xref: /freebsd/sys/net80211/ieee80211.c (revision d8b878873e7aa8df1972cc6a642804b17eb61087)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 #ifdef IEEE80211_SUPPORT_SUPERG
50 #include <net80211/ieee80211_superg.h>
51 #endif
52 #include <net80211/ieee80211_ratectl.h>
53 
54 #include <net/bpf.h>
55 
56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
57 	[IEEE80211_MODE_AUTO]	  = "auto",
58 	[IEEE80211_MODE_11A]	  = "11a",
59 	[IEEE80211_MODE_11B]	  = "11b",
60 	[IEEE80211_MODE_11G]	  = "11g",
61 	[IEEE80211_MODE_FH]	  = "FH",
62 	[IEEE80211_MODE_TURBO_A]  = "turboA",
63 	[IEEE80211_MODE_TURBO_G]  = "turboG",
64 	[IEEE80211_MODE_STURBO_A] = "sturboA",
65 	[IEEE80211_MODE_HALF]	  = "half",
66 	[IEEE80211_MODE_QUARTER]  = "quarter",
67 	[IEEE80211_MODE_11NA]	  = "11na",
68 	[IEEE80211_MODE_11NG]	  = "11ng",
69 };
70 /* map ieee80211_opmode to the corresponding capability bit */
71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
72 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
73 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
74 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
75 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
76 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
77 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
78 #ifdef IEEE80211_SUPPORT_MESH
79 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
80 #endif
81 };
82 
83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
84 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
85 
86 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
87 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
88 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
89 static	int ieee80211_media_setup(struct ieee80211com *ic,
90 		struct ifmedia *media, int caps, int addsta,
91 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
92 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
93 static	int ieee80211com_media_change(struct ifnet *);
94 static	int media_status(enum ieee80211_opmode,
95 		const struct ieee80211_channel *);
96 
97 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
98 
99 /*
100  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
101  */
102 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
103 static const struct ieee80211_rateset ieee80211_rateset_11a =
104 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
105 static const struct ieee80211_rateset ieee80211_rateset_half =
106 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
107 static const struct ieee80211_rateset ieee80211_rateset_quarter =
108 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
109 static const struct ieee80211_rateset ieee80211_rateset_11b =
110 	{ 4, { B(2), B(4), B(11), B(22) } };
111 /* NB: OFDM rates are handled specially based on mode */
112 static const struct ieee80211_rateset ieee80211_rateset_11g =
113 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
114 #undef B
115 
116 /*
117  * Fill in 802.11 available channel set, mark
118  * all available channels as active, and pick
119  * a default channel if not already specified.
120  */
121 static void
122 ieee80211_chan_init(struct ieee80211com *ic)
123 {
124 #define	DEFAULTRATES(m, def) do { \
125 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
126 		ic->ic_sup_rates[m] = def; \
127 } while (0)
128 	struct ieee80211_channel *c;
129 	int i;
130 
131 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
132 		("invalid number of channels specified: %u", ic->ic_nchans));
133 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
134 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
135 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
136 	for (i = 0; i < ic->ic_nchans; i++) {
137 		c = &ic->ic_channels[i];
138 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
139 		/*
140 		 * Help drivers that work only with frequencies by filling
141 		 * in IEEE channel #'s if not already calculated.  Note this
142 		 * mimics similar work done in ieee80211_setregdomain when
143 		 * changing regulatory state.
144 		 */
145 		if (c->ic_ieee == 0)
146 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
147 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
148 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
149 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
150 			    c->ic_flags);
151 		/* default max tx power to max regulatory */
152 		if (c->ic_maxpower == 0)
153 			c->ic_maxpower = 2*c->ic_maxregpower;
154 		setbit(ic->ic_chan_avail, c->ic_ieee);
155 		/*
156 		 * Identify mode capabilities.
157 		 */
158 		if (IEEE80211_IS_CHAN_A(c))
159 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
160 		if (IEEE80211_IS_CHAN_B(c))
161 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
162 		if (IEEE80211_IS_CHAN_ANYG(c))
163 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
164 		if (IEEE80211_IS_CHAN_FHSS(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
166 		if (IEEE80211_IS_CHAN_108A(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
168 		if (IEEE80211_IS_CHAN_108G(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
170 		if (IEEE80211_IS_CHAN_ST(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
172 		if (IEEE80211_IS_CHAN_HALF(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
174 		if (IEEE80211_IS_CHAN_QUARTER(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
176 		if (IEEE80211_IS_CHAN_HTA(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
178 		if (IEEE80211_IS_CHAN_HTG(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
180 	}
181 	/* initialize candidate channels to all available */
182 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
183 		sizeof(ic->ic_chan_avail));
184 
185 	/* sort channel table to allow lookup optimizations */
186 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
187 
188 	/* invalidate any previous state */
189 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
190 	ic->ic_prevchan = NULL;
191 	ic->ic_csa_newchan = NULL;
192 	/* arbitrarily pick the first channel */
193 	ic->ic_curchan = &ic->ic_channels[0];
194 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
195 
196 	/* fillin well-known rate sets if driver has not specified */
197 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
198 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
199 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
200 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
201 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
202 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
203 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
204 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
205 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
207 
208 	/*
209 	 * Set auto mode to reset active channel state and any desired channel.
210 	 */
211 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
212 #undef DEFAULTRATES
213 }
214 
215 static void
216 null_update_mcast(struct ifnet *ifp)
217 {
218 	if_printf(ifp, "need multicast update callback\n");
219 }
220 
221 static void
222 null_update_promisc(struct ifnet *ifp)
223 {
224 	if_printf(ifp, "need promiscuous mode update callback\n");
225 }
226 
227 static int
228 null_transmit(struct ifnet *ifp, struct mbuf *m)
229 {
230 	m_freem(m);
231 	ifp->if_oerrors++;
232 	return EACCES;		/* XXX EIO/EPERM? */
233 }
234 
235 static int
236 null_output(struct ifnet *ifp, struct mbuf *m,
237 	struct sockaddr *dst, struct route *ro)
238 {
239 	if_printf(ifp, "discard raw packet\n");
240 	return null_transmit(ifp, m);
241 }
242 
243 static void
244 null_input(struct ifnet *ifp, struct mbuf *m)
245 {
246 	if_printf(ifp, "if_input should not be called\n");
247 	m_freem(m);
248 }
249 
250 /*
251  * Attach/setup the common net80211 state.  Called by
252  * the driver on attach to prior to creating any vap's.
253  */
254 void
255 ieee80211_ifattach(struct ieee80211com *ic,
256 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
257 {
258 	struct ifnet *ifp = ic->ic_ifp;
259 	struct sockaddr_dl *sdl;
260 	struct ifaddr *ifa;
261 
262 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
263 
264 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
265 	TAILQ_INIT(&ic->ic_vaps);
266 
267 	/* Create a taskqueue for all state changes */
268 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
269 	    taskqueue_thread_enqueue, &ic->ic_tq);
270 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq",
271 	    ifp->if_xname);
272 	/*
273 	 * Fill in 802.11 available channel set, mark all
274 	 * available channels as active, and pick a default
275 	 * channel if not already specified.
276 	 */
277 	ieee80211_media_init(ic);
278 
279 	ic->ic_update_mcast = null_update_mcast;
280 	ic->ic_update_promisc = null_update_promisc;
281 
282 	ic->ic_hash_key = arc4random();
283 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
284 	ic->ic_lintval = ic->ic_bintval;
285 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
286 
287 	ieee80211_crypto_attach(ic);
288 	ieee80211_node_attach(ic);
289 	ieee80211_power_attach(ic);
290 	ieee80211_proto_attach(ic);
291 #ifdef IEEE80211_SUPPORT_SUPERG
292 	ieee80211_superg_attach(ic);
293 #endif
294 	ieee80211_ht_attach(ic);
295 	ieee80211_scan_attach(ic);
296 	ieee80211_regdomain_attach(ic);
297 	ieee80211_dfs_attach(ic);
298 
299 	ieee80211_sysctl_attach(ic);
300 
301 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
302 	ifp->if_hdrlen = 0;
303 	if_attach(ifp);
304 	ifp->if_mtu = IEEE80211_MTU_MAX;
305 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
306 	ifp->if_output = null_output;
307 	ifp->if_input = null_input;	/* just in case */
308 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
309 
310 	ifa = ifaddr_byindex(ifp->if_index);
311 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
312 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
313 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
314 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
315 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
316 	ifa_free(ifa);
317 }
318 
319 /*
320  * Detach net80211 state on device detach.  Tear down
321  * all vap's and reclaim all common state prior to the
322  * device state going away.  Note we may call back into
323  * driver; it must be prepared for this.
324  */
325 void
326 ieee80211_ifdetach(struct ieee80211com *ic)
327 {
328 	struct ifnet *ifp = ic->ic_ifp;
329 	struct ieee80211vap *vap;
330 
331 	if_detach(ifp);
332 
333 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
334 		ieee80211_vap_destroy(vap);
335 	ieee80211_waitfor_parent(ic);
336 
337 	ieee80211_sysctl_detach(ic);
338 	ieee80211_dfs_detach(ic);
339 	ieee80211_regdomain_detach(ic);
340 	ieee80211_scan_detach(ic);
341 #ifdef IEEE80211_SUPPORT_SUPERG
342 	ieee80211_superg_detach(ic);
343 #endif
344 	ieee80211_ht_detach(ic);
345 	/* NB: must be called before ieee80211_node_detach */
346 	ieee80211_proto_detach(ic);
347 	ieee80211_crypto_detach(ic);
348 	ieee80211_power_detach(ic);
349 	ieee80211_node_detach(ic);
350 
351 	ifmedia_removeall(&ic->ic_media);
352 	taskqueue_free(ic->ic_tq);
353 	IEEE80211_LOCK_DESTROY(ic);
354 }
355 
356 /*
357  * Default reset method for use with the ioctl support.  This
358  * method is invoked after any state change in the 802.11
359  * layer that should be propagated to the hardware but not
360  * require re-initialization of the 802.11 state machine (e.g
361  * rescanning for an ap).  We always return ENETRESET which
362  * should cause the driver to re-initialize the device. Drivers
363  * can override this method to implement more optimized support.
364  */
365 static int
366 default_reset(struct ieee80211vap *vap, u_long cmd)
367 {
368 	return ENETRESET;
369 }
370 
371 /*
372  * Prepare a vap for use.  Drivers use this call to
373  * setup net80211 state in new vap's prior attaching
374  * them with ieee80211_vap_attach (below).
375  */
376 int
377 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
378 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
379 	const uint8_t bssid[IEEE80211_ADDR_LEN],
380 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
381 {
382 	struct ifnet *ifp;
383 
384 	ifp = if_alloc(IFT_ETHER);
385 	if (ifp == NULL) {
386 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
387 		    __func__);
388 		return ENOMEM;
389 	}
390 	if_initname(ifp, name, unit);
391 	ifp->if_softc = vap;			/* back pointer */
392 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
393 	ifp->if_start = ieee80211_start;
394 	ifp->if_ioctl = ieee80211_ioctl;
395 	ifp->if_init = ieee80211_init;
396 	/* NB: input+output filled in by ether_ifattach */
397 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
398 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
399 	IFQ_SET_READY(&ifp->if_snd);
400 
401 	vap->iv_ifp = ifp;
402 	vap->iv_ic = ic;
403 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
404 	vap->iv_flags_ext = ic->ic_flags_ext;
405 	vap->iv_flags_ven = ic->ic_flags_ven;
406 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
407 	vap->iv_htcaps = ic->ic_htcaps;
408 	vap->iv_htextcaps = ic->ic_htextcaps;
409 	vap->iv_opmode = opmode;
410 	vap->iv_caps |= ieee80211_opcap[opmode];
411 	switch (opmode) {
412 	case IEEE80211_M_WDS:
413 		/*
414 		 * WDS links must specify the bssid of the far end.
415 		 * For legacy operation this is a static relationship.
416 		 * For non-legacy operation the station must associate
417 		 * and be authorized to pass traffic.  Plumbing the
418 		 * vap to the proper node happens when the vap
419 		 * transitions to RUN state.
420 		 */
421 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
422 		vap->iv_flags |= IEEE80211_F_DESBSSID;
423 		if (flags & IEEE80211_CLONE_WDSLEGACY)
424 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
425 		break;
426 #ifdef IEEE80211_SUPPORT_TDMA
427 	case IEEE80211_M_AHDEMO:
428 		if (flags & IEEE80211_CLONE_TDMA) {
429 			/* NB: checked before clone operation allowed */
430 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
431 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
432 			/*
433 			 * Propagate TDMA capability to mark vap; this
434 			 * cannot be removed and is used to distinguish
435 			 * regular ahdemo operation from ahdemo+tdma.
436 			 */
437 			vap->iv_caps |= IEEE80211_C_TDMA;
438 		}
439 		break;
440 #endif
441 	}
442 	/* auto-enable s/w beacon miss support */
443 	if (flags & IEEE80211_CLONE_NOBEACONS)
444 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
445 	/* auto-generated or user supplied MAC address */
446 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
447 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
448 	/*
449 	 * Enable various functionality by default if we're
450 	 * capable; the driver can override us if it knows better.
451 	 */
452 	if (vap->iv_caps & IEEE80211_C_WME)
453 		vap->iv_flags |= IEEE80211_F_WME;
454 	if (vap->iv_caps & IEEE80211_C_BURST)
455 		vap->iv_flags |= IEEE80211_F_BURST;
456 	/* NB: bg scanning only makes sense for station mode right now */
457 	if (vap->iv_opmode == IEEE80211_M_STA &&
458 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
459 		vap->iv_flags |= IEEE80211_F_BGSCAN;
460 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
461 	/* NB: DFS support only makes sense for ap mode right now */
462 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
463 	    (vap->iv_caps & IEEE80211_C_DFS))
464 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
465 
466 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
467 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
468 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
469 	/*
470 	 * Install a default reset method for the ioctl support;
471 	 * the driver can override this.
472 	 */
473 	vap->iv_reset = default_reset;
474 
475 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
476 
477 	ieee80211_sysctl_vattach(vap);
478 	ieee80211_crypto_vattach(vap);
479 	ieee80211_node_vattach(vap);
480 	ieee80211_power_vattach(vap);
481 	ieee80211_proto_vattach(vap);
482 #ifdef IEEE80211_SUPPORT_SUPERG
483 	ieee80211_superg_vattach(vap);
484 #endif
485 	ieee80211_ht_vattach(vap);
486 	ieee80211_scan_vattach(vap);
487 	ieee80211_regdomain_vattach(vap);
488 	ieee80211_radiotap_vattach(vap);
489 
490 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_AMRR);
491 
492 	return 0;
493 }
494 
495 /*
496  * Activate a vap.  State should have been prepared with a
497  * call to ieee80211_vap_setup and by the driver.  On return
498  * from this call the vap is ready for use.
499  */
500 int
501 ieee80211_vap_attach(struct ieee80211vap *vap,
502 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
503 {
504 	struct ifnet *ifp = vap->iv_ifp;
505 	struct ieee80211com *ic = vap->iv_ic;
506 	struct ifmediareq imr;
507 	int maxrate;
508 
509 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
510 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
511 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
512 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
513 
514 	/*
515 	 * Do late attach work that cannot happen until after
516 	 * the driver has had a chance to override defaults.
517 	 */
518 	ieee80211_node_latevattach(vap);
519 	ieee80211_power_latevattach(vap);
520 
521 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
522 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
523 	ieee80211_media_status(ifp, &imr);
524 	/* NB: strip explicit mode; we're actually in autoselect */
525 	ifmedia_set(&vap->iv_media,
526 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
527 	if (maxrate)
528 		ifp->if_baudrate = IF_Mbps(maxrate);
529 
530 	ether_ifattach(ifp, vap->iv_myaddr);
531 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
532 		/* NB: disallow transmit */
533 		ifp->if_transmit = null_transmit;
534 		ifp->if_output = null_output;
535 	} else {
536 		/* hook output method setup by ether_ifattach */
537 		vap->iv_output = ifp->if_output;
538 		ifp->if_output = ieee80211_output;
539 	}
540 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
541 
542 	IEEE80211_LOCK(ic);
543 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
544 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
545 #ifdef IEEE80211_SUPPORT_SUPERG
546 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
547 #endif
548 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
549 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
550 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
551 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
552 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
553 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
554 	IEEE80211_UNLOCK(ic);
555 
556 	return 1;
557 }
558 
559 /*
560  * Tear down vap state and reclaim the ifnet.
561  * The driver is assumed to have prepared for
562  * this; e.g. by turning off interrupts for the
563  * underlying device.
564  */
565 void
566 ieee80211_vap_detach(struct ieee80211vap *vap)
567 {
568 	struct ieee80211com *ic = vap->iv_ic;
569 	struct ifnet *ifp = vap->iv_ifp;
570 
571 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
572 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
573 	    ic->ic_ifp->if_xname);
574 
575 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
576 	ether_ifdetach(ifp);
577 
578 	ieee80211_stop(vap);
579 
580 	/*
581 	 * Flush any deferred vap tasks.
582 	 */
583 	ieee80211_draintask(ic, &vap->iv_nstate_task);
584 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
585 
586 	/* XXX band-aid until ifnet handles this for us */
587 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
588 
589 	IEEE80211_LOCK(ic);
590 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
591 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
592 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
593 #ifdef IEEE80211_SUPPORT_SUPERG
594 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
595 #endif
596 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
597 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
598 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
599 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
600 	/* NB: this handles the bpfdetach done below */
601 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
602 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
603 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
604 	IEEE80211_UNLOCK(ic);
605 
606 	ifmedia_removeall(&vap->iv_media);
607 
608 	ieee80211_radiotap_vdetach(vap);
609 	ieee80211_regdomain_vdetach(vap);
610 	ieee80211_scan_vdetach(vap);
611 #ifdef IEEE80211_SUPPORT_SUPERG
612 	ieee80211_superg_vdetach(vap);
613 #endif
614 	ieee80211_ht_vdetach(vap);
615 	/* NB: must be before ieee80211_node_vdetach */
616 	ieee80211_proto_vdetach(vap);
617 	ieee80211_crypto_vdetach(vap);
618 	ieee80211_power_vdetach(vap);
619 	ieee80211_node_vdetach(vap);
620 	ieee80211_sysctl_vdetach(vap);
621 
622 	if_free(ifp);
623 }
624 
625 /*
626  * Synchronize flag bit state in the parent ifnet structure
627  * according to the state of all vap ifnet's.  This is used,
628  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
629  */
630 void
631 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
632 {
633 	struct ifnet *ifp = ic->ic_ifp;
634 	struct ieee80211vap *vap;
635 	int bit, oflags;
636 
637 	IEEE80211_LOCK_ASSERT(ic);
638 
639 	bit = 0;
640 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
641 		if (vap->iv_ifp->if_flags & flag) {
642 			/*
643 			 * XXX the bridge sets PROMISC but we don't want to
644 			 * enable it on the device, discard here so all the
645 			 * drivers don't need to special-case it
646 			 */
647 			if (flag == IFF_PROMISC &&
648 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
649 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
650 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
651 				continue;
652 			bit = 1;
653 			break;
654 		}
655 	oflags = ifp->if_flags;
656 	if (bit)
657 		ifp->if_flags |= flag;
658 	else
659 		ifp->if_flags &= ~flag;
660 	if ((ifp->if_flags ^ oflags) & flag) {
661 		/* XXX should we return 1/0 and let caller do this? */
662 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
663 			if (flag == IFF_PROMISC)
664 				ieee80211_runtask(ic, &ic->ic_promisc_task);
665 			else if (flag == IFF_ALLMULTI)
666 				ieee80211_runtask(ic, &ic->ic_mcast_task);
667 		}
668 	}
669 }
670 
671 /*
672  * Synchronize flag bit state in the com structure
673  * according to the state of all vap's.  This is used,
674  * for example, to handle state changes via ioctls.
675  */
676 static void
677 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
678 {
679 	struct ieee80211vap *vap;
680 	int bit;
681 
682 	IEEE80211_LOCK_ASSERT(ic);
683 
684 	bit = 0;
685 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
686 		if (vap->iv_flags & flag) {
687 			bit = 1;
688 			break;
689 		}
690 	if (bit)
691 		ic->ic_flags |= flag;
692 	else
693 		ic->ic_flags &= ~flag;
694 }
695 
696 void
697 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
698 {
699 	struct ieee80211com *ic = vap->iv_ic;
700 
701 	IEEE80211_LOCK(ic);
702 	if (flag < 0) {
703 		flag = -flag;
704 		vap->iv_flags &= ~flag;
705 	} else
706 		vap->iv_flags |= flag;
707 	ieee80211_syncflag_locked(ic, flag);
708 	IEEE80211_UNLOCK(ic);
709 }
710 
711 /*
712  * Synchronize flags_ht bit state in the com structure
713  * according to the state of all vap's.  This is used,
714  * for example, to handle state changes via ioctls.
715  */
716 static void
717 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
718 {
719 	struct ieee80211vap *vap;
720 	int bit;
721 
722 	IEEE80211_LOCK_ASSERT(ic);
723 
724 	bit = 0;
725 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
726 		if (vap->iv_flags_ht & flag) {
727 			bit = 1;
728 			break;
729 		}
730 	if (bit)
731 		ic->ic_flags_ht |= flag;
732 	else
733 		ic->ic_flags_ht &= ~flag;
734 }
735 
736 void
737 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
738 {
739 	struct ieee80211com *ic = vap->iv_ic;
740 
741 	IEEE80211_LOCK(ic);
742 	if (flag < 0) {
743 		flag = -flag;
744 		vap->iv_flags_ht &= ~flag;
745 	} else
746 		vap->iv_flags_ht |= flag;
747 	ieee80211_syncflag_ht_locked(ic, flag);
748 	IEEE80211_UNLOCK(ic);
749 }
750 
751 /*
752  * Synchronize flags_ext bit state in the com structure
753  * according to the state of all vap's.  This is used,
754  * for example, to handle state changes via ioctls.
755  */
756 static void
757 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
758 {
759 	struct ieee80211vap *vap;
760 	int bit;
761 
762 	IEEE80211_LOCK_ASSERT(ic);
763 
764 	bit = 0;
765 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
766 		if (vap->iv_flags_ext & flag) {
767 			bit = 1;
768 			break;
769 		}
770 	if (bit)
771 		ic->ic_flags_ext |= flag;
772 	else
773 		ic->ic_flags_ext &= ~flag;
774 }
775 
776 void
777 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
778 {
779 	struct ieee80211com *ic = vap->iv_ic;
780 
781 	IEEE80211_LOCK(ic);
782 	if (flag < 0) {
783 		flag = -flag;
784 		vap->iv_flags_ext &= ~flag;
785 	} else
786 		vap->iv_flags_ext |= flag;
787 	ieee80211_syncflag_ext_locked(ic, flag);
788 	IEEE80211_UNLOCK(ic);
789 }
790 
791 static __inline int
792 mapgsm(u_int freq, u_int flags)
793 {
794 	freq *= 10;
795 	if (flags & IEEE80211_CHAN_QUARTER)
796 		freq += 5;
797 	else if (flags & IEEE80211_CHAN_HALF)
798 		freq += 10;
799 	else
800 		freq += 20;
801 	/* NB: there is no 907/20 wide but leave room */
802 	return (freq - 906*10) / 5;
803 }
804 
805 static __inline int
806 mappsb(u_int freq, u_int flags)
807 {
808 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
809 }
810 
811 /*
812  * Convert MHz frequency to IEEE channel number.
813  */
814 int
815 ieee80211_mhz2ieee(u_int freq, u_int flags)
816 {
817 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
818 	if (flags & IEEE80211_CHAN_GSM)
819 		return mapgsm(freq, flags);
820 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
821 		if (freq == 2484)
822 			return 14;
823 		if (freq < 2484)
824 			return ((int) freq - 2407) / 5;
825 		else
826 			return 15 + ((freq - 2512) / 20);
827 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
828 		if (freq <= 5000) {
829 			/* XXX check regdomain? */
830 			if (IS_FREQ_IN_PSB(freq))
831 				return mappsb(freq, flags);
832 			return (freq - 4000) / 5;
833 		} else
834 			return (freq - 5000) / 5;
835 	} else {				/* either, guess */
836 		if (freq == 2484)
837 			return 14;
838 		if (freq < 2484) {
839 			if (907 <= freq && freq <= 922)
840 				return mapgsm(freq, flags);
841 			return ((int) freq - 2407) / 5;
842 		}
843 		if (freq < 5000) {
844 			if (IS_FREQ_IN_PSB(freq))
845 				return mappsb(freq, flags);
846 			else if (freq > 4900)
847 				return (freq - 4000) / 5;
848 			else
849 				return 15 + ((freq - 2512) / 20);
850 		}
851 		return (freq - 5000) / 5;
852 	}
853 #undef IS_FREQ_IN_PSB
854 }
855 
856 /*
857  * Convert channel to IEEE channel number.
858  */
859 int
860 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
861 {
862 	if (c == NULL) {
863 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
864 		return 0;		/* XXX */
865 	}
866 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
867 }
868 
869 /*
870  * Convert IEEE channel number to MHz frequency.
871  */
872 u_int
873 ieee80211_ieee2mhz(u_int chan, u_int flags)
874 {
875 	if (flags & IEEE80211_CHAN_GSM)
876 		return 907 + 5 * (chan / 10);
877 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
878 		if (chan == 14)
879 			return 2484;
880 		if (chan < 14)
881 			return 2407 + chan*5;
882 		else
883 			return 2512 + ((chan-15)*20);
884 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
885 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
886 			chan -= 37;
887 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
888 		}
889 		return 5000 + (chan*5);
890 	} else {				/* either, guess */
891 		/* XXX can't distinguish PSB+GSM channels */
892 		if (chan == 14)
893 			return 2484;
894 		if (chan < 14)			/* 0-13 */
895 			return 2407 + chan*5;
896 		if (chan < 27)			/* 15-26 */
897 			return 2512 + ((chan-15)*20);
898 		return 5000 + (chan*5);
899 	}
900 }
901 
902 /*
903  * Locate a channel given a frequency+flags.  We cache
904  * the previous lookup to optimize switching between two
905  * channels--as happens with dynamic turbo.
906  */
907 struct ieee80211_channel *
908 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
909 {
910 	struct ieee80211_channel *c;
911 	int i;
912 
913 	flags &= IEEE80211_CHAN_ALLTURBO;
914 	c = ic->ic_prevchan;
915 	if (c != NULL && c->ic_freq == freq &&
916 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
917 		return c;
918 	/* brute force search */
919 	for (i = 0; i < ic->ic_nchans; i++) {
920 		c = &ic->ic_channels[i];
921 		if (c->ic_freq == freq &&
922 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
923 			return c;
924 	}
925 	return NULL;
926 }
927 
928 /*
929  * Locate a channel given a channel number+flags.  We cache
930  * the previous lookup to optimize switching between two
931  * channels--as happens with dynamic turbo.
932  */
933 struct ieee80211_channel *
934 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
935 {
936 	struct ieee80211_channel *c;
937 	int i;
938 
939 	flags &= IEEE80211_CHAN_ALLTURBO;
940 	c = ic->ic_prevchan;
941 	if (c != NULL && c->ic_ieee == ieee &&
942 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
943 		return c;
944 	/* brute force search */
945 	for (i = 0; i < ic->ic_nchans; i++) {
946 		c = &ic->ic_channels[i];
947 		if (c->ic_ieee == ieee &&
948 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
949 			return c;
950 	}
951 	return NULL;
952 }
953 
954 static void
955 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
956 {
957 #define	ADD(_ic, _s, _o) \
958 	ifmedia_add(media, \
959 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
960 	static const u_int mopts[IEEE80211_MODE_MAX] = {
961 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
962 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
963 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
964 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
965 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
966 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
967 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
968 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
969 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
970 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
971 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
972 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
973 	};
974 	u_int mopt;
975 
976 	mopt = mopts[mode];
977 	if (addsta)
978 		ADD(ic, mword, mopt);	/* STA mode has no cap */
979 	if (caps & IEEE80211_C_IBSS)
980 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
981 	if (caps & IEEE80211_C_HOSTAP)
982 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
983 	if (caps & IEEE80211_C_AHDEMO)
984 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
985 	if (caps & IEEE80211_C_MONITOR)
986 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
987 	if (caps & IEEE80211_C_WDS)
988 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
989 	if (caps & IEEE80211_C_MBSS)
990 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
991 #undef ADD
992 }
993 
994 /*
995  * Setup the media data structures according to the channel and
996  * rate tables.
997  */
998 static int
999 ieee80211_media_setup(struct ieee80211com *ic,
1000 	struct ifmedia *media, int caps, int addsta,
1001 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1002 {
1003 	int i, j, mode, rate, maxrate, mword, r;
1004 	const struct ieee80211_rateset *rs;
1005 	struct ieee80211_rateset allrates;
1006 
1007 	/*
1008 	 * Fill in media characteristics.
1009 	 */
1010 	ifmedia_init(media, 0, media_change, media_stat);
1011 	maxrate = 0;
1012 	/*
1013 	 * Add media for legacy operating modes.
1014 	 */
1015 	memset(&allrates, 0, sizeof(allrates));
1016 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1017 		if (isclr(ic->ic_modecaps, mode))
1018 			continue;
1019 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1020 		if (mode == IEEE80211_MODE_AUTO)
1021 			continue;
1022 		rs = &ic->ic_sup_rates[mode];
1023 		for (i = 0; i < rs->rs_nrates; i++) {
1024 			rate = rs->rs_rates[i];
1025 			mword = ieee80211_rate2media(ic, rate, mode);
1026 			if (mword == 0)
1027 				continue;
1028 			addmedia(media, caps, addsta, mode, mword);
1029 			/*
1030 			 * Add legacy rate to the collection of all rates.
1031 			 */
1032 			r = rate & IEEE80211_RATE_VAL;
1033 			for (j = 0; j < allrates.rs_nrates; j++)
1034 				if (allrates.rs_rates[j] == r)
1035 					break;
1036 			if (j == allrates.rs_nrates) {
1037 				/* unique, add to the set */
1038 				allrates.rs_rates[j] = r;
1039 				allrates.rs_nrates++;
1040 			}
1041 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1042 			if (rate > maxrate)
1043 				maxrate = rate;
1044 		}
1045 	}
1046 	for (i = 0; i < allrates.rs_nrates; i++) {
1047 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1048 				IEEE80211_MODE_AUTO);
1049 		if (mword == 0)
1050 			continue;
1051 		/* NB: remove media options from mword */
1052 		addmedia(media, caps, addsta,
1053 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1054 	}
1055 	/*
1056 	 * Add HT/11n media.  Note that we do not have enough
1057 	 * bits in the media subtype to express the MCS so we
1058 	 * use a "placeholder" media subtype and any fixed MCS
1059 	 * must be specified with a different mechanism.
1060 	 */
1061 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1062 		if (isclr(ic->ic_modecaps, mode))
1063 			continue;
1064 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1065 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1066 	}
1067 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1068 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1069 		addmedia(media, caps, addsta,
1070 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1071 		/* XXX could walk htrates */
1072 		/* XXX known array size */
1073 		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
1074 			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
1075 	}
1076 	return maxrate;
1077 }
1078 
1079 void
1080 ieee80211_media_init(struct ieee80211com *ic)
1081 {
1082 	struct ifnet *ifp = ic->ic_ifp;
1083 	int maxrate;
1084 
1085 	/* NB: this works because the structure is initialized to zero */
1086 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1087 		/*
1088 		 * We are re-initializing the channel list; clear
1089 		 * the existing media state as the media routines
1090 		 * don't suppress duplicates.
1091 		 */
1092 		ifmedia_removeall(&ic->ic_media);
1093 	}
1094 	ieee80211_chan_init(ic);
1095 
1096 	/*
1097 	 * Recalculate media settings in case new channel list changes
1098 	 * the set of available modes.
1099 	 */
1100 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1101 		ieee80211com_media_change, ieee80211com_media_status);
1102 	/* NB: strip explicit mode; we're actually in autoselect */
1103 	ifmedia_set(&ic->ic_media,
1104 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1105 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1106 	if (maxrate)
1107 		ifp->if_baudrate = IF_Mbps(maxrate);
1108 
1109 	/* XXX need to propagate new media settings to vap's */
1110 }
1111 
1112 /* XXX inline or eliminate? */
1113 const struct ieee80211_rateset *
1114 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1115 {
1116 	/* XXX does this work for 11ng basic rates? */
1117 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1118 }
1119 
1120 void
1121 ieee80211_announce(struct ieee80211com *ic)
1122 {
1123 	struct ifnet *ifp = ic->ic_ifp;
1124 	int i, mode, rate, mword;
1125 	const struct ieee80211_rateset *rs;
1126 
1127 	/* NB: skip AUTO since it has no rates */
1128 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1129 		if (isclr(ic->ic_modecaps, mode))
1130 			continue;
1131 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1132 		rs = &ic->ic_sup_rates[mode];
1133 		for (i = 0; i < rs->rs_nrates; i++) {
1134 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1135 			if (mword == 0)
1136 				continue;
1137 			rate = ieee80211_media2rate(mword);
1138 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1139 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1140 		}
1141 		printf("\n");
1142 	}
1143 	ieee80211_ht_announce(ic);
1144 }
1145 
1146 void
1147 ieee80211_announce_channels(struct ieee80211com *ic)
1148 {
1149 	const struct ieee80211_channel *c;
1150 	char type;
1151 	int i, cw;
1152 
1153 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1154 	for (i = 0; i < ic->ic_nchans; i++) {
1155 		c = &ic->ic_channels[i];
1156 		if (IEEE80211_IS_CHAN_ST(c))
1157 			type = 'S';
1158 		else if (IEEE80211_IS_CHAN_108A(c))
1159 			type = 'T';
1160 		else if (IEEE80211_IS_CHAN_108G(c))
1161 			type = 'G';
1162 		else if (IEEE80211_IS_CHAN_HT(c))
1163 			type = 'n';
1164 		else if (IEEE80211_IS_CHAN_A(c))
1165 			type = 'a';
1166 		else if (IEEE80211_IS_CHAN_ANYG(c))
1167 			type = 'g';
1168 		else if (IEEE80211_IS_CHAN_B(c))
1169 			type = 'b';
1170 		else
1171 			type = 'f';
1172 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1173 			cw = 40;
1174 		else if (IEEE80211_IS_CHAN_HALF(c))
1175 			cw = 10;
1176 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1177 			cw = 5;
1178 		else
1179 			cw = 20;
1180 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1181 			, c->ic_ieee, c->ic_freq, type
1182 			, cw
1183 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1184 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1185 			, c->ic_maxregpower
1186 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1187 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1188 		);
1189 	}
1190 }
1191 
1192 static int
1193 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1194 {
1195 	switch (IFM_MODE(ime->ifm_media)) {
1196 	case IFM_IEEE80211_11A:
1197 		*mode = IEEE80211_MODE_11A;
1198 		break;
1199 	case IFM_IEEE80211_11B:
1200 		*mode = IEEE80211_MODE_11B;
1201 		break;
1202 	case IFM_IEEE80211_11G:
1203 		*mode = IEEE80211_MODE_11G;
1204 		break;
1205 	case IFM_IEEE80211_FH:
1206 		*mode = IEEE80211_MODE_FH;
1207 		break;
1208 	case IFM_IEEE80211_11NA:
1209 		*mode = IEEE80211_MODE_11NA;
1210 		break;
1211 	case IFM_IEEE80211_11NG:
1212 		*mode = IEEE80211_MODE_11NG;
1213 		break;
1214 	case IFM_AUTO:
1215 		*mode = IEEE80211_MODE_AUTO;
1216 		break;
1217 	default:
1218 		return 0;
1219 	}
1220 	/*
1221 	 * Turbo mode is an ``option''.
1222 	 * XXX does not apply to AUTO
1223 	 */
1224 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1225 		if (*mode == IEEE80211_MODE_11A) {
1226 			if (flags & IEEE80211_F_TURBOP)
1227 				*mode = IEEE80211_MODE_TURBO_A;
1228 			else
1229 				*mode = IEEE80211_MODE_STURBO_A;
1230 		} else if (*mode == IEEE80211_MODE_11G)
1231 			*mode = IEEE80211_MODE_TURBO_G;
1232 		else
1233 			return 0;
1234 	}
1235 	/* XXX HT40 +/- */
1236 	return 1;
1237 }
1238 
1239 /*
1240  * Handle a media change request on the underlying interface.
1241  */
1242 int
1243 ieee80211com_media_change(struct ifnet *ifp)
1244 {
1245 	return EINVAL;
1246 }
1247 
1248 /*
1249  * Handle a media change request on the vap interface.
1250  */
1251 int
1252 ieee80211_media_change(struct ifnet *ifp)
1253 {
1254 	struct ieee80211vap *vap = ifp->if_softc;
1255 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1256 	uint16_t newmode;
1257 
1258 	if (!media2mode(ime, vap->iv_flags, &newmode))
1259 		return EINVAL;
1260 	if (vap->iv_des_mode != newmode) {
1261 		vap->iv_des_mode = newmode;
1262 		/* XXX kick state machine if up+running */
1263 	}
1264 	return 0;
1265 }
1266 
1267 /*
1268  * Common code to calculate the media status word
1269  * from the operating mode and channel state.
1270  */
1271 static int
1272 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1273 {
1274 	int status;
1275 
1276 	status = IFM_IEEE80211;
1277 	switch (opmode) {
1278 	case IEEE80211_M_STA:
1279 		break;
1280 	case IEEE80211_M_IBSS:
1281 		status |= IFM_IEEE80211_ADHOC;
1282 		break;
1283 	case IEEE80211_M_HOSTAP:
1284 		status |= IFM_IEEE80211_HOSTAP;
1285 		break;
1286 	case IEEE80211_M_MONITOR:
1287 		status |= IFM_IEEE80211_MONITOR;
1288 		break;
1289 	case IEEE80211_M_AHDEMO:
1290 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1291 		break;
1292 	case IEEE80211_M_WDS:
1293 		status |= IFM_IEEE80211_WDS;
1294 		break;
1295 	case IEEE80211_M_MBSS:
1296 		status |= IFM_IEEE80211_MBSS;
1297 		break;
1298 	}
1299 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1300 		status |= IFM_IEEE80211_11NA;
1301 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1302 		status |= IFM_IEEE80211_11NG;
1303 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1304 		status |= IFM_IEEE80211_11A;
1305 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1306 		status |= IFM_IEEE80211_11B;
1307 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1308 		status |= IFM_IEEE80211_11G;
1309 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1310 		status |= IFM_IEEE80211_FH;
1311 	}
1312 	/* XXX else complain? */
1313 
1314 	if (IEEE80211_IS_CHAN_TURBO(chan))
1315 		status |= IFM_IEEE80211_TURBO;
1316 #if 0
1317 	if (IEEE80211_IS_CHAN_HT20(chan))
1318 		status |= IFM_IEEE80211_HT20;
1319 	if (IEEE80211_IS_CHAN_HT40(chan))
1320 		status |= IFM_IEEE80211_HT40;
1321 #endif
1322 	return status;
1323 }
1324 
1325 static void
1326 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1327 {
1328 	struct ieee80211com *ic = ifp->if_l2com;
1329 	struct ieee80211vap *vap;
1330 
1331 	imr->ifm_status = IFM_AVALID;
1332 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1333 		if (vap->iv_ifp->if_flags & IFF_UP) {
1334 			imr->ifm_status |= IFM_ACTIVE;
1335 			break;
1336 		}
1337 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1338 	if (imr->ifm_status & IFM_ACTIVE)
1339 		imr->ifm_current = imr->ifm_active;
1340 }
1341 
1342 void
1343 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1344 {
1345 	struct ieee80211vap *vap = ifp->if_softc;
1346 	struct ieee80211com *ic = vap->iv_ic;
1347 	enum ieee80211_phymode mode;
1348 
1349 	imr->ifm_status = IFM_AVALID;
1350 	/*
1351 	 * NB: use the current channel's mode to lock down a xmit
1352 	 * rate only when running; otherwise we may have a mismatch
1353 	 * in which case the rate will not be convertible.
1354 	 */
1355 	if (vap->iv_state == IEEE80211_S_RUN) {
1356 		imr->ifm_status |= IFM_ACTIVE;
1357 		mode = ieee80211_chan2mode(ic->ic_curchan);
1358 	} else
1359 		mode = IEEE80211_MODE_AUTO;
1360 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1361 	/*
1362 	 * Calculate a current rate if possible.
1363 	 */
1364 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1365 		/*
1366 		 * A fixed rate is set, report that.
1367 		 */
1368 		imr->ifm_active |= ieee80211_rate2media(ic,
1369 			vap->iv_txparms[mode].ucastrate, mode);
1370 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1371 		/*
1372 		 * In station mode report the current transmit rate.
1373 		 */
1374 		imr->ifm_active |= ieee80211_rate2media(ic,
1375 			vap->iv_bss->ni_txrate, mode);
1376 	} else
1377 		imr->ifm_active |= IFM_AUTO;
1378 	if (imr->ifm_status & IFM_ACTIVE)
1379 		imr->ifm_current = imr->ifm_active;
1380 }
1381 
1382 /*
1383  * Set the current phy mode and recalculate the active channel
1384  * set based on the available channels for this mode.  Also
1385  * select a new default/current channel if the current one is
1386  * inappropriate for this mode.
1387  */
1388 int
1389 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1390 {
1391 	/*
1392 	 * Adjust basic rates in 11b/11g supported rate set.
1393 	 * Note that if operating on a hal/quarter rate channel
1394 	 * this is a noop as those rates sets are different
1395 	 * and used instead.
1396 	 */
1397 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1398 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1399 
1400 	ic->ic_curmode = mode;
1401 	ieee80211_reset_erp(ic);	/* reset ERP state */
1402 
1403 	return 0;
1404 }
1405 
1406 /*
1407  * Return the phy mode for with the specified channel.
1408  */
1409 enum ieee80211_phymode
1410 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1411 {
1412 
1413 	if (IEEE80211_IS_CHAN_HTA(chan))
1414 		return IEEE80211_MODE_11NA;
1415 	else if (IEEE80211_IS_CHAN_HTG(chan))
1416 		return IEEE80211_MODE_11NG;
1417 	else if (IEEE80211_IS_CHAN_108G(chan))
1418 		return IEEE80211_MODE_TURBO_G;
1419 	else if (IEEE80211_IS_CHAN_ST(chan))
1420 		return IEEE80211_MODE_STURBO_A;
1421 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1422 		return IEEE80211_MODE_TURBO_A;
1423 	else if (IEEE80211_IS_CHAN_HALF(chan))
1424 		return IEEE80211_MODE_HALF;
1425 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1426 		return IEEE80211_MODE_QUARTER;
1427 	else if (IEEE80211_IS_CHAN_A(chan))
1428 		return IEEE80211_MODE_11A;
1429 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1430 		return IEEE80211_MODE_11G;
1431 	else if (IEEE80211_IS_CHAN_B(chan))
1432 		return IEEE80211_MODE_11B;
1433 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1434 		return IEEE80211_MODE_FH;
1435 
1436 	/* NB: should not get here */
1437 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1438 		__func__, chan->ic_freq, chan->ic_flags);
1439 	return IEEE80211_MODE_11B;
1440 }
1441 
1442 struct ratemedia {
1443 	u_int	match;	/* rate + mode */
1444 	u_int	media;	/* if_media rate */
1445 };
1446 
1447 static int
1448 findmedia(const struct ratemedia rates[], int n, u_int match)
1449 {
1450 	int i;
1451 
1452 	for (i = 0; i < n; i++)
1453 		if (rates[i].match == match)
1454 			return rates[i].media;
1455 	return IFM_AUTO;
1456 }
1457 
1458 /*
1459  * Convert IEEE80211 rate value to ifmedia subtype.
1460  * Rate is either a legacy rate in units of 0.5Mbps
1461  * or an MCS index.
1462  */
1463 int
1464 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1465 {
1466 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1467 	static const struct ratemedia rates[] = {
1468 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1469 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1470 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1471 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1472 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1473 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1474 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1475 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1476 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1477 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1478 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1479 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1480 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1481 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1482 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1483 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1484 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1485 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1486 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1487 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1488 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1489 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1490 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1491 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1492 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1493 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1494 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1495 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1496 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1497 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1498 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1499 	};
1500 	static const struct ratemedia htrates[] = {
1501 		{   0, IFM_IEEE80211_MCS },
1502 		{   1, IFM_IEEE80211_MCS },
1503 		{   2, IFM_IEEE80211_MCS },
1504 		{   3, IFM_IEEE80211_MCS },
1505 		{   4, IFM_IEEE80211_MCS },
1506 		{   5, IFM_IEEE80211_MCS },
1507 		{   6, IFM_IEEE80211_MCS },
1508 		{   7, IFM_IEEE80211_MCS },
1509 		{   8, IFM_IEEE80211_MCS },
1510 		{   9, IFM_IEEE80211_MCS },
1511 		{  10, IFM_IEEE80211_MCS },
1512 		{  11, IFM_IEEE80211_MCS },
1513 		{  12, IFM_IEEE80211_MCS },
1514 		{  13, IFM_IEEE80211_MCS },
1515 		{  14, IFM_IEEE80211_MCS },
1516 		{  15, IFM_IEEE80211_MCS },
1517 	};
1518 	int m;
1519 
1520 	/*
1521 	 * Check 11n rates first for match as an MCS.
1522 	 */
1523 	if (mode == IEEE80211_MODE_11NA) {
1524 		if (rate & IEEE80211_RATE_MCS) {
1525 			rate &= ~IEEE80211_RATE_MCS;
1526 			m = findmedia(htrates, N(htrates), rate);
1527 			if (m != IFM_AUTO)
1528 				return m | IFM_IEEE80211_11NA;
1529 		}
1530 	} else if (mode == IEEE80211_MODE_11NG) {
1531 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1532 		if (rate & IEEE80211_RATE_MCS) {
1533 			rate &= ~IEEE80211_RATE_MCS;
1534 			m = findmedia(htrates, N(htrates), rate);
1535 			if (m != IFM_AUTO)
1536 				return m | IFM_IEEE80211_11NG;
1537 		}
1538 	}
1539 	rate &= IEEE80211_RATE_VAL;
1540 	switch (mode) {
1541 	case IEEE80211_MODE_11A:
1542 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1543 	case IEEE80211_MODE_QUARTER:
1544 	case IEEE80211_MODE_11NA:
1545 	case IEEE80211_MODE_TURBO_A:
1546 	case IEEE80211_MODE_STURBO_A:
1547 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1548 	case IEEE80211_MODE_11B:
1549 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1550 	case IEEE80211_MODE_FH:
1551 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1552 	case IEEE80211_MODE_AUTO:
1553 		/* NB: ic may be NULL for some drivers */
1554 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1555 			return findmedia(rates, N(rates),
1556 			    rate | IFM_IEEE80211_FH);
1557 		/* NB: hack, 11g matches both 11b+11a rates */
1558 		/* fall thru... */
1559 	case IEEE80211_MODE_11G:
1560 	case IEEE80211_MODE_11NG:
1561 	case IEEE80211_MODE_TURBO_G:
1562 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1563 	}
1564 	return IFM_AUTO;
1565 #undef N
1566 }
1567 
1568 int
1569 ieee80211_media2rate(int mword)
1570 {
1571 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1572 	static const int ieeerates[] = {
1573 		-1,		/* IFM_AUTO */
1574 		0,		/* IFM_MANUAL */
1575 		0,		/* IFM_NONE */
1576 		2,		/* IFM_IEEE80211_FH1 */
1577 		4,		/* IFM_IEEE80211_FH2 */
1578 		2,		/* IFM_IEEE80211_DS1 */
1579 		4,		/* IFM_IEEE80211_DS2 */
1580 		11,		/* IFM_IEEE80211_DS5 */
1581 		22,		/* IFM_IEEE80211_DS11 */
1582 		44,		/* IFM_IEEE80211_DS22 */
1583 		12,		/* IFM_IEEE80211_OFDM6 */
1584 		18,		/* IFM_IEEE80211_OFDM9 */
1585 		24,		/* IFM_IEEE80211_OFDM12 */
1586 		36,		/* IFM_IEEE80211_OFDM18 */
1587 		48,		/* IFM_IEEE80211_OFDM24 */
1588 		72,		/* IFM_IEEE80211_OFDM36 */
1589 		96,		/* IFM_IEEE80211_OFDM48 */
1590 		108,		/* IFM_IEEE80211_OFDM54 */
1591 		144,		/* IFM_IEEE80211_OFDM72 */
1592 		0,		/* IFM_IEEE80211_DS354k */
1593 		0,		/* IFM_IEEE80211_DS512k */
1594 		6,		/* IFM_IEEE80211_OFDM3 */
1595 		9,		/* IFM_IEEE80211_OFDM4 */
1596 		54,		/* IFM_IEEE80211_OFDM27 */
1597 		-1,		/* IFM_IEEE80211_MCS */
1598 	};
1599 	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1600 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1601 #undef N
1602 }
1603 
1604 /*
1605  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1606  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1607  */
1608 #define	mix(a, b, c)							\
1609 do {									\
1610 	a -= b; a -= c; a ^= (c >> 13);					\
1611 	b -= c; b -= a; b ^= (a << 8);					\
1612 	c -= a; c -= b; c ^= (b >> 13);					\
1613 	a -= b; a -= c; a ^= (c >> 12);					\
1614 	b -= c; b -= a; b ^= (a << 16);					\
1615 	c -= a; c -= b; c ^= (b >> 5);					\
1616 	a -= b; a -= c; a ^= (c >> 3);					\
1617 	b -= c; b -= a; b ^= (a << 10);					\
1618 	c -= a; c -= b; c ^= (b >> 15);					\
1619 } while (/*CONSTCOND*/0)
1620 
1621 uint32_t
1622 ieee80211_mac_hash(const struct ieee80211com *ic,
1623 	const uint8_t addr[IEEE80211_ADDR_LEN])
1624 {
1625 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1626 
1627 	b += addr[5] << 8;
1628 	b += addr[4];
1629 	a += addr[3] << 24;
1630 	a += addr[2] << 16;
1631 	a += addr[1] << 8;
1632 	a += addr[0];
1633 
1634 	mix(a, b, c);
1635 
1636 	return c;
1637 }
1638 #undef mix
1639