1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/socket.h> 40 #include <sys/sbuf.h> 41 42 #include <machine/stdarg.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_private.h> 49 #include <net/if_types.h> 50 #include <net/ethernet.h> 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_regdomain.h> 54 #ifdef IEEE80211_SUPPORT_SUPERG 55 #include <net80211/ieee80211_superg.h> 56 #endif 57 #include <net80211/ieee80211_ratectl.h> 58 #include <net80211/ieee80211_vht.h> 59 60 #include <net/bpf.h> 61 62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 63 [IEEE80211_MODE_AUTO] = "auto", 64 [IEEE80211_MODE_11A] = "11a", 65 [IEEE80211_MODE_11B] = "11b", 66 [IEEE80211_MODE_11G] = "11g", 67 [IEEE80211_MODE_FH] = "FH", 68 [IEEE80211_MODE_TURBO_A] = "turboA", 69 [IEEE80211_MODE_TURBO_G] = "turboG", 70 [IEEE80211_MODE_STURBO_A] = "sturboA", 71 [IEEE80211_MODE_HALF] = "half", 72 [IEEE80211_MODE_QUARTER] = "quarter", 73 [IEEE80211_MODE_11NA] = "11na", 74 [IEEE80211_MODE_11NG] = "11ng", 75 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 76 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 77 }; 78 /* map ieee80211_opmode to the corresponding capability bit */ 79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 80 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 81 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 82 [IEEE80211_M_STA] = IEEE80211_C_STA, 83 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 84 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 85 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 86 #ifdef IEEE80211_SUPPORT_MESH 87 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 88 #endif 89 }; 90 91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 92 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 93 94 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 95 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 98 static int ieee80211_media_setup(struct ieee80211com *ic, 99 struct ifmedia *media, int caps, int addsta, 100 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 101 static int media_status(enum ieee80211_opmode, 102 const struct ieee80211_channel *); 103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 104 105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 106 107 /* 108 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 109 */ 110 #define B(r) ((r) | IEEE80211_RATE_BASIC) 111 static const struct ieee80211_rateset ieee80211_rateset_11a = 112 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 113 static const struct ieee80211_rateset ieee80211_rateset_half = 114 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 115 static const struct ieee80211_rateset ieee80211_rateset_quarter = 116 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 117 static const struct ieee80211_rateset ieee80211_rateset_11b = 118 { 4, { B(2), B(4), B(11), B(22) } }; 119 /* NB: OFDM rates are handled specially based on mode */ 120 static const struct ieee80211_rateset ieee80211_rateset_11g = 121 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 122 #undef B 123 124 static int set_vht_extchan(struct ieee80211_channel *c); 125 126 /* 127 * Fill in 802.11 available channel set, mark 128 * all available channels as active, and pick 129 * a default channel if not already specified. 130 */ 131 void 132 ieee80211_chan_init(struct ieee80211com *ic) 133 { 134 #define DEFAULTRATES(m, def) do { \ 135 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 136 ic->ic_sup_rates[m] = def; \ 137 } while (0) 138 struct ieee80211_channel *c; 139 int i; 140 141 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 142 ("invalid number of channels specified: %u", ic->ic_nchans)); 143 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 144 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 145 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 146 for (i = 0; i < ic->ic_nchans; i++) { 147 c = &ic->ic_channels[i]; 148 KASSERT(c->ic_flags != 0, ("channel with no flags")); 149 /* 150 * Help drivers that work only with frequencies by filling 151 * in IEEE channel #'s if not already calculated. Note this 152 * mimics similar work done in ieee80211_setregdomain when 153 * changing regulatory state. 154 */ 155 if (c->ic_ieee == 0) 156 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 157 158 /* 159 * Setup the HT40/VHT40 upper/lower bits. 160 * The VHT80/... math is done elsewhere. 161 */ 162 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 163 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 164 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 165 c->ic_flags); 166 167 /* Update VHT math */ 168 /* 169 * XXX VHT again, note that this assumes VHT80/... channels 170 * are legit already. 171 */ 172 set_vht_extchan(c); 173 174 /* default max tx power to max regulatory */ 175 if (c->ic_maxpower == 0) 176 c->ic_maxpower = 2*c->ic_maxregpower; 177 setbit(ic->ic_chan_avail, c->ic_ieee); 178 /* 179 * Identify mode capabilities. 180 */ 181 if (IEEE80211_IS_CHAN_A(c)) 182 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 183 if (IEEE80211_IS_CHAN_B(c)) 184 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 185 if (IEEE80211_IS_CHAN_ANYG(c)) 186 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 187 if (IEEE80211_IS_CHAN_FHSS(c)) 188 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 189 if (IEEE80211_IS_CHAN_108A(c)) 190 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 191 if (IEEE80211_IS_CHAN_108G(c)) 192 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 193 if (IEEE80211_IS_CHAN_ST(c)) 194 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 195 if (IEEE80211_IS_CHAN_HALF(c)) 196 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 197 if (IEEE80211_IS_CHAN_QUARTER(c)) 198 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 199 if (IEEE80211_IS_CHAN_HTA(c)) 200 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 201 if (IEEE80211_IS_CHAN_HTG(c)) 202 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 203 if (IEEE80211_IS_CHAN_VHTA(c)) 204 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 205 if (IEEE80211_IS_CHAN_VHTG(c)) 206 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 207 } 208 /* initialize candidate channels to all available */ 209 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 210 sizeof(ic->ic_chan_avail)); 211 212 /* sort channel table to allow lookup optimizations */ 213 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 214 215 /* invalidate any previous state */ 216 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 217 ic->ic_prevchan = NULL; 218 ic->ic_csa_newchan = NULL; 219 /* arbitrarily pick the first channel */ 220 ic->ic_curchan = &ic->ic_channels[0]; 221 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 222 223 /* fillin well-known rate sets if driver has not specified */ 224 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 225 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 226 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 227 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 229 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 230 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 231 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 232 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 233 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 234 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 236 237 /* 238 * Setup required information to fill the mcsset field, if driver did 239 * not. Assume a 2T2R setup for historic reasons. 240 */ 241 if (ic->ic_rxstream == 0) 242 ic->ic_rxstream = 2; 243 if (ic->ic_txstream == 0) 244 ic->ic_txstream = 2; 245 246 ieee80211_init_suphtrates(ic); 247 248 /* 249 * Set auto mode to reset active channel state and any desired channel. 250 */ 251 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 252 #undef DEFAULTRATES 253 } 254 255 static void 256 null_update_mcast(struct ieee80211com *ic) 257 { 258 259 ic_printf(ic, "need multicast update callback\n"); 260 } 261 262 static void 263 null_update_promisc(struct ieee80211com *ic) 264 { 265 266 ic_printf(ic, "need promiscuous mode update callback\n"); 267 } 268 269 static void 270 null_update_chw(struct ieee80211com *ic) 271 { 272 273 ic_printf(ic, "%s: need callback\n", __func__); 274 } 275 276 int 277 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 278 { 279 va_list ap; 280 int retval; 281 282 retval = printf("%s: ", ic->ic_name); 283 va_start(ap, fmt); 284 retval += vprintf(fmt, ap); 285 va_end(ap); 286 return (retval); 287 } 288 289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 290 static struct mtx ic_list_mtx; 291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 292 293 static int 294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 295 { 296 struct ieee80211com *ic; 297 struct sbuf sb; 298 char *sp; 299 int error; 300 301 error = sysctl_wire_old_buffer(req, 0); 302 if (error) 303 return (error); 304 sbuf_new_for_sysctl(&sb, NULL, 8, req); 305 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 306 sp = ""; 307 mtx_lock(&ic_list_mtx); 308 LIST_FOREACH(ic, &ic_head, ic_next) { 309 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 310 sp = " "; 311 } 312 mtx_unlock(&ic_list_mtx); 313 error = sbuf_finish(&sb); 314 sbuf_delete(&sb); 315 return (error); 316 } 317 318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 320 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 321 322 /* 323 * Attach/setup the common net80211 state. Called by 324 * the driver on attach to prior to creating any vap's. 325 */ 326 void 327 ieee80211_ifattach(struct ieee80211com *ic) 328 { 329 330 IEEE80211_LOCK_INIT(ic, ic->ic_name); 331 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 332 TAILQ_INIT(&ic->ic_vaps); 333 334 /* Create a taskqueue for all state changes */ 335 ic->ic_tq = taskqueue_create("ic_taskq", 336 IEEE80211_M_WAITOK | IEEE80211_M_ZERO, 337 taskqueue_thread_enqueue, &ic->ic_tq); 338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 339 ic->ic_name); 340 ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK); 341 ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK); 342 /* 343 * Fill in 802.11 available channel set, mark all 344 * available channels as active, and pick a default 345 * channel if not already specified. 346 */ 347 ieee80211_chan_init(ic); 348 349 ic->ic_update_mcast = null_update_mcast; 350 ic->ic_update_promisc = null_update_promisc; 351 ic->ic_update_chw = null_update_chw; 352 353 ic->ic_hash_key = arc4random(); 354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 355 ic->ic_lintval = ic->ic_bintval; 356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 357 358 ieee80211_crypto_attach(ic); 359 ieee80211_node_attach(ic); 360 ieee80211_power_attach(ic); 361 ieee80211_proto_attach(ic); 362 #ifdef IEEE80211_SUPPORT_SUPERG 363 ieee80211_superg_attach(ic); 364 #endif 365 ieee80211_ht_attach(ic); 366 ieee80211_vht_attach(ic); 367 ieee80211_scan_attach(ic); 368 ieee80211_regdomain_attach(ic); 369 ieee80211_dfs_attach(ic); 370 371 ieee80211_sysctl_attach(ic); 372 373 mtx_lock(&ic_list_mtx); 374 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 375 mtx_unlock(&ic_list_mtx); 376 } 377 378 /* 379 * Detach net80211 state on device detach. Tear down 380 * all vap's and reclaim all common state prior to the 381 * device state going away. Note we may call back into 382 * driver; it must be prepared for this. 383 */ 384 void 385 ieee80211_ifdetach(struct ieee80211com *ic) 386 { 387 struct ieee80211vap *vap; 388 389 /* 390 * We use this as an indicator that ifattach never had a chance to be 391 * called, e.g. early driver attach failed and ifdetach was called 392 * during subsequent detach. Never fear, for we have nothing to do 393 * here. 394 */ 395 if (ic->ic_tq == NULL) 396 return; 397 398 mtx_lock(&ic_list_mtx); 399 LIST_REMOVE(ic, ic_next); 400 mtx_unlock(&ic_list_mtx); 401 402 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 403 404 /* 405 * The VAP is responsible for setting and clearing 406 * the VIMAGE context. 407 */ 408 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 409 ieee80211_com_vdetach(vap); 410 ieee80211_vap_destroy(vap); 411 } 412 ieee80211_waitfor_parent(ic); 413 414 ieee80211_sysctl_detach(ic); 415 ieee80211_dfs_detach(ic); 416 ieee80211_regdomain_detach(ic); 417 ieee80211_scan_detach(ic); 418 #ifdef IEEE80211_SUPPORT_SUPERG 419 ieee80211_superg_detach(ic); 420 #endif 421 ieee80211_vht_detach(ic); 422 ieee80211_ht_detach(ic); 423 /* NB: must be called before ieee80211_node_detach */ 424 ieee80211_proto_detach(ic); 425 ieee80211_crypto_detach(ic); 426 ieee80211_power_detach(ic); 427 ieee80211_node_detach(ic); 428 429 counter_u64_free(ic->ic_ierrors); 430 counter_u64_free(ic->ic_oerrors); 431 432 taskqueue_free(ic->ic_tq); 433 IEEE80211_TX_LOCK_DESTROY(ic); 434 IEEE80211_LOCK_DESTROY(ic); 435 } 436 437 /* 438 * Called by drivers during attach to set the supported 439 * cipher set for software encryption. 440 */ 441 void 442 ieee80211_set_software_ciphers(struct ieee80211com *ic, 443 uint32_t cipher_suite) 444 { 445 ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite); 446 } 447 448 /* 449 * Called by drivers during attach to set the supported 450 * cipher set for hardware encryption. 451 */ 452 void 453 ieee80211_set_hardware_ciphers(struct ieee80211com *ic, 454 uint32_t cipher_suite) 455 { 456 ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite); 457 } 458 459 /* 460 * Called by drivers during attach to set the supported 461 * key management suites by the driver/hardware. 462 */ 463 void 464 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic, 465 uint32_t keymgmt_set) 466 { 467 ieee80211_crypto_set_supported_driver_keymgmt(ic, 468 keymgmt_set); 469 } 470 471 struct ieee80211com * 472 ieee80211_find_com(const char *name) 473 { 474 struct ieee80211com *ic; 475 476 mtx_lock(&ic_list_mtx); 477 LIST_FOREACH(ic, &ic_head, ic_next) 478 if (strcmp(ic->ic_name, name) == 0) 479 break; 480 mtx_unlock(&ic_list_mtx); 481 482 return (ic); 483 } 484 485 void 486 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 487 { 488 struct ieee80211com *ic; 489 490 mtx_lock(&ic_list_mtx); 491 LIST_FOREACH(ic, &ic_head, ic_next) 492 (*f)(arg, ic); 493 mtx_unlock(&ic_list_mtx); 494 } 495 496 /* 497 * Default reset method for use with the ioctl support. This 498 * method is invoked after any state change in the 802.11 499 * layer that should be propagated to the hardware but not 500 * require re-initialization of the 802.11 state machine (e.g 501 * rescanning for an ap). We always return ENETRESET which 502 * should cause the driver to re-initialize the device. Drivers 503 * can override this method to implement more optimized support. 504 */ 505 static int 506 default_reset(struct ieee80211vap *vap, u_long cmd) 507 { 508 return ENETRESET; 509 } 510 511 /* 512 * Default for updating the VAP default TX key index. 513 * 514 * Drivers that support TX offload as well as hardware encryption offload 515 * may need to be informed of key index changes separate from the key 516 * update. 517 */ 518 static void 519 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 520 { 521 522 /* XXX assert validity */ 523 /* XXX assert we're in a key update block */ 524 vap->iv_def_txkey = kid; 525 } 526 527 /* 528 * Add underlying device errors to vap errors. 529 */ 530 static uint64_t 531 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 532 { 533 struct ieee80211vap *vap = ifp->if_softc; 534 struct ieee80211com *ic = vap->iv_ic; 535 uint64_t rv; 536 537 rv = if_get_counter_default(ifp, cnt); 538 switch (cnt) { 539 case IFCOUNTER_OERRORS: 540 rv += counter_u64_fetch(ic->ic_oerrors); 541 break; 542 case IFCOUNTER_IERRORS: 543 rv += counter_u64_fetch(ic->ic_ierrors); 544 break; 545 default: 546 break; 547 } 548 549 return (rv); 550 } 551 552 /* 553 * Prepare a vap for use. Drivers use this call to 554 * setup net80211 state in new vap's prior attaching 555 * them with ieee80211_vap_attach (below). 556 */ 557 int 558 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 559 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 560 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 561 { 562 struct ifnet *ifp; 563 564 ifp = if_alloc(IFT_ETHER); 565 if (ifp == NULL) { 566 ic_printf(ic, "%s: unable to allocate ifnet\n", __func__); 567 return ENOMEM; 568 } 569 if_initname(ifp, name, unit); 570 ifp->if_softc = vap; /* back pointer */ 571 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 572 ifp->if_transmit = ieee80211_vap_transmit; 573 ifp->if_qflush = ieee80211_vap_qflush; 574 ifp->if_ioctl = ieee80211_ioctl; 575 ifp->if_init = ieee80211_init; 576 ifp->if_get_counter = ieee80211_get_counter; 577 578 vap->iv_ifp = ifp; 579 vap->iv_ic = ic; 580 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 581 vap->iv_flags_ext = ic->ic_flags_ext; 582 vap->iv_flags_ven = ic->ic_flags_ven; 583 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 584 585 /* 11n capabilities - XXX methodize */ 586 vap->iv_htcaps = ic->ic_htcaps; 587 vap->iv_htextcaps = ic->ic_htextcaps; 588 589 /* 11ac capabilities - XXX methodize */ 590 vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info; 591 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 592 593 vap->iv_opmode = opmode; 594 vap->iv_caps |= ieee80211_opcap[opmode]; 595 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 596 switch (opmode) { 597 case IEEE80211_M_WDS: 598 /* 599 * WDS links must specify the bssid of the far end. 600 * For legacy operation this is a static relationship. 601 * For non-legacy operation the station must associate 602 * and be authorized to pass traffic. Plumbing the 603 * vap to the proper node happens when the vap 604 * transitions to RUN state. 605 */ 606 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 607 vap->iv_flags |= IEEE80211_F_DESBSSID; 608 if (flags & IEEE80211_CLONE_WDSLEGACY) 609 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 610 break; 611 #ifdef IEEE80211_SUPPORT_TDMA 612 case IEEE80211_M_AHDEMO: 613 if (flags & IEEE80211_CLONE_TDMA) { 614 /* NB: checked before clone operation allowed */ 615 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 616 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 617 /* 618 * Propagate TDMA capability to mark vap; this 619 * cannot be removed and is used to distinguish 620 * regular ahdemo operation from ahdemo+tdma. 621 */ 622 vap->iv_caps |= IEEE80211_C_TDMA; 623 } 624 break; 625 #endif 626 default: 627 break; 628 } 629 /* auto-enable s/w beacon miss support */ 630 if (flags & IEEE80211_CLONE_NOBEACONS) 631 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 632 /* auto-generated or user supplied MAC address */ 633 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 634 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 635 /* 636 * Enable various functionality by default if we're 637 * capable; the driver can override us if it knows better. 638 */ 639 if (vap->iv_caps & IEEE80211_C_WME) 640 vap->iv_flags |= IEEE80211_F_WME; 641 if (vap->iv_caps & IEEE80211_C_BURST) 642 vap->iv_flags |= IEEE80211_F_BURST; 643 /* NB: bg scanning only makes sense for station mode right now */ 644 if (vap->iv_opmode == IEEE80211_M_STA && 645 (vap->iv_caps & IEEE80211_C_BGSCAN)) 646 vap->iv_flags |= IEEE80211_F_BGSCAN; 647 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 648 /* NB: DFS support only makes sense for ap mode right now */ 649 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 650 (vap->iv_caps & IEEE80211_C_DFS)) 651 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 652 /* NB: only flip on U-APSD for hostap/sta for now */ 653 if ((vap->iv_opmode == IEEE80211_M_STA) 654 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { 655 if (vap->iv_caps & IEEE80211_C_UAPSD) 656 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; 657 } 658 659 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 660 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 661 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 662 /* 663 * Install a default reset method for the ioctl support; 664 * the driver can override this. 665 */ 666 vap->iv_reset = default_reset; 667 668 /* 669 * Install a default crypto key update method, the driver 670 * can override this. 671 */ 672 vap->iv_update_deftxkey = default_update_deftxkey; 673 674 ieee80211_sysctl_vattach(vap); 675 ieee80211_crypto_vattach(vap); 676 ieee80211_node_vattach(vap); 677 ieee80211_power_vattach(vap); 678 ieee80211_proto_vattach(vap); 679 #ifdef IEEE80211_SUPPORT_SUPERG 680 ieee80211_superg_vattach(vap); 681 #endif 682 ieee80211_ht_vattach(vap); 683 ieee80211_vht_vattach(vap); 684 ieee80211_scan_vattach(vap); 685 ieee80211_regdomain_vattach(vap); 686 ieee80211_radiotap_vattach(vap); 687 ieee80211_vap_reset_erp(vap); 688 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 689 690 return 0; 691 } 692 693 /* 694 * Activate a vap. State should have been prepared with a 695 * call to ieee80211_vap_setup and by the driver. On return 696 * from this call the vap is ready for use. 697 */ 698 int 699 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 700 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 701 { 702 struct ifnet *ifp = vap->iv_ifp; 703 struct ieee80211com *ic = vap->iv_ic; 704 struct ifmediareq imr; 705 int maxrate; 706 707 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 708 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 709 __func__, ieee80211_opmode_name[vap->iv_opmode], 710 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 711 712 /* 713 * Do late attach work that cannot happen until after 714 * the driver has had a chance to override defaults. 715 */ 716 ieee80211_node_latevattach(vap); 717 ieee80211_power_latevattach(vap); 718 719 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 720 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 721 ieee80211_media_status(ifp, &imr); 722 /* NB: strip explicit mode; we're actually in autoselect */ 723 ifmedia_set(&vap->iv_media, 724 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 725 if (maxrate) 726 ifp->if_baudrate = IF_Mbps(maxrate); 727 728 ether_ifattach(ifp, macaddr); 729 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 730 /* hook output method setup by ether_ifattach */ 731 vap->iv_output = ifp->if_output; 732 ifp->if_output = ieee80211_output; 733 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 734 735 IEEE80211_LOCK(ic); 736 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 737 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 738 #ifdef IEEE80211_SUPPORT_SUPERG 739 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 740 #endif 741 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 742 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 743 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 744 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 745 746 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 747 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 748 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 749 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 750 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 751 IEEE80211_UNLOCK(ic); 752 753 return 1; 754 } 755 756 /* 757 * Tear down vap state and reclaim the ifnet. 758 * The driver is assumed to have prepared for 759 * this; e.g. by turning off interrupts for the 760 * underlying device. 761 */ 762 void 763 ieee80211_vap_detach(struct ieee80211vap *vap) 764 { 765 struct ieee80211com *ic = vap->iv_ic; 766 struct ifnet *ifp = vap->iv_ifp; 767 int i; 768 769 CURVNET_SET(ifp->if_vnet); 770 771 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 772 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 773 774 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 775 ether_ifdetach(ifp); 776 777 ieee80211_stop(vap); 778 779 /* 780 * Flush any deferred vap tasks. 781 */ 782 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++) 783 ieee80211_draintask(ic, &vap->iv_nstate_task[i]); 784 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 785 ieee80211_draintask(ic, &vap->iv_wme_task); 786 ieee80211_draintask(ic, &ic->ic_parent_task); 787 788 /* XXX band-aid until ifnet handles this for us */ 789 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 790 791 IEEE80211_LOCK(ic); 792 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 793 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 794 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 795 #ifdef IEEE80211_SUPPORT_SUPERG 796 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 797 #endif 798 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 799 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 800 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 801 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 802 803 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 804 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 805 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 806 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 807 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 808 809 /* NB: this handles the bpfdetach done below */ 810 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 811 if (vap->iv_ifflags & IFF_PROMISC) 812 ieee80211_promisc(vap, false); 813 if (vap->iv_ifflags & IFF_ALLMULTI) 814 ieee80211_allmulti(vap, false); 815 IEEE80211_UNLOCK(ic); 816 817 ifmedia_removeall(&vap->iv_media); 818 819 ieee80211_radiotap_vdetach(vap); 820 ieee80211_regdomain_vdetach(vap); 821 ieee80211_scan_vdetach(vap); 822 #ifdef IEEE80211_SUPPORT_SUPERG 823 ieee80211_superg_vdetach(vap); 824 #endif 825 ieee80211_vht_vdetach(vap); 826 ieee80211_ht_vdetach(vap); 827 /* NB: must be before ieee80211_node_vdetach */ 828 ieee80211_proto_vdetach(vap); 829 ieee80211_crypto_vdetach(vap); 830 ieee80211_power_vdetach(vap); 831 ieee80211_node_vdetach(vap); 832 ieee80211_sysctl_vdetach(vap); 833 834 if_free(ifp); 835 836 CURVNET_RESTORE(); 837 } 838 839 /* 840 * Count number of vaps in promisc, and issue promisc on 841 * parent respectively. 842 */ 843 void 844 ieee80211_promisc(struct ieee80211vap *vap, bool on) 845 { 846 struct ieee80211com *ic = vap->iv_ic; 847 848 IEEE80211_LOCK_ASSERT(ic); 849 850 if (on) { 851 if (++ic->ic_promisc == 1) 852 ieee80211_runtask(ic, &ic->ic_promisc_task); 853 } else { 854 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 855 __func__, ic)); 856 if (--ic->ic_promisc == 0) 857 ieee80211_runtask(ic, &ic->ic_promisc_task); 858 } 859 } 860 861 /* 862 * Count number of vaps in allmulti, and issue allmulti on 863 * parent respectively. 864 */ 865 void 866 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 867 { 868 struct ieee80211com *ic = vap->iv_ic; 869 870 IEEE80211_LOCK_ASSERT(ic); 871 872 if (on) { 873 if (++ic->ic_allmulti == 1) 874 ieee80211_runtask(ic, &ic->ic_mcast_task); 875 } else { 876 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 877 __func__, ic)); 878 if (--ic->ic_allmulti == 0) 879 ieee80211_runtask(ic, &ic->ic_mcast_task); 880 } 881 } 882 883 /* 884 * Synchronize flag bit state in the com structure 885 * according to the state of all vap's. This is used, 886 * for example, to handle state changes via ioctls. 887 */ 888 static void 889 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 890 { 891 struct ieee80211vap *vap; 892 int bit; 893 894 IEEE80211_LOCK_ASSERT(ic); 895 896 bit = 0; 897 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 898 if (vap->iv_flags & flag) { 899 bit = 1; 900 break; 901 } 902 if (bit) 903 ic->ic_flags |= flag; 904 else 905 ic->ic_flags &= ~flag; 906 } 907 908 void 909 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 910 { 911 struct ieee80211com *ic = vap->iv_ic; 912 913 IEEE80211_LOCK(ic); 914 if (flag < 0) { 915 flag = -flag; 916 vap->iv_flags &= ~flag; 917 } else 918 vap->iv_flags |= flag; 919 ieee80211_syncflag_locked(ic, flag); 920 IEEE80211_UNLOCK(ic); 921 } 922 923 /* 924 * Synchronize flags_ht bit state in the com structure 925 * according to the state of all vap's. This is used, 926 * for example, to handle state changes via ioctls. 927 */ 928 static void 929 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 930 { 931 struct ieee80211vap *vap; 932 int bit; 933 934 IEEE80211_LOCK_ASSERT(ic); 935 936 bit = 0; 937 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 938 if (vap->iv_flags_ht & flag) { 939 bit = 1; 940 break; 941 } 942 if (bit) 943 ic->ic_flags_ht |= flag; 944 else 945 ic->ic_flags_ht &= ~flag; 946 } 947 948 void 949 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 950 { 951 struct ieee80211com *ic = vap->iv_ic; 952 953 IEEE80211_LOCK(ic); 954 if (flag < 0) { 955 flag = -flag; 956 vap->iv_flags_ht &= ~flag; 957 } else 958 vap->iv_flags_ht |= flag; 959 ieee80211_syncflag_ht_locked(ic, flag); 960 IEEE80211_UNLOCK(ic); 961 } 962 963 /* 964 * Synchronize flags_vht bit state in the com structure 965 * according to the state of all vap's. This is used, 966 * for example, to handle state changes via ioctls. 967 */ 968 static void 969 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 970 { 971 struct ieee80211vap *vap; 972 int bit; 973 974 IEEE80211_LOCK_ASSERT(ic); 975 976 bit = 0; 977 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 978 if (vap->iv_vht_flags & flag) { 979 bit = 1; 980 break; 981 } 982 if (bit) 983 ic->ic_vht_flags |= flag; 984 else 985 ic->ic_vht_flags &= ~flag; 986 } 987 988 void 989 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 990 { 991 struct ieee80211com *ic = vap->iv_ic; 992 993 IEEE80211_LOCK(ic); 994 if (flag < 0) { 995 flag = -flag; 996 vap->iv_vht_flags &= ~flag; 997 } else 998 vap->iv_vht_flags |= flag; 999 ieee80211_syncflag_vht_locked(ic, flag); 1000 IEEE80211_UNLOCK(ic); 1001 } 1002 1003 /* 1004 * Synchronize flags_ext bit state in the com structure 1005 * according to the state of all vap's. This is used, 1006 * for example, to handle state changes via ioctls. 1007 */ 1008 static void 1009 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 1010 { 1011 struct ieee80211vap *vap; 1012 int bit; 1013 1014 IEEE80211_LOCK_ASSERT(ic); 1015 1016 bit = 0; 1017 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1018 if (vap->iv_flags_ext & flag) { 1019 bit = 1; 1020 break; 1021 } 1022 if (bit) 1023 ic->ic_flags_ext |= flag; 1024 else 1025 ic->ic_flags_ext &= ~flag; 1026 } 1027 1028 void 1029 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 1030 { 1031 struct ieee80211com *ic = vap->iv_ic; 1032 1033 IEEE80211_LOCK(ic); 1034 if (flag < 0) { 1035 flag = -flag; 1036 vap->iv_flags_ext &= ~flag; 1037 } else 1038 vap->iv_flags_ext |= flag; 1039 ieee80211_syncflag_ext_locked(ic, flag); 1040 IEEE80211_UNLOCK(ic); 1041 } 1042 1043 static __inline int 1044 mapgsm(u_int freq, u_int flags) 1045 { 1046 freq *= 10; 1047 if (flags & IEEE80211_CHAN_QUARTER) 1048 freq += 5; 1049 else if (flags & IEEE80211_CHAN_HALF) 1050 freq += 10; 1051 else 1052 freq += 20; 1053 /* NB: there is no 907/20 wide but leave room */ 1054 return (freq - 906*10) / 5; 1055 } 1056 1057 static __inline int 1058 mappsb(u_int freq, u_int flags) 1059 { 1060 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1061 } 1062 1063 /* 1064 * Convert MHz frequency to IEEE channel number. 1065 */ 1066 int 1067 ieee80211_mhz2ieee(u_int freq, u_int flags) 1068 { 1069 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1070 if (flags & IEEE80211_CHAN_GSM) 1071 return mapgsm(freq, flags); 1072 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1073 if (freq == 2484) 1074 return 14; 1075 if (freq < 2484) 1076 return ((int) freq - 2407) / 5; 1077 else 1078 return 15 + ((freq - 2512) / 20); 1079 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1080 if (freq <= 5000) { 1081 /* XXX check regdomain? */ 1082 if (IS_FREQ_IN_PSB(freq)) 1083 return mappsb(freq, flags); 1084 return (freq - 4000) / 5; 1085 } else 1086 return (freq - 5000) / 5; 1087 } else { /* either, guess */ 1088 if (freq == 2484) 1089 return 14; 1090 if (freq < 2484) { 1091 if (907 <= freq && freq <= 922) 1092 return mapgsm(freq, flags); 1093 return ((int) freq - 2407) / 5; 1094 } 1095 if (freq < 5000) { 1096 if (IS_FREQ_IN_PSB(freq)) 1097 return mappsb(freq, flags); 1098 else if (freq > 4900) 1099 return (freq - 4000) / 5; 1100 else 1101 return 15 + ((freq - 2512) / 20); 1102 } 1103 return (freq - 5000) / 5; 1104 } 1105 #undef IS_FREQ_IN_PSB 1106 } 1107 1108 /* 1109 * Convert channel to IEEE channel number. 1110 */ 1111 int 1112 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1113 { 1114 if (c == NULL) { 1115 ic_printf(ic, "invalid channel (NULL)\n"); 1116 return 0; /* XXX */ 1117 } 1118 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1119 } 1120 1121 /* 1122 * Convert IEEE channel number to MHz frequency. 1123 */ 1124 u_int 1125 ieee80211_ieee2mhz(u_int chan, u_int flags) 1126 { 1127 if (flags & IEEE80211_CHAN_GSM) 1128 return 907 + 5 * (chan / 10); 1129 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1130 if (chan == 14) 1131 return 2484; 1132 if (chan < 14) 1133 return 2407 + chan*5; 1134 else 1135 return 2512 + ((chan-15)*20); 1136 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1137 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1138 chan -= 37; 1139 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1140 } 1141 return 5000 + (chan*5); 1142 } else { /* either, guess */ 1143 /* XXX can't distinguish PSB+GSM channels */ 1144 if (chan == 14) 1145 return 2484; 1146 if (chan < 14) /* 0-13 */ 1147 return 2407 + chan*5; 1148 if (chan < 27) /* 15-26 */ 1149 return 2512 + ((chan-15)*20); 1150 return 5000 + (chan*5); 1151 } 1152 } 1153 1154 static __inline void 1155 set_extchan(struct ieee80211_channel *c) 1156 { 1157 1158 /* 1159 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1160 * "the secondary channel number shall be 'N + [1,-1] * 4' 1161 */ 1162 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1163 c->ic_extieee = c->ic_ieee + 4; 1164 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1165 c->ic_extieee = c->ic_ieee - 4; 1166 else 1167 c->ic_extieee = 0; 1168 } 1169 1170 /* 1171 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1172 * 1173 * This for now uses a hard-coded list of 80MHz wide channels. 1174 * 1175 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1176 * wide channel we've already decided upon. 1177 * 1178 * For VHT80 and VHT160, there are only a small number of fixed 1179 * 80/160MHz wide channels, so we just use those. 1180 * 1181 * This is all likely very very wrong - both the regulatory code 1182 * and this code needs to ensure that all four channels are 1183 * available and valid before the VHT80 (and eight for VHT160) channel 1184 * is created. 1185 */ 1186 1187 struct vht_chan_range { 1188 uint16_t freq_start; 1189 uint16_t freq_end; 1190 }; 1191 1192 struct vht_chan_range vht80_chan_ranges[] = { 1193 { 5170, 5250 }, 1194 { 5250, 5330 }, 1195 { 5490, 5570 }, 1196 { 5570, 5650 }, 1197 { 5650, 5730 }, 1198 { 5735, 5815 }, 1199 { 0, 0 } 1200 }; 1201 1202 struct vht_chan_range vht160_chan_ranges[] = { 1203 { 5170, 5330 }, 1204 { 5490, 5650 }, 1205 { 0, 0 } 1206 }; 1207 1208 static int 1209 set_vht_extchan(struct ieee80211_channel *c) 1210 { 1211 int i; 1212 1213 if (! IEEE80211_IS_CHAN_VHT(c)) 1214 return (0); 1215 1216 if (IEEE80211_IS_CHAN_VHT80P80(c)) { 1217 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", 1218 __func__, c->ic_ieee, c->ic_flags); 1219 } 1220 1221 if (IEEE80211_IS_CHAN_VHT160(c)) { 1222 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1223 if (c->ic_freq >= vht160_chan_ranges[i].freq_start && 1224 c->ic_freq < vht160_chan_ranges[i].freq_end) { 1225 int midpoint; 1226 1227 midpoint = vht160_chan_ranges[i].freq_start + 80; 1228 c->ic_vht_ch_freq1 = 1229 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1230 c->ic_vht_ch_freq2 = 0; 1231 #if 0 1232 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1233 __func__, c->ic_ieee, c->ic_freq, midpoint, 1234 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1235 #endif 1236 return (1); 1237 } 1238 } 1239 return (0); 1240 } 1241 1242 if (IEEE80211_IS_CHAN_VHT80(c)) { 1243 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1244 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1245 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1246 int midpoint; 1247 1248 midpoint = vht80_chan_ranges[i].freq_start + 40; 1249 c->ic_vht_ch_freq1 = 1250 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1251 c->ic_vht_ch_freq2 = 0; 1252 #if 0 1253 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1254 __func__, c->ic_ieee, c->ic_freq, midpoint, 1255 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1256 #endif 1257 return (1); 1258 } 1259 } 1260 return (0); 1261 } 1262 1263 if (IEEE80211_IS_CHAN_VHT40(c)) { 1264 if (IEEE80211_IS_CHAN_HT40U(c)) 1265 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1266 else if (IEEE80211_IS_CHAN_HT40D(c)) 1267 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1268 else 1269 return (0); 1270 return (1); 1271 } 1272 1273 if (IEEE80211_IS_CHAN_VHT20(c)) { 1274 c->ic_vht_ch_freq1 = c->ic_ieee; 1275 return (1); 1276 } 1277 1278 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1279 __func__, c->ic_ieee, c->ic_flags); 1280 1281 return (0); 1282 } 1283 1284 /* 1285 * Return whether the current channel could possibly be a part of 1286 * a VHT80/VHT160 channel. 1287 * 1288 * This doesn't check that the whole range is in the allowed list 1289 * according to regulatory. 1290 */ 1291 static bool 1292 is_vht160_valid_freq(uint16_t freq) 1293 { 1294 int i; 1295 1296 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1297 if (freq >= vht160_chan_ranges[i].freq_start && 1298 freq < vht160_chan_ranges[i].freq_end) 1299 return (true); 1300 } 1301 return (false); 1302 } 1303 1304 static int 1305 is_vht80_valid_freq(uint16_t freq) 1306 { 1307 int i; 1308 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1309 if (freq >= vht80_chan_ranges[i].freq_start && 1310 freq < vht80_chan_ranges[i].freq_end) 1311 return (1); 1312 } 1313 return (0); 1314 } 1315 1316 static int 1317 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1318 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1319 { 1320 struct ieee80211_channel *c; 1321 1322 if (*nchans >= maxchans) 1323 return (ENOBUFS); 1324 1325 #if 0 1326 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n", 1327 __func__, *nchans, maxchans, ieee, freq, flags); 1328 #endif 1329 1330 c = &chans[(*nchans)++]; 1331 c->ic_ieee = ieee; 1332 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1333 c->ic_maxregpower = maxregpower; 1334 c->ic_maxpower = 2 * maxregpower; 1335 c->ic_flags = flags; 1336 c->ic_vht_ch_freq1 = 0; 1337 c->ic_vht_ch_freq2 = 0; 1338 set_extchan(c); 1339 set_vht_extchan(c); 1340 1341 return (0); 1342 } 1343 1344 static int 1345 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1346 uint32_t flags) 1347 { 1348 struct ieee80211_channel *c; 1349 1350 KASSERT(*nchans > 0, ("channel list is empty\n")); 1351 1352 if (*nchans >= maxchans) 1353 return (ENOBUFS); 1354 1355 #if 0 1356 printf("%s: %d of %d: flags=0x%08x\n", 1357 __func__, *nchans, maxchans, flags); 1358 #endif 1359 1360 c = &chans[(*nchans)++]; 1361 c[0] = c[-1]; 1362 c->ic_flags = flags; 1363 c->ic_vht_ch_freq1 = 0; 1364 c->ic_vht_ch_freq2 = 0; 1365 set_extchan(c); 1366 set_vht_extchan(c); 1367 1368 return (0); 1369 } 1370 1371 /* 1372 * XXX VHT-2GHz 1373 */ 1374 static void 1375 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1376 { 1377 int nmodes; 1378 1379 nmodes = 0; 1380 if (isset(bands, IEEE80211_MODE_11B)) 1381 flags[nmodes++] = IEEE80211_CHAN_B; 1382 if (isset(bands, IEEE80211_MODE_11G)) 1383 flags[nmodes++] = IEEE80211_CHAN_G; 1384 if (isset(bands, IEEE80211_MODE_11NG)) 1385 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1386 if (cbw_flags & NET80211_CBW_FLAG_HT40) { 1387 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1388 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1389 } 1390 flags[nmodes] = 0; 1391 } 1392 1393 static void 1394 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1395 { 1396 int nmodes; 1397 1398 /* 1399 * The addchan_list() function seems to expect the flags array to 1400 * be in channel width order, so the VHT bits are interspersed 1401 * as appropriate to maintain said order. 1402 * 1403 * It also assumes HT40U is before HT40D. 1404 */ 1405 nmodes = 0; 1406 1407 /* 20MHz */ 1408 if (isset(bands, IEEE80211_MODE_11A)) 1409 flags[nmodes++] = IEEE80211_CHAN_A; 1410 if (isset(bands, IEEE80211_MODE_11NA)) 1411 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1412 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1413 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1414 IEEE80211_CHAN_VHT20; 1415 } 1416 1417 /* 40MHz */ 1418 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1419 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1420 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1421 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1422 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1423 IEEE80211_CHAN_VHT40U; 1424 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1425 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1426 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1427 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1428 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1429 IEEE80211_CHAN_VHT40D; 1430 1431 /* 80MHz */ 1432 if ((cbw_flags & NET80211_CBW_FLAG_VHT80) && 1433 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1434 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1435 IEEE80211_CHAN_VHT80; 1436 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1437 IEEE80211_CHAN_VHT80; 1438 } 1439 1440 /* VHT160 */ 1441 if ((cbw_flags & NET80211_CBW_FLAG_VHT160) && 1442 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1443 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1444 IEEE80211_CHAN_VHT160; 1445 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1446 IEEE80211_CHAN_VHT160; 1447 } 1448 1449 /* VHT80+80 */ 1450 if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) && 1451 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1452 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1453 IEEE80211_CHAN_VHT80P80; 1454 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1455 IEEE80211_CHAN_VHT80P80; 1456 } 1457 1458 flags[nmodes] = 0; 1459 } 1460 1461 static void 1462 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1463 { 1464 1465 flags[0] = 0; 1466 if (isset(bands, IEEE80211_MODE_11A) || 1467 isset(bands, IEEE80211_MODE_11NA) || 1468 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1469 if (isset(bands, IEEE80211_MODE_11B) || 1470 isset(bands, IEEE80211_MODE_11G) || 1471 isset(bands, IEEE80211_MODE_11NG) || 1472 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1473 return; 1474 1475 getflags_5ghz(bands, flags, cbw_flags); 1476 } else 1477 getflags_2ghz(bands, flags, cbw_flags); 1478 } 1479 1480 /* 1481 * Add one 20 MHz channel into specified channel list. 1482 * You MUST NOT mix bands when calling this. It will not add 5ghz 1483 * channels if you have any B/G/N band bit set. 1484 * The _cbw() variant does also support HT40/VHT80/160/80+80. 1485 */ 1486 int 1487 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans, 1488 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1489 uint32_t chan_flags, const uint8_t bands[], int cbw_flags) 1490 { 1491 uint32_t flags[IEEE80211_MODE_MAX]; 1492 int i, error; 1493 1494 getflags(bands, flags, cbw_flags); 1495 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1496 1497 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1498 flags[0] | chan_flags); 1499 for (i = 1; flags[i] != 0 && error == 0; i++) { 1500 error = copychan_prev(chans, maxchans, nchans, 1501 flags[i] | chan_flags); 1502 } 1503 1504 return (error); 1505 } 1506 1507 int 1508 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1509 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1510 uint32_t chan_flags, const uint8_t bands[]) 1511 { 1512 1513 return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq, 1514 maxregpower, chan_flags, bands, 0)); 1515 } 1516 1517 static struct ieee80211_channel * 1518 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1519 uint32_t flags) 1520 { 1521 struct ieee80211_channel *c; 1522 int i; 1523 1524 flags &= IEEE80211_CHAN_ALLTURBO; 1525 /* brute force search */ 1526 for (i = 0; i < nchans; i++) { 1527 c = &chans[i]; 1528 if (c->ic_freq == freq && 1529 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1530 return c; 1531 } 1532 return NULL; 1533 } 1534 1535 /* 1536 * Add 40 MHz channel pair into specified channel list. 1537 */ 1538 /* XXX VHT */ 1539 int 1540 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1541 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1542 { 1543 struct ieee80211_channel *cent, *extc; 1544 uint16_t freq; 1545 int error; 1546 1547 freq = ieee80211_ieee2mhz(ieee, flags); 1548 1549 /* 1550 * Each entry defines an HT40 channel pair; find the 1551 * center channel, then the extension channel above. 1552 */ 1553 flags |= IEEE80211_CHAN_HT20; 1554 cent = findchannel(chans, *nchans, freq, flags); 1555 if (cent == NULL) 1556 return (EINVAL); 1557 1558 extc = findchannel(chans, *nchans, freq + 20, flags); 1559 if (extc == NULL) 1560 return (ENOENT); 1561 1562 flags &= ~IEEE80211_CHAN_HT; 1563 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1564 maxregpower, flags | IEEE80211_CHAN_HT40U); 1565 if (error != 0) 1566 return (error); 1567 1568 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1569 maxregpower, flags | IEEE80211_CHAN_HT40D); 1570 1571 return (error); 1572 } 1573 1574 /* 1575 * Fetch the center frequency for the primary channel. 1576 */ 1577 uint32_t 1578 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1579 { 1580 1581 return (c->ic_freq); 1582 } 1583 1584 /* 1585 * Fetch the center frequency for the primary BAND channel. 1586 * 1587 * For 5, 10, 20MHz channels it'll be the normally configured channel 1588 * frequency. 1589 * 1590 * For 40MHz, 80MHz, 160MHz channels it will be the centre of the 1591 * wide channel, not the centre of the primary channel (that's ic_freq). 1592 * 1593 * For 80+80MHz channels this will be the centre of the primary 1594 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1595 */ 1596 uint32_t 1597 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1598 { 1599 1600 /* 1601 * VHT - use the pre-calculated centre frequency 1602 * of the given channel. 1603 */ 1604 if (IEEE80211_IS_CHAN_VHT(c)) 1605 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1606 1607 if (IEEE80211_IS_CHAN_HT40U(c)) { 1608 return (c->ic_freq + 10); 1609 } 1610 if (IEEE80211_IS_CHAN_HT40D(c)) { 1611 return (c->ic_freq - 10); 1612 } 1613 1614 return (c->ic_freq); 1615 } 1616 1617 /* 1618 * For now, no 80+80 support; it will likely always return 0. 1619 */ 1620 uint32_t 1621 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1622 { 1623 1624 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1625 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1626 1627 return (0); 1628 } 1629 1630 /* 1631 * Adds channels into specified channel list (ieee[] array must be sorted). 1632 * Channels are already sorted. 1633 */ 1634 static int 1635 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1636 const uint8_t ieee[], int nieee, uint32_t flags[]) 1637 { 1638 uint16_t freq; 1639 int i, j, error; 1640 int is_vht; 1641 1642 for (i = 0; i < nieee; i++) { 1643 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1644 for (j = 0; flags[j] != 0; j++) { 1645 /* 1646 * Notes: 1647 * + HT40 and VHT40 channels occur together, so 1648 * we need to be careful that we actually allow that. 1649 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1650 * make sure it's not skipped because of the overlap 1651 * check used for (V)HT40. 1652 */ 1653 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1654 1655 /* XXX TODO FIXME VHT80P80. */ 1656 1657 /* Test for VHT160 analogue to the VHT80 below. */ 1658 if (is_vht && flags[j] & IEEE80211_CHAN_VHT160) 1659 if (! is_vht160_valid_freq(freq)) 1660 continue; 1661 1662 /* 1663 * Test for VHT80. 1664 * XXX This is all very broken right now. 1665 * What we /should/ do is: 1666 * 1667 * + check that the frequency is in the list of 1668 * allowed VHT80 ranges; and 1669 * + the other 3 channels in the list are actually 1670 * also available. 1671 */ 1672 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1673 if (! is_vht80_valid_freq(freq)) 1674 continue; 1675 1676 /* 1677 * Test for (V)HT40. 1678 * 1679 * This is also a fall through from VHT80; as we only 1680 * allow a VHT80 channel if the VHT40 combination is 1681 * also valid. If the VHT40 form is not valid then 1682 * we certainly can't do VHT80.. 1683 */ 1684 if (flags[j] & IEEE80211_CHAN_HT40D) 1685 /* 1686 * Can't have a "lower" channel if we are the 1687 * first channel. 1688 * 1689 * Can't have a "lower" channel if it's below/ 1690 * within 20MHz of the first channel. 1691 * 1692 * Can't have a "lower" channel if the channel 1693 * below it is not 20MHz away. 1694 */ 1695 if (i == 0 || ieee[i] < ieee[0] + 4 || 1696 freq - 20 != 1697 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1698 continue; 1699 if (flags[j] & IEEE80211_CHAN_HT40U) 1700 /* 1701 * Can't have an "upper" channel if we are 1702 * the last channel. 1703 * 1704 * Can't have an "upper" channel be above the 1705 * last channel in the list. 1706 * 1707 * Can't have an "upper" channel if the next 1708 * channel according to the math isn't 20MHz 1709 * away. (Likely for channel 13/14.) 1710 */ 1711 if (i == nieee - 1 || 1712 ieee[i] + 4 > ieee[nieee - 1] || 1713 freq + 20 != 1714 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1715 continue; 1716 1717 if (j == 0) { 1718 error = addchan(chans, maxchans, nchans, 1719 ieee[i], freq, 0, flags[j]); 1720 } else { 1721 error = copychan_prev(chans, maxchans, nchans, 1722 flags[j]); 1723 } 1724 if (error != 0) 1725 return (error); 1726 } 1727 } 1728 1729 return (0); 1730 } 1731 1732 int 1733 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1734 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1735 int cbw_flags) 1736 { 1737 uint32_t flags[IEEE80211_MODE_MAX]; 1738 1739 /* XXX no VHT for now */ 1740 getflags_2ghz(bands, flags, cbw_flags); 1741 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1742 1743 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1744 } 1745 1746 int 1747 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1748 int maxchans, int *nchans, const uint8_t bands[], int cbw_flags) 1749 { 1750 const uint8_t default_chan_list[] = 1751 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1752 1753 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1754 default_chan_list, nitems(default_chan_list), bands, cbw_flags)); 1755 } 1756 1757 int 1758 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1759 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1760 int cbw_flags) 1761 { 1762 /* 1763 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all 1764 * uses of IEEE80211_MODE_MAX and add a new #define name for array size. 1765 */ 1766 uint32_t flags[2 * IEEE80211_MODE_MAX]; 1767 1768 getflags_5ghz(bands, flags, cbw_flags); 1769 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1770 1771 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1772 } 1773 1774 /* 1775 * Locate a channel given a frequency+flags. We cache 1776 * the previous lookup to optimize switching between two 1777 * channels--as happens with dynamic turbo. 1778 */ 1779 struct ieee80211_channel * 1780 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1781 { 1782 struct ieee80211_channel *c; 1783 1784 flags &= IEEE80211_CHAN_ALLTURBO; 1785 c = ic->ic_prevchan; 1786 if (c != NULL && c->ic_freq == freq && 1787 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1788 return c; 1789 /* brute force search */ 1790 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1791 } 1792 1793 /* 1794 * Locate a channel given a channel number+flags. We cache 1795 * the previous lookup to optimize switching between two 1796 * channels--as happens with dynamic turbo. 1797 */ 1798 struct ieee80211_channel * 1799 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1800 { 1801 struct ieee80211_channel *c; 1802 int i; 1803 1804 flags &= IEEE80211_CHAN_ALLTURBO; 1805 c = ic->ic_prevchan; 1806 if (c != NULL && c->ic_ieee == ieee && 1807 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1808 return c; 1809 /* brute force search */ 1810 for (i = 0; i < ic->ic_nchans; i++) { 1811 c = &ic->ic_channels[i]; 1812 if (c->ic_ieee == ieee && 1813 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1814 return c; 1815 } 1816 return NULL; 1817 } 1818 1819 /* 1820 * Lookup a channel suitable for the given rx status. 1821 * 1822 * This is used to find a channel for a frame (eg beacon, probe 1823 * response) based purely on the received PHY information. 1824 * 1825 * For now it tries to do it based on R_FREQ / R_IEEE. 1826 * This is enough for 11bg and 11a (and thus 11ng/11na) 1827 * but it will not be enough for GSM, PSB channels and the 1828 * like. It also doesn't know about legacy-turbog and 1829 * legacy-turbo modes, which some offload NICs actually 1830 * support in weird ways. 1831 * 1832 * Takes the ic and rxstatus; returns the channel or NULL 1833 * if not found. 1834 * 1835 * XXX TODO: Add support for that when the need arises. 1836 */ 1837 struct ieee80211_channel * 1838 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1839 const struct ieee80211_rx_stats *rxs) 1840 { 1841 struct ieee80211com *ic = vap->iv_ic; 1842 uint32_t flags; 1843 struct ieee80211_channel *c; 1844 1845 if (rxs == NULL) 1846 return (NULL); 1847 1848 /* 1849 * Strictly speaking we only use freq for now, 1850 * however later on we may wish to just store 1851 * the ieee for verification. 1852 */ 1853 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1854 return (NULL); 1855 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1856 return (NULL); 1857 if ((rxs->r_flags & IEEE80211_R_BAND) == 0) 1858 return (NULL); 1859 1860 /* 1861 * If the rx status contains a valid ieee/freq, then 1862 * ensure we populate the correct channel information 1863 * in rxchan before passing it up to the scan infrastructure. 1864 * Offload NICs will pass up beacons from all channels 1865 * during background scans. 1866 */ 1867 1868 /* Determine a band */ 1869 switch (rxs->c_band) { 1870 case IEEE80211_CHAN_2GHZ: 1871 flags = IEEE80211_CHAN_G; 1872 break; 1873 case IEEE80211_CHAN_5GHZ: 1874 flags = IEEE80211_CHAN_A; 1875 break; 1876 default: 1877 if (rxs->c_freq < 3000) { 1878 flags = IEEE80211_CHAN_G; 1879 } else { 1880 flags = IEEE80211_CHAN_A; 1881 } 1882 break; 1883 } 1884 1885 /* Channel lookup */ 1886 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1887 1888 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1889 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1890 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); 1891 1892 return (c); 1893 } 1894 1895 static void 1896 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1897 { 1898 #define ADD(_ic, _s, _o) \ 1899 ifmedia_add(media, \ 1900 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1901 static const u_int mopts[IEEE80211_MODE_MAX] = { 1902 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1903 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1904 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1905 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1906 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1907 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1908 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1909 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1910 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1911 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1912 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1913 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1914 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1915 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1916 }; 1917 u_int mopt; 1918 1919 mopt = mopts[mode]; 1920 if (addsta) 1921 ADD(ic, mword, mopt); /* STA mode has no cap */ 1922 if (caps & IEEE80211_C_IBSS) 1923 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1924 if (caps & IEEE80211_C_HOSTAP) 1925 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1926 if (caps & IEEE80211_C_AHDEMO) 1927 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1928 if (caps & IEEE80211_C_MONITOR) 1929 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1930 if (caps & IEEE80211_C_WDS) 1931 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1932 if (caps & IEEE80211_C_MBSS) 1933 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1934 #undef ADD 1935 } 1936 1937 /* 1938 * Setup the media data structures according to the channel and 1939 * rate tables. 1940 */ 1941 static int 1942 ieee80211_media_setup(struct ieee80211com *ic, 1943 struct ifmedia *media, int caps, int addsta, 1944 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1945 { 1946 int i, j, rate, maxrate, mword, r; 1947 enum ieee80211_phymode mode; 1948 const struct ieee80211_rateset *rs; 1949 struct ieee80211_rateset allrates; 1950 1951 /* 1952 * Fill in media characteristics. 1953 */ 1954 ifmedia_init(media, 0, media_change, media_stat); 1955 maxrate = 0; 1956 /* 1957 * Add media for legacy operating modes. 1958 */ 1959 memset(&allrates, 0, sizeof(allrates)); 1960 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1961 if (isclr(ic->ic_modecaps, mode)) 1962 continue; 1963 addmedia(media, caps, addsta, mode, IFM_AUTO); 1964 if (mode == IEEE80211_MODE_AUTO) 1965 continue; 1966 rs = &ic->ic_sup_rates[mode]; 1967 for (i = 0; i < rs->rs_nrates; i++) { 1968 rate = rs->rs_rates[i]; 1969 mword = ieee80211_rate2media(ic, rate, mode); 1970 if (mword == 0) 1971 continue; 1972 addmedia(media, caps, addsta, mode, mword); 1973 /* 1974 * Add legacy rate to the collection of all rates. 1975 */ 1976 r = rate & IEEE80211_RATE_VAL; 1977 for (j = 0; j < allrates.rs_nrates; j++) 1978 if (allrates.rs_rates[j] == r) 1979 break; 1980 if (j == allrates.rs_nrates) { 1981 /* unique, add to the set */ 1982 allrates.rs_rates[j] = r; 1983 allrates.rs_nrates++; 1984 } 1985 rate = (rate & IEEE80211_RATE_VAL) / 2; 1986 if (rate > maxrate) 1987 maxrate = rate; 1988 } 1989 } 1990 for (i = 0; i < allrates.rs_nrates; i++) { 1991 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1992 IEEE80211_MODE_AUTO); 1993 if (mword == 0) 1994 continue; 1995 /* NB: remove media options from mword */ 1996 addmedia(media, caps, addsta, 1997 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1998 } 1999 /* 2000 * Add HT/11n media. Note that we do not have enough 2001 * bits in the media subtype to express the MCS so we 2002 * use a "placeholder" media subtype and any fixed MCS 2003 * must be specified with a different mechanism. 2004 */ 2005 for (; mode <= IEEE80211_MODE_11NG; mode++) { 2006 if (isclr(ic->ic_modecaps, mode)) 2007 continue; 2008 addmedia(media, caps, addsta, mode, IFM_AUTO); 2009 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 2010 } 2011 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 2012 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 2013 addmedia(media, caps, addsta, 2014 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 2015 i = ic->ic_txstream * 8 - 1; 2016 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2017 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 2018 rate = ieee80211_htrates[i].ht40_rate_400ns; 2019 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 2020 rate = ieee80211_htrates[i].ht40_rate_800ns; 2021 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 2022 rate = ieee80211_htrates[i].ht20_rate_400ns; 2023 else 2024 rate = ieee80211_htrates[i].ht20_rate_800ns; 2025 if (rate > maxrate) 2026 maxrate = rate; 2027 } 2028 2029 /* 2030 * Add VHT media. 2031 * XXX-BZ skip "VHT_2GHZ" for now. 2032 */ 2033 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; 2034 mode++) { 2035 if (isclr(ic->ic_modecaps, mode)) 2036 continue; 2037 addmedia(media, caps, addsta, mode, IFM_AUTO); 2038 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 2039 } 2040 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { 2041 addmedia(media, caps, addsta, 2042 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); 2043 2044 /* XXX TODO: VHT maxrate */ 2045 } 2046 2047 return maxrate; 2048 } 2049 2050 /* XXX inline or eliminate? */ 2051 const struct ieee80211_rateset * 2052 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 2053 { 2054 /* XXX does this work for 11ng basic rates? */ 2055 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 2056 } 2057 2058 /* XXX inline or eliminate? */ 2059 const struct ieee80211_htrateset * 2060 ieee80211_get_suphtrates(struct ieee80211com *ic, 2061 const struct ieee80211_channel *c) 2062 { 2063 return &ic->ic_sup_htrates; 2064 } 2065 2066 void 2067 ieee80211_announce(struct ieee80211com *ic) 2068 { 2069 int i, rate, mword; 2070 enum ieee80211_phymode mode; 2071 const struct ieee80211_rateset *rs; 2072 2073 /* NB: skip AUTO since it has no rates */ 2074 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 2075 if (isclr(ic->ic_modecaps, mode)) 2076 continue; 2077 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 2078 rs = &ic->ic_sup_rates[mode]; 2079 for (i = 0; i < rs->rs_nrates; i++) { 2080 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 2081 if (mword == 0) 2082 continue; 2083 rate = ieee80211_media2rate(mword); 2084 printf("%s%d%sMbps", (i != 0 ? " " : ""), 2085 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 2086 } 2087 printf("\n"); 2088 } 2089 ieee80211_ht_announce(ic); 2090 ieee80211_vht_announce(ic); 2091 } 2092 2093 void 2094 ieee80211_announce_channels(struct ieee80211com *ic) 2095 { 2096 const struct ieee80211_channel *c; 2097 char type; 2098 int i, cw; 2099 2100 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 2101 for (i = 0; i < ic->ic_nchans; i++) { 2102 c = &ic->ic_channels[i]; 2103 if (IEEE80211_IS_CHAN_ST(c)) 2104 type = 'S'; 2105 else if (IEEE80211_IS_CHAN_108A(c)) 2106 type = 'T'; 2107 else if (IEEE80211_IS_CHAN_108G(c)) 2108 type = 'G'; 2109 else if (IEEE80211_IS_CHAN_HT(c)) 2110 type = 'n'; 2111 else if (IEEE80211_IS_CHAN_A(c)) 2112 type = 'a'; 2113 else if (IEEE80211_IS_CHAN_ANYG(c)) 2114 type = 'g'; 2115 else if (IEEE80211_IS_CHAN_B(c)) 2116 type = 'b'; 2117 else 2118 type = 'f'; 2119 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2120 cw = 40; 2121 else if (IEEE80211_IS_CHAN_HALF(c)) 2122 cw = 10; 2123 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2124 cw = 5; 2125 else 2126 cw = 20; 2127 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2128 , c->ic_ieee, c->ic_freq, type 2129 , cw 2130 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2131 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2132 , c->ic_maxregpower 2133 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2134 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2135 ); 2136 } 2137 } 2138 2139 static int 2140 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2141 { 2142 switch (IFM_MODE(ime->ifm_media)) { 2143 case IFM_IEEE80211_11A: 2144 *mode = IEEE80211_MODE_11A; 2145 break; 2146 case IFM_IEEE80211_11B: 2147 *mode = IEEE80211_MODE_11B; 2148 break; 2149 case IFM_IEEE80211_11G: 2150 *mode = IEEE80211_MODE_11G; 2151 break; 2152 case IFM_IEEE80211_FH: 2153 *mode = IEEE80211_MODE_FH; 2154 break; 2155 case IFM_IEEE80211_11NA: 2156 *mode = IEEE80211_MODE_11NA; 2157 break; 2158 case IFM_IEEE80211_11NG: 2159 *mode = IEEE80211_MODE_11NG; 2160 break; 2161 case IFM_IEEE80211_VHT2G: 2162 *mode = IEEE80211_MODE_VHT_2GHZ; 2163 break; 2164 case IFM_IEEE80211_VHT5G: 2165 *mode = IEEE80211_MODE_VHT_5GHZ; 2166 break; 2167 case IFM_AUTO: 2168 *mode = IEEE80211_MODE_AUTO; 2169 break; 2170 default: 2171 return 0; 2172 } 2173 /* 2174 * Turbo mode is an ``option''. 2175 * XXX does not apply to AUTO 2176 */ 2177 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2178 if (*mode == IEEE80211_MODE_11A) { 2179 if (flags & IEEE80211_F_TURBOP) 2180 *mode = IEEE80211_MODE_TURBO_A; 2181 else 2182 *mode = IEEE80211_MODE_STURBO_A; 2183 } else if (*mode == IEEE80211_MODE_11G) 2184 *mode = IEEE80211_MODE_TURBO_G; 2185 else 2186 return 0; 2187 } 2188 /* XXX HT40 +/- */ 2189 return 1; 2190 } 2191 2192 /* 2193 * Handle a media change request on the vap interface. 2194 */ 2195 int 2196 ieee80211_media_change(struct ifnet *ifp) 2197 { 2198 struct ieee80211vap *vap = ifp->if_softc; 2199 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2200 uint16_t newmode; 2201 2202 if (!media2mode(ime, vap->iv_flags, &newmode)) 2203 return EINVAL; 2204 if (vap->iv_des_mode != newmode) { 2205 vap->iv_des_mode = newmode; 2206 /* XXX kick state machine if up+running */ 2207 } 2208 return 0; 2209 } 2210 2211 /* 2212 * Common code to calculate the media status word 2213 * from the operating mode and channel state. 2214 */ 2215 static int 2216 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2217 { 2218 int status; 2219 2220 status = IFM_IEEE80211; 2221 switch (opmode) { 2222 case IEEE80211_M_STA: 2223 break; 2224 case IEEE80211_M_IBSS: 2225 status |= IFM_IEEE80211_ADHOC; 2226 break; 2227 case IEEE80211_M_HOSTAP: 2228 status |= IFM_IEEE80211_HOSTAP; 2229 break; 2230 case IEEE80211_M_MONITOR: 2231 status |= IFM_IEEE80211_MONITOR; 2232 break; 2233 case IEEE80211_M_AHDEMO: 2234 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2235 break; 2236 case IEEE80211_M_WDS: 2237 status |= IFM_IEEE80211_WDS; 2238 break; 2239 case IEEE80211_M_MBSS: 2240 status |= IFM_IEEE80211_MBSS; 2241 break; 2242 } 2243 if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) { 2244 status |= IFM_IEEE80211_VHT5G; 2245 } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) { 2246 status |= IFM_IEEE80211_VHT2G; 2247 } else if (IEEE80211_IS_CHAN_HTA(chan)) { 2248 status |= IFM_IEEE80211_11NA; 2249 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2250 status |= IFM_IEEE80211_11NG; 2251 } else if (IEEE80211_IS_CHAN_A(chan)) { 2252 status |= IFM_IEEE80211_11A; 2253 } else if (IEEE80211_IS_CHAN_B(chan)) { 2254 status |= IFM_IEEE80211_11B; 2255 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2256 status |= IFM_IEEE80211_11G; 2257 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2258 status |= IFM_IEEE80211_FH; 2259 } 2260 /* XXX else complain? */ 2261 2262 if (IEEE80211_IS_CHAN_TURBO(chan)) 2263 status |= IFM_IEEE80211_TURBO; 2264 #if 0 2265 if (IEEE80211_IS_CHAN_HT20(chan)) 2266 status |= IFM_IEEE80211_HT20; 2267 if (IEEE80211_IS_CHAN_HT40(chan)) 2268 status |= IFM_IEEE80211_HT40; 2269 #endif 2270 return status; 2271 } 2272 2273 void 2274 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2275 { 2276 struct ieee80211vap *vap = ifp->if_softc; 2277 struct ieee80211com *ic = vap->iv_ic; 2278 enum ieee80211_phymode mode; 2279 2280 imr->ifm_status = IFM_AVALID; 2281 /* 2282 * NB: use the current channel's mode to lock down a xmit 2283 * rate only when running; otherwise we may have a mismatch 2284 * in which case the rate will not be convertible. 2285 */ 2286 if (vap->iv_state == IEEE80211_S_RUN || 2287 vap->iv_state == IEEE80211_S_SLEEP) { 2288 imr->ifm_status |= IFM_ACTIVE; 2289 mode = ieee80211_chan2mode(ic->ic_curchan); 2290 } else 2291 mode = IEEE80211_MODE_AUTO; 2292 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2293 /* 2294 * Calculate a current rate if possible. 2295 */ 2296 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2297 /* 2298 * A fixed rate is set, report that. 2299 */ 2300 imr->ifm_active |= ieee80211_rate2media(ic, 2301 vap->iv_txparms[mode].ucastrate, mode); 2302 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2303 /* 2304 * In station mode report the current transmit rate. 2305 */ 2306 imr->ifm_active |= ieee80211_rate2media(ic, 2307 vap->iv_bss->ni_txrate, mode); 2308 } else 2309 imr->ifm_active |= IFM_AUTO; 2310 if (imr->ifm_status & IFM_ACTIVE) 2311 imr->ifm_current = imr->ifm_active; 2312 } 2313 2314 /* 2315 * Set the current phy mode and recalculate the active channel 2316 * set based on the available channels for this mode. Also 2317 * select a new default/current channel if the current one is 2318 * inappropriate for this mode. 2319 */ 2320 int 2321 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2322 { 2323 /* 2324 * Adjust basic rates in 11b/11g supported rate set. 2325 * Note that if operating on a hal/quarter rate channel 2326 * this is a noop as those rates sets are different 2327 * and used instead. 2328 */ 2329 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2330 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2331 2332 ic->ic_curmode = mode; 2333 ieee80211_reset_erp(ic); /* reset global ERP state */ 2334 2335 return 0; 2336 } 2337 2338 /* 2339 * Return the phy mode for with the specified channel. 2340 */ 2341 enum ieee80211_phymode 2342 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2343 { 2344 2345 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2346 return IEEE80211_MODE_VHT_2GHZ; 2347 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2348 return IEEE80211_MODE_VHT_5GHZ; 2349 else if (IEEE80211_IS_CHAN_HTA(chan)) 2350 return IEEE80211_MODE_11NA; 2351 else if (IEEE80211_IS_CHAN_HTG(chan)) 2352 return IEEE80211_MODE_11NG; 2353 else if (IEEE80211_IS_CHAN_108G(chan)) 2354 return IEEE80211_MODE_TURBO_G; 2355 else if (IEEE80211_IS_CHAN_ST(chan)) 2356 return IEEE80211_MODE_STURBO_A; 2357 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2358 return IEEE80211_MODE_TURBO_A; 2359 else if (IEEE80211_IS_CHAN_HALF(chan)) 2360 return IEEE80211_MODE_HALF; 2361 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2362 return IEEE80211_MODE_QUARTER; 2363 else if (IEEE80211_IS_CHAN_A(chan)) 2364 return IEEE80211_MODE_11A; 2365 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2366 return IEEE80211_MODE_11G; 2367 else if (IEEE80211_IS_CHAN_B(chan)) 2368 return IEEE80211_MODE_11B; 2369 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2370 return IEEE80211_MODE_FH; 2371 2372 /* NB: should not get here */ 2373 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2374 __func__, chan->ic_freq, chan->ic_flags); 2375 return IEEE80211_MODE_11B; 2376 } 2377 2378 struct ratemedia { 2379 u_int match; /* rate + mode */ 2380 u_int media; /* if_media rate */ 2381 }; 2382 2383 static int 2384 findmedia(const struct ratemedia rates[], int n, u_int match) 2385 { 2386 int i; 2387 2388 for (i = 0; i < n; i++) 2389 if (rates[i].match == match) 2390 return rates[i].media; 2391 return IFM_AUTO; 2392 } 2393 2394 /* 2395 * Convert IEEE80211 rate value to ifmedia subtype. 2396 * Rate is either a legacy rate in units of 0.5Mbps 2397 * or an MCS index. 2398 */ 2399 int 2400 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2401 { 2402 static const struct ratemedia rates[] = { 2403 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2404 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2405 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2406 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2407 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2408 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2409 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2410 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2411 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2412 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2413 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2414 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2415 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2416 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2417 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2418 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2419 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2420 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2421 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2422 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2423 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2424 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2425 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2426 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2427 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2428 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2429 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2430 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2431 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2432 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2433 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2434 }; 2435 static const struct ratemedia htrates[] = { 2436 { 0, IFM_IEEE80211_MCS }, 2437 { 1, IFM_IEEE80211_MCS }, 2438 { 2, IFM_IEEE80211_MCS }, 2439 { 3, IFM_IEEE80211_MCS }, 2440 { 4, IFM_IEEE80211_MCS }, 2441 { 5, IFM_IEEE80211_MCS }, 2442 { 6, IFM_IEEE80211_MCS }, 2443 { 7, IFM_IEEE80211_MCS }, 2444 { 8, IFM_IEEE80211_MCS }, 2445 { 9, IFM_IEEE80211_MCS }, 2446 { 10, IFM_IEEE80211_MCS }, 2447 { 11, IFM_IEEE80211_MCS }, 2448 { 12, IFM_IEEE80211_MCS }, 2449 { 13, IFM_IEEE80211_MCS }, 2450 { 14, IFM_IEEE80211_MCS }, 2451 { 15, IFM_IEEE80211_MCS }, 2452 { 16, IFM_IEEE80211_MCS }, 2453 { 17, IFM_IEEE80211_MCS }, 2454 { 18, IFM_IEEE80211_MCS }, 2455 { 19, IFM_IEEE80211_MCS }, 2456 { 20, IFM_IEEE80211_MCS }, 2457 { 21, IFM_IEEE80211_MCS }, 2458 { 22, IFM_IEEE80211_MCS }, 2459 { 23, IFM_IEEE80211_MCS }, 2460 { 24, IFM_IEEE80211_MCS }, 2461 { 25, IFM_IEEE80211_MCS }, 2462 { 26, IFM_IEEE80211_MCS }, 2463 { 27, IFM_IEEE80211_MCS }, 2464 { 28, IFM_IEEE80211_MCS }, 2465 { 29, IFM_IEEE80211_MCS }, 2466 { 30, IFM_IEEE80211_MCS }, 2467 { 31, IFM_IEEE80211_MCS }, 2468 { 32, IFM_IEEE80211_MCS }, 2469 { 33, IFM_IEEE80211_MCS }, 2470 { 34, IFM_IEEE80211_MCS }, 2471 { 35, IFM_IEEE80211_MCS }, 2472 { 36, IFM_IEEE80211_MCS }, 2473 { 37, IFM_IEEE80211_MCS }, 2474 { 38, IFM_IEEE80211_MCS }, 2475 { 39, IFM_IEEE80211_MCS }, 2476 { 40, IFM_IEEE80211_MCS }, 2477 { 41, IFM_IEEE80211_MCS }, 2478 { 42, IFM_IEEE80211_MCS }, 2479 { 43, IFM_IEEE80211_MCS }, 2480 { 44, IFM_IEEE80211_MCS }, 2481 { 45, IFM_IEEE80211_MCS }, 2482 { 46, IFM_IEEE80211_MCS }, 2483 { 47, IFM_IEEE80211_MCS }, 2484 { 48, IFM_IEEE80211_MCS }, 2485 { 49, IFM_IEEE80211_MCS }, 2486 { 50, IFM_IEEE80211_MCS }, 2487 { 51, IFM_IEEE80211_MCS }, 2488 { 52, IFM_IEEE80211_MCS }, 2489 { 53, IFM_IEEE80211_MCS }, 2490 { 54, IFM_IEEE80211_MCS }, 2491 { 55, IFM_IEEE80211_MCS }, 2492 { 56, IFM_IEEE80211_MCS }, 2493 { 57, IFM_IEEE80211_MCS }, 2494 { 58, IFM_IEEE80211_MCS }, 2495 { 59, IFM_IEEE80211_MCS }, 2496 { 60, IFM_IEEE80211_MCS }, 2497 { 61, IFM_IEEE80211_MCS }, 2498 { 62, IFM_IEEE80211_MCS }, 2499 { 63, IFM_IEEE80211_MCS }, 2500 { 64, IFM_IEEE80211_MCS }, 2501 { 65, IFM_IEEE80211_MCS }, 2502 { 66, IFM_IEEE80211_MCS }, 2503 { 67, IFM_IEEE80211_MCS }, 2504 { 68, IFM_IEEE80211_MCS }, 2505 { 69, IFM_IEEE80211_MCS }, 2506 { 70, IFM_IEEE80211_MCS }, 2507 { 71, IFM_IEEE80211_MCS }, 2508 { 72, IFM_IEEE80211_MCS }, 2509 { 73, IFM_IEEE80211_MCS }, 2510 { 74, IFM_IEEE80211_MCS }, 2511 { 75, IFM_IEEE80211_MCS }, 2512 { 76, IFM_IEEE80211_MCS }, 2513 }; 2514 static const struct ratemedia vhtrates[] = { 2515 { 0, IFM_IEEE80211_VHT }, 2516 { 1, IFM_IEEE80211_VHT }, 2517 { 2, IFM_IEEE80211_VHT }, 2518 { 3, IFM_IEEE80211_VHT }, 2519 { 4, IFM_IEEE80211_VHT }, 2520 { 5, IFM_IEEE80211_VHT }, 2521 { 6, IFM_IEEE80211_VHT }, 2522 { 7, IFM_IEEE80211_VHT }, 2523 { 8, IFM_IEEE80211_VHT }, /* Optional. */ 2524 { 9, IFM_IEEE80211_VHT }, /* Optional. */ 2525 #if 0 2526 /* Some QCA and BRCM seem to support this; offspec. */ 2527 { 10, IFM_IEEE80211_VHT }, 2528 { 11, IFM_IEEE80211_VHT }, 2529 #endif 2530 }; 2531 int m; 2532 2533 /* 2534 * Check 11ac/11n rates first for match as an MCS. 2535 */ 2536 if (mode == IEEE80211_MODE_VHT_5GHZ) { 2537 if (rate & IFM_IEEE80211_VHT) { 2538 rate &= ~IFM_IEEE80211_VHT; 2539 m = findmedia(vhtrates, nitems(vhtrates), rate); 2540 if (m != IFM_AUTO) 2541 return (m | IFM_IEEE80211_VHT); 2542 } 2543 } else if (mode == IEEE80211_MODE_11NA) { 2544 if (rate & IEEE80211_RATE_MCS) { 2545 rate &= ~IEEE80211_RATE_MCS; 2546 m = findmedia(htrates, nitems(htrates), rate); 2547 if (m != IFM_AUTO) 2548 return m | IFM_IEEE80211_11NA; 2549 } 2550 } else if (mode == IEEE80211_MODE_11NG) { 2551 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2552 if (rate & IEEE80211_RATE_MCS) { 2553 rate &= ~IEEE80211_RATE_MCS; 2554 m = findmedia(htrates, nitems(htrates), rate); 2555 if (m != IFM_AUTO) 2556 return m | IFM_IEEE80211_11NG; 2557 } 2558 } 2559 rate &= IEEE80211_RATE_VAL; 2560 switch (mode) { 2561 case IEEE80211_MODE_11A: 2562 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2563 case IEEE80211_MODE_QUARTER: 2564 case IEEE80211_MODE_11NA: 2565 case IEEE80211_MODE_TURBO_A: 2566 case IEEE80211_MODE_STURBO_A: 2567 return findmedia(rates, nitems(rates), 2568 rate | IFM_IEEE80211_11A); 2569 case IEEE80211_MODE_11B: 2570 return findmedia(rates, nitems(rates), 2571 rate | IFM_IEEE80211_11B); 2572 case IEEE80211_MODE_FH: 2573 return findmedia(rates, nitems(rates), 2574 rate | IFM_IEEE80211_FH); 2575 case IEEE80211_MODE_AUTO: 2576 /* NB: ic may be NULL for some drivers */ 2577 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2578 return findmedia(rates, nitems(rates), 2579 rate | IFM_IEEE80211_FH); 2580 /* NB: hack, 11g matches both 11b+11a rates */ 2581 /* fall thru... */ 2582 case IEEE80211_MODE_11G: 2583 case IEEE80211_MODE_11NG: 2584 case IEEE80211_MODE_TURBO_G: 2585 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2586 case IEEE80211_MODE_VHT_2GHZ: 2587 case IEEE80211_MODE_VHT_5GHZ: 2588 /* XXX TODO: need to figure out mapping for VHT rates */ 2589 return IFM_AUTO; 2590 } 2591 return IFM_AUTO; 2592 } 2593 2594 int 2595 ieee80211_media2rate(int mword) 2596 { 2597 static const int ieeerates[] = { 2598 -1, /* IFM_AUTO */ 2599 0, /* IFM_MANUAL */ 2600 0, /* IFM_NONE */ 2601 2, /* IFM_IEEE80211_FH1 */ 2602 4, /* IFM_IEEE80211_FH2 */ 2603 2, /* IFM_IEEE80211_DS1 */ 2604 4, /* IFM_IEEE80211_DS2 */ 2605 11, /* IFM_IEEE80211_DS5 */ 2606 22, /* IFM_IEEE80211_DS11 */ 2607 44, /* IFM_IEEE80211_DS22 */ 2608 12, /* IFM_IEEE80211_OFDM6 */ 2609 18, /* IFM_IEEE80211_OFDM9 */ 2610 24, /* IFM_IEEE80211_OFDM12 */ 2611 36, /* IFM_IEEE80211_OFDM18 */ 2612 48, /* IFM_IEEE80211_OFDM24 */ 2613 72, /* IFM_IEEE80211_OFDM36 */ 2614 96, /* IFM_IEEE80211_OFDM48 */ 2615 108, /* IFM_IEEE80211_OFDM54 */ 2616 144, /* IFM_IEEE80211_OFDM72 */ 2617 0, /* IFM_IEEE80211_DS354k */ 2618 0, /* IFM_IEEE80211_DS512k */ 2619 6, /* IFM_IEEE80211_OFDM3 */ 2620 9, /* IFM_IEEE80211_OFDM4 */ 2621 54, /* IFM_IEEE80211_OFDM27 */ 2622 -1, /* IFM_IEEE80211_MCS */ 2623 -1, /* IFM_IEEE80211_VHT */ 2624 }; 2625 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2626 ieeerates[IFM_SUBTYPE(mword)] : 0; 2627 } 2628 2629 /* 2630 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2631 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2632 */ 2633 #define mix(a, b, c) \ 2634 do { \ 2635 a -= b; a -= c; a ^= (c >> 13); \ 2636 b -= c; b -= a; b ^= (a << 8); \ 2637 c -= a; c -= b; c ^= (b >> 13); \ 2638 a -= b; a -= c; a ^= (c >> 12); \ 2639 b -= c; b -= a; b ^= (a << 16); \ 2640 c -= a; c -= b; c ^= (b >> 5); \ 2641 a -= b; a -= c; a ^= (c >> 3); \ 2642 b -= c; b -= a; b ^= (a << 10); \ 2643 c -= a; c -= b; c ^= (b >> 15); \ 2644 } while (/*CONSTCOND*/0) 2645 2646 uint32_t 2647 ieee80211_mac_hash(const struct ieee80211com *ic, 2648 const uint8_t addr[IEEE80211_ADDR_LEN]) 2649 { 2650 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2651 2652 b += addr[5] << 8; 2653 b += addr[4]; 2654 a += addr[3] << 24; 2655 a += addr[2] << 16; 2656 a += addr[1] << 8; 2657 a += addr[0]; 2658 2659 mix(a, b, c); 2660 2661 return c; 2662 } 2663 #undef mix 2664 2665 char 2666 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2667 { 2668 if (IEEE80211_IS_CHAN_ST(c)) 2669 return 'S'; 2670 if (IEEE80211_IS_CHAN_108A(c)) 2671 return 'T'; 2672 if (IEEE80211_IS_CHAN_108G(c)) 2673 return 'G'; 2674 if (IEEE80211_IS_CHAN_VHT(c)) 2675 return 'v'; 2676 if (IEEE80211_IS_CHAN_HT(c)) 2677 return 'n'; 2678 if (IEEE80211_IS_CHAN_A(c)) 2679 return 'a'; 2680 if (IEEE80211_IS_CHAN_ANYG(c)) 2681 return 'g'; 2682 if (IEEE80211_IS_CHAN_B(c)) 2683 return 'b'; 2684 return 'f'; 2685 } 2686