xref: /freebsd/sys/net80211/ieee80211.c (revision b7c60aadbbd5c846a250c05791fe7406d6d78bf4)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 #ifdef IEEE80211_SUPPORT_SUPERG
50 #include <net80211/ieee80211_superg.h>
51 #endif
52 #include <net80211/ieee80211_ratectl.h>
53 
54 #include <net/bpf.h>
55 
56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
57 	[IEEE80211_MODE_AUTO]	  = "auto",
58 	[IEEE80211_MODE_11A]	  = "11a",
59 	[IEEE80211_MODE_11B]	  = "11b",
60 	[IEEE80211_MODE_11G]	  = "11g",
61 	[IEEE80211_MODE_FH]	  = "FH",
62 	[IEEE80211_MODE_TURBO_A]  = "turboA",
63 	[IEEE80211_MODE_TURBO_G]  = "turboG",
64 	[IEEE80211_MODE_STURBO_A] = "sturboA",
65 	[IEEE80211_MODE_HALF]	  = "half",
66 	[IEEE80211_MODE_QUARTER]  = "quarter",
67 	[IEEE80211_MODE_11NA]	  = "11na",
68 	[IEEE80211_MODE_11NG]	  = "11ng",
69 };
70 /* map ieee80211_opmode to the corresponding capability bit */
71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
72 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
73 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
74 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
75 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
76 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
77 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
78 #ifdef IEEE80211_SUPPORT_MESH
79 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
80 #endif
81 };
82 
83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
84 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
85 
86 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
87 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
88 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
89 static	int ieee80211_media_setup(struct ieee80211com *ic,
90 		struct ifmedia *media, int caps, int addsta,
91 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
92 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
93 static	int ieee80211com_media_change(struct ifnet *);
94 static	int media_status(enum ieee80211_opmode,
95 		const struct ieee80211_channel *);
96 
97 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
98 
99 /*
100  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
101  */
102 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
103 static const struct ieee80211_rateset ieee80211_rateset_11a =
104 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
105 static const struct ieee80211_rateset ieee80211_rateset_half =
106 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
107 static const struct ieee80211_rateset ieee80211_rateset_quarter =
108 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
109 static const struct ieee80211_rateset ieee80211_rateset_11b =
110 	{ 4, { B(2), B(4), B(11), B(22) } };
111 /* NB: OFDM rates are handled specially based on mode */
112 static const struct ieee80211_rateset ieee80211_rateset_11g =
113 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
114 #undef B
115 
116 /*
117  * Fill in 802.11 available channel set, mark
118  * all available channels as active, and pick
119  * a default channel if not already specified.
120  */
121 static void
122 ieee80211_chan_init(struct ieee80211com *ic)
123 {
124 #define	DEFAULTRATES(m, def) do { \
125 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
126 		ic->ic_sup_rates[m] = def; \
127 } while (0)
128 	struct ieee80211_channel *c;
129 	int i;
130 
131 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
132 		("invalid number of channels specified: %u", ic->ic_nchans));
133 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
134 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
135 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
136 	for (i = 0; i < ic->ic_nchans; i++) {
137 		c = &ic->ic_channels[i];
138 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
139 		/*
140 		 * Help drivers that work only with frequencies by filling
141 		 * in IEEE channel #'s if not already calculated.  Note this
142 		 * mimics similar work done in ieee80211_setregdomain when
143 		 * changing regulatory state.
144 		 */
145 		if (c->ic_ieee == 0)
146 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
147 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
148 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
149 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
150 			    c->ic_flags);
151 		/* default max tx power to max regulatory */
152 		if (c->ic_maxpower == 0)
153 			c->ic_maxpower = 2*c->ic_maxregpower;
154 		setbit(ic->ic_chan_avail, c->ic_ieee);
155 		/*
156 		 * Identify mode capabilities.
157 		 */
158 		if (IEEE80211_IS_CHAN_A(c))
159 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
160 		if (IEEE80211_IS_CHAN_B(c))
161 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
162 		if (IEEE80211_IS_CHAN_ANYG(c))
163 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
164 		if (IEEE80211_IS_CHAN_FHSS(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
166 		if (IEEE80211_IS_CHAN_108A(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
168 		if (IEEE80211_IS_CHAN_108G(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
170 		if (IEEE80211_IS_CHAN_ST(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
172 		if (IEEE80211_IS_CHAN_HALF(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
174 		if (IEEE80211_IS_CHAN_QUARTER(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
176 		if (IEEE80211_IS_CHAN_HTA(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
178 		if (IEEE80211_IS_CHAN_HTG(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
180 	}
181 	/* initialize candidate channels to all available */
182 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
183 		sizeof(ic->ic_chan_avail));
184 
185 	/* sort channel table to allow lookup optimizations */
186 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
187 
188 	/* invalidate any previous state */
189 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
190 	ic->ic_prevchan = NULL;
191 	ic->ic_csa_newchan = NULL;
192 	/* arbitrarily pick the first channel */
193 	ic->ic_curchan = &ic->ic_channels[0];
194 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
195 
196 	/* fillin well-known rate sets if driver has not specified */
197 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
198 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
199 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
200 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
201 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
202 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
203 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
204 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
205 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
207 
208 	/*
209 	 * Setup required information to fill the mcsset field, if driver did
210 	 * not. Assume a 2T2R setup for historic reasons.
211 	 */
212 	if (ic->ic_rxstream == 0)
213 		ic->ic_rxstream = 2;
214 	if (ic->ic_txstream == 0)
215 		ic->ic_txstream = 2;
216 
217 	/*
218 	 * Set auto mode to reset active channel state and any desired channel.
219 	 */
220 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
221 #undef DEFAULTRATES
222 }
223 
224 static void
225 null_update_mcast(struct ifnet *ifp)
226 {
227 	if_printf(ifp, "need multicast update callback\n");
228 }
229 
230 static void
231 null_update_promisc(struct ifnet *ifp)
232 {
233 	if_printf(ifp, "need promiscuous mode update callback\n");
234 }
235 
236 static int
237 null_transmit(struct ifnet *ifp, struct mbuf *m)
238 {
239 	m_freem(m);
240 	ifp->if_oerrors++;
241 	return EACCES;		/* XXX EIO/EPERM? */
242 }
243 
244 static int
245 null_output(struct ifnet *ifp, struct mbuf *m,
246 	struct sockaddr *dst, struct route *ro)
247 {
248 	if_printf(ifp, "discard raw packet\n");
249 	return null_transmit(ifp, m);
250 }
251 
252 static void
253 null_input(struct ifnet *ifp, struct mbuf *m)
254 {
255 	if_printf(ifp, "if_input should not be called\n");
256 	m_freem(m);
257 }
258 
259 /*
260  * Attach/setup the common net80211 state.  Called by
261  * the driver on attach to prior to creating any vap's.
262  */
263 void
264 ieee80211_ifattach(struct ieee80211com *ic,
265 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
266 {
267 	struct ifnet *ifp = ic->ic_ifp;
268 	struct sockaddr_dl *sdl;
269 	struct ifaddr *ifa;
270 
271 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
272 
273 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
274 	TAILQ_INIT(&ic->ic_vaps);
275 
276 	/* Create a taskqueue for all state changes */
277 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
278 	    taskqueue_thread_enqueue, &ic->ic_tq);
279 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
280 	    ifp->if_xname);
281 	/*
282 	 * Fill in 802.11 available channel set, mark all
283 	 * available channels as active, and pick a default
284 	 * channel if not already specified.
285 	 */
286 	ieee80211_media_init(ic);
287 
288 	ic->ic_update_mcast = null_update_mcast;
289 	ic->ic_update_promisc = null_update_promisc;
290 
291 	ic->ic_hash_key = arc4random();
292 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
293 	ic->ic_lintval = ic->ic_bintval;
294 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
295 
296 	ieee80211_crypto_attach(ic);
297 	ieee80211_node_attach(ic);
298 	ieee80211_power_attach(ic);
299 	ieee80211_proto_attach(ic);
300 #ifdef IEEE80211_SUPPORT_SUPERG
301 	ieee80211_superg_attach(ic);
302 #endif
303 	ieee80211_ht_attach(ic);
304 	ieee80211_scan_attach(ic);
305 	ieee80211_regdomain_attach(ic);
306 	ieee80211_dfs_attach(ic);
307 
308 	ieee80211_sysctl_attach(ic);
309 
310 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
311 	ifp->if_hdrlen = 0;
312 	if_attach(ifp);
313 	ifp->if_mtu = IEEE80211_MTU_MAX;
314 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
315 	ifp->if_output = null_output;
316 	ifp->if_input = null_input;	/* just in case */
317 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
318 
319 	ifa = ifaddr_byindex(ifp->if_index);
320 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
321 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
322 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
323 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
324 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
325 	ifa_free(ifa);
326 }
327 
328 /*
329  * Detach net80211 state on device detach.  Tear down
330  * all vap's and reclaim all common state prior to the
331  * device state going away.  Note we may call back into
332  * driver; it must be prepared for this.
333  */
334 void
335 ieee80211_ifdetach(struct ieee80211com *ic)
336 {
337 	struct ifnet *ifp = ic->ic_ifp;
338 	struct ieee80211vap *vap;
339 
340 	if_detach(ifp);
341 
342 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
343 		ieee80211_vap_destroy(vap);
344 	ieee80211_waitfor_parent(ic);
345 
346 	ieee80211_sysctl_detach(ic);
347 	ieee80211_dfs_detach(ic);
348 	ieee80211_regdomain_detach(ic);
349 	ieee80211_scan_detach(ic);
350 #ifdef IEEE80211_SUPPORT_SUPERG
351 	ieee80211_superg_detach(ic);
352 #endif
353 	ieee80211_ht_detach(ic);
354 	/* NB: must be called before ieee80211_node_detach */
355 	ieee80211_proto_detach(ic);
356 	ieee80211_crypto_detach(ic);
357 	ieee80211_power_detach(ic);
358 	ieee80211_node_detach(ic);
359 
360 	ifmedia_removeall(&ic->ic_media);
361 	taskqueue_free(ic->ic_tq);
362 	IEEE80211_LOCK_DESTROY(ic);
363 }
364 
365 /*
366  * Default reset method for use with the ioctl support.  This
367  * method is invoked after any state change in the 802.11
368  * layer that should be propagated to the hardware but not
369  * require re-initialization of the 802.11 state machine (e.g
370  * rescanning for an ap).  We always return ENETRESET which
371  * should cause the driver to re-initialize the device. Drivers
372  * can override this method to implement more optimized support.
373  */
374 static int
375 default_reset(struct ieee80211vap *vap, u_long cmd)
376 {
377 	return ENETRESET;
378 }
379 
380 /*
381  * Prepare a vap for use.  Drivers use this call to
382  * setup net80211 state in new vap's prior attaching
383  * them with ieee80211_vap_attach (below).
384  */
385 int
386 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
387     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
388     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
389     const uint8_t macaddr[IEEE80211_ADDR_LEN])
390 {
391 	struct ifnet *ifp;
392 
393 	ifp = if_alloc(IFT_ETHER);
394 	if (ifp == NULL) {
395 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
396 		    __func__);
397 		return ENOMEM;
398 	}
399 	if_initname(ifp, name, unit);
400 	ifp->if_softc = vap;			/* back pointer */
401 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
402 	ifp->if_start = ieee80211_start;
403 	ifp->if_ioctl = ieee80211_ioctl;
404 	ifp->if_init = ieee80211_init;
405 	/* NB: input+output filled in by ether_ifattach */
406 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
407 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
408 	IFQ_SET_READY(&ifp->if_snd);
409 
410 	vap->iv_ifp = ifp;
411 	vap->iv_ic = ic;
412 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
413 	vap->iv_flags_ext = ic->ic_flags_ext;
414 	vap->iv_flags_ven = ic->ic_flags_ven;
415 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
416 	vap->iv_htcaps = ic->ic_htcaps;
417 	vap->iv_htextcaps = ic->ic_htextcaps;
418 	vap->iv_opmode = opmode;
419 	vap->iv_caps |= ieee80211_opcap[opmode];
420 	switch (opmode) {
421 	case IEEE80211_M_WDS:
422 		/*
423 		 * WDS links must specify the bssid of the far end.
424 		 * For legacy operation this is a static relationship.
425 		 * For non-legacy operation the station must associate
426 		 * and be authorized to pass traffic.  Plumbing the
427 		 * vap to the proper node happens when the vap
428 		 * transitions to RUN state.
429 		 */
430 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
431 		vap->iv_flags |= IEEE80211_F_DESBSSID;
432 		if (flags & IEEE80211_CLONE_WDSLEGACY)
433 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
434 		break;
435 #ifdef IEEE80211_SUPPORT_TDMA
436 	case IEEE80211_M_AHDEMO:
437 		if (flags & IEEE80211_CLONE_TDMA) {
438 			/* NB: checked before clone operation allowed */
439 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
440 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
441 			/*
442 			 * Propagate TDMA capability to mark vap; this
443 			 * cannot be removed and is used to distinguish
444 			 * regular ahdemo operation from ahdemo+tdma.
445 			 */
446 			vap->iv_caps |= IEEE80211_C_TDMA;
447 		}
448 		break;
449 #endif
450 	default:
451 		break;
452 	}
453 	/* auto-enable s/w beacon miss support */
454 	if (flags & IEEE80211_CLONE_NOBEACONS)
455 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
456 	/* auto-generated or user supplied MAC address */
457 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
458 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
459 	/*
460 	 * Enable various functionality by default if we're
461 	 * capable; the driver can override us if it knows better.
462 	 */
463 	if (vap->iv_caps & IEEE80211_C_WME)
464 		vap->iv_flags |= IEEE80211_F_WME;
465 	if (vap->iv_caps & IEEE80211_C_BURST)
466 		vap->iv_flags |= IEEE80211_F_BURST;
467 	/* NB: bg scanning only makes sense for station mode right now */
468 	if (vap->iv_opmode == IEEE80211_M_STA &&
469 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
470 		vap->iv_flags |= IEEE80211_F_BGSCAN;
471 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
472 	/* NB: DFS support only makes sense for ap mode right now */
473 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
474 	    (vap->iv_caps & IEEE80211_C_DFS))
475 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
476 
477 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
478 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
479 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
480 	/*
481 	 * Install a default reset method for the ioctl support;
482 	 * the driver can override this.
483 	 */
484 	vap->iv_reset = default_reset;
485 
486 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
487 
488 	ieee80211_sysctl_vattach(vap);
489 	ieee80211_crypto_vattach(vap);
490 	ieee80211_node_vattach(vap);
491 	ieee80211_power_vattach(vap);
492 	ieee80211_proto_vattach(vap);
493 #ifdef IEEE80211_SUPPORT_SUPERG
494 	ieee80211_superg_vattach(vap);
495 #endif
496 	ieee80211_ht_vattach(vap);
497 	ieee80211_scan_vattach(vap);
498 	ieee80211_regdomain_vattach(vap);
499 	ieee80211_radiotap_vattach(vap);
500 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
501 
502 	return 0;
503 }
504 
505 /*
506  * Activate a vap.  State should have been prepared with a
507  * call to ieee80211_vap_setup and by the driver.  On return
508  * from this call the vap is ready for use.
509  */
510 int
511 ieee80211_vap_attach(struct ieee80211vap *vap,
512 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
513 {
514 	struct ifnet *ifp = vap->iv_ifp;
515 	struct ieee80211com *ic = vap->iv_ic;
516 	struct ifmediareq imr;
517 	int maxrate;
518 
519 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
520 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
521 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
522 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
523 
524 	/*
525 	 * Do late attach work that cannot happen until after
526 	 * the driver has had a chance to override defaults.
527 	 */
528 	ieee80211_node_latevattach(vap);
529 	ieee80211_power_latevattach(vap);
530 
531 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
532 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
533 	ieee80211_media_status(ifp, &imr);
534 	/* NB: strip explicit mode; we're actually in autoselect */
535 	ifmedia_set(&vap->iv_media,
536 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
537 	if (maxrate)
538 		ifp->if_baudrate = IF_Mbps(maxrate);
539 
540 	ether_ifattach(ifp, vap->iv_myaddr);
541 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
542 		/* NB: disallow transmit */
543 		ifp->if_transmit = null_transmit;
544 		ifp->if_output = null_output;
545 	} else {
546 		/* hook output method setup by ether_ifattach */
547 		vap->iv_output = ifp->if_output;
548 		ifp->if_output = ieee80211_output;
549 	}
550 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
551 
552 	IEEE80211_LOCK(ic);
553 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
554 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
555 #ifdef IEEE80211_SUPPORT_SUPERG
556 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
557 #endif
558 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
559 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
560 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
561 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
562 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
563 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
564 	IEEE80211_UNLOCK(ic);
565 
566 	return 1;
567 }
568 
569 /*
570  * Tear down vap state and reclaim the ifnet.
571  * The driver is assumed to have prepared for
572  * this; e.g. by turning off interrupts for the
573  * underlying device.
574  */
575 void
576 ieee80211_vap_detach(struct ieee80211vap *vap)
577 {
578 	struct ieee80211com *ic = vap->iv_ic;
579 	struct ifnet *ifp = vap->iv_ifp;
580 
581 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
582 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
583 	    ic->ic_ifp->if_xname);
584 
585 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
586 	ether_ifdetach(ifp);
587 
588 	ieee80211_stop(vap);
589 
590 	/*
591 	 * Flush any deferred vap tasks.
592 	 */
593 	ieee80211_draintask(ic, &vap->iv_nstate_task);
594 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
595 
596 	/* XXX band-aid until ifnet handles this for us */
597 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
598 
599 	IEEE80211_LOCK(ic);
600 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
601 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
602 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
603 #ifdef IEEE80211_SUPPORT_SUPERG
604 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
605 #endif
606 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
607 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
608 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
609 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
610 	/* NB: this handles the bpfdetach done below */
611 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
612 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
613 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
614 	IEEE80211_UNLOCK(ic);
615 
616 	ifmedia_removeall(&vap->iv_media);
617 
618 	ieee80211_radiotap_vdetach(vap);
619 	ieee80211_regdomain_vdetach(vap);
620 	ieee80211_scan_vdetach(vap);
621 #ifdef IEEE80211_SUPPORT_SUPERG
622 	ieee80211_superg_vdetach(vap);
623 #endif
624 	ieee80211_ht_vdetach(vap);
625 	/* NB: must be before ieee80211_node_vdetach */
626 	ieee80211_proto_vdetach(vap);
627 	ieee80211_crypto_vdetach(vap);
628 	ieee80211_power_vdetach(vap);
629 	ieee80211_node_vdetach(vap);
630 	ieee80211_sysctl_vdetach(vap);
631 
632 	if_free(ifp);
633 }
634 
635 /*
636  * Synchronize flag bit state in the parent ifnet structure
637  * according to the state of all vap ifnet's.  This is used,
638  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
639  */
640 void
641 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
642 {
643 	struct ifnet *ifp = ic->ic_ifp;
644 	struct ieee80211vap *vap;
645 	int bit, oflags;
646 
647 	IEEE80211_LOCK_ASSERT(ic);
648 
649 	bit = 0;
650 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
651 		if (vap->iv_ifp->if_flags & flag) {
652 			/*
653 			 * XXX the bridge sets PROMISC but we don't want to
654 			 * enable it on the device, discard here so all the
655 			 * drivers don't need to special-case it
656 			 */
657 			if (flag == IFF_PROMISC &&
658 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
659 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
660 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
661 				continue;
662 			bit = 1;
663 			break;
664 		}
665 	oflags = ifp->if_flags;
666 	if (bit)
667 		ifp->if_flags |= flag;
668 	else
669 		ifp->if_flags &= ~flag;
670 	if ((ifp->if_flags ^ oflags) & flag) {
671 		/* XXX should we return 1/0 and let caller do this? */
672 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
673 			if (flag == IFF_PROMISC)
674 				ieee80211_runtask(ic, &ic->ic_promisc_task);
675 			else if (flag == IFF_ALLMULTI)
676 				ieee80211_runtask(ic, &ic->ic_mcast_task);
677 		}
678 	}
679 }
680 
681 /*
682  * Synchronize flag bit state in the com structure
683  * according to the state of all vap's.  This is used,
684  * for example, to handle state changes via ioctls.
685  */
686 static void
687 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
688 {
689 	struct ieee80211vap *vap;
690 	int bit;
691 
692 	IEEE80211_LOCK_ASSERT(ic);
693 
694 	bit = 0;
695 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
696 		if (vap->iv_flags & flag) {
697 			bit = 1;
698 			break;
699 		}
700 	if (bit)
701 		ic->ic_flags |= flag;
702 	else
703 		ic->ic_flags &= ~flag;
704 }
705 
706 void
707 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
708 {
709 	struct ieee80211com *ic = vap->iv_ic;
710 
711 	IEEE80211_LOCK(ic);
712 	if (flag < 0) {
713 		flag = -flag;
714 		vap->iv_flags &= ~flag;
715 	} else
716 		vap->iv_flags |= flag;
717 	ieee80211_syncflag_locked(ic, flag);
718 	IEEE80211_UNLOCK(ic);
719 }
720 
721 /*
722  * Synchronize flags_ht bit state in the com structure
723  * according to the state of all vap's.  This is used,
724  * for example, to handle state changes via ioctls.
725  */
726 static void
727 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
728 {
729 	struct ieee80211vap *vap;
730 	int bit;
731 
732 	IEEE80211_LOCK_ASSERT(ic);
733 
734 	bit = 0;
735 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
736 		if (vap->iv_flags_ht & flag) {
737 			bit = 1;
738 			break;
739 		}
740 	if (bit)
741 		ic->ic_flags_ht |= flag;
742 	else
743 		ic->ic_flags_ht &= ~flag;
744 }
745 
746 void
747 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
748 {
749 	struct ieee80211com *ic = vap->iv_ic;
750 
751 	IEEE80211_LOCK(ic);
752 	if (flag < 0) {
753 		flag = -flag;
754 		vap->iv_flags_ht &= ~flag;
755 	} else
756 		vap->iv_flags_ht |= flag;
757 	ieee80211_syncflag_ht_locked(ic, flag);
758 	IEEE80211_UNLOCK(ic);
759 }
760 
761 /*
762  * Synchronize flags_ext bit state in the com structure
763  * according to the state of all vap's.  This is used,
764  * for example, to handle state changes via ioctls.
765  */
766 static void
767 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
768 {
769 	struct ieee80211vap *vap;
770 	int bit;
771 
772 	IEEE80211_LOCK_ASSERT(ic);
773 
774 	bit = 0;
775 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
776 		if (vap->iv_flags_ext & flag) {
777 			bit = 1;
778 			break;
779 		}
780 	if (bit)
781 		ic->ic_flags_ext |= flag;
782 	else
783 		ic->ic_flags_ext &= ~flag;
784 }
785 
786 void
787 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
788 {
789 	struct ieee80211com *ic = vap->iv_ic;
790 
791 	IEEE80211_LOCK(ic);
792 	if (flag < 0) {
793 		flag = -flag;
794 		vap->iv_flags_ext &= ~flag;
795 	} else
796 		vap->iv_flags_ext |= flag;
797 	ieee80211_syncflag_ext_locked(ic, flag);
798 	IEEE80211_UNLOCK(ic);
799 }
800 
801 static __inline int
802 mapgsm(u_int freq, u_int flags)
803 {
804 	freq *= 10;
805 	if (flags & IEEE80211_CHAN_QUARTER)
806 		freq += 5;
807 	else if (flags & IEEE80211_CHAN_HALF)
808 		freq += 10;
809 	else
810 		freq += 20;
811 	/* NB: there is no 907/20 wide but leave room */
812 	return (freq - 906*10) / 5;
813 }
814 
815 static __inline int
816 mappsb(u_int freq, u_int flags)
817 {
818 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
819 }
820 
821 /*
822  * Convert MHz frequency to IEEE channel number.
823  */
824 int
825 ieee80211_mhz2ieee(u_int freq, u_int flags)
826 {
827 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
828 	if (flags & IEEE80211_CHAN_GSM)
829 		return mapgsm(freq, flags);
830 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
831 		if (freq == 2484)
832 			return 14;
833 		if (freq < 2484)
834 			return ((int) freq - 2407) / 5;
835 		else
836 			return 15 + ((freq - 2512) / 20);
837 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
838 		if (freq <= 5000) {
839 			/* XXX check regdomain? */
840 			if (IS_FREQ_IN_PSB(freq))
841 				return mappsb(freq, flags);
842 			return (freq - 4000) / 5;
843 		} else
844 			return (freq - 5000) / 5;
845 	} else {				/* either, guess */
846 		if (freq == 2484)
847 			return 14;
848 		if (freq < 2484) {
849 			if (907 <= freq && freq <= 922)
850 				return mapgsm(freq, flags);
851 			return ((int) freq - 2407) / 5;
852 		}
853 		if (freq < 5000) {
854 			if (IS_FREQ_IN_PSB(freq))
855 				return mappsb(freq, flags);
856 			else if (freq > 4900)
857 				return (freq - 4000) / 5;
858 			else
859 				return 15 + ((freq - 2512) / 20);
860 		}
861 		return (freq - 5000) / 5;
862 	}
863 #undef IS_FREQ_IN_PSB
864 }
865 
866 /*
867  * Convert channel to IEEE channel number.
868  */
869 int
870 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
871 {
872 	if (c == NULL) {
873 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
874 		return 0;		/* XXX */
875 	}
876 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
877 }
878 
879 /*
880  * Convert IEEE channel number to MHz frequency.
881  */
882 u_int
883 ieee80211_ieee2mhz(u_int chan, u_int flags)
884 {
885 	if (flags & IEEE80211_CHAN_GSM)
886 		return 907 + 5 * (chan / 10);
887 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
888 		if (chan == 14)
889 			return 2484;
890 		if (chan < 14)
891 			return 2407 + chan*5;
892 		else
893 			return 2512 + ((chan-15)*20);
894 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
895 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
896 			chan -= 37;
897 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
898 		}
899 		return 5000 + (chan*5);
900 	} else {				/* either, guess */
901 		/* XXX can't distinguish PSB+GSM channels */
902 		if (chan == 14)
903 			return 2484;
904 		if (chan < 14)			/* 0-13 */
905 			return 2407 + chan*5;
906 		if (chan < 27)			/* 15-26 */
907 			return 2512 + ((chan-15)*20);
908 		return 5000 + (chan*5);
909 	}
910 }
911 
912 /*
913  * Locate a channel given a frequency+flags.  We cache
914  * the previous lookup to optimize switching between two
915  * channels--as happens with dynamic turbo.
916  */
917 struct ieee80211_channel *
918 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
919 {
920 	struct ieee80211_channel *c;
921 	int i;
922 
923 	flags &= IEEE80211_CHAN_ALLTURBO;
924 	c = ic->ic_prevchan;
925 	if (c != NULL && c->ic_freq == freq &&
926 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
927 		return c;
928 	/* brute force search */
929 	for (i = 0; i < ic->ic_nchans; i++) {
930 		c = &ic->ic_channels[i];
931 		if (c->ic_freq == freq &&
932 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
933 			return c;
934 	}
935 	return NULL;
936 }
937 
938 /*
939  * Locate a channel given a channel number+flags.  We cache
940  * the previous lookup to optimize switching between two
941  * channels--as happens with dynamic turbo.
942  */
943 struct ieee80211_channel *
944 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
945 {
946 	struct ieee80211_channel *c;
947 	int i;
948 
949 	flags &= IEEE80211_CHAN_ALLTURBO;
950 	c = ic->ic_prevchan;
951 	if (c != NULL && c->ic_ieee == ieee &&
952 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
953 		return c;
954 	/* brute force search */
955 	for (i = 0; i < ic->ic_nchans; i++) {
956 		c = &ic->ic_channels[i];
957 		if (c->ic_ieee == ieee &&
958 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
959 			return c;
960 	}
961 	return NULL;
962 }
963 
964 static void
965 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
966 {
967 #define	ADD(_ic, _s, _o) \
968 	ifmedia_add(media, \
969 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
970 	static const u_int mopts[IEEE80211_MODE_MAX] = {
971 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
972 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
973 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
974 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
975 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
976 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
977 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
978 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
979 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
980 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
981 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
982 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
983 	};
984 	u_int mopt;
985 
986 	mopt = mopts[mode];
987 	if (addsta)
988 		ADD(ic, mword, mopt);	/* STA mode has no cap */
989 	if (caps & IEEE80211_C_IBSS)
990 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
991 	if (caps & IEEE80211_C_HOSTAP)
992 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
993 	if (caps & IEEE80211_C_AHDEMO)
994 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
995 	if (caps & IEEE80211_C_MONITOR)
996 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
997 	if (caps & IEEE80211_C_WDS)
998 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
999 	if (caps & IEEE80211_C_MBSS)
1000 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1001 #undef ADD
1002 }
1003 
1004 /*
1005  * Setup the media data structures according to the channel and
1006  * rate tables.
1007  */
1008 static int
1009 ieee80211_media_setup(struct ieee80211com *ic,
1010 	struct ifmedia *media, int caps, int addsta,
1011 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1012 {
1013 	int i, j, rate, maxrate, mword, r;
1014 	enum ieee80211_phymode mode;
1015 	const struct ieee80211_rateset *rs;
1016 	struct ieee80211_rateset allrates;
1017 
1018 	/*
1019 	 * Fill in media characteristics.
1020 	 */
1021 	ifmedia_init(media, 0, media_change, media_stat);
1022 	maxrate = 0;
1023 	/*
1024 	 * Add media for legacy operating modes.
1025 	 */
1026 	memset(&allrates, 0, sizeof(allrates));
1027 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1028 		if (isclr(ic->ic_modecaps, mode))
1029 			continue;
1030 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1031 		if (mode == IEEE80211_MODE_AUTO)
1032 			continue;
1033 		rs = &ic->ic_sup_rates[mode];
1034 		for (i = 0; i < rs->rs_nrates; i++) {
1035 			rate = rs->rs_rates[i];
1036 			mword = ieee80211_rate2media(ic, rate, mode);
1037 			if (mword == 0)
1038 				continue;
1039 			addmedia(media, caps, addsta, mode, mword);
1040 			/*
1041 			 * Add legacy rate to the collection of all rates.
1042 			 */
1043 			r = rate & IEEE80211_RATE_VAL;
1044 			for (j = 0; j < allrates.rs_nrates; j++)
1045 				if (allrates.rs_rates[j] == r)
1046 					break;
1047 			if (j == allrates.rs_nrates) {
1048 				/* unique, add to the set */
1049 				allrates.rs_rates[j] = r;
1050 				allrates.rs_nrates++;
1051 			}
1052 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1053 			if (rate > maxrate)
1054 				maxrate = rate;
1055 		}
1056 	}
1057 	for (i = 0; i < allrates.rs_nrates; i++) {
1058 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1059 				IEEE80211_MODE_AUTO);
1060 		if (mword == 0)
1061 			continue;
1062 		/* NB: remove media options from mword */
1063 		addmedia(media, caps, addsta,
1064 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1065 	}
1066 	/*
1067 	 * Add HT/11n media.  Note that we do not have enough
1068 	 * bits in the media subtype to express the MCS so we
1069 	 * use a "placeholder" media subtype and any fixed MCS
1070 	 * must be specified with a different mechanism.
1071 	 */
1072 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1073 		if (isclr(ic->ic_modecaps, mode))
1074 			continue;
1075 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1076 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1077 	}
1078 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1079 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1080 		addmedia(media, caps, addsta,
1081 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1082 		i = ic->ic_txstream * 8 - 1;
1083 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1084 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1085 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1086 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1087 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1088 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1089 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1090 		else
1091 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1092 		if (rate > maxrate)
1093 			maxrate = rate;
1094 	}
1095 	return maxrate;
1096 }
1097 
1098 void
1099 ieee80211_media_init(struct ieee80211com *ic)
1100 {
1101 	struct ifnet *ifp = ic->ic_ifp;
1102 	int maxrate;
1103 
1104 	/* NB: this works because the structure is initialized to zero */
1105 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1106 		/*
1107 		 * We are re-initializing the channel list; clear
1108 		 * the existing media state as the media routines
1109 		 * don't suppress duplicates.
1110 		 */
1111 		ifmedia_removeall(&ic->ic_media);
1112 	}
1113 	ieee80211_chan_init(ic);
1114 
1115 	/*
1116 	 * Recalculate media settings in case new channel list changes
1117 	 * the set of available modes.
1118 	 */
1119 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1120 		ieee80211com_media_change, ieee80211com_media_status);
1121 	/* NB: strip explicit mode; we're actually in autoselect */
1122 	ifmedia_set(&ic->ic_media,
1123 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1124 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1125 	if (maxrate)
1126 		ifp->if_baudrate = IF_Mbps(maxrate);
1127 
1128 	/* XXX need to propagate new media settings to vap's */
1129 }
1130 
1131 /* XXX inline or eliminate? */
1132 const struct ieee80211_rateset *
1133 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1134 {
1135 	/* XXX does this work for 11ng basic rates? */
1136 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1137 }
1138 
1139 void
1140 ieee80211_announce(struct ieee80211com *ic)
1141 {
1142 	struct ifnet *ifp = ic->ic_ifp;
1143 	int i, rate, mword;
1144 	enum ieee80211_phymode mode;
1145 	const struct ieee80211_rateset *rs;
1146 
1147 	/* NB: skip AUTO since it has no rates */
1148 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1149 		if (isclr(ic->ic_modecaps, mode))
1150 			continue;
1151 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1152 		rs = &ic->ic_sup_rates[mode];
1153 		for (i = 0; i < rs->rs_nrates; i++) {
1154 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1155 			if (mword == 0)
1156 				continue;
1157 			rate = ieee80211_media2rate(mword);
1158 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1159 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1160 		}
1161 		printf("\n");
1162 	}
1163 	ieee80211_ht_announce(ic);
1164 }
1165 
1166 void
1167 ieee80211_announce_channels(struct ieee80211com *ic)
1168 {
1169 	const struct ieee80211_channel *c;
1170 	char type;
1171 	int i, cw;
1172 
1173 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1174 	for (i = 0; i < ic->ic_nchans; i++) {
1175 		c = &ic->ic_channels[i];
1176 		if (IEEE80211_IS_CHAN_ST(c))
1177 			type = 'S';
1178 		else if (IEEE80211_IS_CHAN_108A(c))
1179 			type = 'T';
1180 		else if (IEEE80211_IS_CHAN_108G(c))
1181 			type = 'G';
1182 		else if (IEEE80211_IS_CHAN_HT(c))
1183 			type = 'n';
1184 		else if (IEEE80211_IS_CHAN_A(c))
1185 			type = 'a';
1186 		else if (IEEE80211_IS_CHAN_ANYG(c))
1187 			type = 'g';
1188 		else if (IEEE80211_IS_CHAN_B(c))
1189 			type = 'b';
1190 		else
1191 			type = 'f';
1192 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1193 			cw = 40;
1194 		else if (IEEE80211_IS_CHAN_HALF(c))
1195 			cw = 10;
1196 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1197 			cw = 5;
1198 		else
1199 			cw = 20;
1200 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1201 			, c->ic_ieee, c->ic_freq, type
1202 			, cw
1203 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1204 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1205 			, c->ic_maxregpower
1206 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1207 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1208 		);
1209 	}
1210 }
1211 
1212 static int
1213 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1214 {
1215 	switch (IFM_MODE(ime->ifm_media)) {
1216 	case IFM_IEEE80211_11A:
1217 		*mode = IEEE80211_MODE_11A;
1218 		break;
1219 	case IFM_IEEE80211_11B:
1220 		*mode = IEEE80211_MODE_11B;
1221 		break;
1222 	case IFM_IEEE80211_11G:
1223 		*mode = IEEE80211_MODE_11G;
1224 		break;
1225 	case IFM_IEEE80211_FH:
1226 		*mode = IEEE80211_MODE_FH;
1227 		break;
1228 	case IFM_IEEE80211_11NA:
1229 		*mode = IEEE80211_MODE_11NA;
1230 		break;
1231 	case IFM_IEEE80211_11NG:
1232 		*mode = IEEE80211_MODE_11NG;
1233 		break;
1234 	case IFM_AUTO:
1235 		*mode = IEEE80211_MODE_AUTO;
1236 		break;
1237 	default:
1238 		return 0;
1239 	}
1240 	/*
1241 	 * Turbo mode is an ``option''.
1242 	 * XXX does not apply to AUTO
1243 	 */
1244 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1245 		if (*mode == IEEE80211_MODE_11A) {
1246 			if (flags & IEEE80211_F_TURBOP)
1247 				*mode = IEEE80211_MODE_TURBO_A;
1248 			else
1249 				*mode = IEEE80211_MODE_STURBO_A;
1250 		} else if (*mode == IEEE80211_MODE_11G)
1251 			*mode = IEEE80211_MODE_TURBO_G;
1252 		else
1253 			return 0;
1254 	}
1255 	/* XXX HT40 +/- */
1256 	return 1;
1257 }
1258 
1259 /*
1260  * Handle a media change request on the underlying interface.
1261  */
1262 int
1263 ieee80211com_media_change(struct ifnet *ifp)
1264 {
1265 	return EINVAL;
1266 }
1267 
1268 /*
1269  * Handle a media change request on the vap interface.
1270  */
1271 int
1272 ieee80211_media_change(struct ifnet *ifp)
1273 {
1274 	struct ieee80211vap *vap = ifp->if_softc;
1275 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1276 	uint16_t newmode;
1277 
1278 	if (!media2mode(ime, vap->iv_flags, &newmode))
1279 		return EINVAL;
1280 	if (vap->iv_des_mode != newmode) {
1281 		vap->iv_des_mode = newmode;
1282 		/* XXX kick state machine if up+running */
1283 	}
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Common code to calculate the media status word
1289  * from the operating mode and channel state.
1290  */
1291 static int
1292 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1293 {
1294 	int status;
1295 
1296 	status = IFM_IEEE80211;
1297 	switch (opmode) {
1298 	case IEEE80211_M_STA:
1299 		break;
1300 	case IEEE80211_M_IBSS:
1301 		status |= IFM_IEEE80211_ADHOC;
1302 		break;
1303 	case IEEE80211_M_HOSTAP:
1304 		status |= IFM_IEEE80211_HOSTAP;
1305 		break;
1306 	case IEEE80211_M_MONITOR:
1307 		status |= IFM_IEEE80211_MONITOR;
1308 		break;
1309 	case IEEE80211_M_AHDEMO:
1310 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1311 		break;
1312 	case IEEE80211_M_WDS:
1313 		status |= IFM_IEEE80211_WDS;
1314 		break;
1315 	case IEEE80211_M_MBSS:
1316 		status |= IFM_IEEE80211_MBSS;
1317 		break;
1318 	}
1319 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1320 		status |= IFM_IEEE80211_11NA;
1321 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1322 		status |= IFM_IEEE80211_11NG;
1323 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1324 		status |= IFM_IEEE80211_11A;
1325 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1326 		status |= IFM_IEEE80211_11B;
1327 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1328 		status |= IFM_IEEE80211_11G;
1329 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1330 		status |= IFM_IEEE80211_FH;
1331 	}
1332 	/* XXX else complain? */
1333 
1334 	if (IEEE80211_IS_CHAN_TURBO(chan))
1335 		status |= IFM_IEEE80211_TURBO;
1336 #if 0
1337 	if (IEEE80211_IS_CHAN_HT20(chan))
1338 		status |= IFM_IEEE80211_HT20;
1339 	if (IEEE80211_IS_CHAN_HT40(chan))
1340 		status |= IFM_IEEE80211_HT40;
1341 #endif
1342 	return status;
1343 }
1344 
1345 static void
1346 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1347 {
1348 	struct ieee80211com *ic = ifp->if_l2com;
1349 	struct ieee80211vap *vap;
1350 
1351 	imr->ifm_status = IFM_AVALID;
1352 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1353 		if (vap->iv_ifp->if_flags & IFF_UP) {
1354 			imr->ifm_status |= IFM_ACTIVE;
1355 			break;
1356 		}
1357 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1358 	if (imr->ifm_status & IFM_ACTIVE)
1359 		imr->ifm_current = imr->ifm_active;
1360 }
1361 
1362 void
1363 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1364 {
1365 	struct ieee80211vap *vap = ifp->if_softc;
1366 	struct ieee80211com *ic = vap->iv_ic;
1367 	enum ieee80211_phymode mode;
1368 
1369 	imr->ifm_status = IFM_AVALID;
1370 	/*
1371 	 * NB: use the current channel's mode to lock down a xmit
1372 	 * rate only when running; otherwise we may have a mismatch
1373 	 * in which case the rate will not be convertible.
1374 	 */
1375 	if (vap->iv_state == IEEE80211_S_RUN) {
1376 		imr->ifm_status |= IFM_ACTIVE;
1377 		mode = ieee80211_chan2mode(ic->ic_curchan);
1378 	} else
1379 		mode = IEEE80211_MODE_AUTO;
1380 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1381 	/*
1382 	 * Calculate a current rate if possible.
1383 	 */
1384 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1385 		/*
1386 		 * A fixed rate is set, report that.
1387 		 */
1388 		imr->ifm_active |= ieee80211_rate2media(ic,
1389 			vap->iv_txparms[mode].ucastrate, mode);
1390 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1391 		/*
1392 		 * In station mode report the current transmit rate.
1393 		 */
1394 		imr->ifm_active |= ieee80211_rate2media(ic,
1395 			vap->iv_bss->ni_txrate, mode);
1396 	} else
1397 		imr->ifm_active |= IFM_AUTO;
1398 	if (imr->ifm_status & IFM_ACTIVE)
1399 		imr->ifm_current = imr->ifm_active;
1400 }
1401 
1402 /*
1403  * Set the current phy mode and recalculate the active channel
1404  * set based on the available channels for this mode.  Also
1405  * select a new default/current channel if the current one is
1406  * inappropriate for this mode.
1407  */
1408 int
1409 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1410 {
1411 	/*
1412 	 * Adjust basic rates in 11b/11g supported rate set.
1413 	 * Note that if operating on a hal/quarter rate channel
1414 	 * this is a noop as those rates sets are different
1415 	 * and used instead.
1416 	 */
1417 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1418 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1419 
1420 	ic->ic_curmode = mode;
1421 	ieee80211_reset_erp(ic);	/* reset ERP state */
1422 
1423 	return 0;
1424 }
1425 
1426 /*
1427  * Return the phy mode for with the specified channel.
1428  */
1429 enum ieee80211_phymode
1430 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1431 {
1432 
1433 	if (IEEE80211_IS_CHAN_HTA(chan))
1434 		return IEEE80211_MODE_11NA;
1435 	else if (IEEE80211_IS_CHAN_HTG(chan))
1436 		return IEEE80211_MODE_11NG;
1437 	else if (IEEE80211_IS_CHAN_108G(chan))
1438 		return IEEE80211_MODE_TURBO_G;
1439 	else if (IEEE80211_IS_CHAN_ST(chan))
1440 		return IEEE80211_MODE_STURBO_A;
1441 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1442 		return IEEE80211_MODE_TURBO_A;
1443 	else if (IEEE80211_IS_CHAN_HALF(chan))
1444 		return IEEE80211_MODE_HALF;
1445 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1446 		return IEEE80211_MODE_QUARTER;
1447 	else if (IEEE80211_IS_CHAN_A(chan))
1448 		return IEEE80211_MODE_11A;
1449 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1450 		return IEEE80211_MODE_11G;
1451 	else if (IEEE80211_IS_CHAN_B(chan))
1452 		return IEEE80211_MODE_11B;
1453 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1454 		return IEEE80211_MODE_FH;
1455 
1456 	/* NB: should not get here */
1457 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1458 		__func__, chan->ic_freq, chan->ic_flags);
1459 	return IEEE80211_MODE_11B;
1460 }
1461 
1462 struct ratemedia {
1463 	u_int	match;	/* rate + mode */
1464 	u_int	media;	/* if_media rate */
1465 };
1466 
1467 static int
1468 findmedia(const struct ratemedia rates[], int n, u_int match)
1469 {
1470 	int i;
1471 
1472 	for (i = 0; i < n; i++)
1473 		if (rates[i].match == match)
1474 			return rates[i].media;
1475 	return IFM_AUTO;
1476 }
1477 
1478 /*
1479  * Convert IEEE80211 rate value to ifmedia subtype.
1480  * Rate is either a legacy rate in units of 0.5Mbps
1481  * or an MCS index.
1482  */
1483 int
1484 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1485 {
1486 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1487 	static const struct ratemedia rates[] = {
1488 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1489 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1490 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1491 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1492 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1493 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1494 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1495 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1496 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1497 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1498 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1499 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1500 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1501 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1502 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1503 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1504 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1505 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1506 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1507 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1508 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1509 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1510 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1511 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1512 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1513 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1514 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1515 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1516 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1517 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1518 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1519 	};
1520 	static const struct ratemedia htrates[] = {
1521 		{   0, IFM_IEEE80211_MCS },
1522 		{   1, IFM_IEEE80211_MCS },
1523 		{   2, IFM_IEEE80211_MCS },
1524 		{   3, IFM_IEEE80211_MCS },
1525 		{   4, IFM_IEEE80211_MCS },
1526 		{   5, IFM_IEEE80211_MCS },
1527 		{   6, IFM_IEEE80211_MCS },
1528 		{   7, IFM_IEEE80211_MCS },
1529 		{   8, IFM_IEEE80211_MCS },
1530 		{   9, IFM_IEEE80211_MCS },
1531 		{  10, IFM_IEEE80211_MCS },
1532 		{  11, IFM_IEEE80211_MCS },
1533 		{  12, IFM_IEEE80211_MCS },
1534 		{  13, IFM_IEEE80211_MCS },
1535 		{  14, IFM_IEEE80211_MCS },
1536 		{  15, IFM_IEEE80211_MCS },
1537 		{  16, IFM_IEEE80211_MCS },
1538 		{  17, IFM_IEEE80211_MCS },
1539 		{  18, IFM_IEEE80211_MCS },
1540 		{  19, IFM_IEEE80211_MCS },
1541 		{  20, IFM_IEEE80211_MCS },
1542 		{  21, IFM_IEEE80211_MCS },
1543 		{  22, IFM_IEEE80211_MCS },
1544 		{  23, IFM_IEEE80211_MCS },
1545 		{  24, IFM_IEEE80211_MCS },
1546 		{  25, IFM_IEEE80211_MCS },
1547 		{  26, IFM_IEEE80211_MCS },
1548 		{  27, IFM_IEEE80211_MCS },
1549 		{  28, IFM_IEEE80211_MCS },
1550 		{  29, IFM_IEEE80211_MCS },
1551 		{  30, IFM_IEEE80211_MCS },
1552 		{  31, IFM_IEEE80211_MCS },
1553 		{  32, IFM_IEEE80211_MCS },
1554 		{  33, IFM_IEEE80211_MCS },
1555 		{  34, IFM_IEEE80211_MCS },
1556 		{  35, IFM_IEEE80211_MCS },
1557 		{  36, IFM_IEEE80211_MCS },
1558 		{  37, IFM_IEEE80211_MCS },
1559 		{  38, IFM_IEEE80211_MCS },
1560 		{  39, IFM_IEEE80211_MCS },
1561 		{  40, IFM_IEEE80211_MCS },
1562 		{  41, IFM_IEEE80211_MCS },
1563 		{  42, IFM_IEEE80211_MCS },
1564 		{  43, IFM_IEEE80211_MCS },
1565 		{  44, IFM_IEEE80211_MCS },
1566 		{  45, IFM_IEEE80211_MCS },
1567 		{  46, IFM_IEEE80211_MCS },
1568 		{  47, IFM_IEEE80211_MCS },
1569 		{  48, IFM_IEEE80211_MCS },
1570 		{  49, IFM_IEEE80211_MCS },
1571 		{  50, IFM_IEEE80211_MCS },
1572 		{  51, IFM_IEEE80211_MCS },
1573 		{  52, IFM_IEEE80211_MCS },
1574 		{  53, IFM_IEEE80211_MCS },
1575 		{  54, IFM_IEEE80211_MCS },
1576 		{  55, IFM_IEEE80211_MCS },
1577 		{  56, IFM_IEEE80211_MCS },
1578 		{  57, IFM_IEEE80211_MCS },
1579 		{  58, IFM_IEEE80211_MCS },
1580 		{  59, IFM_IEEE80211_MCS },
1581 		{  60, IFM_IEEE80211_MCS },
1582 		{  61, IFM_IEEE80211_MCS },
1583 		{  62, IFM_IEEE80211_MCS },
1584 		{  63, IFM_IEEE80211_MCS },
1585 		{  64, IFM_IEEE80211_MCS },
1586 		{  65, IFM_IEEE80211_MCS },
1587 		{  66, IFM_IEEE80211_MCS },
1588 		{  67, IFM_IEEE80211_MCS },
1589 		{  68, IFM_IEEE80211_MCS },
1590 		{  69, IFM_IEEE80211_MCS },
1591 		{  70, IFM_IEEE80211_MCS },
1592 		{  71, IFM_IEEE80211_MCS },
1593 		{  72, IFM_IEEE80211_MCS },
1594 		{  73, IFM_IEEE80211_MCS },
1595 		{  74, IFM_IEEE80211_MCS },
1596 		{  75, IFM_IEEE80211_MCS },
1597 		{  76, IFM_IEEE80211_MCS },
1598 	};
1599 	int m;
1600 
1601 	/*
1602 	 * Check 11n rates first for match as an MCS.
1603 	 */
1604 	if (mode == IEEE80211_MODE_11NA) {
1605 		if (rate & IEEE80211_RATE_MCS) {
1606 			rate &= ~IEEE80211_RATE_MCS;
1607 			m = findmedia(htrates, N(htrates), rate);
1608 			if (m != IFM_AUTO)
1609 				return m | IFM_IEEE80211_11NA;
1610 		}
1611 	} else if (mode == IEEE80211_MODE_11NG) {
1612 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1613 		if (rate & IEEE80211_RATE_MCS) {
1614 			rate &= ~IEEE80211_RATE_MCS;
1615 			m = findmedia(htrates, N(htrates), rate);
1616 			if (m != IFM_AUTO)
1617 				return m | IFM_IEEE80211_11NG;
1618 		}
1619 	}
1620 	rate &= IEEE80211_RATE_VAL;
1621 	switch (mode) {
1622 	case IEEE80211_MODE_11A:
1623 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1624 	case IEEE80211_MODE_QUARTER:
1625 	case IEEE80211_MODE_11NA:
1626 	case IEEE80211_MODE_TURBO_A:
1627 	case IEEE80211_MODE_STURBO_A:
1628 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1629 	case IEEE80211_MODE_11B:
1630 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1631 	case IEEE80211_MODE_FH:
1632 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1633 	case IEEE80211_MODE_AUTO:
1634 		/* NB: ic may be NULL for some drivers */
1635 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1636 			return findmedia(rates, N(rates),
1637 			    rate | IFM_IEEE80211_FH);
1638 		/* NB: hack, 11g matches both 11b+11a rates */
1639 		/* fall thru... */
1640 	case IEEE80211_MODE_11G:
1641 	case IEEE80211_MODE_11NG:
1642 	case IEEE80211_MODE_TURBO_G:
1643 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1644 	}
1645 	return IFM_AUTO;
1646 #undef N
1647 }
1648 
1649 int
1650 ieee80211_media2rate(int mword)
1651 {
1652 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1653 	static const int ieeerates[] = {
1654 		-1,		/* IFM_AUTO */
1655 		0,		/* IFM_MANUAL */
1656 		0,		/* IFM_NONE */
1657 		2,		/* IFM_IEEE80211_FH1 */
1658 		4,		/* IFM_IEEE80211_FH2 */
1659 		2,		/* IFM_IEEE80211_DS1 */
1660 		4,		/* IFM_IEEE80211_DS2 */
1661 		11,		/* IFM_IEEE80211_DS5 */
1662 		22,		/* IFM_IEEE80211_DS11 */
1663 		44,		/* IFM_IEEE80211_DS22 */
1664 		12,		/* IFM_IEEE80211_OFDM6 */
1665 		18,		/* IFM_IEEE80211_OFDM9 */
1666 		24,		/* IFM_IEEE80211_OFDM12 */
1667 		36,		/* IFM_IEEE80211_OFDM18 */
1668 		48,		/* IFM_IEEE80211_OFDM24 */
1669 		72,		/* IFM_IEEE80211_OFDM36 */
1670 		96,		/* IFM_IEEE80211_OFDM48 */
1671 		108,		/* IFM_IEEE80211_OFDM54 */
1672 		144,		/* IFM_IEEE80211_OFDM72 */
1673 		0,		/* IFM_IEEE80211_DS354k */
1674 		0,		/* IFM_IEEE80211_DS512k */
1675 		6,		/* IFM_IEEE80211_OFDM3 */
1676 		9,		/* IFM_IEEE80211_OFDM4 */
1677 		54,		/* IFM_IEEE80211_OFDM27 */
1678 		-1,		/* IFM_IEEE80211_MCS */
1679 	};
1680 	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1681 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1682 #undef N
1683 }
1684 
1685 /*
1686  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1687  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1688  */
1689 #define	mix(a, b, c)							\
1690 do {									\
1691 	a -= b; a -= c; a ^= (c >> 13);					\
1692 	b -= c; b -= a; b ^= (a << 8);					\
1693 	c -= a; c -= b; c ^= (b >> 13);					\
1694 	a -= b; a -= c; a ^= (c >> 12);					\
1695 	b -= c; b -= a; b ^= (a << 16);					\
1696 	c -= a; c -= b; c ^= (b >> 5);					\
1697 	a -= b; a -= c; a ^= (c >> 3);					\
1698 	b -= c; b -= a; b ^= (a << 10);					\
1699 	c -= a; c -= b; c ^= (b >> 15);					\
1700 } while (/*CONSTCOND*/0)
1701 
1702 uint32_t
1703 ieee80211_mac_hash(const struct ieee80211com *ic,
1704 	const uint8_t addr[IEEE80211_ADDR_LEN])
1705 {
1706 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1707 
1708 	b += addr[5] << 8;
1709 	b += addr[4];
1710 	a += addr[3] << 24;
1711 	a += addr[2] << 16;
1712 	a += addr[1] << 8;
1713 	a += addr[0];
1714 
1715 	mix(a, b, c);
1716 
1717 	return c;
1718 }
1719 #undef mix
1720