xref: /freebsd/sys/net80211/ieee80211.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 #ifdef IEEE80211_SUPPORT_SUPERG
50 #include <net80211/ieee80211_superg.h>
51 #endif
52 #include <net80211/ieee80211_ratectl.h>
53 
54 #include <net/bpf.h>
55 
56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
57 	[IEEE80211_MODE_AUTO]	  = "auto",
58 	[IEEE80211_MODE_11A]	  = "11a",
59 	[IEEE80211_MODE_11B]	  = "11b",
60 	[IEEE80211_MODE_11G]	  = "11g",
61 	[IEEE80211_MODE_FH]	  = "FH",
62 	[IEEE80211_MODE_TURBO_A]  = "turboA",
63 	[IEEE80211_MODE_TURBO_G]  = "turboG",
64 	[IEEE80211_MODE_STURBO_A] = "sturboA",
65 	[IEEE80211_MODE_HALF]	  = "half",
66 	[IEEE80211_MODE_QUARTER]  = "quarter",
67 	[IEEE80211_MODE_11NA]	  = "11na",
68 	[IEEE80211_MODE_11NG]	  = "11ng",
69 };
70 /* map ieee80211_opmode to the corresponding capability bit */
71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
72 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
73 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
74 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
75 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
76 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
77 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
78 #ifdef IEEE80211_SUPPORT_MESH
79 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
80 #endif
81 };
82 
83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
84 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
85 
86 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
87 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
88 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
89 static	int ieee80211_media_setup(struct ieee80211com *ic,
90 		struct ifmedia *media, int caps, int addsta,
91 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
92 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
93 static	int ieee80211com_media_change(struct ifnet *);
94 static	int media_status(enum ieee80211_opmode,
95 		const struct ieee80211_channel *);
96 
97 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
98 
99 /*
100  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
101  */
102 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
103 static const struct ieee80211_rateset ieee80211_rateset_11a =
104 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
105 static const struct ieee80211_rateset ieee80211_rateset_half =
106 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
107 static const struct ieee80211_rateset ieee80211_rateset_quarter =
108 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
109 static const struct ieee80211_rateset ieee80211_rateset_11b =
110 	{ 4, { B(2), B(4), B(11), B(22) } };
111 /* NB: OFDM rates are handled specially based on mode */
112 static const struct ieee80211_rateset ieee80211_rateset_11g =
113 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
114 #undef B
115 
116 /*
117  * Fill in 802.11 available channel set, mark
118  * all available channels as active, and pick
119  * a default channel if not already specified.
120  */
121 static void
122 ieee80211_chan_init(struct ieee80211com *ic)
123 {
124 #define	DEFAULTRATES(m, def) do { \
125 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
126 		ic->ic_sup_rates[m] = def; \
127 } while (0)
128 	struct ieee80211_channel *c;
129 	int i;
130 
131 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
132 		("invalid number of channels specified: %u", ic->ic_nchans));
133 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
134 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
135 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
136 	for (i = 0; i < ic->ic_nchans; i++) {
137 		c = &ic->ic_channels[i];
138 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
139 		/*
140 		 * Help drivers that work only with frequencies by filling
141 		 * in IEEE channel #'s if not already calculated.  Note this
142 		 * mimics similar work done in ieee80211_setregdomain when
143 		 * changing regulatory state.
144 		 */
145 		if (c->ic_ieee == 0)
146 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
147 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
148 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
149 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
150 			    c->ic_flags);
151 		/* default max tx power to max regulatory */
152 		if (c->ic_maxpower == 0)
153 			c->ic_maxpower = 2*c->ic_maxregpower;
154 		setbit(ic->ic_chan_avail, c->ic_ieee);
155 		/*
156 		 * Identify mode capabilities.
157 		 */
158 		if (IEEE80211_IS_CHAN_A(c))
159 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
160 		if (IEEE80211_IS_CHAN_B(c))
161 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
162 		if (IEEE80211_IS_CHAN_ANYG(c))
163 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
164 		if (IEEE80211_IS_CHAN_FHSS(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
166 		if (IEEE80211_IS_CHAN_108A(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
168 		if (IEEE80211_IS_CHAN_108G(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
170 		if (IEEE80211_IS_CHAN_ST(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
172 		if (IEEE80211_IS_CHAN_HALF(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
174 		if (IEEE80211_IS_CHAN_QUARTER(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
176 		if (IEEE80211_IS_CHAN_HTA(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
178 		if (IEEE80211_IS_CHAN_HTG(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
180 	}
181 	/* initialize candidate channels to all available */
182 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
183 		sizeof(ic->ic_chan_avail));
184 
185 	/* sort channel table to allow lookup optimizations */
186 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
187 
188 	/* invalidate any previous state */
189 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
190 	ic->ic_prevchan = NULL;
191 	ic->ic_csa_newchan = NULL;
192 	/* arbitrarily pick the first channel */
193 	ic->ic_curchan = &ic->ic_channels[0];
194 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
195 
196 	/* fillin well-known rate sets if driver has not specified */
197 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
198 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
199 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
200 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
201 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
202 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
203 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
204 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
205 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
207 
208 	/*
209 	 * Setup required information to fill the mcsset field, if driver did
210 	 * not. Assume a 2T2R setup for historic reasons.
211 	 */
212 	if (ic->ic_rxstream == 0)
213 		ic->ic_rxstream = 2;
214 	if (ic->ic_txstream == 0)
215 		ic->ic_txstream = 2;
216 
217 	/*
218 	 * Set auto mode to reset active channel state and any desired channel.
219 	 */
220 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
221 #undef DEFAULTRATES
222 }
223 
224 static void
225 null_update_mcast(struct ifnet *ifp)
226 {
227 	if_printf(ifp, "need multicast update callback\n");
228 }
229 
230 static void
231 null_update_promisc(struct ifnet *ifp)
232 {
233 	if_printf(ifp, "need promiscuous mode update callback\n");
234 }
235 
236 static int
237 null_transmit(struct ifnet *ifp, struct mbuf *m)
238 {
239 	m_freem(m);
240 	ifp->if_oerrors++;
241 	return EACCES;		/* XXX EIO/EPERM? */
242 }
243 
244 #if __FreeBSD_version >= 1000031
245 static int
246 null_output(struct ifnet *ifp, struct mbuf *m,
247 	const struct sockaddr *dst, struct route *ro)
248 #else
249 static int
250 null_output(struct ifnet *ifp, struct mbuf *m,
251 	struct sockaddr *dst, struct route *ro)
252 #endif
253 {
254 	if_printf(ifp, "discard raw packet\n");
255 	return null_transmit(ifp, m);
256 }
257 
258 static void
259 null_input(struct ifnet *ifp, struct mbuf *m)
260 {
261 	if_printf(ifp, "if_input should not be called\n");
262 	m_freem(m);
263 }
264 
265 static void
266 null_update_chw(struct ieee80211com *ic)
267 {
268 
269 	if_printf(ic->ic_ifp, "%s: need callback\n", __func__);
270 }
271 
272 /*
273  * Attach/setup the common net80211 state.  Called by
274  * the driver on attach to prior to creating any vap's.
275  */
276 void
277 ieee80211_ifattach(struct ieee80211com *ic,
278 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
279 {
280 	struct ifnet *ifp = ic->ic_ifp;
281 	struct sockaddr_dl *sdl;
282 	struct ifaddr *ifa;
283 
284 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
285 
286 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
287 	IEEE80211_TX_LOCK_INIT(ic, ifp->if_xname);
288 	TAILQ_INIT(&ic->ic_vaps);
289 
290 	/* Create a taskqueue for all state changes */
291 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
292 	    taskqueue_thread_enqueue, &ic->ic_tq);
293 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
294 	    ifp->if_xname);
295 	/*
296 	 * Fill in 802.11 available channel set, mark all
297 	 * available channels as active, and pick a default
298 	 * channel if not already specified.
299 	 */
300 	ieee80211_media_init(ic);
301 
302 	ic->ic_update_mcast = null_update_mcast;
303 	ic->ic_update_promisc = null_update_promisc;
304 	ic->ic_update_chw = null_update_chw;
305 
306 	ic->ic_hash_key = arc4random();
307 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
308 	ic->ic_lintval = ic->ic_bintval;
309 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
310 
311 	ieee80211_crypto_attach(ic);
312 	ieee80211_node_attach(ic);
313 	ieee80211_power_attach(ic);
314 	ieee80211_proto_attach(ic);
315 #ifdef IEEE80211_SUPPORT_SUPERG
316 	ieee80211_superg_attach(ic);
317 #endif
318 	ieee80211_ht_attach(ic);
319 	ieee80211_scan_attach(ic);
320 	ieee80211_regdomain_attach(ic);
321 	ieee80211_dfs_attach(ic);
322 
323 	ieee80211_sysctl_attach(ic);
324 
325 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
326 	ifp->if_hdrlen = 0;
327 
328 	CURVNET_SET(vnet0);
329 
330 	if_attach(ifp);
331 
332 	ifp->if_mtu = IEEE80211_MTU_MAX;
333 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
334 	ifp->if_output = null_output;
335 	ifp->if_input = null_input;	/* just in case */
336 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
337 
338 	ifa = ifaddr_byindex(ifp->if_index);
339 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
340 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
341 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
342 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
343 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
344 	ifa_free(ifa);
345 
346 	CURVNET_RESTORE();
347 }
348 
349 /*
350  * Detach net80211 state on device detach.  Tear down
351  * all vap's and reclaim all common state prior to the
352  * device state going away.  Note we may call back into
353  * driver; it must be prepared for this.
354  */
355 void
356 ieee80211_ifdetach(struct ieee80211com *ic)
357 {
358 	struct ifnet *ifp = ic->ic_ifp;
359 	struct ieee80211vap *vap;
360 
361 	/*
362 	 * This detaches the main interface, but not the vaps.
363 	 * Each VAP may be in a separate VIMAGE.
364 	 */
365 	CURVNET_SET(ifp->if_vnet);
366 	if_detach(ifp);
367 	CURVNET_RESTORE();
368 
369 	/*
370 	 * The VAP is responsible for setting and clearing
371 	 * the VIMAGE context.
372 	 */
373 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
374 		ieee80211_vap_destroy(vap);
375 	ieee80211_waitfor_parent(ic);
376 
377 	ieee80211_sysctl_detach(ic);
378 	ieee80211_dfs_detach(ic);
379 	ieee80211_regdomain_detach(ic);
380 	ieee80211_scan_detach(ic);
381 #ifdef IEEE80211_SUPPORT_SUPERG
382 	ieee80211_superg_detach(ic);
383 #endif
384 	ieee80211_ht_detach(ic);
385 	/* NB: must be called before ieee80211_node_detach */
386 	ieee80211_proto_detach(ic);
387 	ieee80211_crypto_detach(ic);
388 	ieee80211_power_detach(ic);
389 	ieee80211_node_detach(ic);
390 
391 	/* XXX VNET needed? */
392 	ifmedia_removeall(&ic->ic_media);
393 
394 	taskqueue_free(ic->ic_tq);
395 	IEEE80211_TX_LOCK_DESTROY(ic);
396 	IEEE80211_LOCK_DESTROY(ic);
397 }
398 
399 /*
400  * Default reset method for use with the ioctl support.  This
401  * method is invoked after any state change in the 802.11
402  * layer that should be propagated to the hardware but not
403  * require re-initialization of the 802.11 state machine (e.g
404  * rescanning for an ap).  We always return ENETRESET which
405  * should cause the driver to re-initialize the device. Drivers
406  * can override this method to implement more optimized support.
407  */
408 static int
409 default_reset(struct ieee80211vap *vap, u_long cmd)
410 {
411 	return ENETRESET;
412 }
413 
414 /*
415  * Prepare a vap for use.  Drivers use this call to
416  * setup net80211 state in new vap's prior attaching
417  * them with ieee80211_vap_attach (below).
418  */
419 int
420 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
421     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
422     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
423     const uint8_t macaddr[IEEE80211_ADDR_LEN])
424 {
425 	struct ifnet *ifp;
426 
427 	ifp = if_alloc(IFT_ETHER);
428 	if (ifp == NULL) {
429 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
430 		    __func__);
431 		return ENOMEM;
432 	}
433 	if_initname(ifp, name, unit);
434 	ifp->if_softc = vap;			/* back pointer */
435 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
436 	ifp->if_transmit = ieee80211_vap_transmit;
437 	ifp->if_qflush = ieee80211_vap_qflush;
438 	ifp->if_ioctl = ieee80211_ioctl;
439 	ifp->if_init = ieee80211_init;
440 
441 	vap->iv_ifp = ifp;
442 	vap->iv_ic = ic;
443 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
444 	vap->iv_flags_ext = ic->ic_flags_ext;
445 	vap->iv_flags_ven = ic->ic_flags_ven;
446 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
447 	vap->iv_htcaps = ic->ic_htcaps;
448 	vap->iv_htextcaps = ic->ic_htextcaps;
449 	vap->iv_opmode = opmode;
450 	vap->iv_caps |= ieee80211_opcap[opmode];
451 	switch (opmode) {
452 	case IEEE80211_M_WDS:
453 		/*
454 		 * WDS links must specify the bssid of the far end.
455 		 * For legacy operation this is a static relationship.
456 		 * For non-legacy operation the station must associate
457 		 * and be authorized to pass traffic.  Plumbing the
458 		 * vap to the proper node happens when the vap
459 		 * transitions to RUN state.
460 		 */
461 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
462 		vap->iv_flags |= IEEE80211_F_DESBSSID;
463 		if (flags & IEEE80211_CLONE_WDSLEGACY)
464 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
465 		break;
466 #ifdef IEEE80211_SUPPORT_TDMA
467 	case IEEE80211_M_AHDEMO:
468 		if (flags & IEEE80211_CLONE_TDMA) {
469 			/* NB: checked before clone operation allowed */
470 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
471 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
472 			/*
473 			 * Propagate TDMA capability to mark vap; this
474 			 * cannot be removed and is used to distinguish
475 			 * regular ahdemo operation from ahdemo+tdma.
476 			 */
477 			vap->iv_caps |= IEEE80211_C_TDMA;
478 		}
479 		break;
480 #endif
481 	default:
482 		break;
483 	}
484 	/* auto-enable s/w beacon miss support */
485 	if (flags & IEEE80211_CLONE_NOBEACONS)
486 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
487 	/* auto-generated or user supplied MAC address */
488 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
489 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
490 	/*
491 	 * Enable various functionality by default if we're
492 	 * capable; the driver can override us if it knows better.
493 	 */
494 	if (vap->iv_caps & IEEE80211_C_WME)
495 		vap->iv_flags |= IEEE80211_F_WME;
496 	if (vap->iv_caps & IEEE80211_C_BURST)
497 		vap->iv_flags |= IEEE80211_F_BURST;
498 	/* NB: bg scanning only makes sense for station mode right now */
499 	if (vap->iv_opmode == IEEE80211_M_STA &&
500 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
501 		vap->iv_flags |= IEEE80211_F_BGSCAN;
502 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
503 	/* NB: DFS support only makes sense for ap mode right now */
504 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
505 	    (vap->iv_caps & IEEE80211_C_DFS))
506 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
507 
508 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
509 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
510 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
511 	/*
512 	 * Install a default reset method for the ioctl support;
513 	 * the driver can override this.
514 	 */
515 	vap->iv_reset = default_reset;
516 
517 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
518 
519 	ieee80211_sysctl_vattach(vap);
520 	ieee80211_crypto_vattach(vap);
521 	ieee80211_node_vattach(vap);
522 	ieee80211_power_vattach(vap);
523 	ieee80211_proto_vattach(vap);
524 #ifdef IEEE80211_SUPPORT_SUPERG
525 	ieee80211_superg_vattach(vap);
526 #endif
527 	ieee80211_ht_vattach(vap);
528 	ieee80211_scan_vattach(vap);
529 	ieee80211_regdomain_vattach(vap);
530 	ieee80211_radiotap_vattach(vap);
531 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
532 
533 	return 0;
534 }
535 
536 /*
537  * Activate a vap.  State should have been prepared with a
538  * call to ieee80211_vap_setup and by the driver.  On return
539  * from this call the vap is ready for use.
540  */
541 int
542 ieee80211_vap_attach(struct ieee80211vap *vap,
543 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
544 {
545 	struct ifnet *ifp = vap->iv_ifp;
546 	struct ieee80211com *ic = vap->iv_ic;
547 	struct ifmediareq imr;
548 	int maxrate;
549 
550 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
551 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
552 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
553 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
554 
555 	/*
556 	 * Do late attach work that cannot happen until after
557 	 * the driver has had a chance to override defaults.
558 	 */
559 	ieee80211_node_latevattach(vap);
560 	ieee80211_power_latevattach(vap);
561 
562 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
563 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
564 	ieee80211_media_status(ifp, &imr);
565 	/* NB: strip explicit mode; we're actually in autoselect */
566 	ifmedia_set(&vap->iv_media,
567 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
568 	if (maxrate)
569 		ifp->if_baudrate = IF_Mbps(maxrate);
570 
571 	ether_ifattach(ifp, vap->iv_myaddr);
572 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
573 		/* NB: disallow transmit */
574 		ifp->if_transmit = null_transmit;
575 		ifp->if_output = null_output;
576 	} else {
577 		/* hook output method setup by ether_ifattach */
578 		vap->iv_output = ifp->if_output;
579 		ifp->if_output = ieee80211_output;
580 	}
581 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
582 
583 	IEEE80211_LOCK(ic);
584 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
585 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
586 #ifdef IEEE80211_SUPPORT_SUPERG
587 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
588 #endif
589 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
590 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
591 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
592 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
593 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
594 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
595 	IEEE80211_UNLOCK(ic);
596 
597 	return 1;
598 }
599 
600 /*
601  * Tear down vap state and reclaim the ifnet.
602  * The driver is assumed to have prepared for
603  * this; e.g. by turning off interrupts for the
604  * underlying device.
605  */
606 void
607 ieee80211_vap_detach(struct ieee80211vap *vap)
608 {
609 	struct ieee80211com *ic = vap->iv_ic;
610 	struct ifnet *ifp = vap->iv_ifp;
611 
612 	CURVNET_SET(ifp->if_vnet);
613 
614 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
615 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
616 	    ic->ic_ifp->if_xname);
617 
618 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
619 	ether_ifdetach(ifp);
620 
621 	ieee80211_stop(vap);
622 
623 	/*
624 	 * Flush any deferred vap tasks.
625 	 */
626 	ieee80211_draintask(ic, &vap->iv_nstate_task);
627 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
628 
629 	/* XXX band-aid until ifnet handles this for us */
630 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
631 
632 	IEEE80211_LOCK(ic);
633 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
634 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
635 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
636 #ifdef IEEE80211_SUPPORT_SUPERG
637 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
638 #endif
639 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
640 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
641 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
642 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
643 	/* NB: this handles the bpfdetach done below */
644 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
645 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
646 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
647 	IEEE80211_UNLOCK(ic);
648 
649 	ifmedia_removeall(&vap->iv_media);
650 
651 	ieee80211_radiotap_vdetach(vap);
652 	ieee80211_regdomain_vdetach(vap);
653 	ieee80211_scan_vdetach(vap);
654 #ifdef IEEE80211_SUPPORT_SUPERG
655 	ieee80211_superg_vdetach(vap);
656 #endif
657 	ieee80211_ht_vdetach(vap);
658 	/* NB: must be before ieee80211_node_vdetach */
659 	ieee80211_proto_vdetach(vap);
660 	ieee80211_crypto_vdetach(vap);
661 	ieee80211_power_vdetach(vap);
662 	ieee80211_node_vdetach(vap);
663 	ieee80211_sysctl_vdetach(vap);
664 
665 	if_free(ifp);
666 
667 	CURVNET_RESTORE();
668 }
669 
670 /*
671  * Synchronize flag bit state in the parent ifnet structure
672  * according to the state of all vap ifnet's.  This is used,
673  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
674  */
675 void
676 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
677 {
678 	struct ifnet *ifp = ic->ic_ifp;
679 	struct ieee80211vap *vap;
680 	int bit, oflags;
681 
682 	IEEE80211_LOCK_ASSERT(ic);
683 
684 	bit = 0;
685 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
686 		if (vap->iv_ifp->if_flags & flag) {
687 			/*
688 			 * XXX the bridge sets PROMISC but we don't want to
689 			 * enable it on the device, discard here so all the
690 			 * drivers don't need to special-case it
691 			 */
692 			if (flag == IFF_PROMISC &&
693 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
694 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
695 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
696 				continue;
697 			bit = 1;
698 			break;
699 		}
700 	oflags = ifp->if_flags;
701 	if (bit)
702 		ifp->if_flags |= flag;
703 	else
704 		ifp->if_flags &= ~flag;
705 	if ((ifp->if_flags ^ oflags) & flag) {
706 		/* XXX should we return 1/0 and let caller do this? */
707 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
708 			if (flag == IFF_PROMISC)
709 				ieee80211_runtask(ic, &ic->ic_promisc_task);
710 			else if (flag == IFF_ALLMULTI)
711 				ieee80211_runtask(ic, &ic->ic_mcast_task);
712 		}
713 	}
714 }
715 
716 /*
717  * Synchronize flag bit state in the com structure
718  * according to the state of all vap's.  This is used,
719  * for example, to handle state changes via ioctls.
720  */
721 static void
722 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
723 {
724 	struct ieee80211vap *vap;
725 	int bit;
726 
727 	IEEE80211_LOCK_ASSERT(ic);
728 
729 	bit = 0;
730 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
731 		if (vap->iv_flags & flag) {
732 			bit = 1;
733 			break;
734 		}
735 	if (bit)
736 		ic->ic_flags |= flag;
737 	else
738 		ic->ic_flags &= ~flag;
739 }
740 
741 void
742 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
743 {
744 	struct ieee80211com *ic = vap->iv_ic;
745 
746 	IEEE80211_LOCK(ic);
747 	if (flag < 0) {
748 		flag = -flag;
749 		vap->iv_flags &= ~flag;
750 	} else
751 		vap->iv_flags |= flag;
752 	ieee80211_syncflag_locked(ic, flag);
753 	IEEE80211_UNLOCK(ic);
754 }
755 
756 /*
757  * Synchronize flags_ht bit state in the com structure
758  * according to the state of all vap's.  This is used,
759  * for example, to handle state changes via ioctls.
760  */
761 static void
762 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
763 {
764 	struct ieee80211vap *vap;
765 	int bit;
766 
767 	IEEE80211_LOCK_ASSERT(ic);
768 
769 	bit = 0;
770 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
771 		if (vap->iv_flags_ht & flag) {
772 			bit = 1;
773 			break;
774 		}
775 	if (bit)
776 		ic->ic_flags_ht |= flag;
777 	else
778 		ic->ic_flags_ht &= ~flag;
779 }
780 
781 void
782 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
783 {
784 	struct ieee80211com *ic = vap->iv_ic;
785 
786 	IEEE80211_LOCK(ic);
787 	if (flag < 0) {
788 		flag = -flag;
789 		vap->iv_flags_ht &= ~flag;
790 	} else
791 		vap->iv_flags_ht |= flag;
792 	ieee80211_syncflag_ht_locked(ic, flag);
793 	IEEE80211_UNLOCK(ic);
794 }
795 
796 /*
797  * Synchronize flags_ext bit state in the com structure
798  * according to the state of all vap's.  This is used,
799  * for example, to handle state changes via ioctls.
800  */
801 static void
802 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
803 {
804 	struct ieee80211vap *vap;
805 	int bit;
806 
807 	IEEE80211_LOCK_ASSERT(ic);
808 
809 	bit = 0;
810 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
811 		if (vap->iv_flags_ext & flag) {
812 			bit = 1;
813 			break;
814 		}
815 	if (bit)
816 		ic->ic_flags_ext |= flag;
817 	else
818 		ic->ic_flags_ext &= ~flag;
819 }
820 
821 void
822 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
823 {
824 	struct ieee80211com *ic = vap->iv_ic;
825 
826 	IEEE80211_LOCK(ic);
827 	if (flag < 0) {
828 		flag = -flag;
829 		vap->iv_flags_ext &= ~flag;
830 	} else
831 		vap->iv_flags_ext |= flag;
832 	ieee80211_syncflag_ext_locked(ic, flag);
833 	IEEE80211_UNLOCK(ic);
834 }
835 
836 static __inline int
837 mapgsm(u_int freq, u_int flags)
838 {
839 	freq *= 10;
840 	if (flags & IEEE80211_CHAN_QUARTER)
841 		freq += 5;
842 	else if (flags & IEEE80211_CHAN_HALF)
843 		freq += 10;
844 	else
845 		freq += 20;
846 	/* NB: there is no 907/20 wide but leave room */
847 	return (freq - 906*10) / 5;
848 }
849 
850 static __inline int
851 mappsb(u_int freq, u_int flags)
852 {
853 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
854 }
855 
856 /*
857  * Convert MHz frequency to IEEE channel number.
858  */
859 int
860 ieee80211_mhz2ieee(u_int freq, u_int flags)
861 {
862 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
863 	if (flags & IEEE80211_CHAN_GSM)
864 		return mapgsm(freq, flags);
865 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
866 		if (freq == 2484)
867 			return 14;
868 		if (freq < 2484)
869 			return ((int) freq - 2407) / 5;
870 		else
871 			return 15 + ((freq - 2512) / 20);
872 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
873 		if (freq <= 5000) {
874 			/* XXX check regdomain? */
875 			if (IS_FREQ_IN_PSB(freq))
876 				return mappsb(freq, flags);
877 			return (freq - 4000) / 5;
878 		} else
879 			return (freq - 5000) / 5;
880 	} else {				/* either, guess */
881 		if (freq == 2484)
882 			return 14;
883 		if (freq < 2484) {
884 			if (907 <= freq && freq <= 922)
885 				return mapgsm(freq, flags);
886 			return ((int) freq - 2407) / 5;
887 		}
888 		if (freq < 5000) {
889 			if (IS_FREQ_IN_PSB(freq))
890 				return mappsb(freq, flags);
891 			else if (freq > 4900)
892 				return (freq - 4000) / 5;
893 			else
894 				return 15 + ((freq - 2512) / 20);
895 		}
896 		return (freq - 5000) / 5;
897 	}
898 #undef IS_FREQ_IN_PSB
899 }
900 
901 /*
902  * Convert channel to IEEE channel number.
903  */
904 int
905 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
906 {
907 	if (c == NULL) {
908 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
909 		return 0;		/* XXX */
910 	}
911 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
912 }
913 
914 /*
915  * Convert IEEE channel number to MHz frequency.
916  */
917 u_int
918 ieee80211_ieee2mhz(u_int chan, u_int flags)
919 {
920 	if (flags & IEEE80211_CHAN_GSM)
921 		return 907 + 5 * (chan / 10);
922 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
923 		if (chan == 14)
924 			return 2484;
925 		if (chan < 14)
926 			return 2407 + chan*5;
927 		else
928 			return 2512 + ((chan-15)*20);
929 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
930 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
931 			chan -= 37;
932 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
933 		}
934 		return 5000 + (chan*5);
935 	} else {				/* either, guess */
936 		/* XXX can't distinguish PSB+GSM channels */
937 		if (chan == 14)
938 			return 2484;
939 		if (chan < 14)			/* 0-13 */
940 			return 2407 + chan*5;
941 		if (chan < 27)			/* 15-26 */
942 			return 2512 + ((chan-15)*20);
943 		return 5000 + (chan*5);
944 	}
945 }
946 
947 /*
948  * Locate a channel given a frequency+flags.  We cache
949  * the previous lookup to optimize switching between two
950  * channels--as happens with dynamic turbo.
951  */
952 struct ieee80211_channel *
953 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
954 {
955 	struct ieee80211_channel *c;
956 	int i;
957 
958 	flags &= IEEE80211_CHAN_ALLTURBO;
959 	c = ic->ic_prevchan;
960 	if (c != NULL && c->ic_freq == freq &&
961 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
962 		return c;
963 	/* brute force search */
964 	for (i = 0; i < ic->ic_nchans; i++) {
965 		c = &ic->ic_channels[i];
966 		if (c->ic_freq == freq &&
967 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
968 			return c;
969 	}
970 	return NULL;
971 }
972 
973 /*
974  * Locate a channel given a channel number+flags.  We cache
975  * the previous lookup to optimize switching between two
976  * channels--as happens with dynamic turbo.
977  */
978 struct ieee80211_channel *
979 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
980 {
981 	struct ieee80211_channel *c;
982 	int i;
983 
984 	flags &= IEEE80211_CHAN_ALLTURBO;
985 	c = ic->ic_prevchan;
986 	if (c != NULL && c->ic_ieee == ieee &&
987 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
988 		return c;
989 	/* brute force search */
990 	for (i = 0; i < ic->ic_nchans; i++) {
991 		c = &ic->ic_channels[i];
992 		if (c->ic_ieee == ieee &&
993 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
994 			return c;
995 	}
996 	return NULL;
997 }
998 
999 static void
1000 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1001 {
1002 #define	ADD(_ic, _s, _o) \
1003 	ifmedia_add(media, \
1004 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1005 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1006 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1007 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1008 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1009 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1010 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1011 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1012 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1013 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1014 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1015 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1016 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1017 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1018 	};
1019 	u_int mopt;
1020 
1021 	mopt = mopts[mode];
1022 	if (addsta)
1023 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1024 	if (caps & IEEE80211_C_IBSS)
1025 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1026 	if (caps & IEEE80211_C_HOSTAP)
1027 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1028 	if (caps & IEEE80211_C_AHDEMO)
1029 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1030 	if (caps & IEEE80211_C_MONITOR)
1031 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1032 	if (caps & IEEE80211_C_WDS)
1033 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1034 	if (caps & IEEE80211_C_MBSS)
1035 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1036 #undef ADD
1037 }
1038 
1039 /*
1040  * Setup the media data structures according to the channel and
1041  * rate tables.
1042  */
1043 static int
1044 ieee80211_media_setup(struct ieee80211com *ic,
1045 	struct ifmedia *media, int caps, int addsta,
1046 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1047 {
1048 	int i, j, rate, maxrate, mword, r;
1049 	enum ieee80211_phymode mode;
1050 	const struct ieee80211_rateset *rs;
1051 	struct ieee80211_rateset allrates;
1052 
1053 	/*
1054 	 * Fill in media characteristics.
1055 	 */
1056 	ifmedia_init(media, 0, media_change, media_stat);
1057 	maxrate = 0;
1058 	/*
1059 	 * Add media for legacy operating modes.
1060 	 */
1061 	memset(&allrates, 0, sizeof(allrates));
1062 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1063 		if (isclr(ic->ic_modecaps, mode))
1064 			continue;
1065 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1066 		if (mode == IEEE80211_MODE_AUTO)
1067 			continue;
1068 		rs = &ic->ic_sup_rates[mode];
1069 		for (i = 0; i < rs->rs_nrates; i++) {
1070 			rate = rs->rs_rates[i];
1071 			mword = ieee80211_rate2media(ic, rate, mode);
1072 			if (mword == 0)
1073 				continue;
1074 			addmedia(media, caps, addsta, mode, mword);
1075 			/*
1076 			 * Add legacy rate to the collection of all rates.
1077 			 */
1078 			r = rate & IEEE80211_RATE_VAL;
1079 			for (j = 0; j < allrates.rs_nrates; j++)
1080 				if (allrates.rs_rates[j] == r)
1081 					break;
1082 			if (j == allrates.rs_nrates) {
1083 				/* unique, add to the set */
1084 				allrates.rs_rates[j] = r;
1085 				allrates.rs_nrates++;
1086 			}
1087 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1088 			if (rate > maxrate)
1089 				maxrate = rate;
1090 		}
1091 	}
1092 	for (i = 0; i < allrates.rs_nrates; i++) {
1093 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1094 				IEEE80211_MODE_AUTO);
1095 		if (mword == 0)
1096 			continue;
1097 		/* NB: remove media options from mword */
1098 		addmedia(media, caps, addsta,
1099 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1100 	}
1101 	/*
1102 	 * Add HT/11n media.  Note that we do not have enough
1103 	 * bits in the media subtype to express the MCS so we
1104 	 * use a "placeholder" media subtype and any fixed MCS
1105 	 * must be specified with a different mechanism.
1106 	 */
1107 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1108 		if (isclr(ic->ic_modecaps, mode))
1109 			continue;
1110 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1111 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1112 	}
1113 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1114 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1115 		addmedia(media, caps, addsta,
1116 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1117 		i = ic->ic_txstream * 8 - 1;
1118 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1119 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1120 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1121 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1122 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1123 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1124 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1125 		else
1126 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1127 		if (rate > maxrate)
1128 			maxrate = rate;
1129 	}
1130 	return maxrate;
1131 }
1132 
1133 void
1134 ieee80211_media_init(struct ieee80211com *ic)
1135 {
1136 	struct ifnet *ifp = ic->ic_ifp;
1137 	int maxrate;
1138 
1139 	/* NB: this works because the structure is initialized to zero */
1140 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1141 		/*
1142 		 * We are re-initializing the channel list; clear
1143 		 * the existing media state as the media routines
1144 		 * don't suppress duplicates.
1145 		 */
1146 		ifmedia_removeall(&ic->ic_media);
1147 	}
1148 	ieee80211_chan_init(ic);
1149 
1150 	/*
1151 	 * Recalculate media settings in case new channel list changes
1152 	 * the set of available modes.
1153 	 */
1154 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1155 		ieee80211com_media_change, ieee80211com_media_status);
1156 	/* NB: strip explicit mode; we're actually in autoselect */
1157 	ifmedia_set(&ic->ic_media,
1158 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1159 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1160 	if (maxrate)
1161 		ifp->if_baudrate = IF_Mbps(maxrate);
1162 
1163 	/* XXX need to propagate new media settings to vap's */
1164 }
1165 
1166 /* XXX inline or eliminate? */
1167 const struct ieee80211_rateset *
1168 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1169 {
1170 	/* XXX does this work for 11ng basic rates? */
1171 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1172 }
1173 
1174 void
1175 ieee80211_announce(struct ieee80211com *ic)
1176 {
1177 	struct ifnet *ifp = ic->ic_ifp;
1178 	int i, rate, mword;
1179 	enum ieee80211_phymode mode;
1180 	const struct ieee80211_rateset *rs;
1181 
1182 	/* NB: skip AUTO since it has no rates */
1183 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1184 		if (isclr(ic->ic_modecaps, mode))
1185 			continue;
1186 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1187 		rs = &ic->ic_sup_rates[mode];
1188 		for (i = 0; i < rs->rs_nrates; i++) {
1189 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1190 			if (mword == 0)
1191 				continue;
1192 			rate = ieee80211_media2rate(mword);
1193 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1194 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1195 		}
1196 		printf("\n");
1197 	}
1198 	ieee80211_ht_announce(ic);
1199 }
1200 
1201 void
1202 ieee80211_announce_channels(struct ieee80211com *ic)
1203 {
1204 	const struct ieee80211_channel *c;
1205 	char type;
1206 	int i, cw;
1207 
1208 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1209 	for (i = 0; i < ic->ic_nchans; i++) {
1210 		c = &ic->ic_channels[i];
1211 		if (IEEE80211_IS_CHAN_ST(c))
1212 			type = 'S';
1213 		else if (IEEE80211_IS_CHAN_108A(c))
1214 			type = 'T';
1215 		else if (IEEE80211_IS_CHAN_108G(c))
1216 			type = 'G';
1217 		else if (IEEE80211_IS_CHAN_HT(c))
1218 			type = 'n';
1219 		else if (IEEE80211_IS_CHAN_A(c))
1220 			type = 'a';
1221 		else if (IEEE80211_IS_CHAN_ANYG(c))
1222 			type = 'g';
1223 		else if (IEEE80211_IS_CHAN_B(c))
1224 			type = 'b';
1225 		else
1226 			type = 'f';
1227 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1228 			cw = 40;
1229 		else if (IEEE80211_IS_CHAN_HALF(c))
1230 			cw = 10;
1231 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1232 			cw = 5;
1233 		else
1234 			cw = 20;
1235 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1236 			, c->ic_ieee, c->ic_freq, type
1237 			, cw
1238 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1239 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1240 			, c->ic_maxregpower
1241 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1242 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1243 		);
1244 	}
1245 }
1246 
1247 static int
1248 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1249 {
1250 	switch (IFM_MODE(ime->ifm_media)) {
1251 	case IFM_IEEE80211_11A:
1252 		*mode = IEEE80211_MODE_11A;
1253 		break;
1254 	case IFM_IEEE80211_11B:
1255 		*mode = IEEE80211_MODE_11B;
1256 		break;
1257 	case IFM_IEEE80211_11G:
1258 		*mode = IEEE80211_MODE_11G;
1259 		break;
1260 	case IFM_IEEE80211_FH:
1261 		*mode = IEEE80211_MODE_FH;
1262 		break;
1263 	case IFM_IEEE80211_11NA:
1264 		*mode = IEEE80211_MODE_11NA;
1265 		break;
1266 	case IFM_IEEE80211_11NG:
1267 		*mode = IEEE80211_MODE_11NG;
1268 		break;
1269 	case IFM_AUTO:
1270 		*mode = IEEE80211_MODE_AUTO;
1271 		break;
1272 	default:
1273 		return 0;
1274 	}
1275 	/*
1276 	 * Turbo mode is an ``option''.
1277 	 * XXX does not apply to AUTO
1278 	 */
1279 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1280 		if (*mode == IEEE80211_MODE_11A) {
1281 			if (flags & IEEE80211_F_TURBOP)
1282 				*mode = IEEE80211_MODE_TURBO_A;
1283 			else
1284 				*mode = IEEE80211_MODE_STURBO_A;
1285 		} else if (*mode == IEEE80211_MODE_11G)
1286 			*mode = IEEE80211_MODE_TURBO_G;
1287 		else
1288 			return 0;
1289 	}
1290 	/* XXX HT40 +/- */
1291 	return 1;
1292 }
1293 
1294 /*
1295  * Handle a media change request on the underlying interface.
1296  */
1297 int
1298 ieee80211com_media_change(struct ifnet *ifp)
1299 {
1300 	return EINVAL;
1301 }
1302 
1303 /*
1304  * Handle a media change request on the vap interface.
1305  */
1306 int
1307 ieee80211_media_change(struct ifnet *ifp)
1308 {
1309 	struct ieee80211vap *vap = ifp->if_softc;
1310 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1311 	uint16_t newmode;
1312 
1313 	if (!media2mode(ime, vap->iv_flags, &newmode))
1314 		return EINVAL;
1315 	if (vap->iv_des_mode != newmode) {
1316 		vap->iv_des_mode = newmode;
1317 		/* XXX kick state machine if up+running */
1318 	}
1319 	return 0;
1320 }
1321 
1322 /*
1323  * Common code to calculate the media status word
1324  * from the operating mode and channel state.
1325  */
1326 static int
1327 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1328 {
1329 	int status;
1330 
1331 	status = IFM_IEEE80211;
1332 	switch (opmode) {
1333 	case IEEE80211_M_STA:
1334 		break;
1335 	case IEEE80211_M_IBSS:
1336 		status |= IFM_IEEE80211_ADHOC;
1337 		break;
1338 	case IEEE80211_M_HOSTAP:
1339 		status |= IFM_IEEE80211_HOSTAP;
1340 		break;
1341 	case IEEE80211_M_MONITOR:
1342 		status |= IFM_IEEE80211_MONITOR;
1343 		break;
1344 	case IEEE80211_M_AHDEMO:
1345 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1346 		break;
1347 	case IEEE80211_M_WDS:
1348 		status |= IFM_IEEE80211_WDS;
1349 		break;
1350 	case IEEE80211_M_MBSS:
1351 		status |= IFM_IEEE80211_MBSS;
1352 		break;
1353 	}
1354 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1355 		status |= IFM_IEEE80211_11NA;
1356 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1357 		status |= IFM_IEEE80211_11NG;
1358 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1359 		status |= IFM_IEEE80211_11A;
1360 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1361 		status |= IFM_IEEE80211_11B;
1362 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1363 		status |= IFM_IEEE80211_11G;
1364 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1365 		status |= IFM_IEEE80211_FH;
1366 	}
1367 	/* XXX else complain? */
1368 
1369 	if (IEEE80211_IS_CHAN_TURBO(chan))
1370 		status |= IFM_IEEE80211_TURBO;
1371 #if 0
1372 	if (IEEE80211_IS_CHAN_HT20(chan))
1373 		status |= IFM_IEEE80211_HT20;
1374 	if (IEEE80211_IS_CHAN_HT40(chan))
1375 		status |= IFM_IEEE80211_HT40;
1376 #endif
1377 	return status;
1378 }
1379 
1380 static void
1381 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1382 {
1383 	struct ieee80211com *ic = ifp->if_l2com;
1384 	struct ieee80211vap *vap;
1385 
1386 	imr->ifm_status = IFM_AVALID;
1387 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1388 		if (vap->iv_ifp->if_flags & IFF_UP) {
1389 			imr->ifm_status |= IFM_ACTIVE;
1390 			break;
1391 		}
1392 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1393 	if (imr->ifm_status & IFM_ACTIVE)
1394 		imr->ifm_current = imr->ifm_active;
1395 }
1396 
1397 void
1398 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1399 {
1400 	struct ieee80211vap *vap = ifp->if_softc;
1401 	struct ieee80211com *ic = vap->iv_ic;
1402 	enum ieee80211_phymode mode;
1403 
1404 	imr->ifm_status = IFM_AVALID;
1405 	/*
1406 	 * NB: use the current channel's mode to lock down a xmit
1407 	 * rate only when running; otherwise we may have a mismatch
1408 	 * in which case the rate will not be convertible.
1409 	 */
1410 	if (vap->iv_state == IEEE80211_S_RUN) {
1411 		imr->ifm_status |= IFM_ACTIVE;
1412 		mode = ieee80211_chan2mode(ic->ic_curchan);
1413 	} else
1414 		mode = IEEE80211_MODE_AUTO;
1415 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1416 	/*
1417 	 * Calculate a current rate if possible.
1418 	 */
1419 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1420 		/*
1421 		 * A fixed rate is set, report that.
1422 		 */
1423 		imr->ifm_active |= ieee80211_rate2media(ic,
1424 			vap->iv_txparms[mode].ucastrate, mode);
1425 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1426 		/*
1427 		 * In station mode report the current transmit rate.
1428 		 */
1429 		imr->ifm_active |= ieee80211_rate2media(ic,
1430 			vap->iv_bss->ni_txrate, mode);
1431 	} else
1432 		imr->ifm_active |= IFM_AUTO;
1433 	if (imr->ifm_status & IFM_ACTIVE)
1434 		imr->ifm_current = imr->ifm_active;
1435 }
1436 
1437 /*
1438  * Set the current phy mode and recalculate the active channel
1439  * set based on the available channels for this mode.  Also
1440  * select a new default/current channel if the current one is
1441  * inappropriate for this mode.
1442  */
1443 int
1444 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1445 {
1446 	/*
1447 	 * Adjust basic rates in 11b/11g supported rate set.
1448 	 * Note that if operating on a hal/quarter rate channel
1449 	 * this is a noop as those rates sets are different
1450 	 * and used instead.
1451 	 */
1452 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1453 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1454 
1455 	ic->ic_curmode = mode;
1456 	ieee80211_reset_erp(ic);	/* reset ERP state */
1457 
1458 	return 0;
1459 }
1460 
1461 /*
1462  * Return the phy mode for with the specified channel.
1463  */
1464 enum ieee80211_phymode
1465 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1466 {
1467 
1468 	if (IEEE80211_IS_CHAN_HTA(chan))
1469 		return IEEE80211_MODE_11NA;
1470 	else if (IEEE80211_IS_CHAN_HTG(chan))
1471 		return IEEE80211_MODE_11NG;
1472 	else if (IEEE80211_IS_CHAN_108G(chan))
1473 		return IEEE80211_MODE_TURBO_G;
1474 	else if (IEEE80211_IS_CHAN_ST(chan))
1475 		return IEEE80211_MODE_STURBO_A;
1476 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1477 		return IEEE80211_MODE_TURBO_A;
1478 	else if (IEEE80211_IS_CHAN_HALF(chan))
1479 		return IEEE80211_MODE_HALF;
1480 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1481 		return IEEE80211_MODE_QUARTER;
1482 	else if (IEEE80211_IS_CHAN_A(chan))
1483 		return IEEE80211_MODE_11A;
1484 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1485 		return IEEE80211_MODE_11G;
1486 	else if (IEEE80211_IS_CHAN_B(chan))
1487 		return IEEE80211_MODE_11B;
1488 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1489 		return IEEE80211_MODE_FH;
1490 
1491 	/* NB: should not get here */
1492 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1493 		__func__, chan->ic_freq, chan->ic_flags);
1494 	return IEEE80211_MODE_11B;
1495 }
1496 
1497 struct ratemedia {
1498 	u_int	match;	/* rate + mode */
1499 	u_int	media;	/* if_media rate */
1500 };
1501 
1502 static int
1503 findmedia(const struct ratemedia rates[], int n, u_int match)
1504 {
1505 	int i;
1506 
1507 	for (i = 0; i < n; i++)
1508 		if (rates[i].match == match)
1509 			return rates[i].media;
1510 	return IFM_AUTO;
1511 }
1512 
1513 /*
1514  * Convert IEEE80211 rate value to ifmedia subtype.
1515  * Rate is either a legacy rate in units of 0.5Mbps
1516  * or an MCS index.
1517  */
1518 int
1519 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1520 {
1521 	static const struct ratemedia rates[] = {
1522 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1523 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1524 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1525 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1526 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1527 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1528 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1529 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1530 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1531 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1532 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1533 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1534 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1535 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1536 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1537 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1538 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1539 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1540 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1541 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1542 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1543 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1544 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1545 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1546 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1547 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1548 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1549 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1550 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1551 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1552 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1553 	};
1554 	static const struct ratemedia htrates[] = {
1555 		{   0, IFM_IEEE80211_MCS },
1556 		{   1, IFM_IEEE80211_MCS },
1557 		{   2, IFM_IEEE80211_MCS },
1558 		{   3, IFM_IEEE80211_MCS },
1559 		{   4, IFM_IEEE80211_MCS },
1560 		{   5, IFM_IEEE80211_MCS },
1561 		{   6, IFM_IEEE80211_MCS },
1562 		{   7, IFM_IEEE80211_MCS },
1563 		{   8, IFM_IEEE80211_MCS },
1564 		{   9, IFM_IEEE80211_MCS },
1565 		{  10, IFM_IEEE80211_MCS },
1566 		{  11, IFM_IEEE80211_MCS },
1567 		{  12, IFM_IEEE80211_MCS },
1568 		{  13, IFM_IEEE80211_MCS },
1569 		{  14, IFM_IEEE80211_MCS },
1570 		{  15, IFM_IEEE80211_MCS },
1571 		{  16, IFM_IEEE80211_MCS },
1572 		{  17, IFM_IEEE80211_MCS },
1573 		{  18, IFM_IEEE80211_MCS },
1574 		{  19, IFM_IEEE80211_MCS },
1575 		{  20, IFM_IEEE80211_MCS },
1576 		{  21, IFM_IEEE80211_MCS },
1577 		{  22, IFM_IEEE80211_MCS },
1578 		{  23, IFM_IEEE80211_MCS },
1579 		{  24, IFM_IEEE80211_MCS },
1580 		{  25, IFM_IEEE80211_MCS },
1581 		{  26, IFM_IEEE80211_MCS },
1582 		{  27, IFM_IEEE80211_MCS },
1583 		{  28, IFM_IEEE80211_MCS },
1584 		{  29, IFM_IEEE80211_MCS },
1585 		{  30, IFM_IEEE80211_MCS },
1586 		{  31, IFM_IEEE80211_MCS },
1587 		{  32, IFM_IEEE80211_MCS },
1588 		{  33, IFM_IEEE80211_MCS },
1589 		{  34, IFM_IEEE80211_MCS },
1590 		{  35, IFM_IEEE80211_MCS },
1591 		{  36, IFM_IEEE80211_MCS },
1592 		{  37, IFM_IEEE80211_MCS },
1593 		{  38, IFM_IEEE80211_MCS },
1594 		{  39, IFM_IEEE80211_MCS },
1595 		{  40, IFM_IEEE80211_MCS },
1596 		{  41, IFM_IEEE80211_MCS },
1597 		{  42, IFM_IEEE80211_MCS },
1598 		{  43, IFM_IEEE80211_MCS },
1599 		{  44, IFM_IEEE80211_MCS },
1600 		{  45, IFM_IEEE80211_MCS },
1601 		{  46, IFM_IEEE80211_MCS },
1602 		{  47, IFM_IEEE80211_MCS },
1603 		{  48, IFM_IEEE80211_MCS },
1604 		{  49, IFM_IEEE80211_MCS },
1605 		{  50, IFM_IEEE80211_MCS },
1606 		{  51, IFM_IEEE80211_MCS },
1607 		{  52, IFM_IEEE80211_MCS },
1608 		{  53, IFM_IEEE80211_MCS },
1609 		{  54, IFM_IEEE80211_MCS },
1610 		{  55, IFM_IEEE80211_MCS },
1611 		{  56, IFM_IEEE80211_MCS },
1612 		{  57, IFM_IEEE80211_MCS },
1613 		{  58, IFM_IEEE80211_MCS },
1614 		{  59, IFM_IEEE80211_MCS },
1615 		{  60, IFM_IEEE80211_MCS },
1616 		{  61, IFM_IEEE80211_MCS },
1617 		{  62, IFM_IEEE80211_MCS },
1618 		{  63, IFM_IEEE80211_MCS },
1619 		{  64, IFM_IEEE80211_MCS },
1620 		{  65, IFM_IEEE80211_MCS },
1621 		{  66, IFM_IEEE80211_MCS },
1622 		{  67, IFM_IEEE80211_MCS },
1623 		{  68, IFM_IEEE80211_MCS },
1624 		{  69, IFM_IEEE80211_MCS },
1625 		{  70, IFM_IEEE80211_MCS },
1626 		{  71, IFM_IEEE80211_MCS },
1627 		{  72, IFM_IEEE80211_MCS },
1628 		{  73, IFM_IEEE80211_MCS },
1629 		{  74, IFM_IEEE80211_MCS },
1630 		{  75, IFM_IEEE80211_MCS },
1631 		{  76, IFM_IEEE80211_MCS },
1632 	};
1633 	int m;
1634 
1635 	/*
1636 	 * Check 11n rates first for match as an MCS.
1637 	 */
1638 	if (mode == IEEE80211_MODE_11NA) {
1639 		if (rate & IEEE80211_RATE_MCS) {
1640 			rate &= ~IEEE80211_RATE_MCS;
1641 			m = findmedia(htrates, nitems(htrates), rate);
1642 			if (m != IFM_AUTO)
1643 				return m | IFM_IEEE80211_11NA;
1644 		}
1645 	} else if (mode == IEEE80211_MODE_11NG) {
1646 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1647 		if (rate & IEEE80211_RATE_MCS) {
1648 			rate &= ~IEEE80211_RATE_MCS;
1649 			m = findmedia(htrates, nitems(htrates), rate);
1650 			if (m != IFM_AUTO)
1651 				return m | IFM_IEEE80211_11NG;
1652 		}
1653 	}
1654 	rate &= IEEE80211_RATE_VAL;
1655 	switch (mode) {
1656 	case IEEE80211_MODE_11A:
1657 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1658 	case IEEE80211_MODE_QUARTER:
1659 	case IEEE80211_MODE_11NA:
1660 	case IEEE80211_MODE_TURBO_A:
1661 	case IEEE80211_MODE_STURBO_A:
1662 		return findmedia(rates, nitems(rates),
1663 		    rate | IFM_IEEE80211_11A);
1664 	case IEEE80211_MODE_11B:
1665 		return findmedia(rates, nitems(rates),
1666 		    rate | IFM_IEEE80211_11B);
1667 	case IEEE80211_MODE_FH:
1668 		return findmedia(rates, nitems(rates),
1669 		    rate | IFM_IEEE80211_FH);
1670 	case IEEE80211_MODE_AUTO:
1671 		/* NB: ic may be NULL for some drivers */
1672 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1673 			return findmedia(rates, nitems(rates),
1674 			    rate | IFM_IEEE80211_FH);
1675 		/* NB: hack, 11g matches both 11b+11a rates */
1676 		/* fall thru... */
1677 	case IEEE80211_MODE_11G:
1678 	case IEEE80211_MODE_11NG:
1679 	case IEEE80211_MODE_TURBO_G:
1680 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
1681 	}
1682 	return IFM_AUTO;
1683 }
1684 
1685 int
1686 ieee80211_media2rate(int mword)
1687 {
1688 	static const int ieeerates[] = {
1689 		-1,		/* IFM_AUTO */
1690 		0,		/* IFM_MANUAL */
1691 		0,		/* IFM_NONE */
1692 		2,		/* IFM_IEEE80211_FH1 */
1693 		4,		/* IFM_IEEE80211_FH2 */
1694 		2,		/* IFM_IEEE80211_DS1 */
1695 		4,		/* IFM_IEEE80211_DS2 */
1696 		11,		/* IFM_IEEE80211_DS5 */
1697 		22,		/* IFM_IEEE80211_DS11 */
1698 		44,		/* IFM_IEEE80211_DS22 */
1699 		12,		/* IFM_IEEE80211_OFDM6 */
1700 		18,		/* IFM_IEEE80211_OFDM9 */
1701 		24,		/* IFM_IEEE80211_OFDM12 */
1702 		36,		/* IFM_IEEE80211_OFDM18 */
1703 		48,		/* IFM_IEEE80211_OFDM24 */
1704 		72,		/* IFM_IEEE80211_OFDM36 */
1705 		96,		/* IFM_IEEE80211_OFDM48 */
1706 		108,		/* IFM_IEEE80211_OFDM54 */
1707 		144,		/* IFM_IEEE80211_OFDM72 */
1708 		0,		/* IFM_IEEE80211_DS354k */
1709 		0,		/* IFM_IEEE80211_DS512k */
1710 		6,		/* IFM_IEEE80211_OFDM3 */
1711 		9,		/* IFM_IEEE80211_OFDM4 */
1712 		54,		/* IFM_IEEE80211_OFDM27 */
1713 		-1,		/* IFM_IEEE80211_MCS */
1714 	};
1715 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
1716 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1717 }
1718 
1719 /*
1720  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1721  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1722  */
1723 #define	mix(a, b, c)							\
1724 do {									\
1725 	a -= b; a -= c; a ^= (c >> 13);					\
1726 	b -= c; b -= a; b ^= (a << 8);					\
1727 	c -= a; c -= b; c ^= (b >> 13);					\
1728 	a -= b; a -= c; a ^= (c >> 12);					\
1729 	b -= c; b -= a; b ^= (a << 16);					\
1730 	c -= a; c -= b; c ^= (b >> 5);					\
1731 	a -= b; a -= c; a ^= (c >> 3);					\
1732 	b -= c; b -= a; b ^= (a << 10);					\
1733 	c -= a; c -= b; c ^= (b >> 15);					\
1734 } while (/*CONSTCOND*/0)
1735 
1736 uint32_t
1737 ieee80211_mac_hash(const struct ieee80211com *ic,
1738 	const uint8_t addr[IEEE80211_ADDR_LEN])
1739 {
1740 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1741 
1742 	b += addr[5] << 8;
1743 	b += addr[4];
1744 	a += addr[3] << 24;
1745 	a += addr[2] << 16;
1746 	a += addr[1] << 8;
1747 	a += addr[0];
1748 
1749 	mix(a, b, c);
1750 
1751 	return c;
1752 }
1753 #undef mix
1754