xref: /freebsd/sys/net80211/ieee80211.c (revision c27f7d6b9cf6d4ab01cb3d0972726c14e0aca146)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_private.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #include <net80211/ieee80211_ratectl.h>
58 #include <net80211/ieee80211_vht.h>
59 
60 #include <net/bpf.h>
61 
62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
63 	[IEEE80211_MODE_AUTO]	  = "auto",
64 	[IEEE80211_MODE_11A]	  = "11a",
65 	[IEEE80211_MODE_11B]	  = "11b",
66 	[IEEE80211_MODE_11G]	  = "11g",
67 	[IEEE80211_MODE_FH]	  = "FH",
68 	[IEEE80211_MODE_TURBO_A]  = "turboA",
69 	[IEEE80211_MODE_TURBO_G]  = "turboG",
70 	[IEEE80211_MODE_STURBO_A] = "sturboA",
71 	[IEEE80211_MODE_HALF]	  = "half",
72 	[IEEE80211_MODE_QUARTER]  = "quarter",
73 	[IEEE80211_MODE_11NA]	  = "11na",
74 	[IEEE80211_MODE_11NG]	  = "11ng",
75 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
76 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
77 };
78 /* map ieee80211_opmode to the corresponding capability bit */
79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
80 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
81 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
82 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
83 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
84 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
85 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
86 #ifdef IEEE80211_SUPPORT_MESH
87 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
88 #endif
89 };
90 
91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
92 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
93 
94 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
98 static	int ieee80211_media_setup(struct ieee80211com *ic,
99 		struct ifmedia *media, int caps, int addsta,
100 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
101 static	int media_status(enum ieee80211_opmode,
102 		const struct ieee80211_channel *);
103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
104 
105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
106 
107 /*
108  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
109  */
110 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
111 static const struct ieee80211_rateset ieee80211_rateset_11a =
112 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
113 static const struct ieee80211_rateset ieee80211_rateset_half =
114 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
115 static const struct ieee80211_rateset ieee80211_rateset_quarter =
116 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
117 static const struct ieee80211_rateset ieee80211_rateset_11b =
118 	{ 4, { B(2), B(4), B(11), B(22) } };
119 /* NB: OFDM rates are handled specially based on mode */
120 static const struct ieee80211_rateset ieee80211_rateset_11g =
121 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
122 #undef B
123 
124 static int set_vht_extchan(struct ieee80211_channel *c);
125 
126 /*
127  * Fill in 802.11 available channel set, mark
128  * all available channels as active, and pick
129  * a default channel if not already specified.
130  */
131 void
132 ieee80211_chan_init(struct ieee80211com *ic)
133 {
134 #define	DEFAULTRATES(m, def) do { \
135 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
136 		ic->ic_sup_rates[m] = def; \
137 } while (0)
138 	struct ieee80211_channel *c;
139 	int i;
140 
141 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
142 		("invalid number of channels specified: %u", ic->ic_nchans));
143 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
144 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
145 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
146 	for (i = 0; i < ic->ic_nchans; i++) {
147 		c = &ic->ic_channels[i];
148 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
149 		/*
150 		 * Help drivers that work only with frequencies by filling
151 		 * in IEEE channel #'s if not already calculated.  Note this
152 		 * mimics similar work done in ieee80211_setregdomain when
153 		 * changing regulatory state.
154 		 */
155 		if (c->ic_ieee == 0)
156 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
157 
158 		/*
159 		 * Setup the HT40/VHT40 upper/lower bits.
160 		 * The VHT80/... math is done elsewhere.
161 		 */
162 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
163 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
164 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
165 			    c->ic_flags);
166 
167 		/* Update VHT math */
168 		/*
169 		 * XXX VHT again, note that this assumes VHT80/... channels
170 		 * are legit already.
171 		 */
172 		set_vht_extchan(c);
173 
174 		/* default max tx power to max regulatory */
175 		if (c->ic_maxpower == 0)
176 			c->ic_maxpower = 2*c->ic_maxregpower;
177 		setbit(ic->ic_chan_avail, c->ic_ieee);
178 		/*
179 		 * Identify mode capabilities.
180 		 */
181 		if (IEEE80211_IS_CHAN_A(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
183 		if (IEEE80211_IS_CHAN_B(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
185 		if (IEEE80211_IS_CHAN_ANYG(c))
186 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
187 		if (IEEE80211_IS_CHAN_FHSS(c))
188 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
189 		if (IEEE80211_IS_CHAN_108A(c))
190 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
191 		if (IEEE80211_IS_CHAN_108G(c))
192 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
193 		if (IEEE80211_IS_CHAN_ST(c))
194 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
195 		if (IEEE80211_IS_CHAN_HALF(c))
196 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
197 		if (IEEE80211_IS_CHAN_QUARTER(c))
198 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
199 		if (IEEE80211_IS_CHAN_HTA(c))
200 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
201 		if (IEEE80211_IS_CHAN_HTG(c))
202 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
203 		if (IEEE80211_IS_CHAN_VHTA(c))
204 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
205 		if (IEEE80211_IS_CHAN_VHTG(c))
206 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
207 	}
208 	/* initialize candidate channels to all available */
209 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
210 		sizeof(ic->ic_chan_avail));
211 
212 	/* sort channel table to allow lookup optimizations */
213 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
214 
215 	/* invalidate any previous state */
216 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
217 	ic->ic_prevchan = NULL;
218 	ic->ic_csa_newchan = NULL;
219 	/* arbitrarily pick the first channel */
220 	ic->ic_curchan = &ic->ic_channels[0];
221 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
222 
223 	/* fillin well-known rate sets if driver has not specified */
224 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
225 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
226 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
227 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
229 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
230 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
231 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
232 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
233 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
234 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
236 
237 	/*
238 	 * Setup required information to fill the mcsset field, if driver did
239 	 * not. Assume a 2T2R setup for historic reasons.
240 	 */
241 	if (ic->ic_rxstream == 0)
242 		ic->ic_rxstream = 2;
243 	if (ic->ic_txstream == 0)
244 		ic->ic_txstream = 2;
245 
246 	ieee80211_init_suphtrates(ic);
247 
248 	/*
249 	 * Set auto mode to reset active channel state and any desired channel.
250 	 */
251 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
252 #undef DEFAULTRATES
253 }
254 
255 static void
256 null_update_mcast(struct ieee80211com *ic)
257 {
258 
259 	ic_printf(ic, "need multicast update callback\n");
260 }
261 
262 static void
263 null_update_promisc(struct ieee80211com *ic)
264 {
265 
266 	ic_printf(ic, "need promiscuous mode update callback\n");
267 }
268 
269 static void
270 null_update_chw(struct ieee80211com *ic)
271 {
272 
273 	ic_printf(ic, "%s: need callback\n", __func__);
274 }
275 
276 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
277 static struct mtx ic_list_mtx;
278 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
279 
280 static int
281 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
282 {
283 	struct ieee80211com *ic;
284 	struct sbuf sb;
285 	char *sp;
286 	int error;
287 
288 	error = sysctl_wire_old_buffer(req, 0);
289 	if (error)
290 		return (error);
291 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
292 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
293 	sp = "";
294 	mtx_lock(&ic_list_mtx);
295 	LIST_FOREACH(ic, &ic_head, ic_next) {
296 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
297 		sp = " ";
298 	}
299 	mtx_unlock(&ic_list_mtx);
300 	error = sbuf_finish(&sb);
301 	sbuf_delete(&sb);
302 	return (error);
303 }
304 
305 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
306     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
307     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
308 
309 /*
310  * Attach/setup the common net80211 state.  Called by
311  * the driver on attach to prior to creating any vap's.
312  */
313 void
314 ieee80211_ifattach(struct ieee80211com *ic)
315 {
316 
317 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
318 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
319 	TAILQ_INIT(&ic->ic_vaps);
320 
321 	/* Create a taskqueue for all state changes */
322 	ic->ic_tq = taskqueue_create("ic_taskq",
323 	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
324 	    taskqueue_thread_enqueue, &ic->ic_tq);
325 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
326 	    ic->ic_name);
327 	ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
328 	ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
329 	/*
330 	 * Fill in 802.11 available channel set, mark all
331 	 * available channels as active, and pick a default
332 	 * channel if not already specified.
333 	 */
334 	ieee80211_chan_init(ic);
335 
336 	ic->ic_update_mcast = null_update_mcast;
337 	ic->ic_update_promisc = null_update_promisc;
338 	ic->ic_update_chw = null_update_chw;
339 
340 	ic->ic_hash_key = arc4random();
341 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
342 	ic->ic_lintval = ic->ic_bintval;
343 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
344 
345 	ieee80211_crypto_attach(ic);
346 	ieee80211_node_attach(ic);
347 	ieee80211_power_attach(ic);
348 	ieee80211_proto_attach(ic);
349 #ifdef IEEE80211_SUPPORT_SUPERG
350 	ieee80211_superg_attach(ic);
351 #endif
352 	ieee80211_ht_attach(ic);
353 	ieee80211_vht_attach(ic);
354 	ieee80211_scan_attach(ic);
355 	ieee80211_regdomain_attach(ic);
356 	ieee80211_dfs_attach(ic);
357 
358 	ieee80211_sysctl_attach(ic);
359 
360 	mtx_lock(&ic_list_mtx);
361 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
362 	mtx_unlock(&ic_list_mtx);
363 }
364 
365 /*
366  * Detach net80211 state on device detach.  Tear down
367  * all vap's and reclaim all common state prior to the
368  * device state going away.  Note we may call back into
369  * driver; it must be prepared for this.
370  */
371 void
372 ieee80211_ifdetach(struct ieee80211com *ic)
373 {
374 	struct ieee80211vap *vap;
375 
376 	/*
377 	 * We use this as an indicator that ifattach never had a chance to be
378 	 * called, e.g. early driver attach failed and ifdetach was called
379 	 * during subsequent detach.  Never fear, for we have nothing to do
380 	 * here.
381 	 */
382 	if (ic->ic_tq == NULL)
383 		return;
384 
385 	mtx_lock(&ic_list_mtx);
386 	LIST_REMOVE(ic, ic_next);
387 	mtx_unlock(&ic_list_mtx);
388 
389 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
390 
391 	/*
392 	 * The VAP is responsible for setting and clearing
393 	 * the VIMAGE context.
394 	 */
395 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
396 		ieee80211_com_vdetach(vap);
397 		ieee80211_vap_destroy(vap);
398 	}
399 	ieee80211_waitfor_parent(ic);
400 
401 	ieee80211_sysctl_detach(ic);
402 	ieee80211_dfs_detach(ic);
403 	ieee80211_regdomain_detach(ic);
404 	ieee80211_scan_detach(ic);
405 #ifdef IEEE80211_SUPPORT_SUPERG
406 	ieee80211_superg_detach(ic);
407 #endif
408 	ieee80211_vht_detach(ic);
409 	ieee80211_ht_detach(ic);
410 	/* NB: must be called before ieee80211_node_detach */
411 	ieee80211_proto_detach(ic);
412 	ieee80211_crypto_detach(ic);
413 	ieee80211_power_detach(ic);
414 	ieee80211_node_detach(ic);
415 
416 	counter_u64_free(ic->ic_ierrors);
417 	counter_u64_free(ic->ic_oerrors);
418 
419 	taskqueue_free(ic->ic_tq);
420 	IEEE80211_TX_LOCK_DESTROY(ic);
421 	IEEE80211_LOCK_DESTROY(ic);
422 }
423 
424 /*
425  * Called by drivers during attach to set the supported
426  * cipher set for software encryption.
427  */
428 void
429 ieee80211_set_software_ciphers(struct ieee80211com *ic,
430     uint32_t cipher_suite)
431 {
432 	ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
433 }
434 
435 /*
436  * Called by drivers during attach to set the supported
437  * cipher set for hardware encryption.
438  */
439 void
440 ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
441     uint32_t cipher_suite)
442 {
443 	ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
444 }
445 
446 /*
447  * Called by drivers during attach to set the supported
448  * key management suites by the driver/hardware.
449  */
450 void
451 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
452     uint32_t keymgmt_set)
453 {
454 	ieee80211_crypto_set_supported_driver_keymgmt(ic,
455 	    keymgmt_set);
456 }
457 
458 struct ieee80211com *
459 ieee80211_find_com(const char *name)
460 {
461 	struct ieee80211com *ic;
462 
463 	mtx_lock(&ic_list_mtx);
464 	LIST_FOREACH(ic, &ic_head, ic_next)
465 		if (strcmp(ic->ic_name, name) == 0)
466 			break;
467 	mtx_unlock(&ic_list_mtx);
468 
469 	return (ic);
470 }
471 
472 void
473 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
474 {
475 	struct ieee80211com *ic;
476 
477 	mtx_lock(&ic_list_mtx);
478 	LIST_FOREACH(ic, &ic_head, ic_next)
479 		(*f)(arg, ic);
480 	mtx_unlock(&ic_list_mtx);
481 }
482 
483 /*
484  * Default reset method for use with the ioctl support.  This
485  * method is invoked after any state change in the 802.11
486  * layer that should be propagated to the hardware but not
487  * require re-initialization of the 802.11 state machine (e.g
488  * rescanning for an ap).  We always return ENETRESET which
489  * should cause the driver to re-initialize the device. Drivers
490  * can override this method to implement more optimized support.
491  */
492 static int
493 default_reset(struct ieee80211vap *vap, u_long cmd)
494 {
495 	return ENETRESET;
496 }
497 
498 /*
499  * Default for updating the VAP default TX key index.
500  *
501  * Drivers that support TX offload as well as hardware encryption offload
502  * may need to be informed of key index changes separate from the key
503  * update.
504  */
505 static void
506 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
507 {
508 
509 	/* XXX assert validity */
510 	/* XXX assert we're in a key update block */
511 	vap->iv_def_txkey = kid;
512 }
513 
514 /*
515  * Add underlying device errors to vap errors.
516  */
517 static uint64_t
518 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
519 {
520 	struct ieee80211vap *vap = ifp->if_softc;
521 	struct ieee80211com *ic = vap->iv_ic;
522 	uint64_t rv;
523 
524 	rv = if_get_counter_default(ifp, cnt);
525 	switch (cnt) {
526 	case IFCOUNTER_OERRORS:
527 		rv += counter_u64_fetch(ic->ic_oerrors);
528 		break;
529 	case IFCOUNTER_IERRORS:
530 		rv += counter_u64_fetch(ic->ic_ierrors);
531 		break;
532 	default:
533 		break;
534 	}
535 
536 	return (rv);
537 }
538 
539 /*
540  * Prepare a vap for use.  Drivers use this call to
541  * setup net80211 state in new vap's prior attaching
542  * them with ieee80211_vap_attach (below).
543  */
544 int
545 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
546     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
547     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
548 {
549 	struct ifnet *ifp;
550 
551 	ifp = if_alloc(IFT_ETHER);
552 	if_initname(ifp, name, unit);
553 	ifp->if_softc = vap;			/* back pointer */
554 	if_setflags(ifp, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST);
555 	ifp->if_transmit = ieee80211_vap_transmit;
556 	ifp->if_qflush = ieee80211_vap_qflush;
557 	ifp->if_ioctl = ieee80211_ioctl;
558 	ifp->if_init = ieee80211_init;
559 	ifp->if_get_counter = ieee80211_get_counter;
560 
561 	vap->iv_ifp = ifp;
562 	vap->iv_ic = ic;
563 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
564 	vap->iv_flags_ext = ic->ic_flags_ext;
565 	vap->iv_flags_ven = ic->ic_flags_ven;
566 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
567 
568 	/* 11n capabilities - XXX methodize */
569 	vap->iv_htcaps = ic->ic_htcaps;
570 	vap->iv_htextcaps = ic->ic_htextcaps;
571 
572 	/* 11ac capabilities - XXX methodize */
573 	vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
574 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
575 
576 	vap->iv_opmode = opmode;
577 	vap->iv_caps |= ieee80211_opcap[opmode];
578 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
579 	switch (opmode) {
580 	case IEEE80211_M_WDS:
581 		/*
582 		 * WDS links must specify the bssid of the far end.
583 		 * For legacy operation this is a static relationship.
584 		 * For non-legacy operation the station must associate
585 		 * and be authorized to pass traffic.  Plumbing the
586 		 * vap to the proper node happens when the vap
587 		 * transitions to RUN state.
588 		 */
589 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
590 		vap->iv_flags |= IEEE80211_F_DESBSSID;
591 		if (flags & IEEE80211_CLONE_WDSLEGACY)
592 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
593 		break;
594 #ifdef IEEE80211_SUPPORT_TDMA
595 	case IEEE80211_M_AHDEMO:
596 		if (flags & IEEE80211_CLONE_TDMA) {
597 			/* NB: checked before clone operation allowed */
598 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
599 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
600 			/*
601 			 * Propagate TDMA capability to mark vap; this
602 			 * cannot be removed and is used to distinguish
603 			 * regular ahdemo operation from ahdemo+tdma.
604 			 */
605 			vap->iv_caps |= IEEE80211_C_TDMA;
606 		}
607 		break;
608 #endif
609 	default:
610 		break;
611 	}
612 	/* auto-enable s/w beacon miss support */
613 	if (flags & IEEE80211_CLONE_NOBEACONS)
614 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
615 	/* auto-generated or user supplied MAC address */
616 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
617 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
618 	/*
619 	 * Enable various functionality by default if we're
620 	 * capable; the driver can override us if it knows better.
621 	 */
622 	if (vap->iv_caps & IEEE80211_C_WME)
623 		vap->iv_flags |= IEEE80211_F_WME;
624 	if (vap->iv_caps & IEEE80211_C_BURST)
625 		vap->iv_flags |= IEEE80211_F_BURST;
626 	/* NB: bg scanning only makes sense for station mode right now */
627 	if (vap->iv_opmode == IEEE80211_M_STA &&
628 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
629 		vap->iv_flags |= IEEE80211_F_BGSCAN;
630 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
631 	/* NB: DFS support only makes sense for ap mode right now */
632 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
633 	    (vap->iv_caps & IEEE80211_C_DFS))
634 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
635 	/* NB: only flip on U-APSD for hostap/sta for now */
636 	if ((vap->iv_opmode == IEEE80211_M_STA)
637 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
638 		if (vap->iv_caps & IEEE80211_C_UAPSD)
639 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
640 	}
641 
642 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
643 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
644 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
645 	/*
646 	 * Install a default reset method for the ioctl support;
647 	 * the driver can override this.
648 	 */
649 	vap->iv_reset = default_reset;
650 
651 	/*
652 	 * Install a default crypto key update method, the driver
653 	 * can override this.
654 	 */
655 	vap->iv_update_deftxkey = default_update_deftxkey;
656 
657 	ieee80211_sysctl_vattach(vap);
658 	ieee80211_crypto_vattach(vap);
659 	ieee80211_node_vattach(vap);
660 	ieee80211_power_vattach(vap);
661 	ieee80211_proto_vattach(vap);
662 #ifdef IEEE80211_SUPPORT_SUPERG
663 	ieee80211_superg_vattach(vap);
664 #endif
665 	ieee80211_ht_vattach(vap);
666 	ieee80211_vht_vattach(vap);
667 	ieee80211_scan_vattach(vap);
668 	ieee80211_regdomain_vattach(vap);
669 	ieee80211_radiotap_vattach(vap);
670 	ieee80211_vap_reset_erp(vap);
671 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
672 
673 	return 0;
674 }
675 
676 /*
677  * Activate a vap.  State should have been prepared with a
678  * call to ieee80211_vap_setup and by the driver.  On return
679  * from this call the vap is ready for use.
680  */
681 int
682 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
683     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
684 {
685 	struct ifnet *ifp = vap->iv_ifp;
686 	struct ieee80211com *ic = vap->iv_ic;
687 	struct ifmediareq imr;
688 	int maxrate;
689 
690 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
691 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
692 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
693 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
694 
695 	/*
696 	 * Do late attach work that cannot happen until after
697 	 * the driver has had a chance to override defaults.
698 	 */
699 	ieee80211_node_latevattach(vap);
700 	ieee80211_power_latevattach(vap);
701 
702 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
703 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
704 	ieee80211_media_status(ifp, &imr);
705 	/* NB: strip explicit mode; we're actually in autoselect */
706 	ifmedia_set(&vap->iv_media,
707 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
708 	if (maxrate)
709 		ifp->if_baudrate = IF_Mbps(maxrate);
710 
711 	ether_ifattach(ifp, macaddr);
712 	/* Do initial MAC address sync */
713 	ieee80211_vap_copy_mac_address(vap);
714 	/* hook output method setup by ether_ifattach */
715 	vap->iv_output = ifp->if_output;
716 	ifp->if_output = ieee80211_output;
717 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
718 
719 	IEEE80211_LOCK(ic);
720 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
721 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
722 #ifdef IEEE80211_SUPPORT_SUPERG
723 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
724 #endif
725 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
726 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
727 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
728 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
729 
730 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
731 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
732 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
733 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
734 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
735 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
736 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
737 	IEEE80211_UNLOCK(ic);
738 
739 	return 1;
740 }
741 
742 /*
743  * Tear down vap state and reclaim the ifnet.
744  * The driver is assumed to have prepared for
745  * this; e.g. by turning off interrupts for the
746  * underlying device.
747  */
748 void
749 ieee80211_vap_detach(struct ieee80211vap *vap)
750 {
751 	struct ieee80211com *ic = vap->iv_ic;
752 	struct ifnet *ifp = vap->iv_ifp;
753 	int i;
754 
755 	CURVNET_SET(ifp->if_vnet);
756 
757 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
758 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
759 
760 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
761 	ether_ifdetach(ifp);
762 
763 	ieee80211_stop(vap);
764 
765 	/*
766 	 * Flush any deferred vap tasks.
767 	 */
768 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
769 		ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
770 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
771 	ieee80211_draintask(ic, &vap->iv_wme_task);
772 	ieee80211_draintask(ic, &ic->ic_parent_task);
773 
774 	/* XXX band-aid until ifnet handles this for us */
775 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
776 
777 	IEEE80211_LOCK(ic);
778 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
779 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
780 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
781 #ifdef IEEE80211_SUPPORT_SUPERG
782 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
783 #endif
784 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
785 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
786 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
787 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
788 
789 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
790 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
791 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
792 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
793 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
794 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
795 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
796 
797 	/* NB: this handles the bpfdetach done below */
798 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
799 	if (vap->iv_ifflags & IFF_PROMISC)
800 		ieee80211_promisc(vap, false);
801 	if (vap->iv_ifflags & IFF_ALLMULTI)
802 		ieee80211_allmulti(vap, false);
803 	IEEE80211_UNLOCK(ic);
804 
805 	ifmedia_removeall(&vap->iv_media);
806 
807 	ieee80211_radiotap_vdetach(vap);
808 	ieee80211_regdomain_vdetach(vap);
809 	ieee80211_scan_vdetach(vap);
810 #ifdef IEEE80211_SUPPORT_SUPERG
811 	ieee80211_superg_vdetach(vap);
812 #endif
813 	ieee80211_vht_vdetach(vap);
814 	ieee80211_ht_vdetach(vap);
815 	/* NB: must be before ieee80211_node_vdetach */
816 	ieee80211_proto_vdetach(vap);
817 	ieee80211_crypto_vdetach(vap);
818 	ieee80211_power_vdetach(vap);
819 	ieee80211_node_vdetach(vap);
820 	ieee80211_sysctl_vdetach(vap);
821 
822 	if_free(ifp);
823 
824 	CURVNET_RESTORE();
825 }
826 
827 /*
828  * Count number of vaps in promisc, and issue promisc on
829  * parent respectively.
830  */
831 void
832 ieee80211_promisc(struct ieee80211vap *vap, bool on)
833 {
834 	struct ieee80211com *ic = vap->iv_ic;
835 
836 	IEEE80211_LOCK_ASSERT(ic);
837 
838 	if (on) {
839 		if (++ic->ic_promisc == 1)
840 			ieee80211_runtask(ic, &ic->ic_promisc_task);
841 	} else {
842 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
843 		    __func__, ic));
844 		if (--ic->ic_promisc == 0)
845 			ieee80211_runtask(ic, &ic->ic_promisc_task);
846 	}
847 }
848 
849 /*
850  * Count number of vaps in allmulti, and issue allmulti on
851  * parent respectively.
852  */
853 void
854 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
855 {
856 	struct ieee80211com *ic = vap->iv_ic;
857 
858 	IEEE80211_LOCK_ASSERT(ic);
859 
860 	if (on) {
861 		if (++ic->ic_allmulti == 1)
862 			ieee80211_runtask(ic, &ic->ic_mcast_task);
863 	} else {
864 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
865 		    __func__, ic));
866 		if (--ic->ic_allmulti == 0)
867 			ieee80211_runtask(ic, &ic->ic_mcast_task);
868 	}
869 }
870 
871 /*
872  * Synchronize flag bit state in the com structure
873  * according to the state of all vap's.  This is used,
874  * for example, to handle state changes via ioctls.
875  */
876 static void
877 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
878 {
879 	struct ieee80211vap *vap;
880 	int bit;
881 
882 	IEEE80211_LOCK_ASSERT(ic);
883 
884 	bit = 0;
885 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
886 		if (vap->iv_flags & flag) {
887 			bit = 1;
888 			break;
889 		}
890 	if (bit)
891 		ic->ic_flags |= flag;
892 	else
893 		ic->ic_flags &= ~flag;
894 }
895 
896 void
897 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
898 {
899 	struct ieee80211com *ic = vap->iv_ic;
900 
901 	IEEE80211_LOCK(ic);
902 	if (flag < 0) {
903 		flag = -flag;
904 		vap->iv_flags &= ~flag;
905 	} else
906 		vap->iv_flags |= flag;
907 	ieee80211_syncflag_locked(ic, flag);
908 	IEEE80211_UNLOCK(ic);
909 }
910 
911 /*
912  * Synchronize flags_ht bit state in the com structure
913  * according to the state of all vap's.  This is used,
914  * for example, to handle state changes via ioctls.
915  */
916 static void
917 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
918 {
919 	struct ieee80211vap *vap;
920 	int bit;
921 
922 	IEEE80211_LOCK_ASSERT(ic);
923 
924 	bit = 0;
925 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
926 		if (vap->iv_flags_ht & flag) {
927 			bit = 1;
928 			break;
929 		}
930 	if (bit)
931 		ic->ic_flags_ht |= flag;
932 	else
933 		ic->ic_flags_ht &= ~flag;
934 }
935 
936 void
937 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
938 {
939 	struct ieee80211com *ic = vap->iv_ic;
940 
941 	IEEE80211_LOCK(ic);
942 	if (flag < 0) {
943 		flag = -flag;
944 		vap->iv_flags_ht &= ~flag;
945 	} else
946 		vap->iv_flags_ht |= flag;
947 	ieee80211_syncflag_ht_locked(ic, flag);
948 	IEEE80211_UNLOCK(ic);
949 }
950 
951 /*
952  * Synchronize flags_vht bit state in the com structure
953  * according to the state of all vap's.  This is used,
954  * for example, to handle state changes via ioctls.
955  */
956 static void
957 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
958 {
959 	struct ieee80211vap *vap;
960 	int bit;
961 
962 	IEEE80211_LOCK_ASSERT(ic);
963 
964 	bit = 0;
965 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
966 		if (vap->iv_vht_flags & flag) {
967 			bit = 1;
968 			break;
969 		}
970 	if (bit)
971 		ic->ic_vht_flags |= flag;
972 	else
973 		ic->ic_vht_flags &= ~flag;
974 }
975 
976 void
977 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
978 {
979 	struct ieee80211com *ic = vap->iv_ic;
980 
981 	IEEE80211_LOCK(ic);
982 	if (flag < 0) {
983 		flag = -flag;
984 		vap->iv_vht_flags &= ~flag;
985 	} else
986 		vap->iv_vht_flags |= flag;
987 	ieee80211_syncflag_vht_locked(ic, flag);
988 	IEEE80211_UNLOCK(ic);
989 }
990 
991 /*
992  * Synchronize flags_ext bit state in the com structure
993  * according to the state of all vap's.  This is used,
994  * for example, to handle state changes via ioctls.
995  */
996 static void
997 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
998 {
999 	struct ieee80211vap *vap;
1000 	int bit;
1001 
1002 	IEEE80211_LOCK_ASSERT(ic);
1003 
1004 	bit = 0;
1005 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1006 		if (vap->iv_flags_ext & flag) {
1007 			bit = 1;
1008 			break;
1009 		}
1010 	if (bit)
1011 		ic->ic_flags_ext |= flag;
1012 	else
1013 		ic->ic_flags_ext &= ~flag;
1014 }
1015 
1016 void
1017 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1018 {
1019 	struct ieee80211com *ic = vap->iv_ic;
1020 
1021 	IEEE80211_LOCK(ic);
1022 	if (flag < 0) {
1023 		flag = -flag;
1024 		vap->iv_flags_ext &= ~flag;
1025 	} else
1026 		vap->iv_flags_ext |= flag;
1027 	ieee80211_syncflag_ext_locked(ic, flag);
1028 	IEEE80211_UNLOCK(ic);
1029 }
1030 
1031 static __inline int
1032 mapgsm(u_int freq, u_int flags)
1033 {
1034 	freq *= 10;
1035 	if (flags & IEEE80211_CHAN_QUARTER)
1036 		freq += 5;
1037 	else if (flags & IEEE80211_CHAN_HALF)
1038 		freq += 10;
1039 	else
1040 		freq += 20;
1041 	/* NB: there is no 907/20 wide but leave room */
1042 	return (freq - 906*10) / 5;
1043 }
1044 
1045 static __inline int
1046 mappsb(u_int freq, u_int flags)
1047 {
1048 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1049 }
1050 
1051 /*
1052  * Convert MHz frequency to IEEE channel number.
1053  */
1054 int
1055 ieee80211_mhz2ieee(u_int freq, u_int flags)
1056 {
1057 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1058 	if (flags & IEEE80211_CHAN_GSM)
1059 		return mapgsm(freq, flags);
1060 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1061 		if (freq == 2484)
1062 			return 14;
1063 		if (freq < 2484)
1064 			return ((int) freq - 2407) / 5;
1065 		else
1066 			return 15 + ((freq - 2512) / 20);
1067 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1068 		if (freq <= 5000) {
1069 			/* XXX check regdomain? */
1070 			if (IS_FREQ_IN_PSB(freq))
1071 				return mappsb(freq, flags);
1072 			return (freq - 4000) / 5;
1073 		} else
1074 			return (freq - 5000) / 5;
1075 	} else {				/* either, guess */
1076 		if (freq == 2484)
1077 			return 14;
1078 		if (freq < 2484) {
1079 			if (907 <= freq && freq <= 922)
1080 				return mapgsm(freq, flags);
1081 			return ((int) freq - 2407) / 5;
1082 		}
1083 		if (freq < 5000) {
1084 			if (IS_FREQ_IN_PSB(freq))
1085 				return mappsb(freq, flags);
1086 			else if (freq > 4900)
1087 				return (freq - 4000) / 5;
1088 			else
1089 				return 15 + ((freq - 2512) / 20);
1090 		}
1091 		return (freq - 5000) / 5;
1092 	}
1093 #undef IS_FREQ_IN_PSB
1094 }
1095 
1096 /*
1097  * Convert channel to IEEE channel number.
1098  */
1099 int
1100 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1101 {
1102 	if (c == NULL) {
1103 		ic_printf(ic, "invalid channel (NULL)\n");
1104 		return 0;		/* XXX */
1105 	}
1106 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1107 }
1108 
1109 /*
1110  * Convert IEEE channel number to MHz frequency.
1111  */
1112 u_int
1113 ieee80211_ieee2mhz(u_int chan, u_int flags)
1114 {
1115 	if (flags & IEEE80211_CHAN_GSM)
1116 		return 907 + 5 * (chan / 10);
1117 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1118 		if (chan == 14)
1119 			return 2484;
1120 		if (chan < 14)
1121 			return 2407 + chan*5;
1122 		else
1123 			return 2512 + ((chan-15)*20);
1124 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1125 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1126 			chan -= 37;
1127 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1128 		}
1129 		return 5000 + (chan*5);
1130 	} else {				/* either, guess */
1131 		/* XXX can't distinguish PSB+GSM channels */
1132 		if (chan == 14)
1133 			return 2484;
1134 		if (chan < 14)			/* 0-13 */
1135 			return 2407 + chan*5;
1136 		if (chan < 27)			/* 15-26 */
1137 			return 2512 + ((chan-15)*20);
1138 		return 5000 + (chan*5);
1139 	}
1140 }
1141 
1142 static __inline void
1143 set_extchan(struct ieee80211_channel *c)
1144 {
1145 
1146 	/*
1147 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1148 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1149 	 */
1150 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1151 		c->ic_extieee = c->ic_ieee + 4;
1152 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1153 		c->ic_extieee = c->ic_ieee - 4;
1154 	else
1155 		c->ic_extieee = 0;
1156 }
1157 
1158 /*
1159  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1160  *
1161  * This for now uses a hard-coded list of 80MHz wide channels.
1162  *
1163  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1164  * wide channel we've already decided upon.
1165  *
1166  * For VHT80 and VHT160, there are only a small number of fixed
1167  * 80/160MHz wide channels, so we just use those.
1168  *
1169  * This is all likely very very wrong - both the regulatory code
1170  * and this code needs to ensure that all four channels are
1171  * available and valid before the VHT80 (and eight for VHT160) channel
1172  * is created.
1173  */
1174 
1175 struct vht_chan_range {
1176 	uint16_t freq_start;
1177 	uint16_t freq_end;
1178 };
1179 
1180 struct vht_chan_range vht80_chan_ranges[] = {
1181 	{ 5170, 5250 },
1182 	{ 5250, 5330 },
1183 	{ 5490, 5570 },
1184 	{ 5570, 5650 },
1185 	{ 5650, 5730 },
1186 	{ 5735, 5815 },
1187 	{ 5815, 5895 },
1188 	{ 0, 0 }
1189 };
1190 
1191 struct vht_chan_range vht160_chan_ranges[] = {
1192 	{ 5170, 5330 },
1193 	{ 5490, 5650 },
1194 	{ 5735, 5895 },
1195 	{ 0, 0 }
1196 };
1197 
1198 static int
1199 set_vht_extchan(struct ieee80211_channel *c)
1200 {
1201 	int i;
1202 
1203 	if (! IEEE80211_IS_CHAN_VHT(c))
1204 		return (0);
1205 
1206 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1207 		net80211_printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1208 		    __func__, c->ic_ieee, c->ic_flags);
1209 	}
1210 
1211 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1212 		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1213 			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1214 			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1215 				int midpoint;
1216 
1217 				midpoint = vht160_chan_ranges[i].freq_start + 80;
1218 				c->ic_vht_ch_freq1 =
1219 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1220 				c->ic_vht_ch_freq2 = 0;
1221 #if 0
1222 				net80211_printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1223 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1224 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1225 #endif
1226 				return (1);
1227 			}
1228 		}
1229 		return (0);
1230 	}
1231 
1232 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1233 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1234 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1235 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1236 				int midpoint;
1237 
1238 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1239 				c->ic_vht_ch_freq1 =
1240 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1241 				c->ic_vht_ch_freq2 = 0;
1242 #if 0
1243 				net80211_printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1244 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1245 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1246 #endif
1247 				return (1);
1248 			}
1249 		}
1250 		return (0);
1251 	}
1252 
1253 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1254 		if (IEEE80211_IS_CHAN_HT40U(c))
1255 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1256 		else if (IEEE80211_IS_CHAN_HT40D(c))
1257 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1258 		else
1259 			return (0);
1260 		return (1);
1261 	}
1262 
1263 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1264 		c->ic_vht_ch_freq1 = c->ic_ieee;
1265 		return (1);
1266 	}
1267 
1268 	net80211_printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1269 	    __func__, c->ic_ieee, c->ic_flags);
1270 
1271 	return (0);
1272 }
1273 
1274 /*
1275  * Return whether the current channel could possibly be a part of
1276  * a VHT80/VHT160 channel.
1277  *
1278  * This doesn't check that the whole range is in the allowed list
1279  * according to regulatory.
1280  */
1281 static bool
1282 is_vht160_valid_freq(uint16_t freq)
1283 {
1284 	int i;
1285 
1286 	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1287 		if (freq >= vht160_chan_ranges[i].freq_start &&
1288 		    freq < vht160_chan_ranges[i].freq_end)
1289 			return (true);
1290 	}
1291 	return (false);
1292 }
1293 
1294 static int
1295 is_vht80_valid_freq(uint16_t freq)
1296 {
1297 	int i;
1298 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1299 		if (freq >= vht80_chan_ranges[i].freq_start &&
1300 		    freq < vht80_chan_ranges[i].freq_end)
1301 			return (1);
1302 	}
1303 	return (0);
1304 }
1305 
1306 static int
1307 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1308     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1309 {
1310 	struct ieee80211_channel *c;
1311 
1312 	if (*nchans >= maxchans)
1313 		return (ENOBUFS);
1314 
1315 #if 0
1316 	net80211_printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1317 	    __func__, *nchans, maxchans, ieee, freq, flags);
1318 #endif
1319 
1320 	c = &chans[(*nchans)++];
1321 	c->ic_ieee = ieee;
1322 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1323 	c->ic_maxregpower = maxregpower;
1324 	c->ic_maxpower = 2 * maxregpower;
1325 	c->ic_flags = flags;
1326 	c->ic_vht_ch_freq1 = 0;
1327 	c->ic_vht_ch_freq2 = 0;
1328 	set_extchan(c);
1329 	set_vht_extchan(c);
1330 
1331 	return (0);
1332 }
1333 
1334 static int
1335 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1336     uint32_t flags)
1337 {
1338 	struct ieee80211_channel *c;
1339 
1340 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1341 
1342 	if (*nchans >= maxchans)
1343 		return (ENOBUFS);
1344 
1345 #if 0
1346 	net80211_printf("%s: %d of %d: flags=0x%08x\n",
1347 	    __func__, *nchans, maxchans, flags);
1348 #endif
1349 
1350 	c = &chans[(*nchans)++];
1351 	c[0] = c[-1];
1352 	c->ic_flags = flags;
1353 	c->ic_vht_ch_freq1 = 0;
1354 	c->ic_vht_ch_freq2 = 0;
1355 	set_extchan(c);
1356 	set_vht_extchan(c);
1357 
1358 	return (0);
1359 }
1360 
1361 /*
1362  * XXX VHT-2GHz
1363  */
1364 static void
1365 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1366 {
1367 	int nmodes;
1368 
1369 	nmodes = 0;
1370 	if (isset(bands, IEEE80211_MODE_11B))
1371 		flags[nmodes++] = IEEE80211_CHAN_B;
1372 	if (isset(bands, IEEE80211_MODE_11G))
1373 		flags[nmodes++] = IEEE80211_CHAN_G;
1374 	if (isset(bands, IEEE80211_MODE_11NG))
1375 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1376 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1377 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1378 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1379 	}
1380 	flags[nmodes] = 0;
1381 }
1382 
1383 static void
1384 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1385 {
1386 	int nmodes;
1387 
1388 	/*
1389 	 * The addchan_list() function seems to expect the flags array to
1390 	 * be in channel width order, so the VHT bits are interspersed
1391 	 * as appropriate to maintain said order.
1392 	 *
1393 	 * It also assumes HT40U is before HT40D.
1394 	 */
1395 	nmodes = 0;
1396 
1397 	/* 20MHz */
1398 	if (isset(bands, IEEE80211_MODE_11A))
1399 		flags[nmodes++] = IEEE80211_CHAN_A;
1400 	if (isset(bands, IEEE80211_MODE_11NA))
1401 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1402 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1403 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1404 		    IEEE80211_CHAN_VHT20;
1405 	}
1406 
1407 	/* 40MHz */
1408 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1409 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1410 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1411 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1412 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1413 		    IEEE80211_CHAN_VHT40U;
1414 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1415 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1416 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1417 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1418 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1419 		    IEEE80211_CHAN_VHT40D;
1420 
1421 	/* 80MHz */
1422 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1423 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1424 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1425 		    IEEE80211_CHAN_VHT80;
1426 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1427 		    IEEE80211_CHAN_VHT80;
1428 	}
1429 
1430 	/* VHT160 */
1431 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1432 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1433 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1434 		    IEEE80211_CHAN_VHT160;
1435 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1436 		    IEEE80211_CHAN_VHT160;
1437 	}
1438 
1439 	/* VHT80+80 */
1440 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1441 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1442 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1443 		    IEEE80211_CHAN_VHT80P80;
1444 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1445 		    IEEE80211_CHAN_VHT80P80;
1446 	}
1447 
1448 	flags[nmodes] = 0;
1449 }
1450 
1451 static void
1452 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1453 {
1454 
1455 	flags[0] = 0;
1456 	if (isset(bands, IEEE80211_MODE_11A) ||
1457 	    isset(bands, IEEE80211_MODE_11NA) ||
1458 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1459 		if (isset(bands, IEEE80211_MODE_11B) ||
1460 		    isset(bands, IEEE80211_MODE_11G) ||
1461 		    isset(bands, IEEE80211_MODE_11NG) ||
1462 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1463 			return;
1464 
1465 		getflags_5ghz(bands, flags, cbw_flags);
1466 	} else
1467 		getflags_2ghz(bands, flags, cbw_flags);
1468 }
1469 
1470 /*
1471  * Add one 20 MHz channel into specified channel list.
1472  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1473  * channels if you have any B/G/N band bit set.
1474  * The _cbw() variant does also support HT40/VHT80/160/80+80.
1475  */
1476 int
1477 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1478     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1479     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1480 {
1481 	uint32_t flags[IEEE80211_MODE_MAX];
1482 	int i, error;
1483 
1484 	getflags(bands, flags, cbw_flags);
1485 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1486 
1487 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1488 	    flags[0] | chan_flags);
1489 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1490 		error = copychan_prev(chans, maxchans, nchans,
1491 		    flags[i] | chan_flags);
1492 	}
1493 
1494 	return (error);
1495 }
1496 
1497 int
1498 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1499     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1500     uint32_t chan_flags, const uint8_t bands[])
1501 {
1502 
1503 	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1504 	    maxregpower, chan_flags, bands, 0));
1505 }
1506 
1507 static struct ieee80211_channel *
1508 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1509     uint32_t flags)
1510 {
1511 	struct ieee80211_channel *c;
1512 	int i;
1513 
1514 	flags &= IEEE80211_CHAN_ALLTURBO;
1515 	/* brute force search */
1516 	for (i = 0; i < nchans; i++) {
1517 		c = &chans[i];
1518 		if (c->ic_freq == freq &&
1519 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1520 			return c;
1521 	}
1522 	return NULL;
1523 }
1524 
1525 /*
1526  * Add 40 MHz channel pair into specified channel list.
1527  */
1528 /* XXX VHT */
1529 int
1530 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1531     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1532 {
1533 	struct ieee80211_channel *cent, *extc;
1534 	uint16_t freq;
1535 	int error;
1536 
1537 	freq = ieee80211_ieee2mhz(ieee, flags);
1538 
1539 	/*
1540 	 * Each entry defines an HT40 channel pair; find the
1541 	 * center channel, then the extension channel above.
1542 	 */
1543 	flags |= IEEE80211_CHAN_HT20;
1544 	cent = findchannel(chans, *nchans, freq, flags);
1545 	if (cent == NULL)
1546 		return (EINVAL);
1547 
1548 	extc = findchannel(chans, *nchans, freq + 20, flags);
1549 	if (extc == NULL)
1550 		return (ENOENT);
1551 
1552 	flags &= ~IEEE80211_CHAN_HT;
1553 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1554 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1555 	if (error != 0)
1556 		return (error);
1557 
1558 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1559 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1560 
1561 	return (error);
1562 }
1563 
1564 /*
1565  * Fetch the center frequency for the primary channel.
1566  */
1567 uint32_t
1568 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1569 {
1570 
1571 	return (c->ic_freq);
1572 }
1573 
1574 /*
1575  * Fetch the center frequency for the primary BAND channel.
1576  *
1577  * For 5, 10, 20MHz channels it'll be the normally configured channel
1578  * frequency.
1579  *
1580  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1581  * wide channel, not the centre of the primary channel (that's ic_freq).
1582  *
1583  * For 80+80MHz channels this will be the centre of the primary
1584  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1585  */
1586 uint32_t
1587 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1588 {
1589 
1590 	/*
1591 	 * VHT - use the pre-calculated centre frequency
1592 	 * of the given channel.
1593 	 */
1594 	if (IEEE80211_IS_CHAN_VHT(c))
1595 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1596 
1597 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1598 		return (c->ic_freq + 10);
1599 	}
1600 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1601 		return (c->ic_freq - 10);
1602 	}
1603 
1604 	return (c->ic_freq);
1605 }
1606 
1607 /*
1608  * For now, no 80+80 support; it will likely always return 0.
1609  */
1610 uint32_t
1611 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1612 {
1613 
1614 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1615 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1616 
1617 	return (0);
1618 }
1619 
1620 /*
1621  * Adds channels into specified channel list (ieee[] array must be sorted).
1622  * Channels are already sorted.
1623  */
1624 static int
1625 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1626     const uint8_t ieee[], int nieee, uint32_t flags[])
1627 {
1628 	uint16_t freq;
1629 	int i, j, error;
1630 	int is_vht;
1631 
1632 	for (i = 0; i < nieee; i++) {
1633 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1634 		for (j = 0; flags[j] != 0; j++) {
1635 			/*
1636 			 * Notes:
1637 			 * + HT40 and VHT40 channels occur together, so
1638 			 *   we need to be careful that we actually allow that.
1639 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1640 			 *   make sure it's not skipped because of the overlap
1641 			 *   check used for (V)HT40.
1642 			 */
1643 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1644 
1645 			/* XXX TODO FIXME VHT80P80. */
1646 
1647 			/* Test for VHT160 analogue to the VHT80 below. */
1648 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1649 				if (! is_vht160_valid_freq(freq))
1650 					continue;
1651 
1652 			/*
1653 			 * Test for VHT80.
1654 			 * XXX This is all very broken right now.
1655 			 * What we /should/ do is:
1656 			 *
1657 			 * + check that the frequency is in the list of
1658 			 *   allowed VHT80 ranges; and
1659 			 * + the other 3 channels in the list are actually
1660 			 *   also available.
1661 			 */
1662 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1663 				if (! is_vht80_valid_freq(freq))
1664 					continue;
1665 
1666 			/*
1667 			 * Test for (V)HT40.
1668 			 *
1669 			 * This is also a fall through from VHT80; as we only
1670 			 * allow a VHT80 channel if the VHT40 combination is
1671 			 * also valid.  If the VHT40 form is not valid then
1672 			 * we certainly can't do VHT80..
1673 			 */
1674 			if (flags[j] & IEEE80211_CHAN_HT40D)
1675 				/*
1676 				 * Can't have a "lower" channel if we are the
1677 				 * first channel.
1678 				 *
1679 				 * Can't have a "lower" channel if it's below/
1680 				 * within 20MHz of the first channel.
1681 				 *
1682 				 * Can't have a "lower" channel if the channel
1683 				 * below it is not 20MHz away.
1684 				 */
1685 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1686 				    freq - 20 !=
1687 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1688 					continue;
1689 			if (flags[j] & IEEE80211_CHAN_HT40U)
1690 				/*
1691 				 * Can't have an "upper" channel if we are
1692 				 * the last channel.
1693 				 *
1694 				 * Can't have an "upper" channel be above the
1695 				 * last channel in the list.
1696 				 *
1697 				 * Can't have an "upper" channel if the next
1698 				 * channel according to the math isn't 20MHz
1699 				 * away.  (Likely for channel 13/14.)
1700 				 */
1701 				if (i == nieee - 1 ||
1702 				    ieee[i] + 4 > ieee[nieee - 1] ||
1703 				    freq + 20 !=
1704 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1705 					continue;
1706 
1707 			if (j == 0) {
1708 				error = addchan(chans, maxchans, nchans,
1709 				    ieee[i], freq, 0, flags[j]);
1710 			} else {
1711 				error = copychan_prev(chans, maxchans, nchans,
1712 				    flags[j]);
1713 			}
1714 			if (error != 0)
1715 				return (error);
1716 		}
1717 	}
1718 
1719 	return (0);
1720 }
1721 
1722 int
1723 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1724     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1725     int cbw_flags)
1726 {
1727 	uint32_t flags[IEEE80211_MODE_MAX];
1728 
1729 	/* XXX no VHT for now */
1730 	getflags_2ghz(bands, flags, cbw_flags);
1731 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1732 
1733 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1734 }
1735 
1736 int
1737 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1738     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1739 {
1740 	const uint8_t default_chan_list[] =
1741 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1742 
1743 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1744 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1745 }
1746 
1747 int
1748 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1749     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1750     int cbw_flags)
1751 {
1752 	/*
1753 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1754 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1755 	 */
1756 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1757 
1758 	getflags_5ghz(bands, flags, cbw_flags);
1759 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1760 
1761 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1762 }
1763 
1764 /*
1765  * Locate a channel given a frequency+flags.  We cache
1766  * the previous lookup to optimize switching between two
1767  * channels--as happens with dynamic turbo.
1768  */
1769 struct ieee80211_channel *
1770 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1771 {
1772 	struct ieee80211_channel *c;
1773 
1774 	flags &= IEEE80211_CHAN_ALLTURBO;
1775 	c = ic->ic_prevchan;
1776 	if (c != NULL && c->ic_freq == freq &&
1777 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1778 		return c;
1779 	/* brute force search */
1780 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1781 }
1782 
1783 /*
1784  * Locate a channel given a channel number+flags.  We cache
1785  * the previous lookup to optimize switching between two
1786  * channels--as happens with dynamic turbo.
1787  */
1788 struct ieee80211_channel *
1789 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1790 {
1791 	struct ieee80211_channel *c;
1792 	int i;
1793 
1794 	flags &= IEEE80211_CHAN_ALLTURBO;
1795 	c = ic->ic_prevchan;
1796 	if (c != NULL && c->ic_ieee == ieee &&
1797 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1798 		return c;
1799 	/* brute force search */
1800 	for (i = 0; i < ic->ic_nchans; i++) {
1801 		c = &ic->ic_channels[i];
1802 		if (c->ic_ieee == ieee &&
1803 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1804 			return c;
1805 	}
1806 	return NULL;
1807 }
1808 
1809 /*
1810  * Lookup a channel suitable for the given rx status.
1811  *
1812  * This is used to find a channel for a frame (eg beacon, probe
1813  * response) based purely on the received PHY information.
1814  *
1815  * For now it tries to do it based on R_FREQ / R_IEEE.
1816  * This is enough for 11bg and 11a (and thus 11ng/11na)
1817  * but it will not be enough for GSM, PSB channels and the
1818  * like.  It also doesn't know about legacy-turbog and
1819  * legacy-turbo modes, which some offload NICs actually
1820  * support in weird ways.
1821  *
1822  * Takes the ic and rxstatus; returns the channel or NULL
1823  * if not found.
1824  *
1825  * XXX TODO: Add support for that when the need arises.
1826  */
1827 struct ieee80211_channel *
1828 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1829     const struct ieee80211_rx_stats *rxs)
1830 {
1831 	struct ieee80211com *ic = vap->iv_ic;
1832 	uint32_t flags;
1833 	struct ieee80211_channel *c;
1834 
1835 	if (rxs == NULL)
1836 		return (NULL);
1837 
1838 	/*
1839 	 * Strictly speaking we only use freq for now,
1840 	 * however later on we may wish to just store
1841 	 * the ieee for verification.
1842 	 */
1843 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1844 		return (NULL);
1845 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1846 		return (NULL);
1847 	if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1848 		return (NULL);
1849 
1850 	/*
1851 	 * If the rx status contains a valid ieee/freq, then
1852 	 * ensure we populate the correct channel information
1853 	 * in rxchan before passing it up to the scan infrastructure.
1854 	 * Offload NICs will pass up beacons from all channels
1855 	 * during background scans.
1856 	 */
1857 
1858 	/* Determine a band */
1859 	switch (rxs->c_band) {
1860 	case IEEE80211_CHAN_2GHZ:
1861 		flags = IEEE80211_CHAN_G;
1862 		break;
1863 	case IEEE80211_CHAN_5GHZ:
1864 		flags = IEEE80211_CHAN_A;
1865 		break;
1866 	default:
1867 		if (rxs->c_freq < 3000) {
1868 			flags = IEEE80211_CHAN_G;
1869 		} else {
1870 			flags = IEEE80211_CHAN_A;
1871 		}
1872 		break;
1873 	}
1874 
1875 	/* Channel lookup */
1876 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1877 
1878 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1879 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1880 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1881 
1882 	return (c);
1883 }
1884 
1885 static void
1886 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1887 {
1888 #define	ADD(_ic, _s, _o) \
1889 	ifmedia_add(media, \
1890 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1891 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1892 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1893 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1894 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1895 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1896 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1897 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1898 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1899 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1900 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1901 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1902 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1903 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1904 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1905 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1906 	};
1907 	u_int mopt;
1908 
1909 	mopt = mopts[mode];
1910 	if (addsta)
1911 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1912 	if (caps & IEEE80211_C_IBSS)
1913 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1914 	if (caps & IEEE80211_C_HOSTAP)
1915 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1916 	if (caps & IEEE80211_C_AHDEMO)
1917 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1918 	if (caps & IEEE80211_C_MONITOR)
1919 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1920 	if (caps & IEEE80211_C_WDS)
1921 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1922 	if (caps & IEEE80211_C_MBSS)
1923 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1924 #undef ADD
1925 }
1926 
1927 /*
1928  * Setup the media data structures according to the channel and
1929  * rate tables.
1930  */
1931 static int
1932 ieee80211_media_setup(struct ieee80211com *ic,
1933 	struct ifmedia *media, int caps, int addsta,
1934 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1935 {
1936 	int i, j, rate, maxrate, mword, r;
1937 	enum ieee80211_phymode mode;
1938 	const struct ieee80211_rateset *rs;
1939 	struct ieee80211_rateset allrates;
1940 	struct ieee80211_node_txrate tn;
1941 
1942 	/*
1943 	 * Fill in media characteristics.
1944 	 */
1945 	ifmedia_init(media, 0, media_change, media_stat);
1946 	maxrate = 0;
1947 	/*
1948 	 * Add media for legacy operating modes.
1949 	 */
1950 	memset(&allrates, 0, sizeof(allrates));
1951 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1952 		if (isclr(ic->ic_modecaps, mode))
1953 			continue;
1954 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1955 		if (mode == IEEE80211_MODE_AUTO)
1956 			continue;
1957 		rs = &ic->ic_sup_rates[mode];
1958 		for (i = 0; i < rs->rs_nrates; i++) {
1959 			rate = rs->rs_rates[i];
1960 			tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rate);
1961 			mword = ieee80211_rate2media(ic, &tn, mode);
1962 			if (mword == 0)
1963 				continue;
1964 			addmedia(media, caps, addsta, mode, mword);
1965 			/*
1966 			 * Add legacy rate to the collection of all rates.
1967 			 */
1968 			r = rate & IEEE80211_RATE_VAL;
1969 			for (j = 0; j < allrates.rs_nrates; j++)
1970 				if (allrates.rs_rates[j] == r)
1971 					break;
1972 			if (j == allrates.rs_nrates) {
1973 				/* unique, add to the set */
1974 				allrates.rs_rates[j] = r;
1975 				allrates.rs_nrates++;
1976 			}
1977 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1978 			if (rate > maxrate)
1979 				maxrate = rate;
1980 		}
1981 	}
1982 	for (i = 0; i < allrates.rs_nrates; i++) {
1983 		tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(allrates.rs_rates[i]);
1984 		mword = ieee80211_rate2media(ic, &tn, IEEE80211_MODE_AUTO);
1985 		if (mword == 0)
1986 			continue;
1987 		/* NB: remove media options from mword */
1988 		addmedia(media, caps, addsta,
1989 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1990 	}
1991 	/*
1992 	 * Add HT/11n media.  Note that we do not have enough
1993 	 * bits in the media subtype to express the MCS so we
1994 	 * use a "placeholder" media subtype and any fixed MCS
1995 	 * must be specified with a different mechanism.
1996 	 */
1997 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1998 		if (isclr(ic->ic_modecaps, mode))
1999 			continue;
2000 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2001 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2002 	}
2003 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2004 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2005 		addmedia(media, caps, addsta,
2006 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2007 		i = ic->ic_txstream * 8 - 1;
2008 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2009 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2010 			rate = ieee80211_htrates[i].ht40_rate_400ns;
2011 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2012 			rate = ieee80211_htrates[i].ht40_rate_800ns;
2013 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2014 			rate = ieee80211_htrates[i].ht20_rate_400ns;
2015 		else
2016 			rate = ieee80211_htrates[i].ht20_rate_800ns;
2017 		if (rate > maxrate)
2018 			maxrate = rate;
2019 	}
2020 
2021 	/*
2022 	 * Add VHT media.
2023 	 * XXX-BZ skip "VHT_2GHZ" for now.
2024 	 */
2025 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2026 	    mode++) {
2027 		if (isclr(ic->ic_modecaps, mode))
2028 			continue;
2029 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2030 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2031 	}
2032 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2033 	       addmedia(media, caps, addsta,
2034 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2035 
2036 		/* XXX TODO: VHT maxrate */
2037 	}
2038 
2039 	return maxrate;
2040 }
2041 
2042 /* XXX inline or eliminate? */
2043 const struct ieee80211_rateset *
2044 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2045 {
2046 	/* XXX does this work for 11ng basic rates? */
2047 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2048 }
2049 
2050 /* XXX inline or eliminate? */
2051 const struct ieee80211_htrateset *
2052 ieee80211_get_suphtrates(struct ieee80211com *ic,
2053     const struct ieee80211_channel *c)
2054 {
2055 	return &ic->ic_sup_htrates;
2056 }
2057 
2058 void
2059 ieee80211_announce(struct ieee80211com *ic)
2060 {
2061 	int i, rate, mword;
2062 	enum ieee80211_phymode mode;
2063 	const struct ieee80211_rateset *rs;
2064 	struct ieee80211_node_txrate tn;
2065 
2066 	/* NB: skip AUTO since it has no rates */
2067 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2068 		if (isclr(ic->ic_modecaps, mode))
2069 			continue;
2070 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2071 		rs = &ic->ic_sup_rates[mode];
2072 		for (i = 0; i < rs->rs_nrates; i++) {
2073 			tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rs->rs_rates[i]);
2074 			mword = ieee80211_rate2media(ic, &tn, mode);
2075 			if (mword == 0)
2076 				continue;
2077 			rate = ieee80211_media2rate(mword);
2078 			net80211_printf("%s%d%sMbps", (i != 0 ? " " : ""),
2079 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2080 		}
2081 		net80211_printf("\n");
2082 	}
2083 	ieee80211_ht_announce(ic);
2084 	ieee80211_vht_announce(ic);
2085 }
2086 
2087 void
2088 ieee80211_announce_channels(struct ieee80211com *ic)
2089 {
2090 	const struct ieee80211_channel *c;
2091 	char type;
2092 	int i, cw;
2093 
2094 	net80211_printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2095 	for (i = 0; i < ic->ic_nchans; i++) {
2096 		c = &ic->ic_channels[i];
2097 		if (IEEE80211_IS_CHAN_ST(c))
2098 			type = 'S';
2099 		else if (IEEE80211_IS_CHAN_108A(c))
2100 			type = 'T';
2101 		else if (IEEE80211_IS_CHAN_108G(c))
2102 			type = 'G';
2103 		else if (IEEE80211_IS_CHAN_HT(c))
2104 			type = 'n';
2105 		else if (IEEE80211_IS_CHAN_A(c))
2106 			type = 'a';
2107 		else if (IEEE80211_IS_CHAN_ANYG(c))
2108 			type = 'g';
2109 		else if (IEEE80211_IS_CHAN_B(c))
2110 			type = 'b';
2111 		else
2112 			type = 'f';
2113 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2114 			cw = 40;
2115 		else if (IEEE80211_IS_CHAN_HALF(c))
2116 			cw = 10;
2117 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2118 			cw = 5;
2119 		else
2120 			cw = 20;
2121 		net80211_printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2122 			, c->ic_ieee, c->ic_freq, type
2123 			, cw
2124 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2125 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2126 			, c->ic_maxregpower
2127 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2128 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2129 		);
2130 	}
2131 }
2132 
2133 static int
2134 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2135 {
2136 	switch (IFM_MODE(ime->ifm_media)) {
2137 	case IFM_IEEE80211_11A:
2138 		*mode = IEEE80211_MODE_11A;
2139 		break;
2140 	case IFM_IEEE80211_11B:
2141 		*mode = IEEE80211_MODE_11B;
2142 		break;
2143 	case IFM_IEEE80211_11G:
2144 		*mode = IEEE80211_MODE_11G;
2145 		break;
2146 	case IFM_IEEE80211_FH:
2147 		*mode = IEEE80211_MODE_FH;
2148 		break;
2149 	case IFM_IEEE80211_11NA:
2150 		*mode = IEEE80211_MODE_11NA;
2151 		break;
2152 	case IFM_IEEE80211_11NG:
2153 		*mode = IEEE80211_MODE_11NG;
2154 		break;
2155 	case IFM_IEEE80211_VHT2G:
2156 		*mode = IEEE80211_MODE_VHT_2GHZ;
2157 		break;
2158 	case IFM_IEEE80211_VHT5G:
2159 		*mode = IEEE80211_MODE_VHT_5GHZ;
2160 		break;
2161 	case IFM_AUTO:
2162 		*mode = IEEE80211_MODE_AUTO;
2163 		break;
2164 	default:
2165 		return 0;
2166 	}
2167 	/*
2168 	 * Turbo mode is an ``option''.
2169 	 * XXX does not apply to AUTO
2170 	 */
2171 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2172 		if (*mode == IEEE80211_MODE_11A) {
2173 			if (flags & IEEE80211_F_TURBOP)
2174 				*mode = IEEE80211_MODE_TURBO_A;
2175 			else
2176 				*mode = IEEE80211_MODE_STURBO_A;
2177 		} else if (*mode == IEEE80211_MODE_11G)
2178 			*mode = IEEE80211_MODE_TURBO_G;
2179 		else
2180 			return 0;
2181 	}
2182 	/* XXX HT40 +/- */
2183 	return 1;
2184 }
2185 
2186 /*
2187  * Handle a media change request on the vap interface.
2188  */
2189 int
2190 ieee80211_media_change(struct ifnet *ifp)
2191 {
2192 	struct ieee80211vap *vap = ifp->if_softc;
2193 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2194 	uint16_t newmode;
2195 
2196 	if (!media2mode(ime, vap->iv_flags, &newmode))
2197 		return EINVAL;
2198 	if (vap->iv_des_mode != newmode) {
2199 		vap->iv_des_mode = newmode;
2200 		/* XXX kick state machine if up+running */
2201 	}
2202 	return 0;
2203 }
2204 
2205 /*
2206  * Common code to calculate the media status word
2207  * from the operating mode and channel state.
2208  */
2209 static int
2210 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2211 {
2212 	int status;
2213 
2214 	status = IFM_IEEE80211;
2215 	switch (opmode) {
2216 	case IEEE80211_M_STA:
2217 		break;
2218 	case IEEE80211_M_IBSS:
2219 		status |= IFM_IEEE80211_ADHOC;
2220 		break;
2221 	case IEEE80211_M_HOSTAP:
2222 		status |= IFM_IEEE80211_HOSTAP;
2223 		break;
2224 	case IEEE80211_M_MONITOR:
2225 		status |= IFM_IEEE80211_MONITOR;
2226 		break;
2227 	case IEEE80211_M_AHDEMO:
2228 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2229 		break;
2230 	case IEEE80211_M_WDS:
2231 		status |= IFM_IEEE80211_WDS;
2232 		break;
2233 	case IEEE80211_M_MBSS:
2234 		status |= IFM_IEEE80211_MBSS;
2235 		break;
2236 	}
2237 	if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2238 		status |= IFM_IEEE80211_VHT5G;
2239 	} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2240 		status |= IFM_IEEE80211_VHT2G;
2241 	} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2242 		status |= IFM_IEEE80211_11NA;
2243 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2244 		status |= IFM_IEEE80211_11NG;
2245 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2246 		status |= IFM_IEEE80211_11A;
2247 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2248 		status |= IFM_IEEE80211_11B;
2249 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2250 		status |= IFM_IEEE80211_11G;
2251 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2252 		status |= IFM_IEEE80211_FH;
2253 	}
2254 	/* XXX else complain? */
2255 
2256 	if (IEEE80211_IS_CHAN_TURBO(chan))
2257 		status |= IFM_IEEE80211_TURBO;
2258 #if 0
2259 	if (IEEE80211_IS_CHAN_HT20(chan))
2260 		status |= IFM_IEEE80211_HT20;
2261 	if (IEEE80211_IS_CHAN_HT40(chan))
2262 		status |= IFM_IEEE80211_HT40;
2263 #endif
2264 	return status;
2265 }
2266 
2267 void
2268 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2269 {
2270 	struct ieee80211vap *vap = ifp->if_softc;
2271 	struct ieee80211com *ic = vap->iv_ic;
2272 	enum ieee80211_phymode mode;
2273 	struct ieee80211_node_txrate tn;
2274 
2275 	imr->ifm_status = IFM_AVALID;
2276 	/*
2277 	 * NB: use the current channel's mode to lock down a xmit
2278 	 * rate only when running; otherwise we may have a mismatch
2279 	 * in which case the rate will not be convertible.
2280 	 */
2281 	if (vap->iv_state == IEEE80211_S_RUN ||
2282 	    vap->iv_state == IEEE80211_S_SLEEP) {
2283 		imr->ifm_status |= IFM_ACTIVE;
2284 		mode = ieee80211_chan2mode(ic->ic_curchan);
2285 	} else
2286 		mode = IEEE80211_MODE_AUTO;
2287 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2288 	/*
2289 	 * Calculate a current rate if possible.
2290 	 */
2291 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2292 		/*
2293 		 * A fixed rate is set, report that.
2294 		 */
2295 		tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(
2296 		    vap->iv_txparms[mode].ucastrate);
2297 		imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode);
2298 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2299 		/*
2300 		 * In station mode report the current transmit rate.
2301 		 */
2302 		ieee80211_node_get_txrate(vap->iv_bss, &tn);
2303 		imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode);
2304 	} else
2305 		imr->ifm_active |= IFM_AUTO;
2306 	if (imr->ifm_status & IFM_ACTIVE)
2307 		imr->ifm_current = imr->ifm_active;
2308 }
2309 
2310 /*
2311  * Set the current phy mode and recalculate the active channel
2312  * set based on the available channels for this mode.  Also
2313  * select a new default/current channel if the current one is
2314  * inappropriate for this mode.
2315  */
2316 int
2317 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2318 {
2319 	/*
2320 	 * Adjust basic rates in 11b/11g supported rate set.
2321 	 * Note that if operating on a hal/quarter rate channel
2322 	 * this is a noop as those rates sets are different
2323 	 * and used instead.
2324 	 */
2325 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2326 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2327 
2328 	ic->ic_curmode = mode;
2329 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2330 
2331 	return 0;
2332 }
2333 
2334 /*
2335  * Return the phy mode for with the specified channel.
2336  */
2337 enum ieee80211_phymode
2338 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2339 {
2340 
2341 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2342 		return IEEE80211_MODE_VHT_2GHZ;
2343 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2344 		return IEEE80211_MODE_VHT_5GHZ;
2345 	else if (IEEE80211_IS_CHAN_HTA(chan))
2346 		return IEEE80211_MODE_11NA;
2347 	else if (IEEE80211_IS_CHAN_HTG(chan))
2348 		return IEEE80211_MODE_11NG;
2349 	else if (IEEE80211_IS_CHAN_108G(chan))
2350 		return IEEE80211_MODE_TURBO_G;
2351 	else if (IEEE80211_IS_CHAN_ST(chan))
2352 		return IEEE80211_MODE_STURBO_A;
2353 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2354 		return IEEE80211_MODE_TURBO_A;
2355 	else if (IEEE80211_IS_CHAN_HALF(chan))
2356 		return IEEE80211_MODE_HALF;
2357 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2358 		return IEEE80211_MODE_QUARTER;
2359 	else if (IEEE80211_IS_CHAN_A(chan))
2360 		return IEEE80211_MODE_11A;
2361 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2362 		return IEEE80211_MODE_11G;
2363 	else if (IEEE80211_IS_CHAN_B(chan))
2364 		return IEEE80211_MODE_11B;
2365 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2366 		return IEEE80211_MODE_FH;
2367 
2368 	/* NB: should not get here */
2369 	net80211_printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2370 		__func__, chan->ic_freq, chan->ic_flags);
2371 	return IEEE80211_MODE_11B;
2372 }
2373 
2374 struct ratemedia {
2375 	u_int	match;	/* rate + mode */
2376 	u_int	media;	/* if_media rate */
2377 };
2378 
2379 static int
2380 findmedia(const struct ratemedia rates[], int n, u_int match)
2381 {
2382 	int i;
2383 
2384 	for (i = 0; i < n; i++)
2385 		if (rates[i].match == match)
2386 			return rates[i].media;
2387 	return IFM_AUTO;
2388 }
2389 
2390 /*
2391  * Convert IEEE80211 rate value to ifmedia subtype.
2392  * Rate is either a legacy rate in units of 0.5Mbps
2393  * or an MCS index.
2394  */
2395 int
2396 ieee80211_rate2media(struct ieee80211com *ic,
2397     const struct ieee80211_node_txrate *tr, enum ieee80211_phymode mode)
2398 {
2399 	static const struct ratemedia rates[] = {
2400 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2401 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2402 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2403 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2404 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2405 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2406 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2407 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2408 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2409 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2410 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2411 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2412 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2413 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2414 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2415 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2416 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2417 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2418 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2419 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2420 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2421 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2422 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2423 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2424 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2425 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2426 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2427 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2428 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2429 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2430 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2431 	};
2432 	static const struct ratemedia htrates[] = {
2433 		{   0, IFM_IEEE80211_MCS },
2434 		{   1, IFM_IEEE80211_MCS },
2435 		{   2, IFM_IEEE80211_MCS },
2436 		{   3, IFM_IEEE80211_MCS },
2437 		{   4, IFM_IEEE80211_MCS },
2438 		{   5, IFM_IEEE80211_MCS },
2439 		{   6, IFM_IEEE80211_MCS },
2440 		{   7, IFM_IEEE80211_MCS },
2441 		{   8, IFM_IEEE80211_MCS },
2442 		{   9, IFM_IEEE80211_MCS },
2443 		{  10, IFM_IEEE80211_MCS },
2444 		{  11, IFM_IEEE80211_MCS },
2445 		{  12, IFM_IEEE80211_MCS },
2446 		{  13, IFM_IEEE80211_MCS },
2447 		{  14, IFM_IEEE80211_MCS },
2448 		{  15, IFM_IEEE80211_MCS },
2449 		{  16, IFM_IEEE80211_MCS },
2450 		{  17, IFM_IEEE80211_MCS },
2451 		{  18, IFM_IEEE80211_MCS },
2452 		{  19, IFM_IEEE80211_MCS },
2453 		{  20, IFM_IEEE80211_MCS },
2454 		{  21, IFM_IEEE80211_MCS },
2455 		{  22, IFM_IEEE80211_MCS },
2456 		{  23, IFM_IEEE80211_MCS },
2457 		{  24, IFM_IEEE80211_MCS },
2458 		{  25, IFM_IEEE80211_MCS },
2459 		{  26, IFM_IEEE80211_MCS },
2460 		{  27, IFM_IEEE80211_MCS },
2461 		{  28, IFM_IEEE80211_MCS },
2462 		{  29, IFM_IEEE80211_MCS },
2463 		{  30, IFM_IEEE80211_MCS },
2464 		{  31, IFM_IEEE80211_MCS },
2465 		{  32, IFM_IEEE80211_MCS },
2466 		{  33, IFM_IEEE80211_MCS },
2467 		{  34, IFM_IEEE80211_MCS },
2468 		{  35, IFM_IEEE80211_MCS },
2469 		{  36, IFM_IEEE80211_MCS },
2470 		{  37, IFM_IEEE80211_MCS },
2471 		{  38, IFM_IEEE80211_MCS },
2472 		{  39, IFM_IEEE80211_MCS },
2473 		{  40, IFM_IEEE80211_MCS },
2474 		{  41, IFM_IEEE80211_MCS },
2475 		{  42, IFM_IEEE80211_MCS },
2476 		{  43, IFM_IEEE80211_MCS },
2477 		{  44, IFM_IEEE80211_MCS },
2478 		{  45, IFM_IEEE80211_MCS },
2479 		{  46, IFM_IEEE80211_MCS },
2480 		{  47, IFM_IEEE80211_MCS },
2481 		{  48, IFM_IEEE80211_MCS },
2482 		{  49, IFM_IEEE80211_MCS },
2483 		{  50, IFM_IEEE80211_MCS },
2484 		{  51, IFM_IEEE80211_MCS },
2485 		{  52, IFM_IEEE80211_MCS },
2486 		{  53, IFM_IEEE80211_MCS },
2487 		{  54, IFM_IEEE80211_MCS },
2488 		{  55, IFM_IEEE80211_MCS },
2489 		{  56, IFM_IEEE80211_MCS },
2490 		{  57, IFM_IEEE80211_MCS },
2491 		{  58, IFM_IEEE80211_MCS },
2492 		{  59, IFM_IEEE80211_MCS },
2493 		{  60, IFM_IEEE80211_MCS },
2494 		{  61, IFM_IEEE80211_MCS },
2495 		{  62, IFM_IEEE80211_MCS },
2496 		{  63, IFM_IEEE80211_MCS },
2497 		{  64, IFM_IEEE80211_MCS },
2498 		{  65, IFM_IEEE80211_MCS },
2499 		{  66, IFM_IEEE80211_MCS },
2500 		{  67, IFM_IEEE80211_MCS },
2501 		{  68, IFM_IEEE80211_MCS },
2502 		{  69, IFM_IEEE80211_MCS },
2503 		{  70, IFM_IEEE80211_MCS },
2504 		{  71, IFM_IEEE80211_MCS },
2505 		{  72, IFM_IEEE80211_MCS },
2506 		{  73, IFM_IEEE80211_MCS },
2507 		{  74, IFM_IEEE80211_MCS },
2508 		{  75, IFM_IEEE80211_MCS },
2509 		{  76, IFM_IEEE80211_MCS },
2510 	};
2511 	static const struct ratemedia vhtrates[] = {
2512 		{   0, IFM_IEEE80211_VHT },
2513 		{   1, IFM_IEEE80211_VHT },
2514 		{   2, IFM_IEEE80211_VHT },
2515 		{   3, IFM_IEEE80211_VHT },
2516 		{   4, IFM_IEEE80211_VHT },
2517 		{   5, IFM_IEEE80211_VHT },
2518 		{   6, IFM_IEEE80211_VHT },
2519 		{   7, IFM_IEEE80211_VHT },
2520 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2521 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2522 #if 0
2523 		/* Some QCA and BRCM seem to support this; offspec. */
2524 		{  10, IFM_IEEE80211_VHT },
2525 		{  11, IFM_IEEE80211_VHT },
2526 #endif
2527 	};
2528 	int m, rate;
2529 
2530 	/*
2531 	 * Check 11ac/11n rates first for match as an MCS.
2532 	 */
2533 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2534 		if (tr->type == IEEE80211_NODE_TXRATE_VHT) {
2535 			m = findmedia(vhtrates, nitems(vhtrates), tr->mcs);
2536 			if (m != IFM_AUTO)
2537 				return (m | IFM_IEEE80211_VHT);
2538 		}
2539 	} else if (mode == IEEE80211_MODE_11NA) {
2540 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2541 		if (tr->type == IEEE80211_NODE_TXRATE_HT) {
2542 			m = findmedia(htrates, nitems(htrates),
2543 			    tr->dot11rate & ~IEEE80211_RATE_MCS);
2544 			if (m != IFM_AUTO)
2545 				return m | IFM_IEEE80211_11NA;
2546 		}
2547 	} else if (mode == IEEE80211_MODE_11NG) {
2548 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2549 		if (tr->type == IEEE80211_NODE_TXRATE_HT) {
2550 			m = findmedia(htrates, nitems(htrates),
2551 			    tr->dot11rate & ~IEEE80211_RATE_MCS);
2552 			if (m != IFM_AUTO)
2553 				return m | IFM_IEEE80211_11NG;
2554 		}
2555 	}
2556 
2557 	/*
2558 	 * At this point it needs to be a dot11rate (legacy/HT) for the
2559 	 * rest of the logic to work.
2560 	 */
2561 	if ((tr->type != IEEE80211_NODE_TXRATE_LEGACY) &&
2562 	    (tr->type != IEEE80211_NODE_TXRATE_HT))
2563 		return (IFM_AUTO);
2564 	rate = tr->dot11rate & IEEE80211_RATE_VAL;
2565 
2566 	switch (mode) {
2567 	case IEEE80211_MODE_11A:
2568 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2569 	case IEEE80211_MODE_QUARTER:
2570 	case IEEE80211_MODE_11NA:
2571 	case IEEE80211_MODE_TURBO_A:
2572 	case IEEE80211_MODE_STURBO_A:
2573 		return findmedia(rates, nitems(rates),
2574 		    rate | IFM_IEEE80211_11A);
2575 	case IEEE80211_MODE_11B:
2576 		return findmedia(rates, nitems(rates),
2577 		    rate | IFM_IEEE80211_11B);
2578 	case IEEE80211_MODE_FH:
2579 		return findmedia(rates, nitems(rates),
2580 		    rate | IFM_IEEE80211_FH);
2581 	case IEEE80211_MODE_AUTO:
2582 		/* NB: ic may be NULL for some drivers */
2583 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2584 			return findmedia(rates, nitems(rates),
2585 			    rate | IFM_IEEE80211_FH);
2586 		/* NB: hack, 11g matches both 11b+11a rates */
2587 		/* fall thru... */
2588 	case IEEE80211_MODE_11G:
2589 	case IEEE80211_MODE_11NG:
2590 	case IEEE80211_MODE_TURBO_G:
2591 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2592 	case IEEE80211_MODE_VHT_2GHZ:
2593 	case IEEE80211_MODE_VHT_5GHZ:
2594 		/* XXX TODO: need to figure out mapping for VHT rates */
2595 		return IFM_AUTO;
2596 	}
2597 	return IFM_AUTO;
2598 }
2599 
2600 int
2601 ieee80211_media2rate(int mword)
2602 {
2603 	static const int ieeerates[] = {
2604 		-1,		/* IFM_AUTO */
2605 		0,		/* IFM_MANUAL */
2606 		0,		/* IFM_NONE */
2607 		2,		/* IFM_IEEE80211_FH1 */
2608 		4,		/* IFM_IEEE80211_FH2 */
2609 		2,		/* IFM_IEEE80211_DS1 */
2610 		4,		/* IFM_IEEE80211_DS2 */
2611 		11,		/* IFM_IEEE80211_DS5 */
2612 		22,		/* IFM_IEEE80211_DS11 */
2613 		44,		/* IFM_IEEE80211_DS22 */
2614 		12,		/* IFM_IEEE80211_OFDM6 */
2615 		18,		/* IFM_IEEE80211_OFDM9 */
2616 		24,		/* IFM_IEEE80211_OFDM12 */
2617 		36,		/* IFM_IEEE80211_OFDM18 */
2618 		48,		/* IFM_IEEE80211_OFDM24 */
2619 		72,		/* IFM_IEEE80211_OFDM36 */
2620 		96,		/* IFM_IEEE80211_OFDM48 */
2621 		108,		/* IFM_IEEE80211_OFDM54 */
2622 		144,		/* IFM_IEEE80211_OFDM72 */
2623 		0,		/* IFM_IEEE80211_DS354k */
2624 		0,		/* IFM_IEEE80211_DS512k */
2625 		6,		/* IFM_IEEE80211_OFDM3 */
2626 		9,		/* IFM_IEEE80211_OFDM4 */
2627 		54,		/* IFM_IEEE80211_OFDM27 */
2628 		-1,		/* IFM_IEEE80211_MCS */
2629 		-1,		/* IFM_IEEE80211_VHT */
2630 	};
2631 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2632 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2633 }
2634 
2635 /*
2636  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2637  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2638  */
2639 #define	mix(a, b, c)							\
2640 do {									\
2641 	a -= b; a -= c; a ^= (c >> 13);					\
2642 	b -= c; b -= a; b ^= (a << 8);					\
2643 	c -= a; c -= b; c ^= (b >> 13);					\
2644 	a -= b; a -= c; a ^= (c >> 12);					\
2645 	b -= c; b -= a; b ^= (a << 16);					\
2646 	c -= a; c -= b; c ^= (b >> 5);					\
2647 	a -= b; a -= c; a ^= (c >> 3);					\
2648 	b -= c; b -= a; b ^= (a << 10);					\
2649 	c -= a; c -= b; c ^= (b >> 15);					\
2650 } while (/*CONSTCOND*/0)
2651 
2652 uint32_t
2653 ieee80211_mac_hash(const struct ieee80211com *ic,
2654 	const uint8_t addr[IEEE80211_ADDR_LEN])
2655 {
2656 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2657 
2658 	b += addr[5] << 8;
2659 	b += addr[4];
2660 	a += addr[3] << 24;
2661 	a += addr[2] << 16;
2662 	a += addr[1] << 8;
2663 	a += addr[0];
2664 
2665 	mix(a, b, c);
2666 
2667 	return c;
2668 }
2669 #undef mix
2670 
2671 char
2672 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2673 {
2674 	if (IEEE80211_IS_CHAN_ST(c))
2675 		return 'S';
2676 	if (IEEE80211_IS_CHAN_108A(c))
2677 		return 'T';
2678 	if (IEEE80211_IS_CHAN_108G(c))
2679 		return 'G';
2680 	if (IEEE80211_IS_CHAN_VHT(c))
2681 		return 'v';
2682 	if (IEEE80211_IS_CHAN_HT(c))
2683 		return 'n';
2684 	if (IEEE80211_IS_CHAN_A(c))
2685 		return 'a';
2686 	if (IEEE80211_IS_CHAN_ANYG(c))
2687 		return 'g';
2688 	if (IEEE80211_IS_CHAN_B(c))
2689 		return 'b';
2690 	return 'f';
2691 }
2692 
2693 /*
2694  * Determine whether the given key in the given VAP is a global key.
2695  * (key index 0..3, shared between all stations on a VAP.)
2696  *
2697  * This is either a WEP key or a GROUP key.
2698  *
2699  * Note this will NOT return true if it is a IGTK key.
2700  */
2701 bool
2702 ieee80211_is_key_global(const struct ieee80211vap *vap,
2703     const struct ieee80211_key *key)
2704 {
2705 	return (&vap->iv_nw_keys[0] <= key &&
2706 	    key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]);
2707 }
2708 
2709 /*
2710  * Determine whether the given key in the given VAP is a unicast key.
2711  */
2712 bool
2713 ieee80211_is_key_unicast(const struct ieee80211vap *vap,
2714     const struct ieee80211_key *key)
2715 {
2716 	/*
2717 	 * This is a short-cut for now; eventually we will need
2718 	 * to support multiple unicast keys, IGTK, etc) so we
2719 	 * will absolutely need to fix the key flags.
2720 	 */
2721 	return (!ieee80211_is_key_global(vap, key));
2722 }
2723 
2724 /**
2725  * Determine whether the given control frame is from a known node
2726  * and destined to us.
2727  *
2728  * In some instances a control frame won't have a TA (eg ACKs), so
2729  * we should only verify the RA for those.
2730  *
2731  * @param ni	ieee80211_node representing the sender, or BSS node
2732  * @param m0	mbuf representing the 802.11 frame.
2733  * @returns	false if the frame is not a CTL frame (with a warning logged);
2734  *		true if the frame is from a known sender / valid recipient,
2735  *		false otherwise.
2736  */
2737 bool
2738 ieee80211_is_ctl_frame_for_vap(struct ieee80211_node *ni, const struct mbuf *m0)
2739 {
2740 	const struct ieee80211vap *vap = ni->ni_vap;
2741 	const struct ieee80211_frame *wh;
2742 	uint8_t subtype;
2743 
2744 	wh = mtod(m0, const struct ieee80211_frame *);
2745 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2746 
2747 	/* Verify it's a ctl frame. */
2748 	KASSERT(IEEE80211_IS_CTL(wh), ("%s: not a CTL frame (fc[0]=0x%04x)",
2749 	    __func__, wh->i_fc[0]));
2750 	if (!IEEE80211_IS_CTL(wh)) {
2751 		net80211_vap_printf(vap,
2752 		    "%s: not a control frame (fc[0]=0x%04x)\n",
2753 		    __func__, wh->i_fc[0]);
2754 		return (false);
2755 	}
2756 
2757 	/* Verify the TA if present. */
2758 	switch (subtype) {
2759 	case IEEE80211_FC0_SUBTYPE_CTS:
2760 	case IEEE80211_FC0_SUBTYPE_ACK:
2761 		/* No TA. */
2762 		break;
2763 	default:
2764 		/*
2765 		 * Verify TA matches ni->ni_macaddr; for unknown
2766 		 * sources it will be the BSS node and ni->ni_macaddr
2767 		 * will the BSS MAC.
2768 		 */
2769 		if (!IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_macaddr))
2770 			return (false);
2771 		break;
2772 	}
2773 
2774 	/* Verify the RA */
2775 	return (IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr));
2776 }
2777