagate TDMA capability to mark vap; this
615 			 * cannot be removed and is used to distinguish
616 			 * regular ahdemo operation from ahdemo+tdma.
617 			 */
618 			vap->iv_caps |= IEEE80211_C_TDMA;
619 		}
620 		break;
621 #endif
622 	default:
623 		break;
624 	}
625 	/* auto-enable s/w beacon miss support */
626 	if (flags & IEEE80211_CLONE_NOBEACONS)
627 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
628 	/* auto-generated or user supplied MAC address */
629 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
630 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
631 	/*
632 	 * Enable various functionality by default if we're
633 	 * capable; the driver can override us if it knows better.
634 	 */
635 	if (vap->iv_caps & IEEE80211_C_WME)
636 		vap->iv_flags |= IEEE80211_F_WME;
637 	if (vap->iv_caps & IEEE80211_C_BURST)
638 		vap->iv_flags |= IEEE80211_F_BURST;
639 	/* NB: bg scanning only makes sense for station mode right now */
640 	if (vap->iv_opmode == IEEE80211_M_STA &&
641 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
642 		vap->iv_flags |= IEEE80211_F_BGSCAN;
643 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
644 	/* NB: DFS support only makes sense for ap mode right now */
645 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
646 	    (vap->iv_caps & IEEE80211_C_DFS))
647 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
648 	/* NB: only flip on U-APSD for hostap/sta for now */
649 	if ((vap->iv_opmode == IEEE80211_M_STA)
650 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
651 		if (vap->iv_caps & IEEE80211_C_UAPSD)
652 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
653 	}
654 
655 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
656 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
657 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
658 	/*
659 	 * Install a default reset method for the ioctl support;
660 	 * the driver can override this.
661 	 */
662 	vap->iv_reset = default_reset;
663 
664 	/*
665 	 * Install a default crypto key update method, the driver
666 	 * can override this.
667 	 */
668 	vap->iv_update_deftxkey = default_update_deftxkey;
669 
670 	ieee80211_sysctl_vattach(vap);
671 	ieee80211_crypto_vattach(vap);
672 	ieee80211_node_vattach(vap);
673 	ieee80211_power_vattach(vap);
674 	ieee80211_proto_vattach(vap);
675 #ifdef IEEE80211_SUPPORT_SUPERG
676 	ieee80211_superg_vattach(vap);
677 #endif
678 	ieee80211_ht_vattach(vap);
679 	ieee80211_vht_vattach(vap);
680 	ieee80211_scan_vattach(vap);
681 	ieee80211_regdomain_vattach(vap);
682 	ieee80211_radiotap_vattach(vap);
683 	ieee80211_vap_reset_erp(vap);
684 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
685 
686 	return 0;
687 }
688 
689 /*
690  * Activate a vap.  State should have been prepared with a
691  * call to ieee80211_vap_setup and by the driver.  On return
692  * from this call the vap is ready for use.
693  */
694 int
695 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
696     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
697 {
698 	struct ifnet *ifp = vap->iv_ifp;
699 	struct ieee80211com *ic = vap->iv_ic;
700 	struct ifmediareq imr;
701 	int maxrate;
702 
703 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
704 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
705 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
706 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
707 
708 	/*
709 	 * Do late attach work that cannot happen until after
710 	 * the driver has had a chance to override defaults.
711 	 */
712 	ieee80211_node_latevattach(vap);
713 	ieee80211_power_latevattach(vap);
714 
715 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
716 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
717 	ieee80211_media_status(ifp, &imr);
718 	/* NB: strip explicit mode; we're actually in autoselect */
719 	ifmedia_set(&vap->iv_media,
720 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
721 	if (maxrate)
722 		ifp->if_baudrate = IF_Mbps(maxrate);
723 
724 	ether_ifattach(ifp, macaddr);
725 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
726 	/* hook output method setup by ether_ifattach */
727 	vap->iv_output = ifp->if_output;
728 	ifp->if_output = ieee80211_output;
729 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
730 
731 	IEEE80211_LOCK(ic);
732 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
733 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
734 #ifdef IEEE80211_SUPPORT_SUPERG
735 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
736 #endif
737 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
738 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
739 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
740 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
741 
742 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
743 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
744 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
745 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
746 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
747 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
748 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
749 	IEEE80211_UNLOCK(ic);
750 
751 	return 1;
752 }
753 
754 /*
755  * Tear down vap state and reclaim the ifnet.
756  * The driver is assumed to have prepared for
757  * this; e.g. by turning off interrupts for the
758  * underlying device.
759  */
760 void
761 ieee80211_vap_detach(struct ieee80211vap *vap)
762 {
763 	struct ieee80211com *ic = vap->iv_ic;
764 	struct ifnet *ifp = vap->iv_ifp;
765 	int i;
766 
767 	CURVNET_SET(ifp->if_vnet);
768 
769 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
770 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
771 
772 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
773 	ether_ifdetach(ifp);
774 
775 	ieee80211_stop(vap);
776 
777 	/*
778 	 * Flush any deferred vap tasks.
779 	 */
780 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
781 		ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
782 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
783 	ieee80211_draintask(ic, &vap->iv_wme_task);
784 	ieee80211_draintask(ic, &ic->ic_parent_task);
785 
786 	/* XXX band-aid until ifnet handles this for us */
787 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
788 
789 	IEEE80211_LOCK(ic);
790 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
791 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
792 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
793 #ifdef IEEE80211_SUPPORT_SUPERG
794 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
795 #endif
796 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
797 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
798 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
799 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
800 
801 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
802 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
803 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
804 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
805 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
806 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
807 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
808 
809 	/* NB: this handles the bpfdetach done below */
810 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
811 	if (vap->iv_ifflags & IFF_PROMISC)
812 		ieee80211_promisc(vap, false);
813 	if (vap->iv_ifflags & IFF_ALLMULTI)
814 		ieee80211_allmulti(vap, false);
815 	IEEE80211_UNLOCK(ic);
816 
817 	ifmedia_removeall(&vap->iv_media);
818 
819 	ieee80211_radiotap_vdetach(vap);
820 	ieee80211_regdomain_vdetach(vap);
821 	ieee80211_scan_vdetach(vap);
822 #ifdef IEEE80211_SUPPORT_SUPERG
823 	ieee80211_superg_vdetach(vap);
824 #endif
825 	ieee80211_vht_vdetach(vap);
826 	ieee80211_ht_vdetach(vap);
827 	/* NB: must be before ieee80211_node_vdetach */
828 	ieee80211_proto_vdetach(vap);
829 	ieee80211_crypto_vdetach(vap);
830 	ieee80211_power_vdetach(vap);
831 	ieee80211_node_vdetach(vap);
832 	ieee80211_sysctl_vdetach(vap);
833 
834 	if_free(ifp);
835 
836 	CURVNET_RESTORE();
837 }
838 
839 /*
840  * Count number of vaps in promisc, and issue promisc on
841  * parent respectively.
842  */
843 void
844 ieee80211_promisc(struct ieee80211vap *vap, bool on)
845 {
846 	struct ieee80211com *ic = vap->iv_ic;
847 
848 	IEEE80211_LOCK_ASSERT(ic);
849 
850 	if (on) {
851 		if (++ic->ic_promisc == 1)
852 			ieee80211_runtask(ic, &ic->ic_promisc_task);
853 	} else {
854 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
855 		    __func__, ic));
856 		if (--ic->ic_promisc == 0)
857 			ieee80211_runtask(ic, &ic->ic_promisc_task);
858 	}
859 }
860 
861 /*
862  * Count number of vaps in allmulti, and issue allmulti on
863  * parent respectively.
864  */
865 void
866 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
867 {
868 	struct ieee80211com *ic = vap->iv_ic;
869 
870 	IEEE80211_LOCK_ASSERT(ic);
871 
872 	if (on) {
873 		if (++ic->ic_allmulti == 1)
874 			ieee80211_runtask(ic, &ic->ic_mcast_task);
875 	} else {
876 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
877 		    __func__, ic));
878 		if (--ic->ic_allmulti == 0)
879 			ieee80211_runtask(ic, &ic->ic_mcast_task);
880 	}
881 }
882 
883 /*
884  * Synchronize flag bit state in the com structure
885  * according to the state of all vap's.  This is used,
886  * for example, to handle state changes via ioctls.
887  */
888 static void
889 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
890 {
891 	struct ieee80211vap *vap;
892 	int bit;
893 
894 	IEEE80211_LOCK_ASSERT(ic);
895 
896 	bit = 0;
897 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
898 		if (vap->iv_flags & flag) {
899 			bit = 1;
900 			break;
901 		}
902 	if (bit)
903 		ic->ic_flags |= flag;
904 	else
905 		ic->ic_flags &= ~flag;
906 }
907 
908 void
909 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
910 {
911 	struct ieee80211com *ic = vap->iv_ic;
912 
913 	IEEE80211_LOCK(ic);
914 	if (flag < 0) {
915 		flag = -flag;
916 		vap->iv_flags &= ~flag;
917 	} else
918 		vap->iv_flags |= flag;
919 	ieee80211_syncflag_locked(ic, flag);
920 	IEEE80211_UNLOCK(ic);
921 }
922 
923 /*
924  * Synchronize flags_ht bit state in the com structure
925  * according to the state of all vap's.  This is used,
926  * for example, to handle state changes via ioctls.
927  */
928 static void
929 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
930 {
931 	struct ieee80211vap *vap;
932 	int bit;
933 
934 	IEEE80211_LOCK_ASSERT(ic);
935 
936 	bit = 0;
937 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
938 		if (vap->iv_flags_ht & flag) {
939 			bit = 1;
940 			break;
941 		}
942 	if (bit)
943 		ic->ic_flags_ht |= flag;
944 	else
945 		ic->ic_flags_ht &= ~flag;
946 }
947 
948 void
949 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
950 {
951 	struct ieee80211com *ic = vap->iv_ic;
952 
953 	IEEE80211_LOCK(ic);
954 	if (flag < 0) {
955 		flag = -flag;
956 		vap->iv_flags_ht &= ~flag;
957 	} else
958 		vap->iv_flags_ht |= flag;
959 	ieee80211_syncflag_ht_locked(ic, flag);
960 	IEEE80211_UNLOCK(ic);
961 }
962 
963 /*
964  * Synchronize flags_vht bit state in the com structure
965  * according to the state of all vap's.  This is used,
966  * for example, to handle state changes via ioctls.
967  */
968 static void
969 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
970 {
971 	struct ieee80211vap *vap;
972 	int bit;
973 
974 	IEEE80211_LOCK_ASSERT(ic);
975 
976 	bit = 0;
977 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
978 		if (vap->iv_vht_flags & flag) {
979 			bit = 1;
980 			break;
981 		}
982 	if (bit)
983 		ic->ic_vht_flags |= flag;
984 	else
985 		ic->ic_vht_flags &= ~flag;
986 }
987 
988 void
989 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
990 {
991 	struct ieee80211com *ic = vap->iv_ic;
992 
993 	IEEE80211_LOCK(ic);
994 	if (flag < 0) {
995 		flag = -flag;
996 		vap->iv_vht_flags &= ~flag;
997 	} else
998 		vap->iv_vht_flags |= flag;
999 	ieee80211_syncflag_vht_locked(ic, flag);
1000 	IEEE80211_UNLOCK(ic);
1001 }
1002 
1003 /*
1004  * Synchronize flags_ext bit state in the com structure
1005  * according to the state of all vap's.  This is used,
1006  * for example, to handle state changes via ioctls.
1007  */
1008 static void
1009 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
1010 {
1011 	struct ieee80211vap *vap;
1012 	int bit;
1013 
1014 	IEEE80211_LOCK_ASSERT(ic);
1015 
1016 	bit = 0;
1017 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1018 		if (vap->iv_flags_ext & flag) {
1019 			bit = 1;
1020 			break;
1021 		}
1022 	if (bit)
1023 		ic->ic_flags_ext |= flag;
1024 	else
1025 		ic->ic_flags_ext &= ~flag;
1026 }
1027 
1028 void
1029 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1030 {
1031 	struct ieee80211com *ic = vap->iv_ic;
1032 
1033 	IEEE80211_LOCK(ic);
1034 	if (flag < 0) {
1035 		flag = -flag;
1036 		vap->iv_flags_ext &= ~flag;
1037 	} else
1038 		vap->iv_flags_ext |= flag;
1039 	ieee80211_syncflag_ext_locked(ic, flag);
1040 	IEEE80211_UNLOCK(ic);
1041 }
1042 
1043 static __inline int
1044 mapgsm(u_int freq, u_int flags)
1045 {
1046 	freq *= 10;
1047 	if (flags & IEEE80211_CHAN_QUARTER)
1048 		freq += 5;
1049 	else if (flags & IEEE80211_CHAN_HALF)
1050 		freq += 10;
1051 	else
1052 		freq += 20;
1053 	/* NB: there is no 907/20 wide but leave room */
1054 	return (freq - 906*10) / 5;
1055 }
1056 
1057 static __inline int
1058 mappsb(u_int freq, u_int flags)
1059 {
1060 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1061 }
1062 
1063 /*
1064  * Convert MHz frequency to IEEE channel number.
1065  */
1066 int
1067 ieee80211_mhz2ieee(u_int freq, u_int flags)
1068 {
1069 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1070 	if (flags & IEEE80211_CHAN_GSM)
1071 		return mapgsm(freq, flags);
1072 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1073 		if (freq == 2484)
1074 			return 14;
1075 		if (freq < 2484)
1076 			return ((int) freq - 2407) / 5;
1077 		else
1078 			return 15 + ((freq - 2512) / 20);
1079 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1080 		if (freq <= 5000) {
1081 			/* XXX check regdomain? */
1082 			if (IS_FREQ_IN_PSB(freq))
1083 				return mappsb(freq, flags);
1084 			return (freq - 4000) / 5;
1085 		} else
1086 			return (freq - 5000) / 5;
1087 	} else {				/* either, guess */
1088 		if (freq == 2484)
1089 			return 14;
1090 		if (freq < 2484) {
1091 			if (907 <= freq && freq <= 922)
1092 				return mapgsm(freq, flags);
1093 			return ((int) freq - 2407) / 5;
1094 		}
1095 		if (freq < 5000) {
1096 			if (IS_FREQ_IN_PSB(freq))
1097 				return mappsb(freq, flags);
1098 			else if (freq > 4900)
1099 				return (freq - 4000) / 5;
1100 			else
1101 				return 15 + ((freq - 2512) / 20);
1102 		}
1103 		return (freq - 5000) / 5;
1104 	}
1105 #undef IS_FREQ_IN_PSB
1106 }
1107 
1108 /*
1109  * Convert channel to IEEE channel number.
1110  */
1111 int
1112 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1113 {
1114 	if (c == NULL) {
1115 		ic_printf(ic, "invalid channel (NULL)\n");
1116 		return 0;		/* XXX */
1117 	}
1118 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1119 }
1120 
1121 /*
1122  * Convert IEEE channel number to MHz frequency.
1123  */
1124 u_int
1125 ieee80211_ieee2mhz(u_int chan, u_int flags)
1126 {
1127 	if (flags & IEEE80211_CHAN_GSM)
1128 		return 907 + 5 * (chan / 10);
1129 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1130 		if (chan == 14)
1131 			return 2484;
1132 		if (chan < 14)
1133 			return 2407 + chan*5;
1134 		else
1135 			return 2512 + ((chan-15)*20);
1136 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1137 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1138 			chan -= 37;
1139 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1140 		}
1141 		return 5000 + (chan*5);
1142 	} else {				/* either, guess */
1143 		/* XXX can't distinguish PSB+GSM channels */
1144 		if (chan == 14)
1145 			return 2484;
1146 		if (chan < 14)			/* 0-13 */
1147 			return 2407 + chan*5;
1148 		if (chan < 27)			/* 15-26 */
1149 			return 2512 + ((chan-15)*20);
1150 		return 5000 + (chan*5);
1151 	}
1152 }
1153 
1154 static __inline void
1155 set_extchan(struct ieee80211_channel *c)
1156 {
1157 
1158 	/*
1159 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1160 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1161 	 */
1162 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1163 		c->ic_extieee = c->ic_ieee + 4;
1164 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1165 		c->ic_extieee = c->ic_ieee - 4;
1166 	else
1167 		c->ic_extieee = 0;
1168 }
1169 
1170 /*
1171  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1172  *
1173  * This for now uses a hard-coded list of 80MHz wide channels.
1174  *
1175  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1176  * wide channel we've already decided upon.
1177  *
1178  * For VHT80 and VHT160, there are only a small number of fixed
1179  * 80/160MHz wide channels, so we just use those.
1180  *
1181  * This is all likely very very wrong - both the regulatory code
1182  * and this code needs to ensure that all four channels are
1183  * available and valid before the VHT80 (and eight for VHT160) channel
1184  * is created.
1185  */
1186 
1187 struct vht_chan_range {
1188 	uint16_t freq_start;
1189 	uint16_t freq_end;
1190 };
1191 
1192 struct vht_chan_range vht80_chan_ranges[] = {
1193 	{ 5170, 5250 },
1194 	{ 5250, 5330 },
1195 	{ 5490, 5570 },
1196 	{ 5570, 5650 },
1197 	{ 5650, 5730 },
1198 	{ 5735, 5815 },
1199 	{ 5815, 5895 },
1200 	{ 0, 0 }
1201 };
1202 
1203 struct vht_chan_range vht160_chan_ranges[] = {
1204 	{ 5170, 5330 },
1205 	{ 5490, 5650 },
1206 	{ 5735, 5895 },
1207 	{ 0, 0 }
1208 };
1209 
1210 static int
1211 set_vht_extchan(struct ieee80211_channel *c)
1212 {
1213 	int i;
1214 
1215 	if (! IEEE80211_IS_CHAN_VHT(c))
1216 		return (0);
1217 
1218 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1219 		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1220 		    __func__, c->ic_ieee, c->ic_flags);
1221 	}
1222 
1223 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1224 		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1225 			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1226 			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1227 				int midpoint;
1228 
1229 				midpoint = vht160_chan_ranges[i].freq_start + 80;
1230 				c->ic_vht_ch_freq1 =
1231 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1232 				c->ic_vht_ch_freq2 = 0;
1233 #if 0
1234 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1235 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1236 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1237 #endif
1238 				return (1);
1239 			}
1240 		}
1241 		return (0);
1242 	}
1243 
1244 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1245 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1246 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1247 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1248 				int midpoint;
1249 
1250 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1251 				c->ic_vht_ch_freq1 =
1252 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1253 				c->ic_vht_ch_freq2 = 0;
1254 #if 0
1255 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1256 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1257 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1258 #endif
1259 				return (1);
1260 			}
1261 		}
1262 		return (0);
1263 	}
1264 
1265 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1266 		if (IEEE80211_IS_CHAN_HT40U(c))
1267 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1268 		else if (IEEE80211_IS_CHAN_HT40D(c))
1269 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1270 		else
1271 			return (0);
1272 		return (1);
1273 	}
1274 
1275 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1276 		c->ic_vht_ch_freq1 = c->ic_ieee;
1277 		return (1);
1278 	}
1279 
1280 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1281 	    __func__, c->ic_ieee, c->ic_flags);
1282 
1283 	return (0);
1284 }
1285 
1286 /*
1287  * Return whether the current channel could possibly be a part of
1288  * a VHT80/VHT160 channel.
1289  *
1290  * This doesn't check that the whole range is in the allowed list
1291  * according to regulatory.
1292  */
1293 static bool
1294 is_vht160_valid_freq(uint16_t freq)
1295 {
1296 	int i;
1297 
1298 	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1299 		if (freq >= vht160_chan_ranges[i].freq_start &&
1300 		    freq < vht160_chan_ranges[i].freq_end)
1301 			return (true);
1302 	}
1303 	return (false);
1304 }
1305 
1306 static int
1307 is_vht80_valid_freq(uint16_t freq)
1308 {
1309 	int i;
1310 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1311 		if (freq >= vht80_chan_ranges[i].freq_start &&
1312 		    freq < vht80_chan_ranges[i].freq_end)
1313 			return (1);
1314 	}
1315 	return (0);
1316 }
1317 
1318 static int
1319 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1320     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1321 {
1322 	struct ieee80211_channel *c;
1323 
1324 	if (*nchans >= maxchans)
1325 		return (ENOBUFS);
1326 
1327 #if 0
1328 	printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1329 	    __func__, *nchans, maxchans, ieee, freq, flags);
1330 #endif
1331 
1332 	c = &chans[(*nchans)++];
1333 	c->ic_ieee = ieee;
1334 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1335 	c->ic_maxregpower = maxregpower;
1336 	c->ic_maxpower = 2 * maxregpower;
1337 	c->ic_flags = flags;
1338 	c->ic_vht_ch_freq1 = 0;
1339 	c->ic_vht_ch_freq2 = 0;
1340 	set_extchan(c);
1341 	set_vht_extchan(c);
1342 
1343 	return (0);
1344 }
1345 
1346 static int
1347 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1348     uint32_t flags)
1349 {
1350 	struct ieee80211_channel *c;
1351 
1352 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1353 
1354 	if (*nchans >= maxchans)
1355 		return (ENOBUFS);
1356 
1357 #if 0
1358 	printf("%s: %d of %d: flags=0x%08x\n",
1359 	    __func__, *nchans, maxchans, flags);
1360 #endif
1361 
1362 	c = &chans[(*nchans)++];
1363 	c[0] = c[-1];
1364 	c->ic_flags = flags;
1365 	c->ic_vht_ch_freq1 = 0;
1366 	c->ic_vht_ch_freq2 = 0;
1367 	set_extchan(c);
1368 	set_vht_extchan(c);
1369 
1370 	return (0);
1371 }
1372 
1373 /*
1374  * XXX VHT-2GHz
1375  */
1376 static void
1377 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1378 {
1379 	int nmodes;
1380 
1381 	nmodes = 0;
1382 	if (isset(bands, IEEE80211_MODE_11B))
1383 		flags[nmodes++] = IEEE80211_CHAN_B;
1384 	if (isset(bands, IEEE80211_MODE_11G))
1385 		flags[nmodes++] = IEEE80211_CHAN_G;
1386 	if (isset(bands, IEEE80211_MODE_11NG))
1387 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1388 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1389 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1390 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1391 	}
1392 	flags[nmodes] = 0;
1393 }
1394 
1395 static void
1396 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1397 {
1398 	int nmodes;
1399 
1400 	/*
1401 	 * The addchan_list() function seems to expect the flags array to
1402 	 * be in channel width order, so the VHT bits are interspersed
1403 	 * as appropriate to maintain said order.
1404 	 *
1405 	 * It also assumes HT40U is before HT40D.
1406 	 */
1407 	nmodes = 0;
1408 
1409 	/* 20MHz */
1410 	if (isset(bands, IEEE80211_MODE_11A))
1411 		flags[nmodes++] = IEEE80211_CHAN_A;
1412 	if (isset(bands, IEEE80211_MODE_11NA))
1413 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1414 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1415 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1416 		    IEEE80211_CHAN_VHT20;
1417 	}
1418 
1419 	/* 40MHz */
1420 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1421 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1422 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1423 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1424 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1425 		    IEEE80211_CHAN_VHT40U;
1426 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1427 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1428 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1429 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1430 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1431 		    IEEE80211_CHAN_VHT40D;
1432 
1433 	/* 80MHz */
1434 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1435 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1436 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1437 		    IEEE80211_CHAN_VHT80;
1438 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1439 		    IEEE80211_CHAN_VHT80;
1440 	}
1441 
1442 	/* VHT160 */
1443 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1444 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1445 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1446 		    IEEE80211_CHAN_VHT160;
1447 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1448 		    IEEE80211_CHAN_VHT160;
1449 	}
1450 
1451 	/* VHT80+80 */
1452 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1453 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1454 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1455 		    IEEE80211_CHAN_VHT80P80;
1456 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1457 		    IEEE80211_CHAN_VHT80P80;
1458 	}
1459 
1460 	flags[nmodes] = 0;
1461 }
1462 
1463 static void
1464 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1465 {
1466 
1467 	flags[0] = 0;
1468 	if (isset(bands, IEEE80211_MODE_11A) ||
1469 	    isset(bands, IEEE80211_MODE_11NA) ||
1470 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1471 		if (isset(bands, IEEE80211_MODE_11B) ||
1472 		    isset(bands, IEEE80211_MODE_11G) ||
1473 		    isset(bands, IEEE80211_MODE_11NG) ||
1474 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1475 			return;
1476 
1477 		getflags_5ghz(bands, flags, cbw_flags);
1478 	} else
1479 		getflags_2ghz(bands, flags, cbw_flags);
1480 }
1481 
1482 /*
1483  * Add one 20 MHz channel into specified channel list.
1484  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1485  * channels if you have any B/G/N band bit set.
1486  * The _cbw() variant does also support HT40/VHT80/160/80+80.
1487  */
1488 int
1489 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1490     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1491     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1492 {
1493 	uint32_t flags[IEEE80211_MODE_MAX];
1494 	int i, error;
1495 
1496 	getflags(bands, flags, cbw_flags);
1497 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1498 
1499 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1500 	    flags[0] | chan_flags);
1501 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1502 		error = copychan_prev(chans, maxchans, nchans,
1503 		    flags[i] | chan_flags);
1504 	}
1505 
1506 	return (error);
1507 }
1508 
1509 int
1510 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1511     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1512     uint32_t chan_flags, const uint8_t bands[])
1513 {
1514 
1515 	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1516 	    maxregpower, chan_flags, bands, 0));
1517 }
1518 
1519 static struct ieee80211_channel *
1520 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1521     uint32_t flags)
1522 {
1523 	struct ieee80211_channel *c;
1524 	int i;
1525 
1526 	flags &= IEEE80211_CHAN_ALLTURBO;
1527 	/* brute force search */
1528 	for (i = 0; i < nchans; i++) {
1529 		c = &chans[i];
1530 		if (c->ic_freq == freq &&
1531 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1532 			return c;
1533 	}
1534 	return NULL;
1535 }
1536 
1537 /*
1538  * Add 40 MHz channel pair into specified channel list.
1539  */
1540 /* XXX VHT */
1541 int
1542 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1543     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1544 {
1545 	struct ieee80211_channel *cent, *extc;
1546 	uint16_t freq;
1547 	int error;
1548 
1549 	freq = ieee80211_ieee2mhz(ieee, flags);
1550 
1551 	/*
1552 	 * Each entry defines an HT40 channel pair; find the
1553 	 * center channel, then the extension channel above.
1554 	 */
1555 	flags |= IEEE80211_CHAN_HT20;
1556 	cent = findchannel(chans, *nchans, freq, flags);
1557 	if (cent == NULL)
1558 		return (EINVAL);
1559 
1560 	extc = findchannel(chans, *nchans, freq + 20, flags);
1561 	if (extc == NULL)
1562 		return (ENOENT);
1563 
1564 	flags &= ~IEEE80211_CHAN_HT;
1565 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1566 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1567 	if (error != 0)
1568 		return (error);
1569 
1570 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1571 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1572 
1573 	return (error);
1574 }
1575 
1576 /*
1577  * Fetch the center frequency for the primary channel.
1578  */
1579 uint32_t
1580 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1581 {
1582 
1583 	return (c->ic_freq);
1584 }
1585 
1586 /*
1587  * Fetch the center frequency for the primary BAND channel.
1588  *
1589  * For 5, 10, 20MHz channels it'll be the normally configured channel
1590  * frequency.
1591  *
1592  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1593  * wide channel, not the centre of the primary channel (that's ic_freq).
1594  *
1595  * For 80+80MHz channels this will be the centre of the primary
1596  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1597  */
1598 uint32_t
1599 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1600 {
1601 
1602 	/*
1603 	 * VHT - use the pre-calculated centre frequency
1604 	 * of the given channel.
1605 	 */
1606 	if (IEEE80211_IS_CHAN_VHT(c))
1607 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1608 
1609 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1610 		return (c->ic_freq + 10);
1611 	}
1612 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1613 		return (c->ic_freq - 10);
1614 	}
1615 
1616 	return (c->ic_freq);
1617 }
1618 
1619 /*
1620  * For now, no 80+80 support; it will likely always return 0.
1621  */
1622 uint32_t
1623 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1624 {
1625 
1626 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1627 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1628 
1629 	return (0);
1630 }
1631 
1632 /*
1633  * Adds channels into specified channel list (ieee[] array must be sorted).
1634  * Channels are already sorted.
1635  */
1636 static int
1637 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1638     const uint8_t ieee[], int nieee, uint32_t flags[])
1639 {
1640 	uint16_t freq;
1641 	int i, j, error;
1642 	int is_vht;
1643 
1644 	for (i = 0; i < nieee; i++) {
1645 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1646 		for (j = 0; flags[j] != 0; j++) {
1647 			/*
1648 			 * Notes:
1649 			 * + HT40 and VHT40 channels occur together, so
1650 			 *   we need to be careful that we actually allow that.
1651 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1652 			 *   make sure it's not skipped because of the overlap
1653 			 *   check used for (V)HT40.
1654 			 */
1655 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1656 
1657 			/* XXX TODO FIXME VHT80P80. */
1658 
1659 			/* Test for VHT160 analogue to the VHT80 below. */
1660 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1661 				if (! is_vht160_valid_freq(freq))
1662 					continue;
1663 
1664 			/*
1665 			 * Test for VHT80.
1666 			 * XXX This is all very broken right now.
1667 			 * What we /should/ do is:
1668 			 *
1669 			 * + check that the frequency is in the list of
1670 			 *   allowed VHT80 ranges; and
1671 			 * + the other 3 channels in the list are actually
1672 			 *   also available.
1673 			 */
1674 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1675 				if (! is_vht80_valid_freq(freq))
1676 					continue;
1677 
1678 			/*
1679 			 * Test for (V)HT40.
1680 			 *
1681 			 * This is also a fall through from VHT80; as we only
1682 			 * allow a VHT80 channel if the VHT40 combination is
1683 			 * also valid.  If the VHT40 form is not valid then
1684 			 * we certainly can't do VHT80..
1685 			 */
1686 			if (flags[j] & IEEE80211_CHAN_HT40D)
1687 				/*
1688 				 * Can't have a "lower" channel if we are the
1689 				 * first channel.
1690 				 *
1691 				 * Can't have a "lower" channel if it's below/
1692 				 * within 20MHz of the first channel.
1693 				 *
1694 				 * Can't have a "lower" channel if the channel
1695 				 * below it is not 20MHz away.
1696 				 */
1697 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1698 				    freq - 20 !=
1699 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1700 					continue;
1701 			if (flags[j] & IEEE80211_CHAN_HT40U)
1702 				/*
1703 				 * Can't have an "upper" channel if we are
1704 				 * the last channel.
1705 				 *
1706 				 * Can't have an "upper" channel be above the
1707 				 * last channel in the list.
1708 				 *
1709 				 * Can't have an "upper" channel if the next
1710 				 * channel according to the math isn't 20MHz
1711 				 * away.  (Likely for channel 13/14.)
1712 				 */
1713 				if (i == nieee - 1 ||
1714 				    ieee[i] + 4 > ieee[nieee - 1] ||
1715 				    freq + 20 !=
1716 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1717 					continue;
1718 
1719 			if (j == 0) {
1720 				error = addchan(chans, maxchans, nchans,
1721 				    ieee[i], freq, 0, flags[j]);
1722 			} else {
1723 				error = copychan_prev(chans, maxchans, nchans,
1724 				    flags[j]);
1725 			}
1726 			if (error != 0)
1727 				return (error);
1728 		}
1729 	}
1730 
1731 	return (0);
1732 }
1733 
1734 int
1735 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1736     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1737     int cbw_flags)
1738 {
1739 	uint32_t flags[IEEE80211_MODE_MAX];
1740 
1741 	/* XXX no VHT for now */
1742 	getflags_2ghz(bands, flags, cbw_flags);
1743 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1744 
1745 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1746 }
1747 
1748 int
1749 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1750     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1751 {
1752 	const uint8_t default_chan_list[] =
1753 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1754 
1755 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1756 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1757 }
1758 
1759 int
1760 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1761     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1762     int cbw_flags)
1763 {
1764 	/*
1765 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1766 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1767 	 */
1768 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1769 
1770 	getflags_5ghz(bands, flags, cbw_flags);
1771 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1772 
1773 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1774 }
1775 
1776 /*
1777  * Locate a channel given a frequency+flags.  We cache
1778  * the previous lookup to optimize switching between two
1779  * channels--as happens with dynamic turbo.
1780  */
1781 struct ieee80211_channel *
1782 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1783 {
1784 	struct ieee80211_channel *c;
1785 
1786 	flags &= IEEE80211_CHAN_ALLTURBO;
1787 	c = ic->ic_prevchan;
1788 	if (c != NULL && c->ic_freq == freq &&
1789 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1790 		return c;
1791 	/* brute force search */
1792 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1793 }
1794 
1795 /*
1796  * Locate a channel given a channel number+flags.  We cache
1797  * the previous lookup to optimize switching between two
1798  * channels--as happens with dynamic turbo.
1799  */
1800 struct ieee80211_channel *
1801 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1802 {
1803 	struct ieee80211_channel *c;
1804 	int i;
1805 
1806 	flags &= IEEE80211_CHAN_ALLTURBO;
1807 	c = ic->ic_prevchan;
1808 	if (c != NULL && c->ic_ieee == ieee &&
1809 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1810 		return c;
1811 	/* brute force search */
1812 	for (i = 0; i < ic->ic_nchans; i++) {
1813 		c = &ic->ic_channels[i];
1814 		if (c->ic_ieee == ieee &&
1815 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1816 			return c;
1817 	}
1818 	return NULL;
1819 }
1820 
1821 /*
1822  * Lookup a channel suitable for the given rx status.
1823  *
1824  * This is used to find a channel for a frame (eg beacon, probe
1825  * response) based purely on the received PHY information.
1826  *
1827  * For now it tries to do it based on R_FREQ / R_IEEE.
1828  * This is enough for 11bg and 11a (and thus 11ng/11na)
1829  * but it will not be enough for GSM, PSB channels and the
1830  * like.  It also doesn't know about legacy-turbog and
1831  * legacy-turbo modes, which some offload NICs actually
1832  * support in weird ways.
1833  *
1834  * Takes the ic and rxstatus; returns the channel or NULL
1835  * if not found.
1836  *
1837  * XXX TODO: Add support for that when the need arises.
1838  */
1839 struct ieee80211_channel *
1840 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1841     const struct ieee80211_rx_stats *rxs)
1842 {
1843 	struct ieee80211com *ic = vap->iv_ic;
1844 	uint32_t flags;
1845 	struct ieee80211_channel *c;
1846 
1847 	if (rxs == NULL)
1848 		return (NULL);
1849 
1850 	/*
1851 	 * Strictly speaking we only use freq for now,
1852 	 * however later on we may wish to just store
1853 	 * the ieee for verification.
1854 	 */
1855 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1856 		return (NULL);
1857 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1858 		return (NULL);
1859 	if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1860 		return (NULL);
1861 
1862 	/*
1863 	 * If the rx status contains a valid ieee/freq, then
1864 	 * ensure we populate the correct channel information
1865 	 * in rxchan before passing it up to the scan infrastructure.
1866 	 * Offload NICs will pass up beacons from all channels
1867 	 * during background scans.
1868 	 */
1869 
1870 	/* Determine a band */
1871 	switch (rxs->c_band) {
1872 	case IEEE80211_CHAN_2GHZ:
1873 		flags = IEEE80211_CHAN_G;
1874 		break;
1875 	case IEEE80211_CHAN_5GHZ:
1876 		flags = IEEE80211_CHAN_A;
1877 		break;
1878 	default:
1879 		if (rxs->c_freq < 3000) {
1880 			flags = IEEE80211_CHAN_G;
1881 		} else {
1882 			flags = IEEE80211_CHAN_A;
1883 		}
1884 		break;
1885 	}
1886 
1887 	/* Channel lookup */
1888 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1889 
1890 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1891 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1892 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1893 
1894 	return (c);
1895 }
1896 
1897 static void
1898 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1899 {
1900 #define	ADD(_ic, _s, _o) \
1901 	ifmedia_add(media, \
1902 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1903 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1904 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1905 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1906 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1907 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1908 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1909 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1910 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1911 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1912 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1913 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1914 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1915 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1916 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1917 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1918 	};
1919 	u_int mopt;
1920 
1921 	mopt = mopts[mode];
1922 	if (addsta)
1923 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1924 	if (caps & IEEE80211_C_IBSS)
1925 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1926 	if (caps & IEEE80211_C_HOSTAP)
1927 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1928 	if (caps & IEEE80211_C_AHDEMO)
1929 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1930 	if (caps & IEEE80211_C_MONITOR)
1931 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1932 	if (caps & IEEE80211_C_WDS)
1933 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1934 	if (caps & IEEE80211_C_MBSS)
1935 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1936 #undef ADD
1937 }
1938 
1939 /*
1940  * Setup the media data structures according to the channel and
1941  * rate tables.
1942  */
1943 static int
1944 ieee80211_media_setup(struct ieee80211com *ic,
1945 	struct ifmedia *media, int caps, int addsta,
1946 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1947 {
1948 	int i, j, rate, maxrate, mword, r;
1949 	enum ieee80211_phymode mode;
1950 	const struct ieee80211_rateset *rs;
1951 	struct ieee80211_rateset allrates;
1952 
1953 	/*
1954 	 * Fill in media characteristics.
1955 	 */
1956 	ifmedia_init(media, 0, media_change, media_stat);
1957 	maxrate = 0;
1958 	/*
1959 	 * Add media for legacy operating modes.
1960 	 */
1961 	memset(&allrates, 0, sizeof(allrates));
1962 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1963 		if (isclr(ic->ic_modecaps, mode))
1964 			continue;
1965 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1966 		if (mode == IEEE80211_MODE_AUTO)
1967 			continue;
1968 		rs = &ic->ic_sup_rates[mode];
1969 		for (i = 0; i < rs->rs_nrates; i++) {
1970 			rate = rs->rs_rates[i];
1971 			mword = ieee80211_rate2media(ic, rate, mode);
1972 			if (mword == 0)
1973 				continue;
1974 			addmedia(media, caps, addsta, mode, mword);
1975 			/*
1976 			 * Add legacy rate to the collection of all rates.
1977 			 */
1978 			r = rate & IEEE80211_RATE_VAL;
1979 			for (j = 0; j < allrates.rs_nrates; j++)
1980 				if (allrates.rs_rates[j] == r)
1981 					break;
1982 			if (j == allrates.rs_nrates) {
1983 				/* unique, add to the set */
1984 				allrates.rs_rates[j] = r;
1985 				allrates.rs_nrates++;
1986 			}
1987 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1988 			if (rate > maxrate)
1989 				maxrate = rate;
1990 		}
1991 	}
1992 	for (i = 0; i < allrates.rs_nrates; i++) {
1993 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1994 				IEEE80211_MODE_AUTO);
1995 		if (mword == 0)
1996 			continue;
1997 		/* NB: remove media options from mword */
1998 		addmedia(media, caps, addsta,
1999 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
2000 	}
2001 	/*
2002 	 * Add HT/11n media.  Note that we do not have enough
2003 	 * bits in the media subtype to express the MCS so we
2004 	 * use a "placeholder" media subtype and any fixed MCS
2005 	 * must be specified with a different mechanism.
2006 	 */
2007 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
2008 		if (isclr(ic->ic_modecaps, mode))
2009 			continue;
2010 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2011 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2012 	}
2013 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2014 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2015 		addmedia(media, caps, addsta,
2016 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2017 		i = ic->ic_txstream * 8 - 1;
2018 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2019 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2020 			rate = ieee80211_htrates[i].ht40_rate_400ns;
2021 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2022 			rate = ieee80211_htrates[i].ht40_rate_800ns;
2023 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2024 			rate = ieee80211_htrates[i].ht20_rate_400ns;
2025 		else
2026 			rate = ieee80211_htrates[i].ht20_rate_800ns;
2027 		if (rate > maxrate)
2028 			maxrate = rate;
2029 	}
2030 
2031 	/*
2032 	 * Add VHT media.
2033 	 * XXX-BZ skip "VHT_2GHZ" for now.
2034 	 */
2035 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2036 	    mode++) {
2037 		if (isclr(ic->ic_modecaps, mode))
2038 			continue;
2039 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2040 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2041 	}
2042 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2043 	       addmedia(media, caps, addsta,
2044 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2045 
2046 		/* XXX TODO: VHT maxrate */
2047 	}
2048 
2049 	return maxrate;
2050 }
2051 
2052 /* XXX inline or eliminate? */
2053 const struct ieee80211_rateset *
2054 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2055 {
2056 	/* XXX does this work for 11ng basic rates? */
2057 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2058 }
2059 
2060 /* XXX inline or eliminate? */
2061 const struct ieee80211_htrateset *
2062 ieee80211_get_suphtrates(struct ieee80211com *ic,
2063     const struct ieee80211_channel *c)
2064 {
2065 	return &ic->ic_sup_htrates;
2066 }
2067 
2068 void
2069 ieee80211_announce(struct ieee80211com *ic)
2070 {
2071 	int i, rate, mword;
2072 	enum ieee80211_phymode mode;
2073 	const struct ieee80211_rateset *rs;
2074 
2075 	/* NB: skip AUTO since it has no rates */
2076 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2077 		if (isclr(ic->ic_modecaps, mode))
2078 			continue;
2079 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2080 		rs = &ic->ic_sup_rates[mode];
2081 		for (i = 0; i < rs->rs_nrates; i++) {
2082 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2083 			if (mword == 0)
2084 				continue;
2085 			rate = ieee80211_media2rate(mword);
2086 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
2087 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2088 		}
2089 		printf("\n");
2090 	}
2091 	ieee80211_ht_announce(ic);
2092 	ieee80211_vht_announce(ic);
2093 }
2094 
2095 void
2096 ieee80211_announce_channels(struct ieee80211com *ic)
2097 {
2098 	const struct ieee80211_channel *c;
2099 	char type;
2100 	int i, cw;
2101 
2102 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2103 	for (i = 0; i < ic->ic_nchans; i++) {
2104 		c = &ic->ic_channels[i];
2105 		if (IEEE80211_IS_CHAN_ST(c))
2106 			type = 'S';
2107 		else if (IEEE80211_IS_CHAN_108A(c))
2108 			type = 'T';
2109 		else if (IEEE80211_IS_CHAN_108G(c))
2110 			type = 'G';
2111 		else if (IEEE80211_IS_CHAN_HT(c))
2112 			type = 'n';
2113 		else if (IEEE80211_IS_CHAN_A(c))
2114 			type = 'a';
2115 		else if (IEEE80211_IS_CHAN_ANYG(c))
2116 			type = 'g';
2117 		else if (IEEE80211_IS_CHAN_B(c))
2118 			type = 'b';
2119 		else
2120 			type = 'f';
2121 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2122 			cw = 40;
2123 		else if (IEEE80211_IS_CHAN_HALF(c))
2124 			cw = 10;
2125 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2126 			cw = 5;
2127 		else
2128 			cw = 20;
2129 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2130 			, c->ic_ieee, c->ic_freq, type
2131 			, cw
2132 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2133 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2134 			, c->ic_maxregpower
2135 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2136 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2137 		);
2138 	}
2139 }
2140 
2141 static int
2142 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2143 {
2144 	switch (IFM_MODE(ime->ifm_media)) {
2145 	case IFM_IEEE80211_11A:
2146 		*mode = IEEE80211_MODE_11A;
2147 		break;
2148 	case IFM_IEEE80211_11B:
2149 		*mode = IEEE80211_MODE_11B;
2150 		break;
2151 	case IFM_IEEE80211_11G:
2152 		*mode = IEEE80211_MODE_11G;
2153 		break;
2154 	case IFM_IEEE80211_FH:
2155 		*mode = IEEE80211_MODE_FH;
2156 		break;
2157 	case IFM_IEEE80211_11NA:
2158 		*mode = IEEE80211_MODE_11NA;
2159 		break;
2160 	case IFM_IEEE80211_11NG:
2161 		*mode = IEEE80211_MODE_11NG;
2162 		break;
2163 	case IFM_IEEE80211_VHT2G:
2164 		*mode = IEEE80211_MODE_VHT_2GHZ;
2165 		break;
2166 	case IFM_IEEE80211_VHT5G:
2167 		*mode = IEEE80211_MODE_VHT_5GHZ;
2168 		break;
2169 	case IFM_AUTO:
2170 		*mode = IEEE80211_MODE_AUTO;
2171 		break;
2172 	default:
2173 		return 0;
2174 	}
2175 	/*
2176 	 * Turbo mode is an ``option''.
2177 	 * XXX does not apply to AUTO
2178 	 */
2179 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2180 		if (*mode == IEEE80211_MODE_11A) {
2181 			if (flags & IEEE80211_F_TURBOP)
2182 				*mode = IEEE80211_MODE_TURBO_A;
2183 			else
2184 				*mode = IEEE80211_MODE_STURBO_A;
2185 		} else if (*mode == IEEE80211_MODE_11G)
2186 			*mode = IEEE80211_MODE_TURBO_G;
2187 		else
2188 			return 0;
2189 	}
2190 	/* XXX HT40 +/- */
2191 	return 1;
2192 }
2193 
2194 /*
2195  * Handle a media change request on the vap interface.
2196  */
2197 int
2198 ieee80211_media_change(struct ifnet *ifp)
2199 {
2200 	struct ieee80211vap *vap = ifp->if_softc;
2201 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2202 	uint16_t newmode;
2203 
2204 	if (!media2mode(ime, vap->iv_flags, &newmode))
2205 		return EINVAL;
2206 	if (vap->iv_des_mode != newmode) {
2207 		vap->iv_des_mode = newmode;
2208 		/* XXX kick state machine if up+running */
2209 	}
2210 	return 0;
2211 }
2212 
2213 /*
2214  * Common code to calculate the media status word
2215  * from the operating mode and channel state.
2216  */
2217 static int
2218 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2219 {
2220 	int status;
2221 
2222 	status = IFM_IEEE80211;
2223 	switch (opmode) {
2224 	case IEEE80211_M_STA:
2225 		break;
2226 	case IEEE80211_M_IBSS:
2227 		status |= IFM_IEEE80211_ADHOC;
2228 		break;
2229 	case IEEE80211_M_HOSTAP:
2230 		status |= IFM_IEEE80211_HOSTAP;
2231 		break;
2232 	case IEEE80211_M_MONITOR:
2233 		status |= IFM_IEEE80211_MONITOR;
2234 		break;
2235 	case IEEE80211_M_AHDEMO:
2236 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2237 		break;
2238 	case IEEE80211_M_WDS:
2239 		status |= IFM_IEEE80211_WDS;
2240 		break;
2241 	case IEEE80211_M_MBSS:
2242 		status |= IFM_IEEE80211_MBSS;
2243 		break;
2244 	}
2245 	if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2246 		status |= IFM_IEEE80211_VHT5G;
2247 	} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2248 		status |= IFM_IEEE80211_VHT2G;
2249 	} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2250 		status |= IFM_IEEE80211_11NA;
2251 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2252 		status |= IFM_IEEE80211_11NG;
2253 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2254 		status |= IFM_IEEE80211_11A;
2255 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2256 		status |= IFM_IEEE80211_11B;
2257 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2258 		status |= IFM_IEEE80211_11G;
2259 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2260 		status |= IFM_IEEE80211_FH;
2261 	}
2262 	/* XXX else complain? */
2263 
2264 	if (IEEE80211_IS_CHAN_TURBO(chan))
2265 		status |= IFM_IEEE80211_TURBO;
2266 #if 0
2267 	if (IEEE80211_IS_CHAN_HT20(chan))
2268 		status |= IFM_IEEE80211_HT20;
2269 	if (IEEE80211_IS_CHAN_HT40(chan))
2270 		status |= IFM_IEEE80211_HT40;
2271 #endif
2272 	return status;
2273 }
2274 
2275 void
2276 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2277 {
2278 	struct ieee80211vap *vap = ifp->if_softc;
2279 	struct ieee80211com *ic = vap->iv_ic;
2280 	enum ieee80211_phymode mode;
2281 
2282 	imr->ifm_status = IFM_AVALID;
2283 	/*
2284 	 * NB: use the current channel's mode to lock down a xmit
2285 	 * rate only when running; otherwise we may have a mismatch
2286 	 * in which case the rate will not be convertible.
2287 	 */
2288 	if (vap->iv_state == IEEE80211_S_RUN ||
2289 	    vap->iv_state == IEEE80211_S_SLEEP) {
2290 		imr->ifm_status |= IFM_ACTIVE;
2291 		mode = ieee80211_chan2mode(ic->ic_curchan);
2292 	} else
2293 		mode = IEEE80211_MODE_AUTO;
2294 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2295 	/*
2296 	 * Calculate a current rate if possible.
2297 	 */
2298 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2299 		/*
2300 		 * A fixed rate is set, report that.
2301 		 */
2302 		imr->ifm_active |= ieee80211_rate2media(ic,
2303 			vap->iv_txparms[mode].ucastrate, mode);
2304 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2305 		/*
2306 		 * In station mode report the current transmit rate.
2307 		 */
2308 		imr->ifm_active |= ieee80211_rate2media(ic,
2309 			vap->iv_bss->ni_txrate, mode);
2310 	} else
2311 		imr->ifm_active |= IFM_AUTO;
2312 	if (imr->ifm_status & IFM_ACTIVE)
2313 		imr->ifm_current = imr->ifm_active;
2314 }
2315 
2316 /*
2317  * Set the current phy mode and recalculate the active channel
2318  * set based on the available channels for this mode.  Also
2319  * select a new default/current channel if the current one is
2320  * inappropriate for this mode.
2321  */
2322 int
2323 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2324 {
2325 	/*
2326 	 * Adjust basic rates in 11b/11g supported rate set.
2327 	 * Note that if operating on a hal/quarter rate channel
2328 	 * this is a noop as those rates sets are different
2329 	 * and used instead.
2330 	 */
2331 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2332 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2333 
2334 	ic->ic_curmode = mode;
2335 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2336 
2337 	return 0;
2338 }
2339 
2340 /*
2341  * Return the phy mode for with the specified channel.
2342  */
2343 enum ieee80211_phymode
2344 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2345 {
2346 
2347 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2348 		return IEEE80211_MODE_VHT_2GHZ;
2349 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2350 		return IEEE80211_MODE_VHT_5GHZ;
2351 	else if (IEEE80211_IS_CHAN_HTA(chan))
2352 		return IEEE80211_MODE_11NA;
2353 	else if (IEEE80211_IS_CHAN_HTG(chan))
2354 		return IEEE80211_MODE_11NG;
2355 	else if (IEEE80211_IS_CHAN_108G(chan))
2356 		return IEEE80211_MODE_TURBO_G;
2357 	else if (IEEE80211_IS_CHAN_ST(chan))
2358 		return IEEE80211_MODE_STURBO_A;
2359 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2360 		return IEEE80211_MODE_TURBO_A;
2361 	else if (IEEE80211_IS_CHAN_HALF(chan))
2362 		return IEEE80211_MODE_HALF;
2363 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2364 		return IEEE80211_MODE_QUARTER;
2365 	else if (IEEE80211_IS_CHAN_A(chan))
2366 		return IEEE80211_MODE_11A;
2367 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2368 		return IEEE80211_MODE_11G;
2369 	else if (IEEE80211_IS_CHAN_B(chan))
2370 		return IEEE80211_MODE_11B;
2371 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2372 		return IEEE80211_MODE_FH;
2373 
2374 	/* NB: should not get here */
2375 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2376 		__func__, chan->ic_freq, chan->ic_flags);
2377 	return IEEE80211_MODE_11B;
2378 }
2379 
2380 struct ratemedia {
2381 	u_int	match;	/* rate + mode */
2382 	u_int	media;	/* if_media rate */
2383 };
2384 
2385 static int
2386 findmedia(const struct ratemedia rates[], int n, u_int match)
2387 {
2388 	int i;
2389 
2390 	for (i = 0; i < n; i++)
2391 		if (rates[i].match == match)
2392 			return rates[i].media;
2393 	return IFM_AUTO;
2394 }
2395 
2396 /*
2397  * Convert IEEE80211 rate value to ifmedia subtype.
2398  * Rate is either a legacy rate in units of 0.5Mbps
2399  * or an MCS index.
2400  */
2401 int
2402 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2403 {
2404 	static const struct ratemedia rates[] = {
2405 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2406 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2407 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2408 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2409 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2410 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2411 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2412 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2413 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2414 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2415 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2416 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2417 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2418 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2419 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2420 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2421 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2422 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2423 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2424 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2425 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2426 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2427 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2428 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2429 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2430 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2431 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2432 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2433 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2434 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2435 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2436 	};
2437 	static const struct ratemedia htrates[] = {
2438 		{   0, IFM_IEEE80211_MCS },
2439 		{   1, IFM_IEEE80211_MCS },
2440 		{   2, IFM_IEEE80211_MCS },
2441 		{   3, IFM_IEEE80211_MCS },
2442 		{   4, IFM_IEEE80211_MCS },
2443 		{   5, IFM_IEEE80211_MCS },
2444 		{   6, IFM_IEEE80211_MCS },
2445 		{   7, IFM_IEEE80211_MCS },
2446 		{   8, IFM_IEEE80211_MCS },
2447 		{   9, IFM_IEEE80211_MCS },
2448 		{  10, IFM_IEEE80211_MCS },
2449 		{  11, IFM_IEEE80211_MCS },
2450 		{  12, IFM_IEEE80211_MCS },
2451 		{  13, IFM_IEEE80211_MCS },
2452 		{  14, IFM_IEEE80211_MCS },
2453 		{  15, IFM_IEEE80211_MCS },
2454 		{  16, IFM_IEEE80211_MCS },
2455 		{  17, IFM_IEEE80211_MCS },
2456 		{  18, IFM_IEEE80211_MCS },
2457 		{  19, IFM_IEEE80211_MCS },
2458 		{  20, IFM_IEEE80211_MCS },
2459 		{  21, IFM_IEEE80211_MCS },
2460 		{  22, IFM_IEEE80211_MCS },
2461 		{  23, IFM_IEEE80211_MCS },
2462 		{  24, IFM_IEEE80211_MCS },
2463 		{  25, IFM_IEEE80211_MCS },
2464 		{  26, IFM_IEEE80211_MCS },
2465 		{  27, IFM_IEEE80211_MCS },
2466 		{  28, IFM_IEEE80211_MCS },
2467 		{  29, IFM_IEEE80211_MCS },
2468 		{  30, IFM_IEEE80211_MCS },
2469 		{  31, IFM_IEEE80211_MCS },
2470 		{  32, IFM_IEEE80211_MCS },
2471 		{  33, IFM_IEEE80211_MCS },
2472 		{  34, IFM_IEEE80211_MCS },
2473 		{  35, IFM_IEEE80211_MCS },
2474 		{  36, IFM_IEEE80211_MCS },
2475 		{  37, IFM_IEEE80211_MCS },
2476 		{  38, IFM_IEEE80211_MCS },
2477 		{  39, IFM_IEEE80211_MCS },
2478 		{  40, IFM_IEEE80211_MCS },
2479 		{  41, IFM_IEEE80211_MCS },
2480 		{  42, IFM_IEEE80211_MCS },
2481 		{  43, IFM_IEEE80211_MCS },
2482 		{  44, IFM_IEEE80211_MCS },
2483 		{  45, IFM_IEEE80211_MCS },
2484 		{  46, IFM_IEEE80211_MCS },
2485 		{  47, IFM_IEEE80211_MCS },
2486 		{  48, IFM_IEEE80211_MCS },
2487 		{  49, IFM_IEEE80211_MCS },
2488 		{  50, IFM_IEEE80211_MCS },
2489 		{  51, IFM_IEEE80211_MCS },
2490 		{  52, IFM_IEEE80211_MCS },
2491 		{  53, IFM_IEEE80211_MCS },
2492 		{  54, IFM_IEEE80211_MCS },
2493 		{  55, IFM_IEEE80211_MCS },
2494 		{  56, IFM_IEEE80211_MCS },
2495 		{  57, IFM_IEEE80211_MCS },
2496 		{  58, IFM_IEEE80211_MCS },
2497 		{  59, IFM_IEEE80211_MCS },
2498 		{  60, IFM_IEEE80211_MCS },
2499 		{  61, IFM_IEEE80211_MCS },
2500 		{  62, IFM_IEEE80211_MCS },
2501 		{  63, IFM_IEEE80211_MCS },
2502 		{  64, IFM_IEEE80211_MCS },
2503 		{  65, IFM_IEEE80211_MCS },
2504 		{  66, IFM_IEEE80211_MCS },
2505 		{  67, IFM_IEEE80211_MCS },
2506 		{  68, IFM_IEEE80211_MCS },
2507 		{  69, IFM_IEEE80211_MCS },
2508 		{  70, IFM_IEEE80211_MCS },
2509 		{  71, IFM_IEEE80211_MCS },
2510 		{  72, IFM_IEEE80211_MCS },
2511 		{  73, IFM_IEEE80211_MCS },
2512 		{  74, IFM_IEEE80211_MCS },
2513 		{  75, IFM_IEEE80211_MCS },
2514 		{  76, IFM_IEEE80211_MCS },
2515 	};
2516 	static const struct ratemedia vhtrates[] = {
2517 		{   0, IFM_IEEE80211_VHT },
2518 		{   1, IFM_IEEE80211_VHT },
2519 		{   2, IFM_IEEE80211_VHT },
2520 		{   3, IFM_IEEE80211_VHT },
2521 		{   4, IFM_IEEE80211_VHT },
2522 		{   5, IFM_IEEE80211_VHT },
2523 		{   6, IFM_IEEE80211_VHT },
2524 		{   7, IFM_IEEE80211_VHT },
2525 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2526 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2527 #if 0
2528 		/* Some QCA and BRCM seem to support this; offspec. */
2529 		{  10, IFM_IEEE80211_VHT },
2530 		{  11, IFM_IEEE80211_VHT },
2531 #endif
2532 	};
2533 	int m;
2534 
2535 	/*
2536 	 * Check 11ac/11n rates first for match as an MCS.
2537 	 */
2538 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2539 		if (rate & IFM_IEEE80211_VHT) {
2540 			rate &= ~IFM_IEEE80211_VHT;
2541 			m = findmedia(vhtrates, nitems(vhtrates), rate);
2542 			if (m != IFM_AUTO)
2543 				return (m | IFM_IEEE80211_VHT);
2544 		}
2545 	} else if (mode == IEEE80211_MODE_11NA) {
2546 		if (rate & IEEE80211_RATE_MCS) {
2547 			rate &= ~IEEE80211_RATE_MCS;
2548 			m = findmedia(htrates, nitems(htrates), rate);
2549 			if (m != IFM_AUTO)
2550 				return m | IFM_IEEE80211_11NA;
2551 		}
2552 	} else if (mode == IEEE80211_MODE_11NG) {
2553 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2554 		if (rate & IEEE80211_RATE_MCS) {
2555 			rate &= ~IEEE80211_RATE_MCS;
2556 			m = findmedia(htrates, nitems(htrates), rate);
2557 			if (m != IFM_AUTO)
2558 				return m | IFM_IEEE80211_11NG;
2559 		}
2560 	}
2561 	rate &= IEEE80211_RATE_VAL;
2562 	switch (mode) {
2563 	case IEEE80211_MODE_11A:
2564 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2565 	case IEEE80211_MODE_QUARTER:
2566 	case IEEE80211_MODE_11NA:
2567 	case IEEE80211_MODE_TURBO_A:
2568 	case IEEE80211_MODE_STURBO_A:
2569 		return findmedia(rates, nitems(rates),
2570 		    rate | IFM_IEEE80211_11A);
2571 	case IEEE80211_MODE_11B:
2572 		return findmedia(rates, nitems(rates),
2573 		    rate | IFM_IEEE80211_11B);
2574 	case IEEE80211_MODE_FH:
2575 		return findmedia(rates, nitems(rates),
2576 		    rate | IFM_IEEE80211_FH);
2577 	case IEEE80211_MODE_AUTO:
2578 		/* NB: ic may be NULL for some drivers */
2579 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2580 			return findmedia(rates, nitems(rates),
2581 			    rate | IFM_IEEE80211_FH);
2582 		/* NB: hack, 11g matches both 11b+11a rates */
2583 		/* fall thru... */
2584 	case IEEE80211_MODE_11G:
2585 	case IEEE80211_MODE_11NG:
2586 	case IEEE80211_MODE_TURBO_G:
2587 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2588 	case IEEE80211_MODE_VHT_2GHZ:
2589 	case IEEE80211_MODE_VHT_5GHZ:
2590 		/* XXX TODO: need to figure out mapping for VHT rates */
2591 		return IFM_AUTO;
2592 	}
2593 	return IFM_AUTO;
2594 }
2595 
2596 int
2597 ieee80211_media2rate(int mword)
2598 {
2599 	static const int ieeerates[] = {
2600 		-1,		/* IFM_AUTO */
2601 		0,		/* IFM_MANUAL */
2602 		0,		/* IFM_NONE */
2603 		2,		/* IFM_IEEE80211_FH1 */
2604 		4,		/* IFM_IEEE80211_FH2 */
2605 		2,		/* IFM_IEEE80211_DS1 */
2606 		4,		/* IFM_IEEE80211_DS2 */
2607 		11,		/* IFM_IEEE80211_DS5 */
2608 		22,		/* IFM_IEEE80211_DS11 */
2609 		44,		/* IFM_IEEE80211_DS22 */
2610 		12,		/* IFM_IEEE80211_OFDM6 */
2611 		18,		/* IFM_IEEE80211_OFDM9 */
2612 		24,		/* IFM_IEEE80211_OFDM12 */
2613 		36,		/* IFM_IEEE80211_OFDM18 */
2614 		48,		/* IFM_IEEE80211_OFDM24 */
2615 		72,		/* IFM_IEEE80211_OFDM36 */
2616 		96,		/* IFM_IEEE80211_OFDM48 */
2617 		108,		/* IFM_IEEE80211_OFDM54 */
2618 		144,		/* IFM_IEEE80211_OFDM72 */
2619 		0,		/* IFM_IEEE80211_DS354k */
2620 		0,		/* IFM_IEEE80211_DS512k */
2621 		6,		/* IFM_IEEE80211_OFDM3 */
2622 		9,		/* IFM_IEEE80211_OFDM4 */
2623 		54,		/* IFM_IEEE80211_OFDM27 */
2624 		-1,		/* IFM_IEEE80211_MCS */
2625 		-1,		/* IFM_IEEE80211_VHT */
2626 	};
2627 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2628 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2629 }
2630 
2631 /*
2632  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2633  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2634  */
2635 #define	mix(a, b, c)							\
2636 do {									\
2637 	a -= b; a -= c; a ^= (c >> 13);					\
2638 	b -= c; b -= a; b ^= (a << 8);					\
2639 	c -= a; c -= b; c ^= (b >> 13);					\
2640 	a -= b; a -= c; a ^= (c >> 12);					\
2641 	b -= c; b -= a; b ^= (a << 16);					\
2642 	c -= a; c -= b; c ^= (b >> 5);					\
2643 	a -= b; a -= c; a ^= (c >> 3);					\
2644 	b -= c; b -= a; b ^= (a << 10);					\
2645 	c -= a; c -= b; c ^= (b >> 15);					\
2646 } while (/*CONSTCOND*/0)
2647 
2648 uint32_t
2649 ieee80211_mac_hash(const struct ieee80211com *ic,
2650 	const uint8_t addr[IEEE80211_ADDR_LEN])
2651 {
2652 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2653 
2654 	b += addr[5] << 8;
2655 	b += addr[4];
2656 	a += addr[3] << 24;
2657 	a += addr[2] << 16;
2658 	a += addr[1] << 8;
2659 	a += addr[0];
2660 
2661 	mix(a, b, c);
2662 
2663 	return c;
2664 }
2665 #undef mix
2666 
2667 char
2668 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2669 {
2670 	if (IEEE80211_IS_CHAN_ST(c))
2671 		return 'S';
2672 	if (IEEE80211_IS_CHAN_108A(c))
2673 		return 'T';
2674 	if (IEEE80211_IS_CHAN_108G(c))
2675 		return 'G';
2676 	if (IEEE80211_IS_CHAN_VHT(c))
2677 		return 'v';
2678 	if (IEEE80211_IS_CHAN_HT(c))
2679 		return 'n';
2680 	if (IEEE80211_IS_CHAN_A(c))
2681 		return 'a';
2682 	if (IEEE80211_IS_CHAN_ANYG(c))
2683 		return 'g';
2684 	if (IEEE80211_IS_CHAN_B(c))
2685 		return 'b';
2686 	return 'f';
2687 }
2688 
2689 /*
2690  * Determine whether the given key in the given VAP is a global key.
2691  * (key index 0..3, shared between all stations on a VAP.)
2692  *
2693  * This is either a WEP key or a GROUP key.
2694  *
2695  * Note this will NOT return true if it is a IGTK key.
2696  */
2697 bool
2698 ieee80211_is_key_global(const struct ieee80211vap *vap,
2699     const struct ieee80211_key *key)
2700 {
2701 	return (&vap->iv_nw_keys[0] <= key &&
2702 	    key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]);
2703 }
2704 
2705 /*
2706  * Determine whether the given key in the given VAP is a unicast key.
2707  */
2708 bool
2709 ieee80211_is_key_unicast(const struct ieee80211vap *vap,
2710     const struct ieee80211_key *key)
2711 {
2712 	/*
2713 	 * This is a short-cut for now; eventually we will need
2714 	 * to support multiple unicast keys, IGTK, etc) so we
2715 	 * will absolutely need to fix the key flags.
2716 	 */
2717 	return (!ieee80211_is_key_global(vap, key));
2718 }
2719