xref: /freebsd/sys/net80211/ieee80211.c (revision bccef7f6d9f28d4d60dc3d0ba70aaa552f096cb9)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #include <net80211/ieee80211_ratectl.h>
57 
58 #include <net/bpf.h>
59 
60 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
61 	[IEEE80211_MODE_AUTO]	  = "auto",
62 	[IEEE80211_MODE_11A]	  = "11a",
63 	[IEEE80211_MODE_11B]	  = "11b",
64 	[IEEE80211_MODE_11G]	  = "11g",
65 	[IEEE80211_MODE_FH]	  = "FH",
66 	[IEEE80211_MODE_TURBO_A]  = "turboA",
67 	[IEEE80211_MODE_TURBO_G]  = "turboG",
68 	[IEEE80211_MODE_STURBO_A] = "sturboA",
69 	[IEEE80211_MODE_HALF]	  = "half",
70 	[IEEE80211_MODE_QUARTER]  = "quarter",
71 	[IEEE80211_MODE_11NA]	  = "11na",
72 	[IEEE80211_MODE_11NG]	  = "11ng",
73 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
74 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
75 };
76 /* map ieee80211_opmode to the corresponding capability bit */
77 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
78 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
79 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
80 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
81 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
82 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
83 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
84 #ifdef IEEE80211_SUPPORT_MESH
85 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
86 #endif
87 };
88 
89 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
90 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
91 
92 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
93 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
94 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
96 static	int ieee80211_media_setup(struct ieee80211com *ic,
97 		struct ifmedia *media, int caps, int addsta,
98 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
99 static	int media_status(enum ieee80211_opmode,
100 		const struct ieee80211_channel *);
101 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
102 
103 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
104 
105 /*
106  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
107  */
108 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
109 static const struct ieee80211_rateset ieee80211_rateset_11a =
110 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
111 static const struct ieee80211_rateset ieee80211_rateset_half =
112 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
113 static const struct ieee80211_rateset ieee80211_rateset_quarter =
114 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
115 static const struct ieee80211_rateset ieee80211_rateset_11b =
116 	{ 4, { B(2), B(4), B(11), B(22) } };
117 /* NB: OFDM rates are handled specially based on mode */
118 static const struct ieee80211_rateset ieee80211_rateset_11g =
119 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
120 #undef B
121 
122 /*
123  * Fill in 802.11 available channel set, mark
124  * all available channels as active, and pick
125  * a default channel if not already specified.
126  */
127 void
128 ieee80211_chan_init(struct ieee80211com *ic)
129 {
130 #define	DEFAULTRATES(m, def) do { \
131 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
132 		ic->ic_sup_rates[m] = def; \
133 } while (0)
134 	struct ieee80211_channel *c;
135 	int i;
136 
137 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
138 		("invalid number of channels specified: %u", ic->ic_nchans));
139 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
140 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
141 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
142 	for (i = 0; i < ic->ic_nchans; i++) {
143 		c = &ic->ic_channels[i];
144 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
145 		/*
146 		 * Help drivers that work only with frequencies by filling
147 		 * in IEEE channel #'s if not already calculated.  Note this
148 		 * mimics similar work done in ieee80211_setregdomain when
149 		 * changing regulatory state.
150 		 */
151 		if (c->ic_ieee == 0)
152 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
153 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
154 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
155 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
156 			    c->ic_flags);
157 		/* default max tx power to max regulatory */
158 		if (c->ic_maxpower == 0)
159 			c->ic_maxpower = 2*c->ic_maxregpower;
160 		setbit(ic->ic_chan_avail, c->ic_ieee);
161 		/*
162 		 * Identify mode capabilities.
163 		 */
164 		if (IEEE80211_IS_CHAN_A(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
166 		if (IEEE80211_IS_CHAN_B(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
168 		if (IEEE80211_IS_CHAN_ANYG(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
170 		if (IEEE80211_IS_CHAN_FHSS(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
172 		if (IEEE80211_IS_CHAN_108A(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
174 		if (IEEE80211_IS_CHAN_108G(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
176 		if (IEEE80211_IS_CHAN_ST(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
178 		if (IEEE80211_IS_CHAN_HALF(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
180 		if (IEEE80211_IS_CHAN_QUARTER(c))
181 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
182 		if (IEEE80211_IS_CHAN_HTA(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
184 		if (IEEE80211_IS_CHAN_HTG(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
186 		if (IEEE80211_IS_CHAN_VHTA(c))
187 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
188 		if (IEEE80211_IS_CHAN_VHTG(c))
189 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
190 	}
191 	/* initialize candidate channels to all available */
192 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
193 		sizeof(ic->ic_chan_avail));
194 
195 	/* sort channel table to allow lookup optimizations */
196 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
197 
198 	/* invalidate any previous state */
199 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
200 	ic->ic_prevchan = NULL;
201 	ic->ic_csa_newchan = NULL;
202 	/* arbitrarily pick the first channel */
203 	ic->ic_curchan = &ic->ic_channels[0];
204 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
205 
206 	/* fillin well-known rate sets if driver has not specified */
207 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
208 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
209 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
210 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
211 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
212 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
213 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
214 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
215 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
216 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
217 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
218 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
219 
220 	/*
221 	 * Setup required information to fill the mcsset field, if driver did
222 	 * not. Assume a 2T2R setup for historic reasons.
223 	 */
224 	if (ic->ic_rxstream == 0)
225 		ic->ic_rxstream = 2;
226 	if (ic->ic_txstream == 0)
227 		ic->ic_txstream = 2;
228 
229 	/*
230 	 * Set auto mode to reset active channel state and any desired channel.
231 	 */
232 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
233 #undef DEFAULTRATES
234 }
235 
236 static void
237 null_update_mcast(struct ieee80211com *ic)
238 {
239 
240 	ic_printf(ic, "need multicast update callback\n");
241 }
242 
243 static void
244 null_update_promisc(struct ieee80211com *ic)
245 {
246 
247 	ic_printf(ic, "need promiscuous mode update callback\n");
248 }
249 
250 static void
251 null_update_chw(struct ieee80211com *ic)
252 {
253 
254 	ic_printf(ic, "%s: need callback\n", __func__);
255 }
256 
257 int
258 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
259 {
260 	va_list ap;
261 	int retval;
262 
263 	retval = printf("%s: ", ic->ic_name);
264 	va_start(ap, fmt);
265 	retval += vprintf(fmt, ap);
266 	va_end(ap);
267 	return (retval);
268 }
269 
270 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
271 static struct mtx ic_list_mtx;
272 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
273 
274 static int
275 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
276 {
277 	struct ieee80211com *ic;
278 	struct sbuf sb;
279 	char *sp;
280 	int error;
281 
282 	error = sysctl_wire_old_buffer(req, 0);
283 	if (error)
284 		return (error);
285 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
286 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
287 	sp = "";
288 	mtx_lock(&ic_list_mtx);
289 	LIST_FOREACH(ic, &ic_head, ic_next) {
290 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
291 		sp = " ";
292 	}
293 	mtx_unlock(&ic_list_mtx);
294 	error = sbuf_finish(&sb);
295 	sbuf_delete(&sb);
296 	return (error);
297 }
298 
299 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
300     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
301     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
302 
303 /*
304  * Attach/setup the common net80211 state.  Called by
305  * the driver on attach to prior to creating any vap's.
306  */
307 void
308 ieee80211_ifattach(struct ieee80211com *ic)
309 {
310 
311 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
312 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
313 	TAILQ_INIT(&ic->ic_vaps);
314 
315 	/* Create a taskqueue for all state changes */
316 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
317 	    taskqueue_thread_enqueue, &ic->ic_tq);
318 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
319 	    ic->ic_name);
320 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
321 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
322 	/*
323 	 * Fill in 802.11 available channel set, mark all
324 	 * available channels as active, and pick a default
325 	 * channel if not already specified.
326 	 */
327 	ieee80211_chan_init(ic);
328 
329 	ic->ic_update_mcast = null_update_mcast;
330 	ic->ic_update_promisc = null_update_promisc;
331 	ic->ic_update_chw = null_update_chw;
332 
333 	ic->ic_hash_key = arc4random();
334 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
335 	ic->ic_lintval = ic->ic_bintval;
336 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
337 
338 	ieee80211_crypto_attach(ic);
339 	ieee80211_node_attach(ic);
340 	ieee80211_power_attach(ic);
341 	ieee80211_proto_attach(ic);
342 #ifdef IEEE80211_SUPPORT_SUPERG
343 	ieee80211_superg_attach(ic);
344 #endif
345 	ieee80211_ht_attach(ic);
346 	ieee80211_scan_attach(ic);
347 	ieee80211_regdomain_attach(ic);
348 	ieee80211_dfs_attach(ic);
349 
350 	ieee80211_sysctl_attach(ic);
351 
352 	mtx_lock(&ic_list_mtx);
353 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
354 	mtx_unlock(&ic_list_mtx);
355 }
356 
357 /*
358  * Detach net80211 state on device detach.  Tear down
359  * all vap's and reclaim all common state prior to the
360  * device state going away.  Note we may call back into
361  * driver; it must be prepared for this.
362  */
363 void
364 ieee80211_ifdetach(struct ieee80211com *ic)
365 {
366 	struct ieee80211vap *vap;
367 
368 	mtx_lock(&ic_list_mtx);
369 	LIST_REMOVE(ic, ic_next);
370 	mtx_unlock(&ic_list_mtx);
371 
372 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
373 
374 	/*
375 	 * The VAP is responsible for setting and clearing
376 	 * the VIMAGE context.
377 	 */
378 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
379 		ieee80211_vap_destroy(vap);
380 	ieee80211_waitfor_parent(ic);
381 
382 	ieee80211_sysctl_detach(ic);
383 	ieee80211_dfs_detach(ic);
384 	ieee80211_regdomain_detach(ic);
385 	ieee80211_scan_detach(ic);
386 #ifdef IEEE80211_SUPPORT_SUPERG
387 	ieee80211_superg_detach(ic);
388 #endif
389 	ieee80211_ht_detach(ic);
390 	/* NB: must be called before ieee80211_node_detach */
391 	ieee80211_proto_detach(ic);
392 	ieee80211_crypto_detach(ic);
393 	ieee80211_power_detach(ic);
394 	ieee80211_node_detach(ic);
395 
396 	counter_u64_free(ic->ic_ierrors);
397 	counter_u64_free(ic->ic_oerrors);
398 
399 	taskqueue_free(ic->ic_tq);
400 	IEEE80211_TX_LOCK_DESTROY(ic);
401 	IEEE80211_LOCK_DESTROY(ic);
402 }
403 
404 struct ieee80211com *
405 ieee80211_find_com(const char *name)
406 {
407 	struct ieee80211com *ic;
408 
409 	mtx_lock(&ic_list_mtx);
410 	LIST_FOREACH(ic, &ic_head, ic_next)
411 		if (strcmp(ic->ic_name, name) == 0)
412 			break;
413 	mtx_unlock(&ic_list_mtx);
414 
415 	return (ic);
416 }
417 
418 void
419 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
420 {
421 	struct ieee80211com *ic;
422 
423 	mtx_lock(&ic_list_mtx);
424 	LIST_FOREACH(ic, &ic_head, ic_next)
425 		(*f)(arg, ic);
426 	mtx_unlock(&ic_list_mtx);
427 }
428 
429 /*
430  * Default reset method for use with the ioctl support.  This
431  * method is invoked after any state change in the 802.11
432  * layer that should be propagated to the hardware but not
433  * require re-initialization of the 802.11 state machine (e.g
434  * rescanning for an ap).  We always return ENETRESET which
435  * should cause the driver to re-initialize the device. Drivers
436  * can override this method to implement more optimized support.
437  */
438 static int
439 default_reset(struct ieee80211vap *vap, u_long cmd)
440 {
441 	return ENETRESET;
442 }
443 
444 /*
445  * Default for updating the VAP default TX key index.
446  *
447  * Drivers that support TX offload as well as hardware encryption offload
448  * may need to be informed of key index changes separate from the key
449  * update.
450  */
451 static void
452 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
453 {
454 
455 	/* XXX assert validity */
456 	/* XXX assert we're in a key update block */
457 	vap->iv_def_txkey = kid;
458 }
459 
460 /*
461  * Add underlying device errors to vap errors.
462  */
463 static uint64_t
464 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
465 {
466 	struct ieee80211vap *vap = ifp->if_softc;
467 	struct ieee80211com *ic = vap->iv_ic;
468 	uint64_t rv;
469 
470 	rv = if_get_counter_default(ifp, cnt);
471 	switch (cnt) {
472 	case IFCOUNTER_OERRORS:
473 		rv += counter_u64_fetch(ic->ic_oerrors);
474 		break;
475 	case IFCOUNTER_IERRORS:
476 		rv += counter_u64_fetch(ic->ic_ierrors);
477 		break;
478 	default:
479 		break;
480 	}
481 
482 	return (rv);
483 }
484 
485 /*
486  * Prepare a vap for use.  Drivers use this call to
487  * setup net80211 state in new vap's prior attaching
488  * them with ieee80211_vap_attach (below).
489  */
490 int
491 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
492     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
493     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
494 {
495 	struct ifnet *ifp;
496 
497 	ifp = if_alloc(IFT_ETHER);
498 	if (ifp == NULL) {
499 		ic_printf(ic, "%s: unable to allocate ifnet\n",
500 		    __func__);
501 		return ENOMEM;
502 	}
503 	if_initname(ifp, name, unit);
504 	ifp->if_softc = vap;			/* back pointer */
505 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
506 	ifp->if_transmit = ieee80211_vap_transmit;
507 	ifp->if_qflush = ieee80211_vap_qflush;
508 	ifp->if_ioctl = ieee80211_ioctl;
509 	ifp->if_init = ieee80211_init;
510 	ifp->if_get_counter = ieee80211_get_counter;
511 
512 	vap->iv_ifp = ifp;
513 	vap->iv_ic = ic;
514 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
515 	vap->iv_flags_ext = ic->ic_flags_ext;
516 	vap->iv_flags_ven = ic->ic_flags_ven;
517 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
518 	vap->iv_htcaps = ic->ic_htcaps;
519 	vap->iv_htextcaps = ic->ic_htextcaps;
520 	vap->iv_opmode = opmode;
521 	vap->iv_caps |= ieee80211_opcap[opmode];
522 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
523 	switch (opmode) {
524 	case IEEE80211_M_WDS:
525 		/*
526 		 * WDS links must specify the bssid of the far end.
527 		 * For legacy operation this is a static relationship.
528 		 * For non-legacy operation the station must associate
529 		 * and be authorized to pass traffic.  Plumbing the
530 		 * vap to the proper node happens when the vap
531 		 * transitions to RUN state.
532 		 */
533 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
534 		vap->iv_flags |= IEEE80211_F_DESBSSID;
535 		if (flags & IEEE80211_CLONE_WDSLEGACY)
536 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
537 		break;
538 #ifdef IEEE80211_SUPPORT_TDMA
539 	case IEEE80211_M_AHDEMO:
540 		if (flags & IEEE80211_CLONE_TDMA) {
541 			/* NB: checked before clone operation allowed */
542 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
543 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
544 			/*
545 			 * Propagate TDMA capability to mark vap; this
546 			 * cannot be removed and is used to distinguish
547 			 * regular ahdemo operation from ahdemo+tdma.
548 			 */
549 			vap->iv_caps |= IEEE80211_C_TDMA;
550 		}
551 		break;
552 #endif
553 	default:
554 		break;
555 	}
556 	/* auto-enable s/w beacon miss support */
557 	if (flags & IEEE80211_CLONE_NOBEACONS)
558 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
559 	/* auto-generated or user supplied MAC address */
560 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
561 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
562 	/*
563 	 * Enable various functionality by default if we're
564 	 * capable; the driver can override us if it knows better.
565 	 */
566 	if (vap->iv_caps & IEEE80211_C_WME)
567 		vap->iv_flags |= IEEE80211_F_WME;
568 	if (vap->iv_caps & IEEE80211_C_BURST)
569 		vap->iv_flags |= IEEE80211_F_BURST;
570 	/* NB: bg scanning only makes sense for station mode right now */
571 	if (vap->iv_opmode == IEEE80211_M_STA &&
572 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
573 		vap->iv_flags |= IEEE80211_F_BGSCAN;
574 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
575 	/* NB: DFS support only makes sense for ap mode right now */
576 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
577 	    (vap->iv_caps & IEEE80211_C_DFS))
578 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
579 
580 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
581 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
582 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
583 	/*
584 	 * Install a default reset method for the ioctl support;
585 	 * the driver can override this.
586 	 */
587 	vap->iv_reset = default_reset;
588 
589 	/*
590 	 * Install a default crypto key update method, the driver
591 	 * can override this.
592 	 */
593 	vap->iv_update_deftxkey = default_update_deftxkey;
594 
595 	ieee80211_sysctl_vattach(vap);
596 	ieee80211_crypto_vattach(vap);
597 	ieee80211_node_vattach(vap);
598 	ieee80211_power_vattach(vap);
599 	ieee80211_proto_vattach(vap);
600 #ifdef IEEE80211_SUPPORT_SUPERG
601 	ieee80211_superg_vattach(vap);
602 #endif
603 	ieee80211_ht_vattach(vap);
604 	ieee80211_scan_vattach(vap);
605 	ieee80211_regdomain_vattach(vap);
606 	ieee80211_radiotap_vattach(vap);
607 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
608 
609 	return 0;
610 }
611 
612 /*
613  * Activate a vap.  State should have been prepared with a
614  * call to ieee80211_vap_setup and by the driver.  On return
615  * from this call the vap is ready for use.
616  */
617 int
618 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
619     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
620 {
621 	struct ifnet *ifp = vap->iv_ifp;
622 	struct ieee80211com *ic = vap->iv_ic;
623 	struct ifmediareq imr;
624 	int maxrate;
625 
626 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
627 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
628 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
629 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
630 
631 	/*
632 	 * Do late attach work that cannot happen until after
633 	 * the driver has had a chance to override defaults.
634 	 */
635 	ieee80211_node_latevattach(vap);
636 	ieee80211_power_latevattach(vap);
637 
638 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
639 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
640 	ieee80211_media_status(ifp, &imr);
641 	/* NB: strip explicit mode; we're actually in autoselect */
642 	ifmedia_set(&vap->iv_media,
643 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
644 	if (maxrate)
645 		ifp->if_baudrate = IF_Mbps(maxrate);
646 
647 	ether_ifattach(ifp, macaddr);
648 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
649 	/* hook output method setup by ether_ifattach */
650 	vap->iv_output = ifp->if_output;
651 	ifp->if_output = ieee80211_output;
652 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
653 
654 	IEEE80211_LOCK(ic);
655 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
656 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
657 #ifdef IEEE80211_SUPPORT_SUPERG
658 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
659 #endif
660 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
661 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
662 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
663 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
664 
665 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
666 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
667 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
668 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
669 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
670 	IEEE80211_UNLOCK(ic);
671 
672 	return 1;
673 }
674 
675 /*
676  * Tear down vap state and reclaim the ifnet.
677  * The driver is assumed to have prepared for
678  * this; e.g. by turning off interrupts for the
679  * underlying device.
680  */
681 void
682 ieee80211_vap_detach(struct ieee80211vap *vap)
683 {
684 	struct ieee80211com *ic = vap->iv_ic;
685 	struct ifnet *ifp = vap->iv_ifp;
686 
687 	CURVNET_SET(ifp->if_vnet);
688 
689 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
690 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
691 
692 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
693 	ether_ifdetach(ifp);
694 
695 	ieee80211_stop(vap);
696 
697 	/*
698 	 * Flush any deferred vap tasks.
699 	 */
700 	ieee80211_draintask(ic, &vap->iv_nstate_task);
701 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
702 
703 	/* XXX band-aid until ifnet handles this for us */
704 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
705 
706 	IEEE80211_LOCK(ic);
707 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
708 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
709 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
710 #ifdef IEEE80211_SUPPORT_SUPERG
711 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
712 #endif
713 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
714 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
715 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
716 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
717 
718 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
719 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
720 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
721 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
722 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
723 
724 	/* NB: this handles the bpfdetach done below */
725 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
726 	if (vap->iv_ifflags & IFF_PROMISC)
727 		ieee80211_promisc(vap, false);
728 	if (vap->iv_ifflags & IFF_ALLMULTI)
729 		ieee80211_allmulti(vap, false);
730 	IEEE80211_UNLOCK(ic);
731 
732 	ifmedia_removeall(&vap->iv_media);
733 
734 	ieee80211_radiotap_vdetach(vap);
735 	ieee80211_regdomain_vdetach(vap);
736 	ieee80211_scan_vdetach(vap);
737 #ifdef IEEE80211_SUPPORT_SUPERG
738 	ieee80211_superg_vdetach(vap);
739 #endif
740 	ieee80211_ht_vdetach(vap);
741 	/* NB: must be before ieee80211_node_vdetach */
742 	ieee80211_proto_vdetach(vap);
743 	ieee80211_crypto_vdetach(vap);
744 	ieee80211_power_vdetach(vap);
745 	ieee80211_node_vdetach(vap);
746 	ieee80211_sysctl_vdetach(vap);
747 
748 	if_free(ifp);
749 
750 	CURVNET_RESTORE();
751 }
752 
753 /*
754  * Count number of vaps in promisc, and issue promisc on
755  * parent respectively.
756  */
757 void
758 ieee80211_promisc(struct ieee80211vap *vap, bool on)
759 {
760 	struct ieee80211com *ic = vap->iv_ic;
761 
762 	IEEE80211_LOCK_ASSERT(ic);
763 
764 	if (on) {
765 		if (++ic->ic_promisc == 1)
766 			ieee80211_runtask(ic, &ic->ic_promisc_task);
767 	} else {
768 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
769 		    __func__, ic));
770 		if (--ic->ic_promisc == 0)
771 			ieee80211_runtask(ic, &ic->ic_promisc_task);
772 	}
773 }
774 
775 /*
776  * Count number of vaps in allmulti, and issue allmulti on
777  * parent respectively.
778  */
779 void
780 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
781 {
782 	struct ieee80211com *ic = vap->iv_ic;
783 
784 	IEEE80211_LOCK_ASSERT(ic);
785 
786 	if (on) {
787 		if (++ic->ic_allmulti == 1)
788 			ieee80211_runtask(ic, &ic->ic_mcast_task);
789 	} else {
790 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
791 		    __func__, ic));
792 		if (--ic->ic_allmulti == 0)
793 			ieee80211_runtask(ic, &ic->ic_mcast_task);
794 	}
795 }
796 
797 /*
798  * Synchronize flag bit state in the com structure
799  * according to the state of all vap's.  This is used,
800  * for example, to handle state changes via ioctls.
801  */
802 static void
803 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
804 {
805 	struct ieee80211vap *vap;
806 	int bit;
807 
808 	IEEE80211_LOCK_ASSERT(ic);
809 
810 	bit = 0;
811 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
812 		if (vap->iv_flags & flag) {
813 			bit = 1;
814 			break;
815 		}
816 	if (bit)
817 		ic->ic_flags |= flag;
818 	else
819 		ic->ic_flags &= ~flag;
820 }
821 
822 void
823 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
824 {
825 	struct ieee80211com *ic = vap->iv_ic;
826 
827 	IEEE80211_LOCK(ic);
828 	if (flag < 0) {
829 		flag = -flag;
830 		vap->iv_flags &= ~flag;
831 	} else
832 		vap->iv_flags |= flag;
833 	ieee80211_syncflag_locked(ic, flag);
834 	IEEE80211_UNLOCK(ic);
835 }
836 
837 /*
838  * Synchronize flags_ht bit state in the com structure
839  * according to the state of all vap's.  This is used,
840  * for example, to handle state changes via ioctls.
841  */
842 static void
843 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
844 {
845 	struct ieee80211vap *vap;
846 	int bit;
847 
848 	IEEE80211_LOCK_ASSERT(ic);
849 
850 	bit = 0;
851 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
852 		if (vap->iv_flags_ht & flag) {
853 			bit = 1;
854 			break;
855 		}
856 	if (bit)
857 		ic->ic_flags_ht |= flag;
858 	else
859 		ic->ic_flags_ht &= ~flag;
860 }
861 
862 void
863 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
864 {
865 	struct ieee80211com *ic = vap->iv_ic;
866 
867 	IEEE80211_LOCK(ic);
868 	if (flag < 0) {
869 		flag = -flag;
870 		vap->iv_flags_ht &= ~flag;
871 	} else
872 		vap->iv_flags_ht |= flag;
873 	ieee80211_syncflag_ht_locked(ic, flag);
874 	IEEE80211_UNLOCK(ic);
875 }
876 
877 /*
878  * Synchronize flags_vht bit state in the com structure
879  * according to the state of all vap's.  This is used,
880  * for example, to handle state changes via ioctls.
881  */
882 static void
883 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
884 {
885 	struct ieee80211vap *vap;
886 	int bit;
887 
888 	IEEE80211_LOCK_ASSERT(ic);
889 
890 	bit = 0;
891 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
892 		if (vap->iv_flags_vht & flag) {
893 			bit = 1;
894 			break;
895 		}
896 	if (bit)
897 		ic->ic_flags_vht |= flag;
898 	else
899 		ic->ic_flags_vht &= ~flag;
900 }
901 
902 void
903 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
904 {
905 	struct ieee80211com *ic = vap->iv_ic;
906 
907 	IEEE80211_LOCK(ic);
908 	if (flag < 0) {
909 		flag = -flag;
910 		vap->iv_flags_vht &= ~flag;
911 	} else
912 		vap->iv_flags_vht |= flag;
913 	ieee80211_syncflag_vht_locked(ic, flag);
914 	IEEE80211_UNLOCK(ic);
915 }
916 
917 /*
918  * Synchronize flags_ext bit state in the com structure
919  * according to the state of all vap's.  This is used,
920  * for example, to handle state changes via ioctls.
921  */
922 static void
923 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
924 {
925 	struct ieee80211vap *vap;
926 	int bit;
927 
928 	IEEE80211_LOCK_ASSERT(ic);
929 
930 	bit = 0;
931 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
932 		if (vap->iv_flags_ext & flag) {
933 			bit = 1;
934 			break;
935 		}
936 	if (bit)
937 		ic->ic_flags_ext |= flag;
938 	else
939 		ic->ic_flags_ext &= ~flag;
940 }
941 
942 void
943 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
944 {
945 	struct ieee80211com *ic = vap->iv_ic;
946 
947 	IEEE80211_LOCK(ic);
948 	if (flag < 0) {
949 		flag = -flag;
950 		vap->iv_flags_ext &= ~flag;
951 	} else
952 		vap->iv_flags_ext |= flag;
953 	ieee80211_syncflag_ext_locked(ic, flag);
954 	IEEE80211_UNLOCK(ic);
955 }
956 
957 static __inline int
958 mapgsm(u_int freq, u_int flags)
959 {
960 	freq *= 10;
961 	if (flags & IEEE80211_CHAN_QUARTER)
962 		freq += 5;
963 	else if (flags & IEEE80211_CHAN_HALF)
964 		freq += 10;
965 	else
966 		freq += 20;
967 	/* NB: there is no 907/20 wide but leave room */
968 	return (freq - 906*10) / 5;
969 }
970 
971 static __inline int
972 mappsb(u_int freq, u_int flags)
973 {
974 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
975 }
976 
977 /*
978  * Convert MHz frequency to IEEE channel number.
979  */
980 int
981 ieee80211_mhz2ieee(u_int freq, u_int flags)
982 {
983 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
984 	if (flags & IEEE80211_CHAN_GSM)
985 		return mapgsm(freq, flags);
986 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
987 		if (freq == 2484)
988 			return 14;
989 		if (freq < 2484)
990 			return ((int) freq - 2407) / 5;
991 		else
992 			return 15 + ((freq - 2512) / 20);
993 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
994 		if (freq <= 5000) {
995 			/* XXX check regdomain? */
996 			if (IS_FREQ_IN_PSB(freq))
997 				return mappsb(freq, flags);
998 			return (freq - 4000) / 5;
999 		} else
1000 			return (freq - 5000) / 5;
1001 	} else {				/* either, guess */
1002 		if (freq == 2484)
1003 			return 14;
1004 		if (freq < 2484) {
1005 			if (907 <= freq && freq <= 922)
1006 				return mapgsm(freq, flags);
1007 			return ((int) freq - 2407) / 5;
1008 		}
1009 		if (freq < 5000) {
1010 			if (IS_FREQ_IN_PSB(freq))
1011 				return mappsb(freq, flags);
1012 			else if (freq > 4900)
1013 				return (freq - 4000) / 5;
1014 			else
1015 				return 15 + ((freq - 2512) / 20);
1016 		}
1017 		return (freq - 5000) / 5;
1018 	}
1019 #undef IS_FREQ_IN_PSB
1020 }
1021 
1022 /*
1023  * Convert channel to IEEE channel number.
1024  */
1025 int
1026 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1027 {
1028 	if (c == NULL) {
1029 		ic_printf(ic, "invalid channel (NULL)\n");
1030 		return 0;		/* XXX */
1031 	}
1032 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1033 }
1034 
1035 /*
1036  * Convert IEEE channel number to MHz frequency.
1037  */
1038 u_int
1039 ieee80211_ieee2mhz(u_int chan, u_int flags)
1040 {
1041 	if (flags & IEEE80211_CHAN_GSM)
1042 		return 907 + 5 * (chan / 10);
1043 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1044 		if (chan == 14)
1045 			return 2484;
1046 		if (chan < 14)
1047 			return 2407 + chan*5;
1048 		else
1049 			return 2512 + ((chan-15)*20);
1050 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1051 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1052 			chan -= 37;
1053 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1054 		}
1055 		return 5000 + (chan*5);
1056 	} else {				/* either, guess */
1057 		/* XXX can't distinguish PSB+GSM channels */
1058 		if (chan == 14)
1059 			return 2484;
1060 		if (chan < 14)			/* 0-13 */
1061 			return 2407 + chan*5;
1062 		if (chan < 27)			/* 15-26 */
1063 			return 2512 + ((chan-15)*20);
1064 		return 5000 + (chan*5);
1065 	}
1066 }
1067 
1068 static __inline void
1069 set_extchan(struct ieee80211_channel *c)
1070 {
1071 
1072 	/*
1073 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1074 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1075 	 */
1076 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1077 		c->ic_extieee = c->ic_ieee + 4;
1078 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1079 		c->ic_extieee = c->ic_ieee - 4;
1080 	else
1081 		c->ic_extieee = 0;
1082 }
1083 
1084 static int
1085 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1086     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1087 {
1088 	struct ieee80211_channel *c;
1089 
1090 	if (*nchans >= maxchans)
1091 		return (ENOBUFS);
1092 
1093 	c = &chans[(*nchans)++];
1094 	c->ic_ieee = ieee;
1095 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1096 	c->ic_maxregpower = maxregpower;
1097 	c->ic_maxpower = 2 * maxregpower;
1098 	c->ic_flags = flags;
1099 	set_extchan(c);
1100 
1101 	return (0);
1102 }
1103 
1104 static int
1105 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1106     uint32_t flags)
1107 {
1108 	struct ieee80211_channel *c;
1109 
1110 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1111 
1112 	if (*nchans >= maxchans)
1113 		return (ENOBUFS);
1114 
1115 	c = &chans[(*nchans)++];
1116 	c[0] = c[-1];
1117 	c->ic_flags = flags;
1118 	set_extchan(c);
1119 
1120 	return (0);
1121 }
1122 
1123 static void
1124 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1125 {
1126 	int nmodes;
1127 
1128 	nmodes = 0;
1129 	if (isset(bands, IEEE80211_MODE_11B))
1130 		flags[nmodes++] = IEEE80211_CHAN_B;
1131 	if (isset(bands, IEEE80211_MODE_11G))
1132 		flags[nmodes++] = IEEE80211_CHAN_G;
1133 	if (isset(bands, IEEE80211_MODE_11NG))
1134 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1135 	if (ht40) {
1136 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1137 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1138 	}
1139 	flags[nmodes] = 0;
1140 }
1141 
1142 static void
1143 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1144 {
1145 	int nmodes;
1146 
1147 	nmodes = 0;
1148 	if (isset(bands, IEEE80211_MODE_11A))
1149 		flags[nmodes++] = IEEE80211_CHAN_A;
1150 	if (isset(bands, IEEE80211_MODE_11NA))
1151 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1152 	if (ht40) {
1153 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1154 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1155 	}
1156 	flags[nmodes] = 0;
1157 }
1158 
1159 static void
1160 getflags(const uint8_t bands[], uint32_t flags[], int ht40)
1161 {
1162 
1163 	flags[0] = 0;
1164 	if (isset(bands, IEEE80211_MODE_11A) ||
1165 	    isset(bands, IEEE80211_MODE_11NA)) {
1166 		if (isset(bands, IEEE80211_MODE_11B) ||
1167 		    isset(bands, IEEE80211_MODE_11G) ||
1168 		    isset(bands, IEEE80211_MODE_11NG))
1169 			return;
1170 
1171 		getflags_5ghz(bands, flags, ht40);
1172 	} else
1173 		getflags_2ghz(bands, flags, ht40);
1174 }
1175 
1176 /*
1177  * Add one 20 MHz channel into specified channel list.
1178  */
1179 int
1180 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1181     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1182     uint32_t chan_flags, const uint8_t bands[])
1183 {
1184 	uint32_t flags[IEEE80211_MODE_MAX];
1185 	int i, error;
1186 
1187 	getflags(bands, flags, 0);
1188 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1189 
1190 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1191 	    flags[0] | chan_flags);
1192 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1193 		error = copychan_prev(chans, maxchans, nchans,
1194 		    flags[i] | chan_flags);
1195 	}
1196 
1197 	return (error);
1198 }
1199 
1200 static struct ieee80211_channel *
1201 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1202     uint32_t flags)
1203 {
1204 	struct ieee80211_channel *c;
1205 	int i;
1206 
1207 	flags &= IEEE80211_CHAN_ALLTURBO;
1208 	/* brute force search */
1209 	for (i = 0; i < nchans; i++) {
1210 		c = &chans[i];
1211 		if (c->ic_freq == freq &&
1212 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1213 			return c;
1214 	}
1215 	return NULL;
1216 }
1217 
1218 /*
1219  * Add 40 MHz channel pair into specified channel list.
1220  */
1221 int
1222 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1223     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1224 {
1225 	struct ieee80211_channel *cent, *extc;
1226 	uint16_t freq;
1227 	int error;
1228 
1229 	freq = ieee80211_ieee2mhz(ieee, flags);
1230 
1231 	/*
1232 	 * Each entry defines an HT40 channel pair; find the
1233 	 * center channel, then the extension channel above.
1234 	 */
1235 	flags |= IEEE80211_CHAN_HT20;
1236 	cent = findchannel(chans, *nchans, freq, flags);
1237 	if (cent == NULL)
1238 		return (EINVAL);
1239 
1240 	extc = findchannel(chans, *nchans, freq + 20, flags);
1241 	if (extc == NULL)
1242 		return (ENOENT);
1243 
1244 	flags &= ~IEEE80211_CHAN_HT;
1245 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1246 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1247 	if (error != 0)
1248 		return (error);
1249 
1250 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1251 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1252 
1253 	return (error);
1254 }
1255 
1256 /*
1257  * Fetch the center frequency for the primary channel.
1258  */
1259 uint32_t
1260 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1261 {
1262 
1263 	return (c->ic_freq);
1264 }
1265 
1266 /*
1267  * Fetch the center frequency for the primary BAND channel.
1268  *
1269  * For 5, 10, 20MHz channels it'll be the normally configured channel
1270  * frequency.
1271  *
1272  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1273  * wide channel, not the centre of the primary channel (that's ic_freq).
1274  *
1275  * For 80+80MHz channels this will be the centre of the primary
1276  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1277  */
1278 
1279 uint32_t
1280 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1281 {
1282 
1283 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1284 		return (c->ic_freq + 10);
1285 	}
1286 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1287 		return (c->ic_freq - 10);
1288 	}
1289 
1290 	return (c->ic_freq);
1291 }
1292 
1293 /*
1294  * For now, no 80+80 support; this is zero.
1295  */
1296 uint32_t
1297 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1298 {
1299 
1300 	return (0);
1301 }
1302 
1303 /*
1304  * Adds channels into specified channel list (ieee[] array must be sorted).
1305  * Channels are already sorted.
1306  */
1307 static int
1308 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1309     const uint8_t ieee[], int nieee, uint32_t flags[])
1310 {
1311 	uint16_t freq;
1312 	int i, j, error;
1313 
1314 	for (i = 0; i < nieee; i++) {
1315 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1316 		for (j = 0; flags[j] != 0; j++) {
1317 			if (flags[j] & IEEE80211_CHAN_HT40D)
1318 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1319 				    freq - 20 !=
1320 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1321 					continue;
1322 			if (flags[j] & IEEE80211_CHAN_HT40U)
1323 				if (i == nieee - 1 ||
1324 				    ieee[i] + 4 > ieee[nieee - 1] ||
1325 				    freq + 20 !=
1326 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1327 					continue;
1328 
1329 			if (j == 0) {
1330 				error = addchan(chans, maxchans, nchans,
1331 				    ieee[i], freq, 0, flags[j]);
1332 			} else {
1333 				error = copychan_prev(chans, maxchans, nchans,
1334 				    flags[j]);
1335 			}
1336 			if (error != 0)
1337 				return (error);
1338 		}
1339 	}
1340 
1341 	return (0);
1342 }
1343 
1344 int
1345 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1346     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1347     int ht40)
1348 {
1349 	uint32_t flags[IEEE80211_MODE_MAX];
1350 
1351 	getflags_2ghz(bands, flags, ht40);
1352 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1353 
1354 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1355 }
1356 
1357 int
1358 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1359     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1360     int ht40)
1361 {
1362 	uint32_t flags[IEEE80211_MODE_MAX];
1363 
1364 	getflags_5ghz(bands, flags, ht40);
1365 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1366 
1367 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1368 }
1369 
1370 /*
1371  * Locate a channel given a frequency+flags.  We cache
1372  * the previous lookup to optimize switching between two
1373  * channels--as happens with dynamic turbo.
1374  */
1375 struct ieee80211_channel *
1376 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1377 {
1378 	struct ieee80211_channel *c;
1379 
1380 	flags &= IEEE80211_CHAN_ALLTURBO;
1381 	c = ic->ic_prevchan;
1382 	if (c != NULL && c->ic_freq == freq &&
1383 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1384 		return c;
1385 	/* brute force search */
1386 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1387 }
1388 
1389 /*
1390  * Locate a channel given a channel number+flags.  We cache
1391  * the previous lookup to optimize switching between two
1392  * channels--as happens with dynamic turbo.
1393  */
1394 struct ieee80211_channel *
1395 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1396 {
1397 	struct ieee80211_channel *c;
1398 	int i;
1399 
1400 	flags &= IEEE80211_CHAN_ALLTURBO;
1401 	c = ic->ic_prevchan;
1402 	if (c != NULL && c->ic_ieee == ieee &&
1403 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1404 		return c;
1405 	/* brute force search */
1406 	for (i = 0; i < ic->ic_nchans; i++) {
1407 		c = &ic->ic_channels[i];
1408 		if (c->ic_ieee == ieee &&
1409 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1410 			return c;
1411 	}
1412 	return NULL;
1413 }
1414 
1415 /*
1416  * Lookup a channel suitable for the given rx status.
1417  *
1418  * This is used to find a channel for a frame (eg beacon, probe
1419  * response) based purely on the received PHY information.
1420  *
1421  * For now it tries to do it based on R_FREQ / R_IEEE.
1422  * This is enough for 11bg and 11a (and thus 11ng/11na)
1423  * but it will not be enough for GSM, PSB channels and the
1424  * like.  It also doesn't know about legacy-turbog and
1425  * legacy-turbo modes, which some offload NICs actually
1426  * support in weird ways.
1427  *
1428  * Takes the ic and rxstatus; returns the channel or NULL
1429  * if not found.
1430  *
1431  * XXX TODO: Add support for that when the need arises.
1432  */
1433 struct ieee80211_channel *
1434 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1435     const struct ieee80211_rx_stats *rxs)
1436 {
1437 	struct ieee80211com *ic = vap->iv_ic;
1438 	uint32_t flags;
1439 	struct ieee80211_channel *c;
1440 
1441 	if (rxs == NULL)
1442 		return (NULL);
1443 
1444 	/*
1445 	 * Strictly speaking we only use freq for now,
1446 	 * however later on we may wish to just store
1447 	 * the ieee for verification.
1448 	 */
1449 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1450 		return (NULL);
1451 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1452 		return (NULL);
1453 
1454 	/*
1455 	 * If the rx status contains a valid ieee/freq, then
1456 	 * ensure we populate the correct channel information
1457 	 * in rxchan before passing it up to the scan infrastructure.
1458 	 * Offload NICs will pass up beacons from all channels
1459 	 * during background scans.
1460 	 */
1461 
1462 	/* Determine a band */
1463 	/* XXX should be done by the driver? */
1464 	if (rxs->c_freq < 3000) {
1465 		flags = IEEE80211_CHAN_G;
1466 	} else {
1467 		flags = IEEE80211_CHAN_A;
1468 	}
1469 
1470 	/* Channel lookup */
1471 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1472 
1473 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1474 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1475 	    __func__,
1476 	    (int) rxs->c_freq,
1477 	    (int) rxs->c_ieee,
1478 	    flags,
1479 	    c);
1480 
1481 	return (c);
1482 }
1483 
1484 static void
1485 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1486 {
1487 #define	ADD(_ic, _s, _o) \
1488 	ifmedia_add(media, \
1489 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1490 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1491 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1492 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1493 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1494 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1495 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1496 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1497 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1498 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1499 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1500 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1501 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1502 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1503 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1504 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1505 	};
1506 	u_int mopt;
1507 
1508 	mopt = mopts[mode];
1509 	if (addsta)
1510 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1511 	if (caps & IEEE80211_C_IBSS)
1512 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1513 	if (caps & IEEE80211_C_HOSTAP)
1514 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1515 	if (caps & IEEE80211_C_AHDEMO)
1516 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1517 	if (caps & IEEE80211_C_MONITOR)
1518 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1519 	if (caps & IEEE80211_C_WDS)
1520 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1521 	if (caps & IEEE80211_C_MBSS)
1522 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1523 #undef ADD
1524 }
1525 
1526 /*
1527  * Setup the media data structures according to the channel and
1528  * rate tables.
1529  */
1530 static int
1531 ieee80211_media_setup(struct ieee80211com *ic,
1532 	struct ifmedia *media, int caps, int addsta,
1533 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1534 {
1535 	int i, j, rate, maxrate, mword, r;
1536 	enum ieee80211_phymode mode;
1537 	const struct ieee80211_rateset *rs;
1538 	struct ieee80211_rateset allrates;
1539 
1540 	/*
1541 	 * Fill in media characteristics.
1542 	 */
1543 	ifmedia_init(media, 0, media_change, media_stat);
1544 	maxrate = 0;
1545 	/*
1546 	 * Add media for legacy operating modes.
1547 	 */
1548 	memset(&allrates, 0, sizeof(allrates));
1549 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1550 		if (isclr(ic->ic_modecaps, mode))
1551 			continue;
1552 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1553 		if (mode == IEEE80211_MODE_AUTO)
1554 			continue;
1555 		rs = &ic->ic_sup_rates[mode];
1556 		for (i = 0; i < rs->rs_nrates; i++) {
1557 			rate = rs->rs_rates[i];
1558 			mword = ieee80211_rate2media(ic, rate, mode);
1559 			if (mword == 0)
1560 				continue;
1561 			addmedia(media, caps, addsta, mode, mword);
1562 			/*
1563 			 * Add legacy rate to the collection of all rates.
1564 			 */
1565 			r = rate & IEEE80211_RATE_VAL;
1566 			for (j = 0; j < allrates.rs_nrates; j++)
1567 				if (allrates.rs_rates[j] == r)
1568 					break;
1569 			if (j == allrates.rs_nrates) {
1570 				/* unique, add to the set */
1571 				allrates.rs_rates[j] = r;
1572 				allrates.rs_nrates++;
1573 			}
1574 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1575 			if (rate > maxrate)
1576 				maxrate = rate;
1577 		}
1578 	}
1579 	for (i = 0; i < allrates.rs_nrates; i++) {
1580 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1581 				IEEE80211_MODE_AUTO);
1582 		if (mword == 0)
1583 			continue;
1584 		/* NB: remove media options from mword */
1585 		addmedia(media, caps, addsta,
1586 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1587 	}
1588 	/*
1589 	 * Add HT/11n media.  Note that we do not have enough
1590 	 * bits in the media subtype to express the MCS so we
1591 	 * use a "placeholder" media subtype and any fixed MCS
1592 	 * must be specified with a different mechanism.
1593 	 */
1594 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1595 		if (isclr(ic->ic_modecaps, mode))
1596 			continue;
1597 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1598 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1599 	}
1600 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1601 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1602 		addmedia(media, caps, addsta,
1603 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1604 		i = ic->ic_txstream * 8 - 1;
1605 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1606 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1607 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1608 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1609 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1610 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1611 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1612 		else
1613 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1614 		if (rate > maxrate)
1615 			maxrate = rate;
1616 	}
1617 
1618 	/*
1619 	 * Add VHT media.
1620 	 */
1621 	for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) {
1622 		if (isclr(ic->ic_modecaps, mode))
1623 			continue;
1624 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1625 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
1626 
1627 		/* XXX TODO: VHT maxrate */
1628 	}
1629 
1630 	return maxrate;
1631 }
1632 
1633 /* XXX inline or eliminate? */
1634 const struct ieee80211_rateset *
1635 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1636 {
1637 	/* XXX does this work for 11ng basic rates? */
1638 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1639 }
1640 
1641 void
1642 ieee80211_announce(struct ieee80211com *ic)
1643 {
1644 	int i, rate, mword;
1645 	enum ieee80211_phymode mode;
1646 	const struct ieee80211_rateset *rs;
1647 
1648 	/* NB: skip AUTO since it has no rates */
1649 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1650 		if (isclr(ic->ic_modecaps, mode))
1651 			continue;
1652 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1653 		rs = &ic->ic_sup_rates[mode];
1654 		for (i = 0; i < rs->rs_nrates; i++) {
1655 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1656 			if (mword == 0)
1657 				continue;
1658 			rate = ieee80211_media2rate(mword);
1659 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1660 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1661 		}
1662 		printf("\n");
1663 	}
1664 	ieee80211_ht_announce(ic);
1665 }
1666 
1667 void
1668 ieee80211_announce_channels(struct ieee80211com *ic)
1669 {
1670 	const struct ieee80211_channel *c;
1671 	char type;
1672 	int i, cw;
1673 
1674 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1675 	for (i = 0; i < ic->ic_nchans; i++) {
1676 		c = &ic->ic_channels[i];
1677 		if (IEEE80211_IS_CHAN_ST(c))
1678 			type = 'S';
1679 		else if (IEEE80211_IS_CHAN_108A(c))
1680 			type = 'T';
1681 		else if (IEEE80211_IS_CHAN_108G(c))
1682 			type = 'G';
1683 		else if (IEEE80211_IS_CHAN_HT(c))
1684 			type = 'n';
1685 		else if (IEEE80211_IS_CHAN_A(c))
1686 			type = 'a';
1687 		else if (IEEE80211_IS_CHAN_ANYG(c))
1688 			type = 'g';
1689 		else if (IEEE80211_IS_CHAN_B(c))
1690 			type = 'b';
1691 		else
1692 			type = 'f';
1693 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1694 			cw = 40;
1695 		else if (IEEE80211_IS_CHAN_HALF(c))
1696 			cw = 10;
1697 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1698 			cw = 5;
1699 		else
1700 			cw = 20;
1701 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1702 			, c->ic_ieee, c->ic_freq, type
1703 			, cw
1704 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1705 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1706 			, c->ic_maxregpower
1707 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1708 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1709 		);
1710 	}
1711 }
1712 
1713 static int
1714 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1715 {
1716 	switch (IFM_MODE(ime->ifm_media)) {
1717 	case IFM_IEEE80211_11A:
1718 		*mode = IEEE80211_MODE_11A;
1719 		break;
1720 	case IFM_IEEE80211_11B:
1721 		*mode = IEEE80211_MODE_11B;
1722 		break;
1723 	case IFM_IEEE80211_11G:
1724 		*mode = IEEE80211_MODE_11G;
1725 		break;
1726 	case IFM_IEEE80211_FH:
1727 		*mode = IEEE80211_MODE_FH;
1728 		break;
1729 	case IFM_IEEE80211_11NA:
1730 		*mode = IEEE80211_MODE_11NA;
1731 		break;
1732 	case IFM_IEEE80211_11NG:
1733 		*mode = IEEE80211_MODE_11NG;
1734 		break;
1735 	case IFM_AUTO:
1736 		*mode = IEEE80211_MODE_AUTO;
1737 		break;
1738 	default:
1739 		return 0;
1740 	}
1741 	/*
1742 	 * Turbo mode is an ``option''.
1743 	 * XXX does not apply to AUTO
1744 	 */
1745 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1746 		if (*mode == IEEE80211_MODE_11A) {
1747 			if (flags & IEEE80211_F_TURBOP)
1748 				*mode = IEEE80211_MODE_TURBO_A;
1749 			else
1750 				*mode = IEEE80211_MODE_STURBO_A;
1751 		} else if (*mode == IEEE80211_MODE_11G)
1752 			*mode = IEEE80211_MODE_TURBO_G;
1753 		else
1754 			return 0;
1755 	}
1756 	/* XXX HT40 +/- */
1757 	return 1;
1758 }
1759 
1760 /*
1761  * Handle a media change request on the vap interface.
1762  */
1763 int
1764 ieee80211_media_change(struct ifnet *ifp)
1765 {
1766 	struct ieee80211vap *vap = ifp->if_softc;
1767 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1768 	uint16_t newmode;
1769 
1770 	if (!media2mode(ime, vap->iv_flags, &newmode))
1771 		return EINVAL;
1772 	if (vap->iv_des_mode != newmode) {
1773 		vap->iv_des_mode = newmode;
1774 		/* XXX kick state machine if up+running */
1775 	}
1776 	return 0;
1777 }
1778 
1779 /*
1780  * Common code to calculate the media status word
1781  * from the operating mode and channel state.
1782  */
1783 static int
1784 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1785 {
1786 	int status;
1787 
1788 	status = IFM_IEEE80211;
1789 	switch (opmode) {
1790 	case IEEE80211_M_STA:
1791 		break;
1792 	case IEEE80211_M_IBSS:
1793 		status |= IFM_IEEE80211_ADHOC;
1794 		break;
1795 	case IEEE80211_M_HOSTAP:
1796 		status |= IFM_IEEE80211_HOSTAP;
1797 		break;
1798 	case IEEE80211_M_MONITOR:
1799 		status |= IFM_IEEE80211_MONITOR;
1800 		break;
1801 	case IEEE80211_M_AHDEMO:
1802 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1803 		break;
1804 	case IEEE80211_M_WDS:
1805 		status |= IFM_IEEE80211_WDS;
1806 		break;
1807 	case IEEE80211_M_MBSS:
1808 		status |= IFM_IEEE80211_MBSS;
1809 		break;
1810 	}
1811 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1812 		status |= IFM_IEEE80211_11NA;
1813 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1814 		status |= IFM_IEEE80211_11NG;
1815 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1816 		status |= IFM_IEEE80211_11A;
1817 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1818 		status |= IFM_IEEE80211_11B;
1819 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1820 		status |= IFM_IEEE80211_11G;
1821 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1822 		status |= IFM_IEEE80211_FH;
1823 	}
1824 	/* XXX else complain? */
1825 
1826 	if (IEEE80211_IS_CHAN_TURBO(chan))
1827 		status |= IFM_IEEE80211_TURBO;
1828 #if 0
1829 	if (IEEE80211_IS_CHAN_HT20(chan))
1830 		status |= IFM_IEEE80211_HT20;
1831 	if (IEEE80211_IS_CHAN_HT40(chan))
1832 		status |= IFM_IEEE80211_HT40;
1833 #endif
1834 	return status;
1835 }
1836 
1837 void
1838 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1839 {
1840 	struct ieee80211vap *vap = ifp->if_softc;
1841 	struct ieee80211com *ic = vap->iv_ic;
1842 	enum ieee80211_phymode mode;
1843 
1844 	imr->ifm_status = IFM_AVALID;
1845 	/*
1846 	 * NB: use the current channel's mode to lock down a xmit
1847 	 * rate only when running; otherwise we may have a mismatch
1848 	 * in which case the rate will not be convertible.
1849 	 */
1850 	if (vap->iv_state == IEEE80211_S_RUN ||
1851 	    vap->iv_state == IEEE80211_S_SLEEP) {
1852 		imr->ifm_status |= IFM_ACTIVE;
1853 		mode = ieee80211_chan2mode(ic->ic_curchan);
1854 	} else
1855 		mode = IEEE80211_MODE_AUTO;
1856 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1857 	/*
1858 	 * Calculate a current rate if possible.
1859 	 */
1860 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1861 		/*
1862 		 * A fixed rate is set, report that.
1863 		 */
1864 		imr->ifm_active |= ieee80211_rate2media(ic,
1865 			vap->iv_txparms[mode].ucastrate, mode);
1866 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1867 		/*
1868 		 * In station mode report the current transmit rate.
1869 		 */
1870 		imr->ifm_active |= ieee80211_rate2media(ic,
1871 			vap->iv_bss->ni_txrate, mode);
1872 	} else
1873 		imr->ifm_active |= IFM_AUTO;
1874 	if (imr->ifm_status & IFM_ACTIVE)
1875 		imr->ifm_current = imr->ifm_active;
1876 }
1877 
1878 /*
1879  * Set the current phy mode and recalculate the active channel
1880  * set based on the available channels for this mode.  Also
1881  * select a new default/current channel if the current one is
1882  * inappropriate for this mode.
1883  */
1884 int
1885 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1886 {
1887 	/*
1888 	 * Adjust basic rates in 11b/11g supported rate set.
1889 	 * Note that if operating on a hal/quarter rate channel
1890 	 * this is a noop as those rates sets are different
1891 	 * and used instead.
1892 	 */
1893 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1894 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1895 
1896 	ic->ic_curmode = mode;
1897 	ieee80211_reset_erp(ic);	/* reset ERP state */
1898 
1899 	return 0;
1900 }
1901 
1902 /*
1903  * Return the phy mode for with the specified channel.
1904  */
1905 enum ieee80211_phymode
1906 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1907 {
1908 
1909 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
1910 		return IEEE80211_MODE_VHT_2GHZ;
1911 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
1912 		return IEEE80211_MODE_VHT_5GHZ;
1913 	else if (IEEE80211_IS_CHAN_HTA(chan))
1914 		return IEEE80211_MODE_11NA;
1915 	else if (IEEE80211_IS_CHAN_HTG(chan))
1916 		return IEEE80211_MODE_11NG;
1917 	else if (IEEE80211_IS_CHAN_108G(chan))
1918 		return IEEE80211_MODE_TURBO_G;
1919 	else if (IEEE80211_IS_CHAN_ST(chan))
1920 		return IEEE80211_MODE_STURBO_A;
1921 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1922 		return IEEE80211_MODE_TURBO_A;
1923 	else if (IEEE80211_IS_CHAN_HALF(chan))
1924 		return IEEE80211_MODE_HALF;
1925 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1926 		return IEEE80211_MODE_QUARTER;
1927 	else if (IEEE80211_IS_CHAN_A(chan))
1928 		return IEEE80211_MODE_11A;
1929 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1930 		return IEEE80211_MODE_11G;
1931 	else if (IEEE80211_IS_CHAN_B(chan))
1932 		return IEEE80211_MODE_11B;
1933 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1934 		return IEEE80211_MODE_FH;
1935 
1936 	/* NB: should not get here */
1937 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1938 		__func__, chan->ic_freq, chan->ic_flags);
1939 	return IEEE80211_MODE_11B;
1940 }
1941 
1942 struct ratemedia {
1943 	u_int	match;	/* rate + mode */
1944 	u_int	media;	/* if_media rate */
1945 };
1946 
1947 static int
1948 findmedia(const struct ratemedia rates[], int n, u_int match)
1949 {
1950 	int i;
1951 
1952 	for (i = 0; i < n; i++)
1953 		if (rates[i].match == match)
1954 			return rates[i].media;
1955 	return IFM_AUTO;
1956 }
1957 
1958 /*
1959  * Convert IEEE80211 rate value to ifmedia subtype.
1960  * Rate is either a legacy rate in units of 0.5Mbps
1961  * or an MCS index.
1962  */
1963 int
1964 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1965 {
1966 	static const struct ratemedia rates[] = {
1967 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1968 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1969 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1970 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1971 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1972 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1973 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1974 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1975 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1976 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1977 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1978 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1979 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1980 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1981 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1982 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1983 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1984 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1985 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1986 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1987 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1988 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1989 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1990 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1991 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1992 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1993 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1994 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1995 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1996 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1997 		/* NB: OFDM72 doesn't really exist so we don't handle it */
1998 	};
1999 	static const struct ratemedia htrates[] = {
2000 		{   0, IFM_IEEE80211_MCS },
2001 		{   1, IFM_IEEE80211_MCS },
2002 		{   2, IFM_IEEE80211_MCS },
2003 		{   3, IFM_IEEE80211_MCS },
2004 		{   4, IFM_IEEE80211_MCS },
2005 		{   5, IFM_IEEE80211_MCS },
2006 		{   6, IFM_IEEE80211_MCS },
2007 		{   7, IFM_IEEE80211_MCS },
2008 		{   8, IFM_IEEE80211_MCS },
2009 		{   9, IFM_IEEE80211_MCS },
2010 		{  10, IFM_IEEE80211_MCS },
2011 		{  11, IFM_IEEE80211_MCS },
2012 		{  12, IFM_IEEE80211_MCS },
2013 		{  13, IFM_IEEE80211_MCS },
2014 		{  14, IFM_IEEE80211_MCS },
2015 		{  15, IFM_IEEE80211_MCS },
2016 		{  16, IFM_IEEE80211_MCS },
2017 		{  17, IFM_IEEE80211_MCS },
2018 		{  18, IFM_IEEE80211_MCS },
2019 		{  19, IFM_IEEE80211_MCS },
2020 		{  20, IFM_IEEE80211_MCS },
2021 		{  21, IFM_IEEE80211_MCS },
2022 		{  22, IFM_IEEE80211_MCS },
2023 		{  23, IFM_IEEE80211_MCS },
2024 		{  24, IFM_IEEE80211_MCS },
2025 		{  25, IFM_IEEE80211_MCS },
2026 		{  26, IFM_IEEE80211_MCS },
2027 		{  27, IFM_IEEE80211_MCS },
2028 		{  28, IFM_IEEE80211_MCS },
2029 		{  29, IFM_IEEE80211_MCS },
2030 		{  30, IFM_IEEE80211_MCS },
2031 		{  31, IFM_IEEE80211_MCS },
2032 		{  32, IFM_IEEE80211_MCS },
2033 		{  33, IFM_IEEE80211_MCS },
2034 		{  34, IFM_IEEE80211_MCS },
2035 		{  35, IFM_IEEE80211_MCS },
2036 		{  36, IFM_IEEE80211_MCS },
2037 		{  37, IFM_IEEE80211_MCS },
2038 		{  38, IFM_IEEE80211_MCS },
2039 		{  39, IFM_IEEE80211_MCS },
2040 		{  40, IFM_IEEE80211_MCS },
2041 		{  41, IFM_IEEE80211_MCS },
2042 		{  42, IFM_IEEE80211_MCS },
2043 		{  43, IFM_IEEE80211_MCS },
2044 		{  44, IFM_IEEE80211_MCS },
2045 		{  45, IFM_IEEE80211_MCS },
2046 		{  46, IFM_IEEE80211_MCS },
2047 		{  47, IFM_IEEE80211_MCS },
2048 		{  48, IFM_IEEE80211_MCS },
2049 		{  49, IFM_IEEE80211_MCS },
2050 		{  50, IFM_IEEE80211_MCS },
2051 		{  51, IFM_IEEE80211_MCS },
2052 		{  52, IFM_IEEE80211_MCS },
2053 		{  53, IFM_IEEE80211_MCS },
2054 		{  54, IFM_IEEE80211_MCS },
2055 		{  55, IFM_IEEE80211_MCS },
2056 		{  56, IFM_IEEE80211_MCS },
2057 		{  57, IFM_IEEE80211_MCS },
2058 		{  58, IFM_IEEE80211_MCS },
2059 		{  59, IFM_IEEE80211_MCS },
2060 		{  60, IFM_IEEE80211_MCS },
2061 		{  61, IFM_IEEE80211_MCS },
2062 		{  62, IFM_IEEE80211_MCS },
2063 		{  63, IFM_IEEE80211_MCS },
2064 		{  64, IFM_IEEE80211_MCS },
2065 		{  65, IFM_IEEE80211_MCS },
2066 		{  66, IFM_IEEE80211_MCS },
2067 		{  67, IFM_IEEE80211_MCS },
2068 		{  68, IFM_IEEE80211_MCS },
2069 		{  69, IFM_IEEE80211_MCS },
2070 		{  70, IFM_IEEE80211_MCS },
2071 		{  71, IFM_IEEE80211_MCS },
2072 		{  72, IFM_IEEE80211_MCS },
2073 		{  73, IFM_IEEE80211_MCS },
2074 		{  74, IFM_IEEE80211_MCS },
2075 		{  75, IFM_IEEE80211_MCS },
2076 		{  76, IFM_IEEE80211_MCS },
2077 	};
2078 	int m;
2079 
2080 	/*
2081 	 * Check 11n rates first for match as an MCS.
2082 	 */
2083 	if (mode == IEEE80211_MODE_11NA) {
2084 		if (rate & IEEE80211_RATE_MCS) {
2085 			rate &= ~IEEE80211_RATE_MCS;
2086 			m = findmedia(htrates, nitems(htrates), rate);
2087 			if (m != IFM_AUTO)
2088 				return m | IFM_IEEE80211_11NA;
2089 		}
2090 	} else if (mode == IEEE80211_MODE_11NG) {
2091 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2092 		if (rate & IEEE80211_RATE_MCS) {
2093 			rate &= ~IEEE80211_RATE_MCS;
2094 			m = findmedia(htrates, nitems(htrates), rate);
2095 			if (m != IFM_AUTO)
2096 				return m | IFM_IEEE80211_11NG;
2097 		}
2098 	}
2099 	rate &= IEEE80211_RATE_VAL;
2100 	switch (mode) {
2101 	case IEEE80211_MODE_11A:
2102 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2103 	case IEEE80211_MODE_QUARTER:
2104 	case IEEE80211_MODE_11NA:
2105 	case IEEE80211_MODE_TURBO_A:
2106 	case IEEE80211_MODE_STURBO_A:
2107 		return findmedia(rates, nitems(rates),
2108 		    rate | IFM_IEEE80211_11A);
2109 	case IEEE80211_MODE_11B:
2110 		return findmedia(rates, nitems(rates),
2111 		    rate | IFM_IEEE80211_11B);
2112 	case IEEE80211_MODE_FH:
2113 		return findmedia(rates, nitems(rates),
2114 		    rate | IFM_IEEE80211_FH);
2115 	case IEEE80211_MODE_AUTO:
2116 		/* NB: ic may be NULL for some drivers */
2117 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2118 			return findmedia(rates, nitems(rates),
2119 			    rate | IFM_IEEE80211_FH);
2120 		/* NB: hack, 11g matches both 11b+11a rates */
2121 		/* fall thru... */
2122 	case IEEE80211_MODE_11G:
2123 	case IEEE80211_MODE_11NG:
2124 	case IEEE80211_MODE_TURBO_G:
2125 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2126 	case IEEE80211_MODE_VHT_2GHZ:
2127 	case IEEE80211_MODE_VHT_5GHZ:
2128 		/* XXX TODO: need to figure out mapping for VHT rates */
2129 		return IFM_AUTO;
2130 	}
2131 	return IFM_AUTO;
2132 }
2133 
2134 int
2135 ieee80211_media2rate(int mword)
2136 {
2137 	static const int ieeerates[] = {
2138 		-1,		/* IFM_AUTO */
2139 		0,		/* IFM_MANUAL */
2140 		0,		/* IFM_NONE */
2141 		2,		/* IFM_IEEE80211_FH1 */
2142 		4,		/* IFM_IEEE80211_FH2 */
2143 		2,		/* IFM_IEEE80211_DS1 */
2144 		4,		/* IFM_IEEE80211_DS2 */
2145 		11,		/* IFM_IEEE80211_DS5 */
2146 		22,		/* IFM_IEEE80211_DS11 */
2147 		44,		/* IFM_IEEE80211_DS22 */
2148 		12,		/* IFM_IEEE80211_OFDM6 */
2149 		18,		/* IFM_IEEE80211_OFDM9 */
2150 		24,		/* IFM_IEEE80211_OFDM12 */
2151 		36,		/* IFM_IEEE80211_OFDM18 */
2152 		48,		/* IFM_IEEE80211_OFDM24 */
2153 		72,		/* IFM_IEEE80211_OFDM36 */
2154 		96,		/* IFM_IEEE80211_OFDM48 */
2155 		108,		/* IFM_IEEE80211_OFDM54 */
2156 		144,		/* IFM_IEEE80211_OFDM72 */
2157 		0,		/* IFM_IEEE80211_DS354k */
2158 		0,		/* IFM_IEEE80211_DS512k */
2159 		6,		/* IFM_IEEE80211_OFDM3 */
2160 		9,		/* IFM_IEEE80211_OFDM4 */
2161 		54,		/* IFM_IEEE80211_OFDM27 */
2162 		-1,		/* IFM_IEEE80211_MCS */
2163 		-1,		/* IFM_IEEE80211_VHT */
2164 	};
2165 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2166 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2167 }
2168 
2169 /*
2170  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2171  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2172  */
2173 #define	mix(a, b, c)							\
2174 do {									\
2175 	a -= b; a -= c; a ^= (c >> 13);					\
2176 	b -= c; b -= a; b ^= (a << 8);					\
2177 	c -= a; c -= b; c ^= (b >> 13);					\
2178 	a -= b; a -= c; a ^= (c >> 12);					\
2179 	b -= c; b -= a; b ^= (a << 16);					\
2180 	c -= a; c -= b; c ^= (b >> 5);					\
2181 	a -= b; a -= c; a ^= (c >> 3);					\
2182 	b -= c; b -= a; b ^= (a << 10);					\
2183 	c -= a; c -= b; c ^= (b >> 15);					\
2184 } while (/*CONSTCOND*/0)
2185 
2186 uint32_t
2187 ieee80211_mac_hash(const struct ieee80211com *ic,
2188 	const uint8_t addr[IEEE80211_ADDR_LEN])
2189 {
2190 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2191 
2192 	b += addr[5] << 8;
2193 	b += addr[4];
2194 	a += addr[3] << 24;
2195 	a += addr[2] << 16;
2196 	a += addr[1] << 8;
2197 	a += addr[0];
2198 
2199 	mix(a, b, c);
2200 
2201 	return c;
2202 }
2203 #undef mix
2204 
2205 char
2206 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2207 {
2208 	if (IEEE80211_IS_CHAN_ST(c))
2209 		return 'S';
2210 	if (IEEE80211_IS_CHAN_108A(c))
2211 		return 'T';
2212 	if (IEEE80211_IS_CHAN_108G(c))
2213 		return 'G';
2214 	if (IEEE80211_IS_CHAN_VHT(c))
2215 		return 'v';
2216 	if (IEEE80211_IS_CHAN_HT(c))
2217 		return 'n';
2218 	if (IEEE80211_IS_CHAN_A(c))
2219 		return 'a';
2220 	if (IEEE80211_IS_CHAN_ANYG(c))
2221 		return 'g';
2222 	if (IEEE80211_IS_CHAN_B(c))
2223 		return 'b';
2224 	return 'f';
2225 }
2226