xref: /freebsd/sys/net80211/ieee80211.c (revision da477bcdc0c335171bb0ed3813f570026de6df85)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * IEEE 802.11 generic handler
34  */
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/socket.h>
42 #include <sys/sbuf.h>
43 
44 #include <machine/stdarg.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/ethernet.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #include <net80211/ieee80211_ratectl.h>
59 #include <net80211/ieee80211_vht.h>
60 
61 #include <net/bpf.h>
62 
63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
64 	[IEEE80211_MODE_AUTO]	  = "auto",
65 	[IEEE80211_MODE_11A]	  = "11a",
66 	[IEEE80211_MODE_11B]	  = "11b",
67 	[IEEE80211_MODE_11G]	  = "11g",
68 	[IEEE80211_MODE_FH]	  = "FH",
69 	[IEEE80211_MODE_TURBO_A]  = "turboA",
70 	[IEEE80211_MODE_TURBO_G]  = "turboG",
71 	[IEEE80211_MODE_STURBO_A] = "sturboA",
72 	[IEEE80211_MODE_HALF]	  = "half",
73 	[IEEE80211_MODE_QUARTER]  = "quarter",
74 	[IEEE80211_MODE_11NA]	  = "11na",
75 	[IEEE80211_MODE_11NG]	  = "11ng",
76 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
77 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
78 };
79 /* map ieee80211_opmode to the corresponding capability bit */
80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
81 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
82 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
83 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
84 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
85 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
86 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
87 #ifdef IEEE80211_SUPPORT_MESH
88 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
89 #endif
90 };
91 
92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
93 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
94 
95 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
98 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
99 static	int ieee80211_media_setup(struct ieee80211com *ic,
100 		struct ifmedia *media, int caps, int addsta,
101 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
102 static	int media_status(enum ieee80211_opmode,
103 		const struct ieee80211_channel *);
104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
105 
106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
107 
108 /*
109  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
110  */
111 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
112 static const struct ieee80211_rateset ieee80211_rateset_11a =
113 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
114 static const struct ieee80211_rateset ieee80211_rateset_half =
115 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
116 static const struct ieee80211_rateset ieee80211_rateset_quarter =
117 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
118 static const struct ieee80211_rateset ieee80211_rateset_11b =
119 	{ 4, { B(2), B(4), B(11), B(22) } };
120 /* NB: OFDM rates are handled specially based on mode */
121 static const struct ieee80211_rateset ieee80211_rateset_11g =
122 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
123 #undef B
124 
125 static int set_vht_extchan(struct ieee80211_channel *c);
126 
127 /*
128  * Fill in 802.11 available channel set, mark
129  * all available channels as active, and pick
130  * a default channel if not already specified.
131  */
132 void
133 ieee80211_chan_init(struct ieee80211com *ic)
134 {
135 #define	DEFAULTRATES(m, def) do { \
136 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
137 		ic->ic_sup_rates[m] = def; \
138 } while (0)
139 	struct ieee80211_channel *c;
140 	int i;
141 
142 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
143 		("invalid number of channels specified: %u", ic->ic_nchans));
144 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
145 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
146 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
147 	for (i = 0; i < ic->ic_nchans; i++) {
148 		c = &ic->ic_channels[i];
149 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
150 		/*
151 		 * Help drivers that work only with frequencies by filling
152 		 * in IEEE channel #'s if not already calculated.  Note this
153 		 * mimics similar work done in ieee80211_setregdomain when
154 		 * changing regulatory state.
155 		 */
156 		if (c->ic_ieee == 0)
157 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
158 
159 		/*
160 		 * Setup the HT40/VHT40 upper/lower bits.
161 		 * The VHT80 math is done elsewhere.
162 		 */
163 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
164 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
165 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
166 			    c->ic_flags);
167 
168 		/* Update VHT math */
169 		/*
170 		 * XXX VHT again, note that this assumes VHT80 channels
171 		 * are legit already
172 		 */
173 		set_vht_extchan(c);
174 
175 		/* default max tx power to max regulatory */
176 		if (c->ic_maxpower == 0)
177 			c->ic_maxpower = 2*c->ic_maxregpower;
178 		setbit(ic->ic_chan_avail, c->ic_ieee);
179 		/*
180 		 * Identify mode capabilities.
181 		 */
182 		if (IEEE80211_IS_CHAN_A(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
184 		if (IEEE80211_IS_CHAN_B(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
186 		if (IEEE80211_IS_CHAN_ANYG(c))
187 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
188 		if (IEEE80211_IS_CHAN_FHSS(c))
189 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
190 		if (IEEE80211_IS_CHAN_108A(c))
191 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
192 		if (IEEE80211_IS_CHAN_108G(c))
193 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
194 		if (IEEE80211_IS_CHAN_ST(c))
195 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
196 		if (IEEE80211_IS_CHAN_HALF(c))
197 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
198 		if (IEEE80211_IS_CHAN_QUARTER(c))
199 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
200 		if (IEEE80211_IS_CHAN_HTA(c))
201 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
202 		if (IEEE80211_IS_CHAN_HTG(c))
203 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
204 		if (IEEE80211_IS_CHAN_VHTA(c))
205 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
206 		if (IEEE80211_IS_CHAN_VHTG(c))
207 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
208 	}
209 	/* initialize candidate channels to all available */
210 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
211 		sizeof(ic->ic_chan_avail));
212 
213 	/* sort channel table to allow lookup optimizations */
214 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
215 
216 	/* invalidate any previous state */
217 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
218 	ic->ic_prevchan = NULL;
219 	ic->ic_csa_newchan = NULL;
220 	/* arbitrarily pick the first channel */
221 	ic->ic_curchan = &ic->ic_channels[0];
222 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
223 
224 	/* fillin well-known rate sets if driver has not specified */
225 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
226 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
227 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
229 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
230 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
231 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
232 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
233 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
234 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
236 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
237 
238 	/*
239 	 * Setup required information to fill the mcsset field, if driver did
240 	 * not. Assume a 2T2R setup for historic reasons.
241 	 */
242 	if (ic->ic_rxstream == 0)
243 		ic->ic_rxstream = 2;
244 	if (ic->ic_txstream == 0)
245 		ic->ic_txstream = 2;
246 
247 	ieee80211_init_suphtrates(ic);
248 
249 	/*
250 	 * Set auto mode to reset active channel state and any desired channel.
251 	 */
252 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
253 #undef DEFAULTRATES
254 }
255 
256 static void
257 null_update_mcast(struct ieee80211com *ic)
258 {
259 
260 	ic_printf(ic, "need multicast update callback\n");
261 }
262 
263 static void
264 null_update_promisc(struct ieee80211com *ic)
265 {
266 
267 	ic_printf(ic, "need promiscuous mode update callback\n");
268 }
269 
270 static void
271 null_update_chw(struct ieee80211com *ic)
272 {
273 
274 	ic_printf(ic, "%s: need callback\n", __func__);
275 }
276 
277 int
278 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
279 {
280 	va_list ap;
281 	int retval;
282 
283 	retval = printf("%s: ", ic->ic_name);
284 	va_start(ap, fmt);
285 	retval += vprintf(fmt, ap);
286 	va_end(ap);
287 	return (retval);
288 }
289 
290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
291 static struct mtx ic_list_mtx;
292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
293 
294 static int
295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
296 {
297 	struct ieee80211com *ic;
298 	struct sbuf sb;
299 	char *sp;
300 	int error;
301 
302 	error = sysctl_wire_old_buffer(req, 0);
303 	if (error)
304 		return (error);
305 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
306 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
307 	sp = "";
308 	mtx_lock(&ic_list_mtx);
309 	LIST_FOREACH(ic, &ic_head, ic_next) {
310 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
311 		sp = " ";
312 	}
313 	mtx_unlock(&ic_list_mtx);
314 	error = sbuf_finish(&sb);
315 	sbuf_delete(&sb);
316 	return (error);
317 }
318 
319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
320     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
321     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
322 
323 /*
324  * Attach/setup the common net80211 state.  Called by
325  * the driver on attach to prior to creating any vap's.
326  */
327 void
328 ieee80211_ifattach(struct ieee80211com *ic)
329 {
330 
331 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
332 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
333 	TAILQ_INIT(&ic->ic_vaps);
334 
335 	/* Create a taskqueue for all state changes */
336 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
337 	    taskqueue_thread_enqueue, &ic->ic_tq);
338 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 	    ic->ic_name);
340 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
341 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
342 	/*
343 	 * Fill in 802.11 available channel set, mark all
344 	 * available channels as active, and pick a default
345 	 * channel if not already specified.
346 	 */
347 	ieee80211_chan_init(ic);
348 
349 	ic->ic_update_mcast = null_update_mcast;
350 	ic->ic_update_promisc = null_update_promisc;
351 	ic->ic_update_chw = null_update_chw;
352 
353 	ic->ic_hash_key = arc4random();
354 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 	ic->ic_lintval = ic->ic_bintval;
356 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357 
358 	ieee80211_crypto_attach(ic);
359 	ieee80211_node_attach(ic);
360 	ieee80211_power_attach(ic);
361 	ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 	ieee80211_superg_attach(ic);
364 #endif
365 	ieee80211_ht_attach(ic);
366 	ieee80211_vht_attach(ic);
367 	ieee80211_scan_attach(ic);
368 	ieee80211_regdomain_attach(ic);
369 	ieee80211_dfs_attach(ic);
370 
371 	ieee80211_sysctl_attach(ic);
372 
373 	mtx_lock(&ic_list_mtx);
374 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 	mtx_unlock(&ic_list_mtx);
376 }
377 
378 /*
379  * Detach net80211 state on device detach.  Tear down
380  * all vap's and reclaim all common state prior to the
381  * device state going away.  Note we may call back into
382  * driver; it must be prepared for this.
383  */
384 void
385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 	struct ieee80211vap *vap;
388 
389 	/*
390 	 * We use this as an indicator that ifattach never had a chance to be
391 	 * called, e.g. early driver attach failed and ifdetach was called
392 	 * during subsequent detach.  Never fear, for we have nothing to do
393 	 * here.
394 	 */
395 	if (ic->ic_tq == NULL)
396 		return;
397 
398 	mtx_lock(&ic_list_mtx);
399 	LIST_REMOVE(ic, ic_next);
400 	mtx_unlock(&ic_list_mtx);
401 
402 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403 
404 	/*
405 	 * The VAP is responsible for setting and clearing
406 	 * the VIMAGE context.
407 	 */
408 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409 		ieee80211_com_vdetach(vap);
410 		ieee80211_vap_destroy(vap);
411 	}
412 	ieee80211_waitfor_parent(ic);
413 
414 	ieee80211_sysctl_detach(ic);
415 	ieee80211_dfs_detach(ic);
416 	ieee80211_regdomain_detach(ic);
417 	ieee80211_scan_detach(ic);
418 #ifdef IEEE80211_SUPPORT_SUPERG
419 	ieee80211_superg_detach(ic);
420 #endif
421 	ieee80211_vht_detach(ic);
422 	ieee80211_ht_detach(ic);
423 	/* NB: must be called before ieee80211_node_detach */
424 	ieee80211_proto_detach(ic);
425 	ieee80211_crypto_detach(ic);
426 	ieee80211_power_detach(ic);
427 	ieee80211_node_detach(ic);
428 
429 	counter_u64_free(ic->ic_ierrors);
430 	counter_u64_free(ic->ic_oerrors);
431 
432 	taskqueue_free(ic->ic_tq);
433 	IEEE80211_TX_LOCK_DESTROY(ic);
434 	IEEE80211_LOCK_DESTROY(ic);
435 }
436 
437 struct ieee80211com *
438 ieee80211_find_com(const char *name)
439 {
440 	struct ieee80211com *ic;
441 
442 	mtx_lock(&ic_list_mtx);
443 	LIST_FOREACH(ic, &ic_head, ic_next)
444 		if (strcmp(ic->ic_name, name) == 0)
445 			break;
446 	mtx_unlock(&ic_list_mtx);
447 
448 	return (ic);
449 }
450 
451 void
452 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
453 {
454 	struct ieee80211com *ic;
455 
456 	mtx_lock(&ic_list_mtx);
457 	LIST_FOREACH(ic, &ic_head, ic_next)
458 		(*f)(arg, ic);
459 	mtx_unlock(&ic_list_mtx);
460 }
461 
462 /*
463  * Default reset method for use with the ioctl support.  This
464  * method is invoked after any state change in the 802.11
465  * layer that should be propagated to the hardware but not
466  * require re-initialization of the 802.11 state machine (e.g
467  * rescanning for an ap).  We always return ENETRESET which
468  * should cause the driver to re-initialize the device. Drivers
469  * can override this method to implement more optimized support.
470  */
471 static int
472 default_reset(struct ieee80211vap *vap, u_long cmd)
473 {
474 	return ENETRESET;
475 }
476 
477 /*
478  * Default for updating the VAP default TX key index.
479  *
480  * Drivers that support TX offload as well as hardware encryption offload
481  * may need to be informed of key index changes separate from the key
482  * update.
483  */
484 static void
485 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
486 {
487 
488 	/* XXX assert validity */
489 	/* XXX assert we're in a key update block */
490 	vap->iv_def_txkey = kid;
491 }
492 
493 /*
494  * Add underlying device errors to vap errors.
495  */
496 static uint64_t
497 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
498 {
499 	struct ieee80211vap *vap = ifp->if_softc;
500 	struct ieee80211com *ic = vap->iv_ic;
501 	uint64_t rv;
502 
503 	rv = if_get_counter_default(ifp, cnt);
504 	switch (cnt) {
505 	case IFCOUNTER_OERRORS:
506 		rv += counter_u64_fetch(ic->ic_oerrors);
507 		break;
508 	case IFCOUNTER_IERRORS:
509 		rv += counter_u64_fetch(ic->ic_ierrors);
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	return (rv);
516 }
517 
518 /*
519  * Prepare a vap for use.  Drivers use this call to
520  * setup net80211 state in new vap's prior attaching
521  * them with ieee80211_vap_attach (below).
522  */
523 int
524 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
525     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
526     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
527 {
528 	struct ifnet *ifp;
529 
530 	ifp = if_alloc(IFT_ETHER);
531 	if (ifp == NULL) {
532 		ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
533 		return ENOMEM;
534 	}
535 	if_initname(ifp, name, unit);
536 	ifp->if_softc = vap;			/* back pointer */
537 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
538 	ifp->if_transmit = ieee80211_vap_transmit;
539 	ifp->if_qflush = ieee80211_vap_qflush;
540 	ifp->if_ioctl = ieee80211_ioctl;
541 	ifp->if_init = ieee80211_init;
542 	ifp->if_get_counter = ieee80211_get_counter;
543 
544 	vap->iv_ifp = ifp;
545 	vap->iv_ic = ic;
546 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
547 	vap->iv_flags_ext = ic->ic_flags_ext;
548 	vap->iv_flags_ven = ic->ic_flags_ven;
549 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
550 
551 	/* 11n capabilities - XXX methodize */
552 	vap->iv_htcaps = ic->ic_htcaps;
553 	vap->iv_htextcaps = ic->ic_htextcaps;
554 
555 	/* 11ac capabilities - XXX methodize */
556 	vap->iv_vhtcaps = ic->ic_vhtcaps;
557 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
558 
559 	vap->iv_opmode = opmode;
560 	vap->iv_caps |= ieee80211_opcap[opmode];
561 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
562 	switch (opmode) {
563 	case IEEE80211_M_WDS:
564 		/*
565 		 * WDS links must specify the bssid of the far end.
566 		 * For legacy operation this is a static relationship.
567 		 * For non-legacy operation the station must associate
568 		 * and be authorized to pass traffic.  Plumbing the
569 		 * vap to the proper node happens when the vap
570 		 * transitions to RUN state.
571 		 */
572 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
573 		vap->iv_flags |= IEEE80211_F_DESBSSID;
574 		if (flags & IEEE80211_CLONE_WDSLEGACY)
575 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
576 		break;
577 #ifdef IEEE80211_SUPPORT_TDMA
578 	case IEEE80211_M_AHDEMO:
579 		if (flags & IEEE80211_CLONE_TDMA) {
580 			/* NB: checked before clone operation allowed */
581 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
582 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
583 			/*
584 			 * Propagate TDMA capability to mark vap; this
585 			 * cannot be removed and is used to distinguish
586 			 * regular ahdemo operation from ahdemo+tdma.
587 			 */
588 			vap->iv_caps |= IEEE80211_C_TDMA;
589 		}
590 		break;
591 #endif
592 	default:
593 		break;
594 	}
595 	/* auto-enable s/w beacon miss support */
596 	if (flags & IEEE80211_CLONE_NOBEACONS)
597 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
598 	/* auto-generated or user supplied MAC address */
599 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
600 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
601 	/*
602 	 * Enable various functionality by default if we're
603 	 * capable; the driver can override us if it knows better.
604 	 */
605 	if (vap->iv_caps & IEEE80211_C_WME)
606 		vap->iv_flags |= IEEE80211_F_WME;
607 	if (vap->iv_caps & IEEE80211_C_BURST)
608 		vap->iv_flags |= IEEE80211_F_BURST;
609 	/* NB: bg scanning only makes sense for station mode right now */
610 	if (vap->iv_opmode == IEEE80211_M_STA &&
611 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
612 		vap->iv_flags |= IEEE80211_F_BGSCAN;
613 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
614 	/* NB: DFS support only makes sense for ap mode right now */
615 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
616 	    (vap->iv_caps & IEEE80211_C_DFS))
617 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
618 	/* NB: only flip on U-APSD for hostap/sta for now */
619 	if ((vap->iv_opmode == IEEE80211_M_STA)
620 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
621 		if (vap->iv_caps & IEEE80211_C_UAPSD)
622 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
623 	}
624 
625 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
626 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
627 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
628 	/*
629 	 * Install a default reset method for the ioctl support;
630 	 * the driver can override this.
631 	 */
632 	vap->iv_reset = default_reset;
633 
634 	/*
635 	 * Install a default crypto key update method, the driver
636 	 * can override this.
637 	 */
638 	vap->iv_update_deftxkey = default_update_deftxkey;
639 
640 	ieee80211_sysctl_vattach(vap);
641 	ieee80211_crypto_vattach(vap);
642 	ieee80211_node_vattach(vap);
643 	ieee80211_power_vattach(vap);
644 	ieee80211_proto_vattach(vap);
645 #ifdef IEEE80211_SUPPORT_SUPERG
646 	ieee80211_superg_vattach(vap);
647 #endif
648 	ieee80211_ht_vattach(vap);
649 	ieee80211_vht_vattach(vap);
650 	ieee80211_scan_vattach(vap);
651 	ieee80211_regdomain_vattach(vap);
652 	ieee80211_radiotap_vattach(vap);
653 	ieee80211_vap_reset_erp(vap);
654 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
655 
656 	return 0;
657 }
658 
659 /*
660  * Activate a vap.  State should have been prepared with a
661  * call to ieee80211_vap_setup and by the driver.  On return
662  * from this call the vap is ready for use.
663  */
664 int
665 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
666     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
667 {
668 	struct ifnet *ifp = vap->iv_ifp;
669 	struct ieee80211com *ic = vap->iv_ic;
670 	struct ifmediareq imr;
671 	int maxrate;
672 
673 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
674 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
675 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
676 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
677 
678 	/*
679 	 * Do late attach work that cannot happen until after
680 	 * the driver has had a chance to override defaults.
681 	 */
682 	ieee80211_node_latevattach(vap);
683 	ieee80211_power_latevattach(vap);
684 
685 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
686 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
687 	ieee80211_media_status(ifp, &imr);
688 	/* NB: strip explicit mode; we're actually in autoselect */
689 	ifmedia_set(&vap->iv_media,
690 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
691 	if (maxrate)
692 		ifp->if_baudrate = IF_Mbps(maxrate);
693 
694 	ether_ifattach(ifp, macaddr);
695 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
696 	/* hook output method setup by ether_ifattach */
697 	vap->iv_output = ifp->if_output;
698 	ifp->if_output = ieee80211_output;
699 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
700 
701 	IEEE80211_LOCK(ic);
702 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
703 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
704 #ifdef IEEE80211_SUPPORT_SUPERG
705 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
706 #endif
707 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
708 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
709 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
710 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
711 
712 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
713 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
714 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
715 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
716 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
717 	IEEE80211_UNLOCK(ic);
718 
719 	return 1;
720 }
721 
722 /*
723  * Tear down vap state and reclaim the ifnet.
724  * The driver is assumed to have prepared for
725  * this; e.g. by turning off interrupts for the
726  * underlying device.
727  */
728 void
729 ieee80211_vap_detach(struct ieee80211vap *vap)
730 {
731 	struct ieee80211com *ic = vap->iv_ic;
732 	struct ifnet *ifp = vap->iv_ifp;
733 
734 	CURVNET_SET(ifp->if_vnet);
735 
736 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
737 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
738 
739 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
740 	ether_ifdetach(ifp);
741 
742 	ieee80211_stop(vap);
743 
744 	/*
745 	 * Flush any deferred vap tasks.
746 	 */
747 	ieee80211_draintask(ic, &vap->iv_nstate_task);
748 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
749 	ieee80211_draintask(ic, &vap->iv_wme_task);
750 	ieee80211_draintask(ic, &ic->ic_parent_task);
751 
752 	/* XXX band-aid until ifnet handles this for us */
753 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
754 
755 	IEEE80211_LOCK(ic);
756 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
757 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
758 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
759 #ifdef IEEE80211_SUPPORT_SUPERG
760 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
761 #endif
762 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
763 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
764 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
765 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
766 
767 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
768 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
769 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
770 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
771 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
772 
773 	/* NB: this handles the bpfdetach done below */
774 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
775 	if (vap->iv_ifflags & IFF_PROMISC)
776 		ieee80211_promisc(vap, false);
777 	if (vap->iv_ifflags & IFF_ALLMULTI)
778 		ieee80211_allmulti(vap, false);
779 	IEEE80211_UNLOCK(ic);
780 
781 	ifmedia_removeall(&vap->iv_media);
782 
783 	ieee80211_radiotap_vdetach(vap);
784 	ieee80211_regdomain_vdetach(vap);
785 	ieee80211_scan_vdetach(vap);
786 #ifdef IEEE80211_SUPPORT_SUPERG
787 	ieee80211_superg_vdetach(vap);
788 #endif
789 	ieee80211_vht_vdetach(vap);
790 	ieee80211_ht_vdetach(vap);
791 	/* NB: must be before ieee80211_node_vdetach */
792 	ieee80211_proto_vdetach(vap);
793 	ieee80211_crypto_vdetach(vap);
794 	ieee80211_power_vdetach(vap);
795 	ieee80211_node_vdetach(vap);
796 	ieee80211_sysctl_vdetach(vap);
797 
798 	if_free(ifp);
799 
800 	CURVNET_RESTORE();
801 }
802 
803 /*
804  * Count number of vaps in promisc, and issue promisc on
805  * parent respectively.
806  */
807 void
808 ieee80211_promisc(struct ieee80211vap *vap, bool on)
809 {
810 	struct ieee80211com *ic = vap->iv_ic;
811 
812 	IEEE80211_LOCK_ASSERT(ic);
813 
814 	if (on) {
815 		if (++ic->ic_promisc == 1)
816 			ieee80211_runtask(ic, &ic->ic_promisc_task);
817 	} else {
818 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
819 		    __func__, ic));
820 		if (--ic->ic_promisc == 0)
821 			ieee80211_runtask(ic, &ic->ic_promisc_task);
822 	}
823 }
824 
825 /*
826  * Count number of vaps in allmulti, and issue allmulti on
827  * parent respectively.
828  */
829 void
830 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
831 {
832 	struct ieee80211com *ic = vap->iv_ic;
833 
834 	IEEE80211_LOCK_ASSERT(ic);
835 
836 	if (on) {
837 		if (++ic->ic_allmulti == 1)
838 			ieee80211_runtask(ic, &ic->ic_mcast_task);
839 	} else {
840 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
841 		    __func__, ic));
842 		if (--ic->ic_allmulti == 0)
843 			ieee80211_runtask(ic, &ic->ic_mcast_task);
844 	}
845 }
846 
847 /*
848  * Synchronize flag bit state in the com structure
849  * according to the state of all vap's.  This is used,
850  * for example, to handle state changes via ioctls.
851  */
852 static void
853 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
854 {
855 	struct ieee80211vap *vap;
856 	int bit;
857 
858 	IEEE80211_LOCK_ASSERT(ic);
859 
860 	bit = 0;
861 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
862 		if (vap->iv_flags & flag) {
863 			bit = 1;
864 			break;
865 		}
866 	if (bit)
867 		ic->ic_flags |= flag;
868 	else
869 		ic->ic_flags &= ~flag;
870 }
871 
872 void
873 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
874 {
875 	struct ieee80211com *ic = vap->iv_ic;
876 
877 	IEEE80211_LOCK(ic);
878 	if (flag < 0) {
879 		flag = -flag;
880 		vap->iv_flags &= ~flag;
881 	} else
882 		vap->iv_flags |= flag;
883 	ieee80211_syncflag_locked(ic, flag);
884 	IEEE80211_UNLOCK(ic);
885 }
886 
887 /*
888  * Synchronize flags_ht bit state in the com structure
889  * according to the state of all vap's.  This is used,
890  * for example, to handle state changes via ioctls.
891  */
892 static void
893 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
894 {
895 	struct ieee80211vap *vap;
896 	int bit;
897 
898 	IEEE80211_LOCK_ASSERT(ic);
899 
900 	bit = 0;
901 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
902 		if (vap->iv_flags_ht & flag) {
903 			bit = 1;
904 			break;
905 		}
906 	if (bit)
907 		ic->ic_flags_ht |= flag;
908 	else
909 		ic->ic_flags_ht &= ~flag;
910 }
911 
912 void
913 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
914 {
915 	struct ieee80211com *ic = vap->iv_ic;
916 
917 	IEEE80211_LOCK(ic);
918 	if (flag < 0) {
919 		flag = -flag;
920 		vap->iv_flags_ht &= ~flag;
921 	} else
922 		vap->iv_flags_ht |= flag;
923 	ieee80211_syncflag_ht_locked(ic, flag);
924 	IEEE80211_UNLOCK(ic);
925 }
926 
927 /*
928  * Synchronize flags_vht bit state in the com structure
929  * according to the state of all vap's.  This is used,
930  * for example, to handle state changes via ioctls.
931  */
932 static void
933 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
934 {
935 	struct ieee80211vap *vap;
936 	int bit;
937 
938 	IEEE80211_LOCK_ASSERT(ic);
939 
940 	bit = 0;
941 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
942 		if (vap->iv_flags_vht & flag) {
943 			bit = 1;
944 			break;
945 		}
946 	if (bit)
947 		ic->ic_flags_vht |= flag;
948 	else
949 		ic->ic_flags_vht &= ~flag;
950 }
951 
952 void
953 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
954 {
955 	struct ieee80211com *ic = vap->iv_ic;
956 
957 	IEEE80211_LOCK(ic);
958 	if (flag < 0) {
959 		flag = -flag;
960 		vap->iv_flags_vht &= ~flag;
961 	} else
962 		vap->iv_flags_vht |= flag;
963 	ieee80211_syncflag_vht_locked(ic, flag);
964 	IEEE80211_UNLOCK(ic);
965 }
966 
967 /*
968  * Synchronize flags_ext bit state in the com structure
969  * according to the state of all vap's.  This is used,
970  * for example, to handle state changes via ioctls.
971  */
972 static void
973 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
974 {
975 	struct ieee80211vap *vap;
976 	int bit;
977 
978 	IEEE80211_LOCK_ASSERT(ic);
979 
980 	bit = 0;
981 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
982 		if (vap->iv_flags_ext & flag) {
983 			bit = 1;
984 			break;
985 		}
986 	if (bit)
987 		ic->ic_flags_ext |= flag;
988 	else
989 		ic->ic_flags_ext &= ~flag;
990 }
991 
992 void
993 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
994 {
995 	struct ieee80211com *ic = vap->iv_ic;
996 
997 	IEEE80211_LOCK(ic);
998 	if (flag < 0) {
999 		flag = -flag;
1000 		vap->iv_flags_ext &= ~flag;
1001 	} else
1002 		vap->iv_flags_ext |= flag;
1003 	ieee80211_syncflag_ext_locked(ic, flag);
1004 	IEEE80211_UNLOCK(ic);
1005 }
1006 
1007 static __inline int
1008 mapgsm(u_int freq, u_int flags)
1009 {
1010 	freq *= 10;
1011 	if (flags & IEEE80211_CHAN_QUARTER)
1012 		freq += 5;
1013 	else if (flags & IEEE80211_CHAN_HALF)
1014 		freq += 10;
1015 	else
1016 		freq += 20;
1017 	/* NB: there is no 907/20 wide but leave room */
1018 	return (freq - 906*10) / 5;
1019 }
1020 
1021 static __inline int
1022 mappsb(u_int freq, u_int flags)
1023 {
1024 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1025 }
1026 
1027 /*
1028  * Convert MHz frequency to IEEE channel number.
1029  */
1030 int
1031 ieee80211_mhz2ieee(u_int freq, u_int flags)
1032 {
1033 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1034 	if (flags & IEEE80211_CHAN_GSM)
1035 		return mapgsm(freq, flags);
1036 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1037 		if (freq == 2484)
1038 			return 14;
1039 		if (freq < 2484)
1040 			return ((int) freq - 2407) / 5;
1041 		else
1042 			return 15 + ((freq - 2512) / 20);
1043 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1044 		if (freq <= 5000) {
1045 			/* XXX check regdomain? */
1046 			if (IS_FREQ_IN_PSB(freq))
1047 				return mappsb(freq, flags);
1048 			return (freq - 4000) / 5;
1049 		} else
1050 			return (freq - 5000) / 5;
1051 	} else {				/* either, guess */
1052 		if (freq == 2484)
1053 			return 14;
1054 		if (freq < 2484) {
1055 			if (907 <= freq && freq <= 922)
1056 				return mapgsm(freq, flags);
1057 			return ((int) freq - 2407) / 5;
1058 		}
1059 		if (freq < 5000) {
1060 			if (IS_FREQ_IN_PSB(freq))
1061 				return mappsb(freq, flags);
1062 			else if (freq > 4900)
1063 				return (freq - 4000) / 5;
1064 			else
1065 				return 15 + ((freq - 2512) / 20);
1066 		}
1067 		return (freq - 5000) / 5;
1068 	}
1069 #undef IS_FREQ_IN_PSB
1070 }
1071 
1072 /*
1073  * Convert channel to IEEE channel number.
1074  */
1075 int
1076 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1077 {
1078 	if (c == NULL) {
1079 		ic_printf(ic, "invalid channel (NULL)\n");
1080 		return 0;		/* XXX */
1081 	}
1082 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1083 }
1084 
1085 /*
1086  * Convert IEEE channel number to MHz frequency.
1087  */
1088 u_int
1089 ieee80211_ieee2mhz(u_int chan, u_int flags)
1090 {
1091 	if (flags & IEEE80211_CHAN_GSM)
1092 		return 907 + 5 * (chan / 10);
1093 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1094 		if (chan == 14)
1095 			return 2484;
1096 		if (chan < 14)
1097 			return 2407 + chan*5;
1098 		else
1099 			return 2512 + ((chan-15)*20);
1100 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1101 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1102 			chan -= 37;
1103 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1104 		}
1105 		return 5000 + (chan*5);
1106 	} else {				/* either, guess */
1107 		/* XXX can't distinguish PSB+GSM channels */
1108 		if (chan == 14)
1109 			return 2484;
1110 		if (chan < 14)			/* 0-13 */
1111 			return 2407 + chan*5;
1112 		if (chan < 27)			/* 15-26 */
1113 			return 2512 + ((chan-15)*20);
1114 		return 5000 + (chan*5);
1115 	}
1116 }
1117 
1118 static __inline void
1119 set_extchan(struct ieee80211_channel *c)
1120 {
1121 
1122 	/*
1123 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1124 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1125 	 */
1126 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1127 		c->ic_extieee = c->ic_ieee + 4;
1128 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1129 		c->ic_extieee = c->ic_ieee - 4;
1130 	else
1131 		c->ic_extieee = 0;
1132 }
1133 
1134 /*
1135  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1136  *
1137  * This for now uses a hard-coded list of 80MHz wide channels.
1138  *
1139  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1140  * wide channel we've already decided upon.
1141  *
1142  * For VHT80 and VHT160, there are only a small number of fixed
1143  * 80/160MHz wide channels, so we just use those.
1144  *
1145  * This is all likely very very wrong - both the regulatory code
1146  * and this code needs to ensure that all four channels are
1147  * available and valid before the VHT80 (and eight for VHT160) channel
1148  * is created.
1149  */
1150 
1151 struct vht_chan_range {
1152 	uint16_t freq_start;
1153 	uint16_t freq_end;
1154 };
1155 
1156 struct vht_chan_range vht80_chan_ranges[] = {
1157 	{ 5170, 5250 },
1158 	{ 5250, 5330 },
1159 	{ 5490, 5570 },
1160 	{ 5570, 5650 },
1161 	{ 5650, 5730 },
1162 	{ 5735, 5815 },
1163 	{ 0, 0, }
1164 };
1165 
1166 static int
1167 set_vht_extchan(struct ieee80211_channel *c)
1168 {
1169 	int i;
1170 
1171 	if (! IEEE80211_IS_CHAN_VHT(c)) {
1172 		return (0);
1173 	}
1174 
1175 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1176 		c->ic_vht_ch_freq1 = c->ic_ieee;
1177 		return (1);
1178 	}
1179 
1180 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1181 		if (IEEE80211_IS_CHAN_HT40U(c))
1182 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1183 		else if (IEEE80211_IS_CHAN_HT40D(c))
1184 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1185 		else
1186 			return (0);
1187 		return (1);
1188 	}
1189 
1190 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1191 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1192 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1193 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1194 				int midpoint;
1195 
1196 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1197 				c->ic_vht_ch_freq1 =
1198 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1199 				c->ic_vht_ch_freq2 = 0;
1200 #if 0
1201 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1202 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1203 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1204 #endif
1205 				return (1);
1206 			}
1207 		}
1208 		return (0);
1209 	}
1210 
1211 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1212 	    __func__, c->ic_ieee, c->ic_flags);
1213 
1214 	return (0);
1215 }
1216 
1217 /*
1218  * Return whether the current channel could possibly be a part of
1219  * a VHT80 channel.
1220  *
1221  * This doesn't check that the whole range is in the allowed list
1222  * according to regulatory.
1223  */
1224 static int
1225 is_vht80_valid_freq(uint16_t freq)
1226 {
1227 	int i;
1228 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1229 		if (freq >= vht80_chan_ranges[i].freq_start &&
1230 		    freq < vht80_chan_ranges[i].freq_end)
1231 			return (1);
1232 	}
1233 	return (0);
1234 }
1235 
1236 static int
1237 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1238     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1239 {
1240 	struct ieee80211_channel *c;
1241 
1242 	if (*nchans >= maxchans)
1243 		return (ENOBUFS);
1244 
1245 #if 0
1246 	printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
1247 	    __func__, *nchans, ieee, freq, flags);
1248 #endif
1249 
1250 	c = &chans[(*nchans)++];
1251 	c->ic_ieee = ieee;
1252 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1253 	c->ic_maxregpower = maxregpower;
1254 	c->ic_maxpower = 2 * maxregpower;
1255 	c->ic_flags = flags;
1256 	c->ic_vht_ch_freq1 = 0;
1257 	c->ic_vht_ch_freq2 = 0;
1258 	set_extchan(c);
1259 	set_vht_extchan(c);
1260 
1261 	return (0);
1262 }
1263 
1264 static int
1265 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1266     uint32_t flags)
1267 {
1268 	struct ieee80211_channel *c;
1269 
1270 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1271 
1272 	if (*nchans >= maxchans)
1273 		return (ENOBUFS);
1274 
1275 #if 0
1276 	printf("%s: %d: flags=0x%08x\n",
1277 	    __func__, *nchans, flags);
1278 #endif
1279 
1280 	c = &chans[(*nchans)++];
1281 	c[0] = c[-1];
1282 	c->ic_flags = flags;
1283 	c->ic_vht_ch_freq1 = 0;
1284 	c->ic_vht_ch_freq2 = 0;
1285 	set_extchan(c);
1286 	set_vht_extchan(c);
1287 
1288 	return (0);
1289 }
1290 
1291 /*
1292  * XXX VHT-2GHz
1293  */
1294 static void
1295 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1296 {
1297 	int nmodes;
1298 
1299 	nmodes = 0;
1300 	if (isset(bands, IEEE80211_MODE_11B))
1301 		flags[nmodes++] = IEEE80211_CHAN_B;
1302 	if (isset(bands, IEEE80211_MODE_11G))
1303 		flags[nmodes++] = IEEE80211_CHAN_G;
1304 	if (isset(bands, IEEE80211_MODE_11NG))
1305 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1306 	if (ht40) {
1307 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1308 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1309 	}
1310 	flags[nmodes] = 0;
1311 }
1312 
1313 static void
1314 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1315 {
1316 	int nmodes;
1317 
1318 	/*
1319 	 * the addchan_list function seems to expect the flags array to
1320 	 * be in channel width order, so the VHT bits are interspersed
1321 	 * as appropriate to maintain said order.
1322 	 *
1323 	 * It also assumes HT40U is before HT40D.
1324 	 */
1325 	nmodes = 0;
1326 
1327 	/* 20MHz */
1328 	if (isset(bands, IEEE80211_MODE_11A))
1329 		flags[nmodes++] = IEEE80211_CHAN_A;
1330 	if (isset(bands, IEEE80211_MODE_11NA))
1331 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1332 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1333 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1334 		    IEEE80211_CHAN_VHT20;
1335 	}
1336 
1337 	/* 40MHz */
1338 	if (ht40) {
1339 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1340 	}
1341 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1342 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U
1343 		    | IEEE80211_CHAN_VHT40U;
1344 	}
1345 	if (ht40) {
1346 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1347 	}
1348 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1349 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D
1350 		    | IEEE80211_CHAN_VHT40D;
1351 	}
1352 
1353 	/* 80MHz */
1354 	if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1355 		flags[nmodes++] = IEEE80211_CHAN_A |
1356 		    IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80;
1357 		flags[nmodes++] = IEEE80211_CHAN_A |
1358 		    IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80;
1359 	}
1360 
1361 	/* XXX VHT160 */
1362 	/* XXX VHT80+80 */
1363 	flags[nmodes] = 0;
1364 }
1365 
1366 static void
1367 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1368 {
1369 
1370 	flags[0] = 0;
1371 	if (isset(bands, IEEE80211_MODE_11A) ||
1372 	    isset(bands, IEEE80211_MODE_11NA) ||
1373 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1374 		if (isset(bands, IEEE80211_MODE_11B) ||
1375 		    isset(bands, IEEE80211_MODE_11G) ||
1376 		    isset(bands, IEEE80211_MODE_11NG) ||
1377 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1378 			return;
1379 
1380 		getflags_5ghz(bands, flags, ht40, vht80);
1381 	} else
1382 		getflags_2ghz(bands, flags, ht40);
1383 }
1384 
1385 /*
1386  * Add one 20 MHz channel into specified channel list.
1387  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1388  * channels if you have any B/G/N band bit set.
1389  */
1390 /* XXX VHT */
1391 int
1392 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1393     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1394     uint32_t chan_flags, const uint8_t bands[])
1395 {
1396 	uint32_t flags[IEEE80211_MODE_MAX];
1397 	int i, error;
1398 
1399 	getflags(bands, flags, 0, 0);
1400 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1401 
1402 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1403 	    flags[0] | chan_flags);
1404 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1405 		error = copychan_prev(chans, maxchans, nchans,
1406 		    flags[i] | chan_flags);
1407 	}
1408 
1409 	return (error);
1410 }
1411 
1412 static struct ieee80211_channel *
1413 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1414     uint32_t flags)
1415 {
1416 	struct ieee80211_channel *c;
1417 	int i;
1418 
1419 	flags &= IEEE80211_CHAN_ALLTURBO;
1420 	/* brute force search */
1421 	for (i = 0; i < nchans; i++) {
1422 		c = &chans[i];
1423 		if (c->ic_freq == freq &&
1424 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1425 			return c;
1426 	}
1427 	return NULL;
1428 }
1429 
1430 /*
1431  * Add 40 MHz channel pair into specified channel list.
1432  */
1433 /* XXX VHT */
1434 int
1435 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1436     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1437 {
1438 	struct ieee80211_channel *cent, *extc;
1439 	uint16_t freq;
1440 	int error;
1441 
1442 	freq = ieee80211_ieee2mhz(ieee, flags);
1443 
1444 	/*
1445 	 * Each entry defines an HT40 channel pair; find the
1446 	 * center channel, then the extension channel above.
1447 	 */
1448 	flags |= IEEE80211_CHAN_HT20;
1449 	cent = findchannel(chans, *nchans, freq, flags);
1450 	if (cent == NULL)
1451 		return (EINVAL);
1452 
1453 	extc = findchannel(chans, *nchans, freq + 20, flags);
1454 	if (extc == NULL)
1455 		return (ENOENT);
1456 
1457 	flags &= ~IEEE80211_CHAN_HT;
1458 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1459 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1460 	if (error != 0)
1461 		return (error);
1462 
1463 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1464 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1465 
1466 	return (error);
1467 }
1468 
1469 /*
1470  * Fetch the center frequency for the primary channel.
1471  */
1472 uint32_t
1473 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1474 {
1475 
1476 	return (c->ic_freq);
1477 }
1478 
1479 /*
1480  * Fetch the center frequency for the primary BAND channel.
1481  *
1482  * For 5, 10, 20MHz channels it'll be the normally configured channel
1483  * frequency.
1484  *
1485  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1486  * wide channel, not the centre of the primary channel (that's ic_freq).
1487  *
1488  * For 80+80MHz channels this will be the centre of the primary
1489  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1490  */
1491 uint32_t
1492 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1493 {
1494 
1495 	/*
1496 	 * VHT - use the pre-calculated centre frequency
1497 	 * of the given channel.
1498 	 */
1499 	if (IEEE80211_IS_CHAN_VHT(c))
1500 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1501 
1502 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1503 		return (c->ic_freq + 10);
1504 	}
1505 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1506 		return (c->ic_freq - 10);
1507 	}
1508 
1509 	return (c->ic_freq);
1510 }
1511 
1512 /*
1513  * For now, no 80+80 support; it will likely always return 0.
1514  */
1515 uint32_t
1516 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1517 {
1518 
1519 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1520 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1521 
1522 	return (0);
1523 }
1524 
1525 /*
1526  * Adds channels into specified channel list (ieee[] array must be sorted).
1527  * Channels are already sorted.
1528  */
1529 static int
1530 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1531     const uint8_t ieee[], int nieee, uint32_t flags[])
1532 {
1533 	uint16_t freq;
1534 	int i, j, error;
1535 	int is_vht;
1536 
1537 	for (i = 0; i < nieee; i++) {
1538 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1539 		for (j = 0; flags[j] != 0; j++) {
1540 			/*
1541 			 * Notes:
1542 			 * + HT40 and VHT40 channels occur together, so
1543 			 *   we need to be careful that we actually allow that.
1544 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1545 			 *   make sure it's not skipped because of the overlap
1546 			 *   check used for (V)HT40.
1547 			 */
1548 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1549 
1550 			/* XXX TODO FIXME VHT80P80. */
1551 			/* XXX TODO FIXME VHT160. */
1552 
1553 			/*
1554 			 * Test for VHT80.
1555 			 * XXX This is all very broken right now.
1556 			 * What we /should/ do is:
1557 			 *
1558 			 * + check that the frequency is in the list of
1559 			 *   allowed VHT80 ranges; and
1560 			 * + the other 3 channels in the list are actually
1561 			 *   also available.
1562 			 */
1563 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1564 				if (! is_vht80_valid_freq(freq))
1565 					continue;
1566 
1567 			/*
1568 			 * Test for (V)HT40.
1569 			 *
1570 			 * This is also a fall through from VHT80; as we only
1571 			 * allow a VHT80 channel if the VHT40 combination is
1572 			 * also valid.  If the VHT40 form is not valid then
1573 			 * we certainly can't do VHT80..
1574 			 */
1575 			if (flags[j] & IEEE80211_CHAN_HT40D)
1576 				/*
1577 				 * Can't have a "lower" channel if we are the
1578 				 * first channel.
1579 				 *
1580 				 * Can't have a "lower" channel if it's below/
1581 				 * within 20MHz of the first channel.
1582 				 *
1583 				 * Can't have a "lower" channel if the channel
1584 				 * below it is not 20MHz away.
1585 				 */
1586 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1587 				    freq - 20 !=
1588 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1589 					continue;
1590 			if (flags[j] & IEEE80211_CHAN_HT40U)
1591 				/*
1592 				 * Can't have an "upper" channel if we are
1593 				 * the last channel.
1594 				 *
1595 				 * Can't have an "upper" channel be above the
1596 				 * last channel in the list.
1597 				 *
1598 				 * Can't have an "upper" channel if the next
1599 				 * channel according to the math isn't 20MHz
1600 				 * away.  (Likely for channel 13/14.)
1601 				 */
1602 				if (i == nieee - 1 ||
1603 				    ieee[i] + 4 > ieee[nieee - 1] ||
1604 				    freq + 20 !=
1605 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1606 					continue;
1607 
1608 			if (j == 0) {
1609 				error = addchan(chans, maxchans, nchans,
1610 				    ieee[i], freq, 0, flags[j]);
1611 			} else {
1612 				error = copychan_prev(chans, maxchans, nchans,
1613 				    flags[j]);
1614 			}
1615 			if (error != 0)
1616 				return (error);
1617 		}
1618 	}
1619 
1620 	return (0);
1621 }
1622 
1623 int
1624 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1625     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1626     int ht40)
1627 {
1628 	uint32_t flags[IEEE80211_MODE_MAX];
1629 
1630 	/* XXX no VHT for now */
1631 	getflags_2ghz(bands, flags, ht40);
1632 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1633 
1634 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1635 }
1636 
1637 int
1638 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1639     int maxchans, int *nchans, const uint8_t bands[], int ht40)
1640 {
1641 	const uint8_t default_chan_list[] =
1642 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1643 
1644 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1645 	    default_chan_list, nitems(default_chan_list), bands, ht40));
1646 }
1647 
1648 int
1649 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1650     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1651     int ht40)
1652 {
1653 	uint32_t flags[IEEE80211_MODE_MAX];
1654 	int vht80 = 0;
1655 
1656 	/*
1657 	 * For now, assume VHT == VHT80 support as a minimum.
1658 	 */
1659 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ))
1660 		vht80 = 1;
1661 
1662 	getflags_5ghz(bands, flags, ht40, vht80);
1663 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1664 
1665 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1666 }
1667 
1668 /*
1669  * Locate a channel given a frequency+flags.  We cache
1670  * the previous lookup to optimize switching between two
1671  * channels--as happens with dynamic turbo.
1672  */
1673 struct ieee80211_channel *
1674 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1675 {
1676 	struct ieee80211_channel *c;
1677 
1678 	flags &= IEEE80211_CHAN_ALLTURBO;
1679 	c = ic->ic_prevchan;
1680 	if (c != NULL && c->ic_freq == freq &&
1681 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1682 		return c;
1683 	/* brute force search */
1684 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1685 }
1686 
1687 /*
1688  * Locate a channel given a channel number+flags.  We cache
1689  * the previous lookup to optimize switching between two
1690  * channels--as happens with dynamic turbo.
1691  */
1692 struct ieee80211_channel *
1693 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1694 {
1695 	struct ieee80211_channel *c;
1696 	int i;
1697 
1698 	flags &= IEEE80211_CHAN_ALLTURBO;
1699 	c = ic->ic_prevchan;
1700 	if (c != NULL && c->ic_ieee == ieee &&
1701 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1702 		return c;
1703 	/* brute force search */
1704 	for (i = 0; i < ic->ic_nchans; i++) {
1705 		c = &ic->ic_channels[i];
1706 		if (c->ic_ieee == ieee &&
1707 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1708 			return c;
1709 	}
1710 	return NULL;
1711 }
1712 
1713 /*
1714  * Lookup a channel suitable for the given rx status.
1715  *
1716  * This is used to find a channel for a frame (eg beacon, probe
1717  * response) based purely on the received PHY information.
1718  *
1719  * For now it tries to do it based on R_FREQ / R_IEEE.
1720  * This is enough for 11bg and 11a (and thus 11ng/11na)
1721  * but it will not be enough for GSM, PSB channels and the
1722  * like.  It also doesn't know about legacy-turbog and
1723  * legacy-turbo modes, which some offload NICs actually
1724  * support in weird ways.
1725  *
1726  * Takes the ic and rxstatus; returns the channel or NULL
1727  * if not found.
1728  *
1729  * XXX TODO: Add support for that when the need arises.
1730  */
1731 struct ieee80211_channel *
1732 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1733     const struct ieee80211_rx_stats *rxs)
1734 {
1735 	struct ieee80211com *ic = vap->iv_ic;
1736 	uint32_t flags;
1737 	struct ieee80211_channel *c;
1738 
1739 	if (rxs == NULL)
1740 		return (NULL);
1741 
1742 	/*
1743 	 * Strictly speaking we only use freq for now,
1744 	 * however later on we may wish to just store
1745 	 * the ieee for verification.
1746 	 */
1747 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1748 		return (NULL);
1749 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1750 		return (NULL);
1751 
1752 	/*
1753 	 * If the rx status contains a valid ieee/freq, then
1754 	 * ensure we populate the correct channel information
1755 	 * in rxchan before passing it up to the scan infrastructure.
1756 	 * Offload NICs will pass up beacons from all channels
1757 	 * during background scans.
1758 	 */
1759 
1760 	/* Determine a band */
1761 	/* XXX should be done by the driver? */
1762 	if (rxs->c_freq < 3000) {
1763 		flags = IEEE80211_CHAN_G;
1764 	} else {
1765 		flags = IEEE80211_CHAN_A;
1766 	}
1767 
1768 	/* Channel lookup */
1769 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1770 
1771 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1772 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1773 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1774 
1775 	return (c);
1776 }
1777 
1778 static void
1779 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1780 {
1781 #define	ADD(_ic, _s, _o) \
1782 	ifmedia_add(media, \
1783 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1784 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1785 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1786 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1787 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1788 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1789 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1790 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1791 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1792 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1793 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1794 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1795 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1796 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1797 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1798 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1799 	};
1800 	u_int mopt;
1801 
1802 	mopt = mopts[mode];
1803 	if (addsta)
1804 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1805 	if (caps & IEEE80211_C_IBSS)
1806 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1807 	if (caps & IEEE80211_C_HOSTAP)
1808 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1809 	if (caps & IEEE80211_C_AHDEMO)
1810 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1811 	if (caps & IEEE80211_C_MONITOR)
1812 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1813 	if (caps & IEEE80211_C_WDS)
1814 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1815 	if (caps & IEEE80211_C_MBSS)
1816 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1817 #undef ADD
1818 }
1819 
1820 /*
1821  * Setup the media data structures according to the channel and
1822  * rate tables.
1823  */
1824 static int
1825 ieee80211_media_setup(struct ieee80211com *ic,
1826 	struct ifmedia *media, int caps, int addsta,
1827 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1828 {
1829 	int i, j, rate, maxrate, mword, r;
1830 	enum ieee80211_phymode mode;
1831 	const struct ieee80211_rateset *rs;
1832 	struct ieee80211_rateset allrates;
1833 
1834 	/*
1835 	 * Fill in media characteristics.
1836 	 */
1837 	ifmedia_init(media, 0, media_change, media_stat);
1838 	maxrate = 0;
1839 	/*
1840 	 * Add media for legacy operating modes.
1841 	 */
1842 	memset(&allrates, 0, sizeof(allrates));
1843 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1844 		if (isclr(ic->ic_modecaps, mode))
1845 			continue;
1846 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1847 		if (mode == IEEE80211_MODE_AUTO)
1848 			continue;
1849 		rs = &ic->ic_sup_rates[mode];
1850 		for (i = 0; i < rs->rs_nrates; i++) {
1851 			rate = rs->rs_rates[i];
1852 			mword = ieee80211_rate2media(ic, rate, mode);
1853 			if (mword == 0)
1854 				continue;
1855 			addmedia(media, caps, addsta, mode, mword);
1856 			/*
1857 			 * Add legacy rate to the collection of all rates.
1858 			 */
1859 			r = rate & IEEE80211_RATE_VAL;
1860 			for (j = 0; j < allrates.rs_nrates; j++)
1861 				if (allrates.rs_rates[j] == r)
1862 					break;
1863 			if (j == allrates.rs_nrates) {
1864 				/* unique, add to the set */
1865 				allrates.rs_rates[j] = r;
1866 				allrates.rs_nrates++;
1867 			}
1868 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1869 			if (rate > maxrate)
1870 				maxrate = rate;
1871 		}
1872 	}
1873 	for (i = 0; i < allrates.rs_nrates; i++) {
1874 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1875 				IEEE80211_MODE_AUTO);
1876 		if (mword == 0)
1877 			continue;
1878 		/* NB: remove media options from mword */
1879 		addmedia(media, caps, addsta,
1880 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1881 	}
1882 	/*
1883 	 * Add HT/11n media.  Note that we do not have enough
1884 	 * bits in the media subtype to express the MCS so we
1885 	 * use a "placeholder" media subtype and any fixed MCS
1886 	 * must be specified with a different mechanism.
1887 	 */
1888 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1889 		if (isclr(ic->ic_modecaps, mode))
1890 			continue;
1891 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1892 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1893 	}
1894 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1895 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1896 		addmedia(media, caps, addsta,
1897 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1898 		i = ic->ic_txstream * 8 - 1;
1899 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1900 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1901 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1902 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1903 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1904 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1905 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1906 		else
1907 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1908 		if (rate > maxrate)
1909 			maxrate = rate;
1910 	}
1911 
1912 	/*
1913 	 * Add VHT media.
1914 	 */
1915 	for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) {
1916 		if (isclr(ic->ic_modecaps, mode))
1917 			continue;
1918 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1919 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
1920 
1921 		/* XXX TODO: VHT maxrate */
1922 	}
1923 
1924 	return maxrate;
1925 }
1926 
1927 /* XXX inline or eliminate? */
1928 const struct ieee80211_rateset *
1929 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1930 {
1931 	/* XXX does this work for 11ng basic rates? */
1932 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1933 }
1934 
1935 /* XXX inline or eliminate? */
1936 const struct ieee80211_htrateset *
1937 ieee80211_get_suphtrates(struct ieee80211com *ic,
1938     const struct ieee80211_channel *c)
1939 {
1940 	return &ic->ic_sup_htrates;
1941 }
1942 
1943 void
1944 ieee80211_announce(struct ieee80211com *ic)
1945 {
1946 	int i, rate, mword;
1947 	enum ieee80211_phymode mode;
1948 	const struct ieee80211_rateset *rs;
1949 
1950 	/* NB: skip AUTO since it has no rates */
1951 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1952 		if (isclr(ic->ic_modecaps, mode))
1953 			continue;
1954 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1955 		rs = &ic->ic_sup_rates[mode];
1956 		for (i = 0; i < rs->rs_nrates; i++) {
1957 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1958 			if (mword == 0)
1959 				continue;
1960 			rate = ieee80211_media2rate(mword);
1961 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1962 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1963 		}
1964 		printf("\n");
1965 	}
1966 	ieee80211_ht_announce(ic);
1967 	ieee80211_vht_announce(ic);
1968 }
1969 
1970 void
1971 ieee80211_announce_channels(struct ieee80211com *ic)
1972 {
1973 	const struct ieee80211_channel *c;
1974 	char type;
1975 	int i, cw;
1976 
1977 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1978 	for (i = 0; i < ic->ic_nchans; i++) {
1979 		c = &ic->ic_channels[i];
1980 		if (IEEE80211_IS_CHAN_ST(c))
1981 			type = 'S';
1982 		else if (IEEE80211_IS_CHAN_108A(c))
1983 			type = 'T';
1984 		else if (IEEE80211_IS_CHAN_108G(c))
1985 			type = 'G';
1986 		else if (IEEE80211_IS_CHAN_HT(c))
1987 			type = 'n';
1988 		else if (IEEE80211_IS_CHAN_A(c))
1989 			type = 'a';
1990 		else if (IEEE80211_IS_CHAN_ANYG(c))
1991 			type = 'g';
1992 		else if (IEEE80211_IS_CHAN_B(c))
1993 			type = 'b';
1994 		else
1995 			type = 'f';
1996 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1997 			cw = 40;
1998 		else if (IEEE80211_IS_CHAN_HALF(c))
1999 			cw = 10;
2000 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2001 			cw = 5;
2002 		else
2003 			cw = 20;
2004 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2005 			, c->ic_ieee, c->ic_freq, type
2006 			, cw
2007 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2008 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2009 			, c->ic_maxregpower
2010 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2011 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2012 		);
2013 	}
2014 }
2015 
2016 static int
2017 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2018 {
2019 	switch (IFM_MODE(ime->ifm_media)) {
2020 	case IFM_IEEE80211_11A:
2021 		*mode = IEEE80211_MODE_11A;
2022 		break;
2023 	case IFM_IEEE80211_11B:
2024 		*mode = IEEE80211_MODE_11B;
2025 		break;
2026 	case IFM_IEEE80211_11G:
2027 		*mode = IEEE80211_MODE_11G;
2028 		break;
2029 	case IFM_IEEE80211_FH:
2030 		*mode = IEEE80211_MODE_FH;
2031 		break;
2032 	case IFM_IEEE80211_11NA:
2033 		*mode = IEEE80211_MODE_11NA;
2034 		break;
2035 	case IFM_IEEE80211_11NG:
2036 		*mode = IEEE80211_MODE_11NG;
2037 		break;
2038 	case IFM_AUTO:
2039 		*mode = IEEE80211_MODE_AUTO;
2040 		break;
2041 	default:
2042 		return 0;
2043 	}
2044 	/*
2045 	 * Turbo mode is an ``option''.
2046 	 * XXX does not apply to AUTO
2047 	 */
2048 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2049 		if (*mode == IEEE80211_MODE_11A) {
2050 			if (flags & IEEE80211_F_TURBOP)
2051 				*mode = IEEE80211_MODE_TURBO_A;
2052 			else
2053 				*mode = IEEE80211_MODE_STURBO_A;
2054 		} else if (*mode == IEEE80211_MODE_11G)
2055 			*mode = IEEE80211_MODE_TURBO_G;
2056 		else
2057 			return 0;
2058 	}
2059 	/* XXX HT40 +/- */
2060 	return 1;
2061 }
2062 
2063 /*
2064  * Handle a media change request on the vap interface.
2065  */
2066 int
2067 ieee80211_media_change(struct ifnet *ifp)
2068 {
2069 	struct ieee80211vap *vap = ifp->if_softc;
2070 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2071 	uint16_t newmode;
2072 
2073 	if (!media2mode(ime, vap->iv_flags, &newmode))
2074 		return EINVAL;
2075 	if (vap->iv_des_mode != newmode) {
2076 		vap->iv_des_mode = newmode;
2077 		/* XXX kick state machine if up+running */
2078 	}
2079 	return 0;
2080 }
2081 
2082 /*
2083  * Common code to calculate the media status word
2084  * from the operating mode and channel state.
2085  */
2086 static int
2087 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2088 {
2089 	int status;
2090 
2091 	status = IFM_IEEE80211;
2092 	switch (opmode) {
2093 	case IEEE80211_M_STA:
2094 		break;
2095 	case IEEE80211_M_IBSS:
2096 		status |= IFM_IEEE80211_ADHOC;
2097 		break;
2098 	case IEEE80211_M_HOSTAP:
2099 		status |= IFM_IEEE80211_HOSTAP;
2100 		break;
2101 	case IEEE80211_M_MONITOR:
2102 		status |= IFM_IEEE80211_MONITOR;
2103 		break;
2104 	case IEEE80211_M_AHDEMO:
2105 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2106 		break;
2107 	case IEEE80211_M_WDS:
2108 		status |= IFM_IEEE80211_WDS;
2109 		break;
2110 	case IEEE80211_M_MBSS:
2111 		status |= IFM_IEEE80211_MBSS;
2112 		break;
2113 	}
2114 	if (IEEE80211_IS_CHAN_HTA(chan)) {
2115 		status |= IFM_IEEE80211_11NA;
2116 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2117 		status |= IFM_IEEE80211_11NG;
2118 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2119 		status |= IFM_IEEE80211_11A;
2120 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2121 		status |= IFM_IEEE80211_11B;
2122 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2123 		status |= IFM_IEEE80211_11G;
2124 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2125 		status |= IFM_IEEE80211_FH;
2126 	}
2127 	/* XXX else complain? */
2128 
2129 	if (IEEE80211_IS_CHAN_TURBO(chan))
2130 		status |= IFM_IEEE80211_TURBO;
2131 #if 0
2132 	if (IEEE80211_IS_CHAN_HT20(chan))
2133 		status |= IFM_IEEE80211_HT20;
2134 	if (IEEE80211_IS_CHAN_HT40(chan))
2135 		status |= IFM_IEEE80211_HT40;
2136 #endif
2137 	return status;
2138 }
2139 
2140 void
2141 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2142 {
2143 	struct ieee80211vap *vap = ifp->if_softc;
2144 	struct ieee80211com *ic = vap->iv_ic;
2145 	enum ieee80211_phymode mode;
2146 
2147 	imr->ifm_status = IFM_AVALID;
2148 	/*
2149 	 * NB: use the current channel's mode to lock down a xmit
2150 	 * rate only when running; otherwise we may have a mismatch
2151 	 * in which case the rate will not be convertible.
2152 	 */
2153 	if (vap->iv_state == IEEE80211_S_RUN ||
2154 	    vap->iv_state == IEEE80211_S_SLEEP) {
2155 		imr->ifm_status |= IFM_ACTIVE;
2156 		mode = ieee80211_chan2mode(ic->ic_curchan);
2157 	} else
2158 		mode = IEEE80211_MODE_AUTO;
2159 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2160 	/*
2161 	 * Calculate a current rate if possible.
2162 	 */
2163 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2164 		/*
2165 		 * A fixed rate is set, report that.
2166 		 */
2167 		imr->ifm_active |= ieee80211_rate2media(ic,
2168 			vap->iv_txparms[mode].ucastrate, mode);
2169 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2170 		/*
2171 		 * In station mode report the current transmit rate.
2172 		 */
2173 		imr->ifm_active |= ieee80211_rate2media(ic,
2174 			vap->iv_bss->ni_txrate, mode);
2175 	} else
2176 		imr->ifm_active |= IFM_AUTO;
2177 	if (imr->ifm_status & IFM_ACTIVE)
2178 		imr->ifm_current = imr->ifm_active;
2179 }
2180 
2181 /*
2182  * Set the current phy mode and recalculate the active channel
2183  * set based on the available channels for this mode.  Also
2184  * select a new default/current channel if the current one is
2185  * inappropriate for this mode.
2186  */
2187 int
2188 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2189 {
2190 	/*
2191 	 * Adjust basic rates in 11b/11g supported rate set.
2192 	 * Note that if operating on a hal/quarter rate channel
2193 	 * this is a noop as those rates sets are different
2194 	 * and used instead.
2195 	 */
2196 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2197 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2198 
2199 	ic->ic_curmode = mode;
2200 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2201 
2202 	return 0;
2203 }
2204 
2205 /*
2206  * Return the phy mode for with the specified channel.
2207  */
2208 enum ieee80211_phymode
2209 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2210 {
2211 
2212 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2213 		return IEEE80211_MODE_VHT_2GHZ;
2214 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2215 		return IEEE80211_MODE_VHT_5GHZ;
2216 	else if (IEEE80211_IS_CHAN_HTA(chan))
2217 		return IEEE80211_MODE_11NA;
2218 	else if (IEEE80211_IS_CHAN_HTG(chan))
2219 		return IEEE80211_MODE_11NG;
2220 	else if (IEEE80211_IS_CHAN_108G(chan))
2221 		return IEEE80211_MODE_TURBO_G;
2222 	else if (IEEE80211_IS_CHAN_ST(chan))
2223 		return IEEE80211_MODE_STURBO_A;
2224 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2225 		return IEEE80211_MODE_TURBO_A;
2226 	else if (IEEE80211_IS_CHAN_HALF(chan))
2227 		return IEEE80211_MODE_HALF;
2228 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2229 		return IEEE80211_MODE_QUARTER;
2230 	else if (IEEE80211_IS_CHAN_A(chan))
2231 		return IEEE80211_MODE_11A;
2232 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2233 		return IEEE80211_MODE_11G;
2234 	else if (IEEE80211_IS_CHAN_B(chan))
2235 		return IEEE80211_MODE_11B;
2236 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2237 		return IEEE80211_MODE_FH;
2238 
2239 	/* NB: should not get here */
2240 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2241 		__func__, chan->ic_freq, chan->ic_flags);
2242 	return IEEE80211_MODE_11B;
2243 }
2244 
2245 struct ratemedia {
2246 	u_int	match;	/* rate + mode */
2247 	u_int	media;	/* if_media rate */
2248 };
2249 
2250 static int
2251 findmedia(const struct ratemedia rates[], int n, u_int match)
2252 {
2253 	int i;
2254 
2255 	for (i = 0; i < n; i++)
2256 		if (rates[i].match == match)
2257 			return rates[i].media;
2258 	return IFM_AUTO;
2259 }
2260 
2261 /*
2262  * Convert IEEE80211 rate value to ifmedia subtype.
2263  * Rate is either a legacy rate in units of 0.5Mbps
2264  * or an MCS index.
2265  */
2266 int
2267 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2268 {
2269 	static const struct ratemedia rates[] = {
2270 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2271 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2272 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2273 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2274 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2275 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2276 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2277 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2278 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2279 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2280 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2281 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2282 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2283 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2284 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2285 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2286 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2287 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2288 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2289 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2290 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2291 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2292 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2293 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2294 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2295 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2296 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2297 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2298 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2299 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2300 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2301 	};
2302 	static const struct ratemedia htrates[] = {
2303 		{   0, IFM_IEEE80211_MCS },
2304 		{   1, IFM_IEEE80211_MCS },
2305 		{   2, IFM_IEEE80211_MCS },
2306 		{   3, IFM_IEEE80211_MCS },
2307 		{   4, IFM_IEEE80211_MCS },
2308 		{   5, IFM_IEEE80211_MCS },
2309 		{   6, IFM_IEEE80211_MCS },
2310 		{   7, IFM_IEEE80211_MCS },
2311 		{   8, IFM_IEEE80211_MCS },
2312 		{   9, IFM_IEEE80211_MCS },
2313 		{  10, IFM_IEEE80211_MCS },
2314 		{  11, IFM_IEEE80211_MCS },
2315 		{  12, IFM_IEEE80211_MCS },
2316 		{  13, IFM_IEEE80211_MCS },
2317 		{  14, IFM_IEEE80211_MCS },
2318 		{  15, IFM_IEEE80211_MCS },
2319 		{  16, IFM_IEEE80211_MCS },
2320 		{  17, IFM_IEEE80211_MCS },
2321 		{  18, IFM_IEEE80211_MCS },
2322 		{  19, IFM_IEEE80211_MCS },
2323 		{  20, IFM_IEEE80211_MCS },
2324 		{  21, IFM_IEEE80211_MCS },
2325 		{  22, IFM_IEEE80211_MCS },
2326 		{  23, IFM_IEEE80211_MCS },
2327 		{  24, IFM_IEEE80211_MCS },
2328 		{  25, IFM_IEEE80211_MCS },
2329 		{  26, IFM_IEEE80211_MCS },
2330 		{  27, IFM_IEEE80211_MCS },
2331 		{  28, IFM_IEEE80211_MCS },
2332 		{  29, IFM_IEEE80211_MCS },
2333 		{  30, IFM_IEEE80211_MCS },
2334 		{  31, IFM_IEEE80211_MCS },
2335 		{  32, IFM_IEEE80211_MCS },
2336 		{  33, IFM_IEEE80211_MCS },
2337 		{  34, IFM_IEEE80211_MCS },
2338 		{  35, IFM_IEEE80211_MCS },
2339 		{  36, IFM_IEEE80211_MCS },
2340 		{  37, IFM_IEEE80211_MCS },
2341 		{  38, IFM_IEEE80211_MCS },
2342 		{  39, IFM_IEEE80211_MCS },
2343 		{  40, IFM_IEEE80211_MCS },
2344 		{  41, IFM_IEEE80211_MCS },
2345 		{  42, IFM_IEEE80211_MCS },
2346 		{  43, IFM_IEEE80211_MCS },
2347 		{  44, IFM_IEEE80211_MCS },
2348 		{  45, IFM_IEEE80211_MCS },
2349 		{  46, IFM_IEEE80211_MCS },
2350 		{  47, IFM_IEEE80211_MCS },
2351 		{  48, IFM_IEEE80211_MCS },
2352 		{  49, IFM_IEEE80211_MCS },
2353 		{  50, IFM_IEEE80211_MCS },
2354 		{  51, IFM_IEEE80211_MCS },
2355 		{  52, IFM_IEEE80211_MCS },
2356 		{  53, IFM_IEEE80211_MCS },
2357 		{  54, IFM_IEEE80211_MCS },
2358 		{  55, IFM_IEEE80211_MCS },
2359 		{  56, IFM_IEEE80211_MCS },
2360 		{  57, IFM_IEEE80211_MCS },
2361 		{  58, IFM_IEEE80211_MCS },
2362 		{  59, IFM_IEEE80211_MCS },
2363 		{  60, IFM_IEEE80211_MCS },
2364 		{  61, IFM_IEEE80211_MCS },
2365 		{  62, IFM_IEEE80211_MCS },
2366 		{  63, IFM_IEEE80211_MCS },
2367 		{  64, IFM_IEEE80211_MCS },
2368 		{  65, IFM_IEEE80211_MCS },
2369 		{  66, IFM_IEEE80211_MCS },
2370 		{  67, IFM_IEEE80211_MCS },
2371 		{  68, IFM_IEEE80211_MCS },
2372 		{  69, IFM_IEEE80211_MCS },
2373 		{  70, IFM_IEEE80211_MCS },
2374 		{  71, IFM_IEEE80211_MCS },
2375 		{  72, IFM_IEEE80211_MCS },
2376 		{  73, IFM_IEEE80211_MCS },
2377 		{  74, IFM_IEEE80211_MCS },
2378 		{  75, IFM_IEEE80211_MCS },
2379 		{  76, IFM_IEEE80211_MCS },
2380 	};
2381 	int m;
2382 
2383 	/*
2384 	 * Check 11n rates first for match as an MCS.
2385 	 */
2386 	if (mode == IEEE80211_MODE_11NA) {
2387 		if (rate & IEEE80211_RATE_MCS) {
2388 			rate &= ~IEEE80211_RATE_MCS;
2389 			m = findmedia(htrates, nitems(htrates), rate);
2390 			if (m != IFM_AUTO)
2391 				return m | IFM_IEEE80211_11NA;
2392 		}
2393 	} else if (mode == IEEE80211_MODE_11NG) {
2394 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2395 		if (rate & IEEE80211_RATE_MCS) {
2396 			rate &= ~IEEE80211_RATE_MCS;
2397 			m = findmedia(htrates, nitems(htrates), rate);
2398 			if (m != IFM_AUTO)
2399 				return m | IFM_IEEE80211_11NG;
2400 		}
2401 	}
2402 	rate &= IEEE80211_RATE_VAL;
2403 	switch (mode) {
2404 	case IEEE80211_MODE_11A:
2405 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2406 	case IEEE80211_MODE_QUARTER:
2407 	case IEEE80211_MODE_11NA:
2408 	case IEEE80211_MODE_TURBO_A:
2409 	case IEEE80211_MODE_STURBO_A:
2410 		return findmedia(rates, nitems(rates),
2411 		    rate | IFM_IEEE80211_11A);
2412 	case IEEE80211_MODE_11B:
2413 		return findmedia(rates, nitems(rates),
2414 		    rate | IFM_IEEE80211_11B);
2415 	case IEEE80211_MODE_FH:
2416 		return findmedia(rates, nitems(rates),
2417 		    rate | IFM_IEEE80211_FH);
2418 	case IEEE80211_MODE_AUTO:
2419 		/* NB: ic may be NULL for some drivers */
2420 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2421 			return findmedia(rates, nitems(rates),
2422 			    rate | IFM_IEEE80211_FH);
2423 		/* NB: hack, 11g matches both 11b+11a rates */
2424 		/* fall thru... */
2425 	case IEEE80211_MODE_11G:
2426 	case IEEE80211_MODE_11NG:
2427 	case IEEE80211_MODE_TURBO_G:
2428 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2429 	case IEEE80211_MODE_VHT_2GHZ:
2430 	case IEEE80211_MODE_VHT_5GHZ:
2431 		/* XXX TODO: need to figure out mapping for VHT rates */
2432 		return IFM_AUTO;
2433 	}
2434 	return IFM_AUTO;
2435 }
2436 
2437 int
2438 ieee80211_media2rate(int mword)
2439 {
2440 	static const int ieeerates[] = {
2441 		-1,		/* IFM_AUTO */
2442 		0,		/* IFM_MANUAL */
2443 		0,		/* IFM_NONE */
2444 		2,		/* IFM_IEEE80211_FH1 */
2445 		4,		/* IFM_IEEE80211_FH2 */
2446 		2,		/* IFM_IEEE80211_DS1 */
2447 		4,		/* IFM_IEEE80211_DS2 */
2448 		11,		/* IFM_IEEE80211_DS5 */
2449 		22,		/* IFM_IEEE80211_DS11 */
2450 		44,		/* IFM_IEEE80211_DS22 */
2451 		12,		/* IFM_IEEE80211_OFDM6 */
2452 		18,		/* IFM_IEEE80211_OFDM9 */
2453 		24,		/* IFM_IEEE80211_OFDM12 */
2454 		36,		/* IFM_IEEE80211_OFDM18 */
2455 		48,		/* IFM_IEEE80211_OFDM24 */
2456 		72,		/* IFM_IEEE80211_OFDM36 */
2457 		96,		/* IFM_IEEE80211_OFDM48 */
2458 		108,		/* IFM_IEEE80211_OFDM54 */
2459 		144,		/* IFM_IEEE80211_OFDM72 */
2460 		0,		/* IFM_IEEE80211_DS354k */
2461 		0,		/* IFM_IEEE80211_DS512k */
2462 		6,		/* IFM_IEEE80211_OFDM3 */
2463 		9,		/* IFM_IEEE80211_OFDM4 */
2464 		54,		/* IFM_IEEE80211_OFDM27 */
2465 		-1,		/* IFM_IEEE80211_MCS */
2466 		-1,		/* IFM_IEEE80211_VHT */
2467 	};
2468 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2469 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2470 }
2471 
2472 /*
2473  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2474  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2475  */
2476 #define	mix(a, b, c)							\
2477 do {									\
2478 	a -= b; a -= c; a ^= (c >> 13);					\
2479 	b -= c; b -= a; b ^= (a << 8);					\
2480 	c -= a; c -= b; c ^= (b >> 13);					\
2481 	a -= b; a -= c; a ^= (c >> 12);					\
2482 	b -= c; b -= a; b ^= (a << 16);					\
2483 	c -= a; c -= b; c ^= (b >> 5);					\
2484 	a -= b; a -= c; a ^= (c >> 3);					\
2485 	b -= c; b -= a; b ^= (a << 10);					\
2486 	c -= a; c -= b; c ^= (b >> 15);					\
2487 } while (/*CONSTCOND*/0)
2488 
2489 uint32_t
2490 ieee80211_mac_hash(const struct ieee80211com *ic,
2491 	const uint8_t addr[IEEE80211_ADDR_LEN])
2492 {
2493 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2494 
2495 	b += addr[5] << 8;
2496 	b += addr[4];
2497 	a += addr[3] << 24;
2498 	a += addr[2] << 16;
2499 	a += addr[1] << 8;
2500 	a += addr[0];
2501 
2502 	mix(a, b, c);
2503 
2504 	return c;
2505 }
2506 #undef mix
2507 
2508 char
2509 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2510 {
2511 	if (IEEE80211_IS_CHAN_ST(c))
2512 		return 'S';
2513 	if (IEEE80211_IS_CHAN_108A(c))
2514 		return 'T';
2515 	if (IEEE80211_IS_CHAN_108G(c))
2516 		return 'G';
2517 	if (IEEE80211_IS_CHAN_VHT(c))
2518 		return 'v';
2519 	if (IEEE80211_IS_CHAN_HT(c))
2520 		return 'n';
2521 	if (IEEE80211_IS_CHAN_A(c))
2522 		return 'a';
2523 	if (IEEE80211_IS_CHAN_ANYG(c))
2524 		return 'g';
2525 	if (IEEE80211_IS_CHAN_B(c))
2526 		return 'b';
2527 	return 'f';
2528 }
2529