1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/socket.h> 42 #include <sys/sbuf.h> 43 44 #include <machine/stdarg.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 #include <net/ethernet.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #include <net80211/ieee80211_ratectl.h> 59 #include <net80211/ieee80211_vht.h> 60 61 #include <net/bpf.h> 62 63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 64 [IEEE80211_MODE_AUTO] = "auto", 65 [IEEE80211_MODE_11A] = "11a", 66 [IEEE80211_MODE_11B] = "11b", 67 [IEEE80211_MODE_11G] = "11g", 68 [IEEE80211_MODE_FH] = "FH", 69 [IEEE80211_MODE_TURBO_A] = "turboA", 70 [IEEE80211_MODE_TURBO_G] = "turboG", 71 [IEEE80211_MODE_STURBO_A] = "sturboA", 72 [IEEE80211_MODE_HALF] = "half", 73 [IEEE80211_MODE_QUARTER] = "quarter", 74 [IEEE80211_MODE_11NA] = "11na", 75 [IEEE80211_MODE_11NG] = "11ng", 76 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 77 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 78 }; 79 /* map ieee80211_opmode to the corresponding capability bit */ 80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 81 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 82 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 83 [IEEE80211_M_STA] = IEEE80211_C_STA, 84 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 85 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 86 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 87 #ifdef IEEE80211_SUPPORT_MESH 88 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 89 #endif 90 }; 91 92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 93 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 94 95 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 98 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 99 static int ieee80211_media_setup(struct ieee80211com *ic, 100 struct ifmedia *media, int caps, int addsta, 101 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 102 static int media_status(enum ieee80211_opmode, 103 const struct ieee80211_channel *); 104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 105 106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 107 108 /* 109 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 110 */ 111 #define B(r) ((r) | IEEE80211_RATE_BASIC) 112 static const struct ieee80211_rateset ieee80211_rateset_11a = 113 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 114 static const struct ieee80211_rateset ieee80211_rateset_half = 115 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 116 static const struct ieee80211_rateset ieee80211_rateset_quarter = 117 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 118 static const struct ieee80211_rateset ieee80211_rateset_11b = 119 { 4, { B(2), B(4), B(11), B(22) } }; 120 /* NB: OFDM rates are handled specially based on mode */ 121 static const struct ieee80211_rateset ieee80211_rateset_11g = 122 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 123 #undef B 124 125 static int set_vht_extchan(struct ieee80211_channel *c); 126 127 /* 128 * Fill in 802.11 available channel set, mark 129 * all available channels as active, and pick 130 * a default channel if not already specified. 131 */ 132 void 133 ieee80211_chan_init(struct ieee80211com *ic) 134 { 135 #define DEFAULTRATES(m, def) do { \ 136 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 137 ic->ic_sup_rates[m] = def; \ 138 } while (0) 139 struct ieee80211_channel *c; 140 int i; 141 142 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 143 ("invalid number of channels specified: %u", ic->ic_nchans)); 144 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 145 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 146 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 147 for (i = 0; i < ic->ic_nchans; i++) { 148 c = &ic->ic_channels[i]; 149 KASSERT(c->ic_flags != 0, ("channel with no flags")); 150 /* 151 * Help drivers that work only with frequencies by filling 152 * in IEEE channel #'s if not already calculated. Note this 153 * mimics similar work done in ieee80211_setregdomain when 154 * changing regulatory state. 155 */ 156 if (c->ic_ieee == 0) 157 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 158 159 /* 160 * Setup the HT40/VHT40 upper/lower bits. 161 * The VHT80 math is done elsewhere. 162 */ 163 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 164 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 165 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 166 c->ic_flags); 167 168 /* Update VHT math */ 169 /* 170 * XXX VHT again, note that this assumes VHT80 channels 171 * are legit already 172 */ 173 set_vht_extchan(c); 174 175 /* default max tx power to max regulatory */ 176 if (c->ic_maxpower == 0) 177 c->ic_maxpower = 2*c->ic_maxregpower; 178 setbit(ic->ic_chan_avail, c->ic_ieee); 179 /* 180 * Identify mode capabilities. 181 */ 182 if (IEEE80211_IS_CHAN_A(c)) 183 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 184 if (IEEE80211_IS_CHAN_B(c)) 185 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 186 if (IEEE80211_IS_CHAN_ANYG(c)) 187 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 188 if (IEEE80211_IS_CHAN_FHSS(c)) 189 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 190 if (IEEE80211_IS_CHAN_108A(c)) 191 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 192 if (IEEE80211_IS_CHAN_108G(c)) 193 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 194 if (IEEE80211_IS_CHAN_ST(c)) 195 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 196 if (IEEE80211_IS_CHAN_HALF(c)) 197 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 198 if (IEEE80211_IS_CHAN_QUARTER(c)) 199 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 200 if (IEEE80211_IS_CHAN_HTA(c)) 201 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 202 if (IEEE80211_IS_CHAN_HTG(c)) 203 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 204 if (IEEE80211_IS_CHAN_VHTA(c)) 205 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 206 if (IEEE80211_IS_CHAN_VHTG(c)) 207 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 208 } 209 /* initialize candidate channels to all available */ 210 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 211 sizeof(ic->ic_chan_avail)); 212 213 /* sort channel table to allow lookup optimizations */ 214 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 215 216 /* invalidate any previous state */ 217 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 218 ic->ic_prevchan = NULL; 219 ic->ic_csa_newchan = NULL; 220 /* arbitrarily pick the first channel */ 221 ic->ic_curchan = &ic->ic_channels[0]; 222 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 223 224 /* fillin well-known rate sets if driver has not specified */ 225 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 226 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 227 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 230 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 231 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 232 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 233 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 234 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 236 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 237 238 /* 239 * Setup required information to fill the mcsset field, if driver did 240 * not. Assume a 2T2R setup for historic reasons. 241 */ 242 if (ic->ic_rxstream == 0) 243 ic->ic_rxstream = 2; 244 if (ic->ic_txstream == 0) 245 ic->ic_txstream = 2; 246 247 ieee80211_init_suphtrates(ic); 248 249 /* 250 * Set auto mode to reset active channel state and any desired channel. 251 */ 252 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 253 #undef DEFAULTRATES 254 } 255 256 static void 257 null_update_mcast(struct ieee80211com *ic) 258 { 259 260 ic_printf(ic, "need multicast update callback\n"); 261 } 262 263 static void 264 null_update_promisc(struct ieee80211com *ic) 265 { 266 267 ic_printf(ic, "need promiscuous mode update callback\n"); 268 } 269 270 static void 271 null_update_chw(struct ieee80211com *ic) 272 { 273 274 ic_printf(ic, "%s: need callback\n", __func__); 275 } 276 277 int 278 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 279 { 280 va_list ap; 281 int retval; 282 283 retval = printf("%s: ", ic->ic_name); 284 va_start(ap, fmt); 285 retval += vprintf(fmt, ap); 286 va_end(ap); 287 return (retval); 288 } 289 290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 291 static struct mtx ic_list_mtx; 292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 293 294 static int 295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 296 { 297 struct ieee80211com *ic; 298 struct sbuf sb; 299 char *sp; 300 int error; 301 302 error = sysctl_wire_old_buffer(req, 0); 303 if (error) 304 return (error); 305 sbuf_new_for_sysctl(&sb, NULL, 8, req); 306 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 307 sp = ""; 308 mtx_lock(&ic_list_mtx); 309 LIST_FOREACH(ic, &ic_head, ic_next) { 310 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 311 sp = " "; 312 } 313 mtx_unlock(&ic_list_mtx); 314 error = sbuf_finish(&sb); 315 sbuf_delete(&sb); 316 return (error); 317 } 318 319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 321 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 322 323 /* 324 * Attach/setup the common net80211 state. Called by 325 * the driver on attach to prior to creating any vap's. 326 */ 327 void 328 ieee80211_ifattach(struct ieee80211com *ic) 329 { 330 331 IEEE80211_LOCK_INIT(ic, ic->ic_name); 332 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 333 TAILQ_INIT(&ic->ic_vaps); 334 335 /* Create a taskqueue for all state changes */ 336 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 337 taskqueue_thread_enqueue, &ic->ic_tq); 338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 339 ic->ic_name); 340 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 341 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 342 /* 343 * Fill in 802.11 available channel set, mark all 344 * available channels as active, and pick a default 345 * channel if not already specified. 346 */ 347 ieee80211_chan_init(ic); 348 349 ic->ic_update_mcast = null_update_mcast; 350 ic->ic_update_promisc = null_update_promisc; 351 ic->ic_update_chw = null_update_chw; 352 353 ic->ic_hash_key = arc4random(); 354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 355 ic->ic_lintval = ic->ic_bintval; 356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 357 358 ieee80211_crypto_attach(ic); 359 ieee80211_node_attach(ic); 360 ieee80211_power_attach(ic); 361 ieee80211_proto_attach(ic); 362 #ifdef IEEE80211_SUPPORT_SUPERG 363 ieee80211_superg_attach(ic); 364 #endif 365 ieee80211_ht_attach(ic); 366 ieee80211_vht_attach(ic); 367 ieee80211_scan_attach(ic); 368 ieee80211_regdomain_attach(ic); 369 ieee80211_dfs_attach(ic); 370 371 ieee80211_sysctl_attach(ic); 372 373 mtx_lock(&ic_list_mtx); 374 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 375 mtx_unlock(&ic_list_mtx); 376 } 377 378 /* 379 * Detach net80211 state on device detach. Tear down 380 * all vap's and reclaim all common state prior to the 381 * device state going away. Note we may call back into 382 * driver; it must be prepared for this. 383 */ 384 void 385 ieee80211_ifdetach(struct ieee80211com *ic) 386 { 387 struct ieee80211vap *vap; 388 389 mtx_lock(&ic_list_mtx); 390 LIST_REMOVE(ic, ic_next); 391 mtx_unlock(&ic_list_mtx); 392 393 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 394 395 /* 396 * The VAP is responsible for setting and clearing 397 * the VIMAGE context. 398 */ 399 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 400 ieee80211_vap_destroy(vap); 401 ieee80211_waitfor_parent(ic); 402 403 ieee80211_sysctl_detach(ic); 404 ieee80211_dfs_detach(ic); 405 ieee80211_regdomain_detach(ic); 406 ieee80211_scan_detach(ic); 407 #ifdef IEEE80211_SUPPORT_SUPERG 408 ieee80211_superg_detach(ic); 409 #endif 410 ieee80211_vht_detach(ic); 411 ieee80211_ht_detach(ic); 412 /* NB: must be called before ieee80211_node_detach */ 413 ieee80211_proto_detach(ic); 414 ieee80211_crypto_detach(ic); 415 ieee80211_power_detach(ic); 416 ieee80211_node_detach(ic); 417 418 counter_u64_free(ic->ic_ierrors); 419 counter_u64_free(ic->ic_oerrors); 420 421 taskqueue_free(ic->ic_tq); 422 IEEE80211_TX_LOCK_DESTROY(ic); 423 IEEE80211_LOCK_DESTROY(ic); 424 } 425 426 struct ieee80211com * 427 ieee80211_find_com(const char *name) 428 { 429 struct ieee80211com *ic; 430 431 mtx_lock(&ic_list_mtx); 432 LIST_FOREACH(ic, &ic_head, ic_next) 433 if (strcmp(ic->ic_name, name) == 0) 434 break; 435 mtx_unlock(&ic_list_mtx); 436 437 return (ic); 438 } 439 440 void 441 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 442 { 443 struct ieee80211com *ic; 444 445 mtx_lock(&ic_list_mtx); 446 LIST_FOREACH(ic, &ic_head, ic_next) 447 (*f)(arg, ic); 448 mtx_unlock(&ic_list_mtx); 449 } 450 451 /* 452 * Default reset method for use with the ioctl support. This 453 * method is invoked after any state change in the 802.11 454 * layer that should be propagated to the hardware but not 455 * require re-initialization of the 802.11 state machine (e.g 456 * rescanning for an ap). We always return ENETRESET which 457 * should cause the driver to re-initialize the device. Drivers 458 * can override this method to implement more optimized support. 459 */ 460 static int 461 default_reset(struct ieee80211vap *vap, u_long cmd) 462 { 463 return ENETRESET; 464 } 465 466 /* 467 * Default for updating the VAP default TX key index. 468 * 469 * Drivers that support TX offload as well as hardware encryption offload 470 * may need to be informed of key index changes separate from the key 471 * update. 472 */ 473 static void 474 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 475 { 476 477 /* XXX assert validity */ 478 /* XXX assert we're in a key update block */ 479 vap->iv_def_txkey = kid; 480 } 481 482 /* 483 * Add underlying device errors to vap errors. 484 */ 485 static uint64_t 486 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 487 { 488 struct ieee80211vap *vap = ifp->if_softc; 489 struct ieee80211com *ic = vap->iv_ic; 490 uint64_t rv; 491 492 rv = if_get_counter_default(ifp, cnt); 493 switch (cnt) { 494 case IFCOUNTER_OERRORS: 495 rv += counter_u64_fetch(ic->ic_oerrors); 496 break; 497 case IFCOUNTER_IERRORS: 498 rv += counter_u64_fetch(ic->ic_ierrors); 499 break; 500 default: 501 break; 502 } 503 504 return (rv); 505 } 506 507 /* 508 * Prepare a vap for use. Drivers use this call to 509 * setup net80211 state in new vap's prior attaching 510 * them with ieee80211_vap_attach (below). 511 */ 512 int 513 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 514 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 515 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 516 { 517 struct ifnet *ifp; 518 519 ifp = if_alloc(IFT_ETHER); 520 if (ifp == NULL) { 521 ic_printf(ic, "%s: unable to allocate ifnet\n", 522 __func__); 523 return ENOMEM; 524 } 525 if_initname(ifp, name, unit); 526 ifp->if_softc = vap; /* back pointer */ 527 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 528 ifp->if_transmit = ieee80211_vap_transmit; 529 ifp->if_qflush = ieee80211_vap_qflush; 530 ifp->if_ioctl = ieee80211_ioctl; 531 ifp->if_init = ieee80211_init; 532 ifp->if_get_counter = ieee80211_get_counter; 533 534 vap->iv_ifp = ifp; 535 vap->iv_ic = ic; 536 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 537 vap->iv_flags_ext = ic->ic_flags_ext; 538 vap->iv_flags_ven = ic->ic_flags_ven; 539 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 540 541 /* 11n capabilities - XXX methodize */ 542 vap->iv_htcaps = ic->ic_htcaps; 543 vap->iv_htextcaps = ic->ic_htextcaps; 544 545 /* 11ac capabilities - XXX methodize */ 546 vap->iv_vhtcaps = ic->ic_vhtcaps; 547 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 548 549 vap->iv_opmode = opmode; 550 vap->iv_caps |= ieee80211_opcap[opmode]; 551 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 552 switch (opmode) { 553 case IEEE80211_M_WDS: 554 /* 555 * WDS links must specify the bssid of the far end. 556 * For legacy operation this is a static relationship. 557 * For non-legacy operation the station must associate 558 * and be authorized to pass traffic. Plumbing the 559 * vap to the proper node happens when the vap 560 * transitions to RUN state. 561 */ 562 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 563 vap->iv_flags |= IEEE80211_F_DESBSSID; 564 if (flags & IEEE80211_CLONE_WDSLEGACY) 565 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 566 break; 567 #ifdef IEEE80211_SUPPORT_TDMA 568 case IEEE80211_M_AHDEMO: 569 if (flags & IEEE80211_CLONE_TDMA) { 570 /* NB: checked before clone operation allowed */ 571 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 572 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 573 /* 574 * Propagate TDMA capability to mark vap; this 575 * cannot be removed and is used to distinguish 576 * regular ahdemo operation from ahdemo+tdma. 577 */ 578 vap->iv_caps |= IEEE80211_C_TDMA; 579 } 580 break; 581 #endif 582 default: 583 break; 584 } 585 /* auto-enable s/w beacon miss support */ 586 if (flags & IEEE80211_CLONE_NOBEACONS) 587 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 588 /* auto-generated or user supplied MAC address */ 589 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 590 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 591 /* 592 * Enable various functionality by default if we're 593 * capable; the driver can override us if it knows better. 594 */ 595 if (vap->iv_caps & IEEE80211_C_WME) 596 vap->iv_flags |= IEEE80211_F_WME; 597 if (vap->iv_caps & IEEE80211_C_BURST) 598 vap->iv_flags |= IEEE80211_F_BURST; 599 /* NB: bg scanning only makes sense for station mode right now */ 600 if (vap->iv_opmode == IEEE80211_M_STA && 601 (vap->iv_caps & IEEE80211_C_BGSCAN)) 602 vap->iv_flags |= IEEE80211_F_BGSCAN; 603 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 604 /* NB: DFS support only makes sense for ap mode right now */ 605 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 606 (vap->iv_caps & IEEE80211_C_DFS)) 607 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 608 609 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 610 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 611 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 612 /* 613 * Install a default reset method for the ioctl support; 614 * the driver can override this. 615 */ 616 vap->iv_reset = default_reset; 617 618 /* 619 * Install a default crypto key update method, the driver 620 * can override this. 621 */ 622 vap->iv_update_deftxkey = default_update_deftxkey; 623 624 ieee80211_sysctl_vattach(vap); 625 ieee80211_crypto_vattach(vap); 626 ieee80211_node_vattach(vap); 627 ieee80211_power_vattach(vap); 628 ieee80211_proto_vattach(vap); 629 #ifdef IEEE80211_SUPPORT_SUPERG 630 ieee80211_superg_vattach(vap); 631 #endif 632 ieee80211_ht_vattach(vap); 633 ieee80211_vht_vattach(vap); 634 ieee80211_scan_vattach(vap); 635 ieee80211_regdomain_vattach(vap); 636 ieee80211_radiotap_vattach(vap); 637 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 638 639 return 0; 640 } 641 642 /* 643 * Activate a vap. State should have been prepared with a 644 * call to ieee80211_vap_setup and by the driver. On return 645 * from this call the vap is ready for use. 646 */ 647 int 648 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 649 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 650 { 651 struct ifnet *ifp = vap->iv_ifp; 652 struct ieee80211com *ic = vap->iv_ic; 653 struct ifmediareq imr; 654 int maxrate; 655 656 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 657 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 658 __func__, ieee80211_opmode_name[vap->iv_opmode], 659 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 660 661 /* 662 * Do late attach work that cannot happen until after 663 * the driver has had a chance to override defaults. 664 */ 665 ieee80211_node_latevattach(vap); 666 ieee80211_power_latevattach(vap); 667 668 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 669 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 670 ieee80211_media_status(ifp, &imr); 671 /* NB: strip explicit mode; we're actually in autoselect */ 672 ifmedia_set(&vap->iv_media, 673 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 674 if (maxrate) 675 ifp->if_baudrate = IF_Mbps(maxrate); 676 677 ether_ifattach(ifp, macaddr); 678 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 679 /* hook output method setup by ether_ifattach */ 680 vap->iv_output = ifp->if_output; 681 ifp->if_output = ieee80211_output; 682 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 683 684 IEEE80211_LOCK(ic); 685 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 686 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 687 #ifdef IEEE80211_SUPPORT_SUPERG 688 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 689 #endif 690 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 691 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 692 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 693 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 694 695 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 696 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 697 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 698 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 699 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 700 IEEE80211_UNLOCK(ic); 701 702 return 1; 703 } 704 705 /* 706 * Tear down vap state and reclaim the ifnet. 707 * The driver is assumed to have prepared for 708 * this; e.g. by turning off interrupts for the 709 * underlying device. 710 */ 711 void 712 ieee80211_vap_detach(struct ieee80211vap *vap) 713 { 714 struct ieee80211com *ic = vap->iv_ic; 715 struct ifnet *ifp = vap->iv_ifp; 716 717 CURVNET_SET(ifp->if_vnet); 718 719 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 720 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 721 722 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 723 ether_ifdetach(ifp); 724 725 ieee80211_stop(vap); 726 727 /* 728 * Flush any deferred vap tasks. 729 */ 730 ieee80211_draintask(ic, &vap->iv_nstate_task); 731 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 732 ieee80211_draintask(ic, &vap->iv_wme_task); 733 ieee80211_draintask(ic, &ic->ic_parent_task); 734 735 /* XXX band-aid until ifnet handles this for us */ 736 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 737 738 IEEE80211_LOCK(ic); 739 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 740 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 741 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 742 #ifdef IEEE80211_SUPPORT_SUPERG 743 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 744 #endif 745 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 746 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 747 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 748 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 749 750 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 751 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 752 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 753 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 754 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 755 756 /* NB: this handles the bpfdetach done below */ 757 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 758 if (vap->iv_ifflags & IFF_PROMISC) 759 ieee80211_promisc(vap, false); 760 if (vap->iv_ifflags & IFF_ALLMULTI) 761 ieee80211_allmulti(vap, false); 762 IEEE80211_UNLOCK(ic); 763 764 ifmedia_removeall(&vap->iv_media); 765 766 ieee80211_radiotap_vdetach(vap); 767 ieee80211_regdomain_vdetach(vap); 768 ieee80211_scan_vdetach(vap); 769 #ifdef IEEE80211_SUPPORT_SUPERG 770 ieee80211_superg_vdetach(vap); 771 #endif 772 ieee80211_vht_vdetach(vap); 773 ieee80211_ht_vdetach(vap); 774 /* NB: must be before ieee80211_node_vdetach */ 775 ieee80211_proto_vdetach(vap); 776 ieee80211_crypto_vdetach(vap); 777 ieee80211_power_vdetach(vap); 778 ieee80211_node_vdetach(vap); 779 ieee80211_sysctl_vdetach(vap); 780 781 if_free(ifp); 782 783 CURVNET_RESTORE(); 784 } 785 786 /* 787 * Count number of vaps in promisc, and issue promisc on 788 * parent respectively. 789 */ 790 void 791 ieee80211_promisc(struct ieee80211vap *vap, bool on) 792 { 793 struct ieee80211com *ic = vap->iv_ic; 794 795 IEEE80211_LOCK_ASSERT(ic); 796 797 if (on) { 798 if (++ic->ic_promisc == 1) 799 ieee80211_runtask(ic, &ic->ic_promisc_task); 800 } else { 801 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 802 __func__, ic)); 803 if (--ic->ic_promisc == 0) 804 ieee80211_runtask(ic, &ic->ic_promisc_task); 805 } 806 } 807 808 /* 809 * Count number of vaps in allmulti, and issue allmulti on 810 * parent respectively. 811 */ 812 void 813 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 814 { 815 struct ieee80211com *ic = vap->iv_ic; 816 817 IEEE80211_LOCK_ASSERT(ic); 818 819 if (on) { 820 if (++ic->ic_allmulti == 1) 821 ieee80211_runtask(ic, &ic->ic_mcast_task); 822 } else { 823 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 824 __func__, ic)); 825 if (--ic->ic_allmulti == 0) 826 ieee80211_runtask(ic, &ic->ic_mcast_task); 827 } 828 } 829 830 /* 831 * Synchronize flag bit state in the com structure 832 * according to the state of all vap's. This is used, 833 * for example, to handle state changes via ioctls. 834 */ 835 static void 836 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 837 { 838 struct ieee80211vap *vap; 839 int bit; 840 841 IEEE80211_LOCK_ASSERT(ic); 842 843 bit = 0; 844 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 845 if (vap->iv_flags & flag) { 846 bit = 1; 847 break; 848 } 849 if (bit) 850 ic->ic_flags |= flag; 851 else 852 ic->ic_flags &= ~flag; 853 } 854 855 void 856 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 857 { 858 struct ieee80211com *ic = vap->iv_ic; 859 860 IEEE80211_LOCK(ic); 861 if (flag < 0) { 862 flag = -flag; 863 vap->iv_flags &= ~flag; 864 } else 865 vap->iv_flags |= flag; 866 ieee80211_syncflag_locked(ic, flag); 867 IEEE80211_UNLOCK(ic); 868 } 869 870 /* 871 * Synchronize flags_ht bit state in the com structure 872 * according to the state of all vap's. This is used, 873 * for example, to handle state changes via ioctls. 874 */ 875 static void 876 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 877 { 878 struct ieee80211vap *vap; 879 int bit; 880 881 IEEE80211_LOCK_ASSERT(ic); 882 883 bit = 0; 884 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 885 if (vap->iv_flags_ht & flag) { 886 bit = 1; 887 break; 888 } 889 if (bit) 890 ic->ic_flags_ht |= flag; 891 else 892 ic->ic_flags_ht &= ~flag; 893 } 894 895 void 896 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 897 { 898 struct ieee80211com *ic = vap->iv_ic; 899 900 IEEE80211_LOCK(ic); 901 if (flag < 0) { 902 flag = -flag; 903 vap->iv_flags_ht &= ~flag; 904 } else 905 vap->iv_flags_ht |= flag; 906 ieee80211_syncflag_ht_locked(ic, flag); 907 IEEE80211_UNLOCK(ic); 908 } 909 910 /* 911 * Synchronize flags_vht bit state in the com structure 912 * according to the state of all vap's. This is used, 913 * for example, to handle state changes via ioctls. 914 */ 915 static void 916 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 917 { 918 struct ieee80211vap *vap; 919 int bit; 920 921 IEEE80211_LOCK_ASSERT(ic); 922 923 bit = 0; 924 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 925 if (vap->iv_flags_vht & flag) { 926 bit = 1; 927 break; 928 } 929 if (bit) 930 ic->ic_flags_vht |= flag; 931 else 932 ic->ic_flags_vht &= ~flag; 933 } 934 935 void 936 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 937 { 938 struct ieee80211com *ic = vap->iv_ic; 939 940 IEEE80211_LOCK(ic); 941 if (flag < 0) { 942 flag = -flag; 943 vap->iv_flags_vht &= ~flag; 944 } else 945 vap->iv_flags_vht |= flag; 946 ieee80211_syncflag_vht_locked(ic, flag); 947 IEEE80211_UNLOCK(ic); 948 } 949 950 /* 951 * Synchronize flags_ext bit state in the com structure 952 * according to the state of all vap's. This is used, 953 * for example, to handle state changes via ioctls. 954 */ 955 static void 956 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 957 { 958 struct ieee80211vap *vap; 959 int bit; 960 961 IEEE80211_LOCK_ASSERT(ic); 962 963 bit = 0; 964 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 965 if (vap->iv_flags_ext & flag) { 966 bit = 1; 967 break; 968 } 969 if (bit) 970 ic->ic_flags_ext |= flag; 971 else 972 ic->ic_flags_ext &= ~flag; 973 } 974 975 void 976 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 977 { 978 struct ieee80211com *ic = vap->iv_ic; 979 980 IEEE80211_LOCK(ic); 981 if (flag < 0) { 982 flag = -flag; 983 vap->iv_flags_ext &= ~flag; 984 } else 985 vap->iv_flags_ext |= flag; 986 ieee80211_syncflag_ext_locked(ic, flag); 987 IEEE80211_UNLOCK(ic); 988 } 989 990 static __inline int 991 mapgsm(u_int freq, u_int flags) 992 { 993 freq *= 10; 994 if (flags & IEEE80211_CHAN_QUARTER) 995 freq += 5; 996 else if (flags & IEEE80211_CHAN_HALF) 997 freq += 10; 998 else 999 freq += 20; 1000 /* NB: there is no 907/20 wide but leave room */ 1001 return (freq - 906*10) / 5; 1002 } 1003 1004 static __inline int 1005 mappsb(u_int freq, u_int flags) 1006 { 1007 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1008 } 1009 1010 /* 1011 * Convert MHz frequency to IEEE channel number. 1012 */ 1013 int 1014 ieee80211_mhz2ieee(u_int freq, u_int flags) 1015 { 1016 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1017 if (flags & IEEE80211_CHAN_GSM) 1018 return mapgsm(freq, flags); 1019 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1020 if (freq == 2484) 1021 return 14; 1022 if (freq < 2484) 1023 return ((int) freq - 2407) / 5; 1024 else 1025 return 15 + ((freq - 2512) / 20); 1026 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1027 if (freq <= 5000) { 1028 /* XXX check regdomain? */ 1029 if (IS_FREQ_IN_PSB(freq)) 1030 return mappsb(freq, flags); 1031 return (freq - 4000) / 5; 1032 } else 1033 return (freq - 5000) / 5; 1034 } else { /* either, guess */ 1035 if (freq == 2484) 1036 return 14; 1037 if (freq < 2484) { 1038 if (907 <= freq && freq <= 922) 1039 return mapgsm(freq, flags); 1040 return ((int) freq - 2407) / 5; 1041 } 1042 if (freq < 5000) { 1043 if (IS_FREQ_IN_PSB(freq)) 1044 return mappsb(freq, flags); 1045 else if (freq > 4900) 1046 return (freq - 4000) / 5; 1047 else 1048 return 15 + ((freq - 2512) / 20); 1049 } 1050 return (freq - 5000) / 5; 1051 } 1052 #undef IS_FREQ_IN_PSB 1053 } 1054 1055 /* 1056 * Convert channel to IEEE channel number. 1057 */ 1058 int 1059 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1060 { 1061 if (c == NULL) { 1062 ic_printf(ic, "invalid channel (NULL)\n"); 1063 return 0; /* XXX */ 1064 } 1065 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1066 } 1067 1068 /* 1069 * Convert IEEE channel number to MHz frequency. 1070 */ 1071 u_int 1072 ieee80211_ieee2mhz(u_int chan, u_int flags) 1073 { 1074 if (flags & IEEE80211_CHAN_GSM) 1075 return 907 + 5 * (chan / 10); 1076 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1077 if (chan == 14) 1078 return 2484; 1079 if (chan < 14) 1080 return 2407 + chan*5; 1081 else 1082 return 2512 + ((chan-15)*20); 1083 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1084 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1085 chan -= 37; 1086 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1087 } 1088 return 5000 + (chan*5); 1089 } else { /* either, guess */ 1090 /* XXX can't distinguish PSB+GSM channels */ 1091 if (chan == 14) 1092 return 2484; 1093 if (chan < 14) /* 0-13 */ 1094 return 2407 + chan*5; 1095 if (chan < 27) /* 15-26 */ 1096 return 2512 + ((chan-15)*20); 1097 return 5000 + (chan*5); 1098 } 1099 } 1100 1101 static __inline void 1102 set_extchan(struct ieee80211_channel *c) 1103 { 1104 1105 /* 1106 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1107 * "the secondary channel number shall be 'N + [1,-1] * 4' 1108 */ 1109 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1110 c->ic_extieee = c->ic_ieee + 4; 1111 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1112 c->ic_extieee = c->ic_ieee - 4; 1113 else 1114 c->ic_extieee = 0; 1115 } 1116 1117 /* 1118 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1119 * 1120 * This for now uses a hard-coded list of 80MHz wide channels. 1121 * 1122 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1123 * wide channel we've already decided upon. 1124 * 1125 * For VHT80 and VHT160, there are only a small number of fixed 1126 * 80/160MHz wide channels, so we just use those. 1127 * 1128 * This is all likely very very wrong - both the regulatory code 1129 * and this code needs to ensure that all four channels are 1130 * available and valid before the VHT80 (and eight for VHT160) channel 1131 * is created. 1132 */ 1133 1134 struct vht_chan_range { 1135 uint16_t freq_start; 1136 uint16_t freq_end; 1137 }; 1138 1139 struct vht_chan_range vht80_chan_ranges[] = { 1140 { 5170, 5250 }, 1141 { 5250, 5330 }, 1142 { 5490, 5570 }, 1143 { 5570, 5650 }, 1144 { 5650, 5730 }, 1145 { 5735, 5815 }, 1146 { 0, 0, } 1147 }; 1148 1149 static int 1150 set_vht_extchan(struct ieee80211_channel *c) 1151 { 1152 int i; 1153 1154 if (! IEEE80211_IS_CHAN_VHT(c)) { 1155 return (0); 1156 } 1157 1158 if (IEEE80211_IS_CHAN_VHT20(c)) { 1159 c->ic_vht_ch_freq1 = c->ic_ieee; 1160 return (1); 1161 } 1162 1163 if (IEEE80211_IS_CHAN_VHT40(c)) { 1164 if (IEEE80211_IS_CHAN_HT40U(c)) 1165 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1166 else if (IEEE80211_IS_CHAN_HT40D(c)) 1167 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1168 else 1169 return (0); 1170 return (1); 1171 } 1172 1173 if (IEEE80211_IS_CHAN_VHT80(c)) { 1174 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1175 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1176 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1177 int midpoint; 1178 1179 midpoint = vht80_chan_ranges[i].freq_start + 40; 1180 c->ic_vht_ch_freq1 = 1181 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1182 c->ic_vht_ch_freq2 = 0; 1183 #if 0 1184 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1185 __func__, c->ic_ieee, c->ic_freq, midpoint, 1186 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1187 #endif 1188 return (1); 1189 } 1190 } 1191 return (0); 1192 } 1193 1194 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1195 __func__, 1196 c->ic_ieee, 1197 c->ic_flags); 1198 1199 return (0); 1200 } 1201 1202 /* 1203 * Return whether the current channel could possibly be a part of 1204 * a VHT80 channel. 1205 * 1206 * This doesn't check that the whole range is in the allowed list 1207 * according to regulatory. 1208 */ 1209 static int 1210 is_vht80_valid_freq(uint16_t freq) 1211 { 1212 int i; 1213 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1214 if (freq >= vht80_chan_ranges[i].freq_start && 1215 freq < vht80_chan_ranges[i].freq_end) 1216 return (1); 1217 } 1218 return (0); 1219 } 1220 1221 static int 1222 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1223 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1224 { 1225 struct ieee80211_channel *c; 1226 1227 if (*nchans >= maxchans) 1228 return (ENOBUFS); 1229 1230 #if 0 1231 printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n", 1232 __func__, 1233 *nchans, 1234 ieee, 1235 freq, 1236 flags); 1237 #endif 1238 1239 c = &chans[(*nchans)++]; 1240 c->ic_ieee = ieee; 1241 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1242 c->ic_maxregpower = maxregpower; 1243 c->ic_maxpower = 2 * maxregpower; 1244 c->ic_flags = flags; 1245 c->ic_vht_ch_freq1 = 0; 1246 c->ic_vht_ch_freq2 = 0; 1247 set_extchan(c); 1248 set_vht_extchan(c); 1249 1250 return (0); 1251 } 1252 1253 static int 1254 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1255 uint32_t flags) 1256 { 1257 struct ieee80211_channel *c; 1258 1259 KASSERT(*nchans > 0, ("channel list is empty\n")); 1260 1261 if (*nchans >= maxchans) 1262 return (ENOBUFS); 1263 1264 #if 0 1265 printf("%s: %d: flags=0x%08x\n", 1266 __func__, 1267 *nchans, 1268 flags); 1269 #endif 1270 1271 c = &chans[(*nchans)++]; 1272 c[0] = c[-1]; 1273 c->ic_flags = flags; 1274 c->ic_vht_ch_freq1 = 0; 1275 c->ic_vht_ch_freq2 = 0; 1276 set_extchan(c); 1277 set_vht_extchan(c); 1278 1279 return (0); 1280 } 1281 1282 /* 1283 * XXX VHT-2GHz 1284 */ 1285 static void 1286 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40) 1287 { 1288 int nmodes; 1289 1290 nmodes = 0; 1291 if (isset(bands, IEEE80211_MODE_11B)) 1292 flags[nmodes++] = IEEE80211_CHAN_B; 1293 if (isset(bands, IEEE80211_MODE_11G)) 1294 flags[nmodes++] = IEEE80211_CHAN_G; 1295 if (isset(bands, IEEE80211_MODE_11NG)) 1296 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1297 if (ht40) { 1298 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1299 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1300 } 1301 flags[nmodes] = 0; 1302 } 1303 1304 static void 1305 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1306 { 1307 int nmodes; 1308 1309 /* 1310 * the addchan_list function seems to expect the flags array to 1311 * be in channel width order, so the VHT bits are interspersed 1312 * as appropriate to maintain said order. 1313 * 1314 * It also assumes HT40U is before HT40D. 1315 */ 1316 nmodes = 0; 1317 1318 /* 20MHz */ 1319 if (isset(bands, IEEE80211_MODE_11A)) 1320 flags[nmodes++] = IEEE80211_CHAN_A; 1321 if (isset(bands, IEEE80211_MODE_11NA)) 1322 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1323 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1324 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1325 IEEE80211_CHAN_VHT20; 1326 } 1327 1328 /* 40MHz */ 1329 if (ht40) { 1330 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1331 } 1332 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1333 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U 1334 | IEEE80211_CHAN_VHT40U; 1335 } 1336 if (ht40) { 1337 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1338 } 1339 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1340 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D 1341 | IEEE80211_CHAN_VHT40D; 1342 } 1343 1344 /* 80MHz */ 1345 if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1346 flags[nmodes++] = IEEE80211_CHAN_A | 1347 IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; 1348 flags[nmodes++] = IEEE80211_CHAN_A | 1349 IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; 1350 } 1351 1352 /* XXX VHT80+80 */ 1353 /* XXX VHT160 */ 1354 flags[nmodes] = 0; 1355 } 1356 1357 static void 1358 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1359 { 1360 1361 flags[0] = 0; 1362 if (isset(bands, IEEE80211_MODE_11A) || 1363 isset(bands, IEEE80211_MODE_11NA) || 1364 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1365 if (isset(bands, IEEE80211_MODE_11B) || 1366 isset(bands, IEEE80211_MODE_11G) || 1367 isset(bands, IEEE80211_MODE_11NG) || 1368 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1369 return; 1370 1371 getflags_5ghz(bands, flags, ht40, vht80); 1372 } else 1373 getflags_2ghz(bands, flags, ht40); 1374 } 1375 1376 /* 1377 * Add one 20 MHz channel into specified channel list. 1378 */ 1379 /* XXX VHT */ 1380 int 1381 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1382 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1383 uint32_t chan_flags, const uint8_t bands[]) 1384 { 1385 uint32_t flags[IEEE80211_MODE_MAX]; 1386 int i, error; 1387 1388 getflags(bands, flags, 0, 0); 1389 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1390 1391 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1392 flags[0] | chan_flags); 1393 for (i = 1; flags[i] != 0 && error == 0; i++) { 1394 error = copychan_prev(chans, maxchans, nchans, 1395 flags[i] | chan_flags); 1396 } 1397 1398 return (error); 1399 } 1400 1401 static struct ieee80211_channel * 1402 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1403 uint32_t flags) 1404 { 1405 struct ieee80211_channel *c; 1406 int i; 1407 1408 flags &= IEEE80211_CHAN_ALLTURBO; 1409 /* brute force search */ 1410 for (i = 0; i < nchans; i++) { 1411 c = &chans[i]; 1412 if (c->ic_freq == freq && 1413 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1414 return c; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * Add 40 MHz channel pair into specified channel list. 1421 */ 1422 /* XXX VHT */ 1423 int 1424 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1425 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1426 { 1427 struct ieee80211_channel *cent, *extc; 1428 uint16_t freq; 1429 int error; 1430 1431 freq = ieee80211_ieee2mhz(ieee, flags); 1432 1433 /* 1434 * Each entry defines an HT40 channel pair; find the 1435 * center channel, then the extension channel above. 1436 */ 1437 flags |= IEEE80211_CHAN_HT20; 1438 cent = findchannel(chans, *nchans, freq, flags); 1439 if (cent == NULL) 1440 return (EINVAL); 1441 1442 extc = findchannel(chans, *nchans, freq + 20, flags); 1443 if (extc == NULL) 1444 return (ENOENT); 1445 1446 flags &= ~IEEE80211_CHAN_HT; 1447 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1448 maxregpower, flags | IEEE80211_CHAN_HT40U); 1449 if (error != 0) 1450 return (error); 1451 1452 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1453 maxregpower, flags | IEEE80211_CHAN_HT40D); 1454 1455 return (error); 1456 } 1457 1458 /* 1459 * Fetch the center frequency for the primary channel. 1460 */ 1461 uint32_t 1462 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1463 { 1464 1465 return (c->ic_freq); 1466 } 1467 1468 /* 1469 * Fetch the center frequency for the primary BAND channel. 1470 * 1471 * For 5, 10, 20MHz channels it'll be the normally configured channel 1472 * frequency. 1473 * 1474 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the 1475 * wide channel, not the centre of the primary channel (that's ic_freq). 1476 * 1477 * For 80+80MHz channels this will be the centre of the primary 1478 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1479 */ 1480 uint32_t 1481 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1482 { 1483 1484 /* 1485 * VHT - use the pre-calculated centre frequency 1486 * of the given channel. 1487 */ 1488 if (IEEE80211_IS_CHAN_VHT(c)) 1489 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1490 1491 if (IEEE80211_IS_CHAN_HT40U(c)) { 1492 return (c->ic_freq + 10); 1493 } 1494 if (IEEE80211_IS_CHAN_HT40D(c)) { 1495 return (c->ic_freq - 10); 1496 } 1497 1498 return (c->ic_freq); 1499 } 1500 1501 /* 1502 * For now, no 80+80 support; it will likely always return 0. 1503 */ 1504 uint32_t 1505 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1506 { 1507 1508 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1509 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1510 1511 return (0); 1512 } 1513 1514 /* 1515 * Adds channels into specified channel list (ieee[] array must be sorted). 1516 * Channels are already sorted. 1517 */ 1518 static int 1519 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1520 const uint8_t ieee[], int nieee, uint32_t flags[]) 1521 { 1522 uint16_t freq; 1523 int i, j, error; 1524 int is_vht; 1525 1526 for (i = 0; i < nieee; i++) { 1527 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1528 for (j = 0; flags[j] != 0; j++) { 1529 /* 1530 * Notes: 1531 * + HT40 and VHT40 channels occur together, so 1532 * we need to be careful that we actually allow that. 1533 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1534 * make sure it's not skipped because of the overlap 1535 * check used for (V)HT40. 1536 */ 1537 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1538 1539 /* 1540 * Test for VHT80. 1541 * XXX This is all very broken right now. 1542 * What we /should/ do is: 1543 * 1544 * + check that the frequency is in the list of 1545 * allowed VHT80 ranges; and 1546 * + the other 3 channels in the list are actually 1547 * also available. 1548 */ 1549 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1550 if (! is_vht80_valid_freq(freq)) 1551 continue; 1552 1553 /* 1554 * Test for (V)HT40. 1555 * 1556 * This is also a fall through from VHT80; as we only 1557 * allow a VHT80 channel if the VHT40 combination is 1558 * also valid. If the VHT40 form is not valid then 1559 * we certainly can't do VHT80.. 1560 */ 1561 if (flags[j] & IEEE80211_CHAN_HT40D) 1562 /* 1563 * Can't have a "lower" channel if we are the 1564 * first channel. 1565 * 1566 * Can't have a "lower" channel if it's below/ 1567 * within 20MHz of the first channel. 1568 * 1569 * Can't have a "lower" channel if the channel 1570 * below it is not 20MHz away. 1571 */ 1572 if (i == 0 || ieee[i] < ieee[0] + 4 || 1573 freq - 20 != 1574 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1575 continue; 1576 if (flags[j] & IEEE80211_CHAN_HT40U) 1577 /* 1578 * Can't have an "upper" channel if we are 1579 * the last channel. 1580 * 1581 * Can't have an "upper" channel be above the 1582 * last channel in the list. 1583 * 1584 * Can't have an "upper" channel if the next 1585 * channel according to the math isn't 20MHz 1586 * away. (Likely for channel 13/14.) 1587 */ 1588 if (i == nieee - 1 || 1589 ieee[i] + 4 > ieee[nieee - 1] || 1590 freq + 20 != 1591 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1592 continue; 1593 1594 if (j == 0) { 1595 error = addchan(chans, maxchans, nchans, 1596 ieee[i], freq, 0, flags[j]); 1597 } else { 1598 error = copychan_prev(chans, maxchans, nchans, 1599 flags[j]); 1600 } 1601 if (error != 0) 1602 return (error); 1603 } 1604 } 1605 1606 return (0); 1607 } 1608 1609 int 1610 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1611 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1612 int ht40) 1613 { 1614 uint32_t flags[IEEE80211_MODE_MAX]; 1615 1616 /* XXX no VHT for now */ 1617 getflags_2ghz(bands, flags, ht40); 1618 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1619 1620 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1621 } 1622 1623 int 1624 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1625 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1626 int ht40) 1627 { 1628 uint32_t flags[IEEE80211_MODE_MAX]; 1629 int vht80 = 0; 1630 1631 /* 1632 * For now, assume VHT == VHT80 support as a minimum. 1633 */ 1634 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1635 vht80 = 1; 1636 1637 getflags_5ghz(bands, flags, ht40, vht80); 1638 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1639 1640 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1641 } 1642 1643 /* 1644 * Locate a channel given a frequency+flags. We cache 1645 * the previous lookup to optimize switching between two 1646 * channels--as happens with dynamic turbo. 1647 */ 1648 struct ieee80211_channel * 1649 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1650 { 1651 struct ieee80211_channel *c; 1652 1653 flags &= IEEE80211_CHAN_ALLTURBO; 1654 c = ic->ic_prevchan; 1655 if (c != NULL && c->ic_freq == freq && 1656 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1657 return c; 1658 /* brute force search */ 1659 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1660 } 1661 1662 /* 1663 * Locate a channel given a channel number+flags. We cache 1664 * the previous lookup to optimize switching between two 1665 * channels--as happens with dynamic turbo. 1666 */ 1667 struct ieee80211_channel * 1668 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1669 { 1670 struct ieee80211_channel *c; 1671 int i; 1672 1673 flags &= IEEE80211_CHAN_ALLTURBO; 1674 c = ic->ic_prevchan; 1675 if (c != NULL && c->ic_ieee == ieee && 1676 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1677 return c; 1678 /* brute force search */ 1679 for (i = 0; i < ic->ic_nchans; i++) { 1680 c = &ic->ic_channels[i]; 1681 if (c->ic_ieee == ieee && 1682 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1683 return c; 1684 } 1685 return NULL; 1686 } 1687 1688 /* 1689 * Lookup a channel suitable for the given rx status. 1690 * 1691 * This is used to find a channel for a frame (eg beacon, probe 1692 * response) based purely on the received PHY information. 1693 * 1694 * For now it tries to do it based on R_FREQ / R_IEEE. 1695 * This is enough for 11bg and 11a (and thus 11ng/11na) 1696 * but it will not be enough for GSM, PSB channels and the 1697 * like. It also doesn't know about legacy-turbog and 1698 * legacy-turbo modes, which some offload NICs actually 1699 * support in weird ways. 1700 * 1701 * Takes the ic and rxstatus; returns the channel or NULL 1702 * if not found. 1703 * 1704 * XXX TODO: Add support for that when the need arises. 1705 */ 1706 struct ieee80211_channel * 1707 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1708 const struct ieee80211_rx_stats *rxs) 1709 { 1710 struct ieee80211com *ic = vap->iv_ic; 1711 uint32_t flags; 1712 struct ieee80211_channel *c; 1713 1714 if (rxs == NULL) 1715 return (NULL); 1716 1717 /* 1718 * Strictly speaking we only use freq for now, 1719 * however later on we may wish to just store 1720 * the ieee for verification. 1721 */ 1722 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1723 return (NULL); 1724 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1725 return (NULL); 1726 1727 /* 1728 * If the rx status contains a valid ieee/freq, then 1729 * ensure we populate the correct channel information 1730 * in rxchan before passing it up to the scan infrastructure. 1731 * Offload NICs will pass up beacons from all channels 1732 * during background scans. 1733 */ 1734 1735 /* Determine a band */ 1736 /* XXX should be done by the driver? */ 1737 if (rxs->c_freq < 3000) { 1738 flags = IEEE80211_CHAN_G; 1739 } else { 1740 flags = IEEE80211_CHAN_A; 1741 } 1742 1743 /* Channel lookup */ 1744 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1745 1746 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1747 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1748 __func__, 1749 (int) rxs->c_freq, 1750 (int) rxs->c_ieee, 1751 flags, 1752 c); 1753 1754 return (c); 1755 } 1756 1757 static void 1758 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1759 { 1760 #define ADD(_ic, _s, _o) \ 1761 ifmedia_add(media, \ 1762 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1763 static const u_int mopts[IEEE80211_MODE_MAX] = { 1764 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1765 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1766 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1767 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1768 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1769 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1770 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1771 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1772 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1773 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1774 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1775 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1776 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1777 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1778 }; 1779 u_int mopt; 1780 1781 mopt = mopts[mode]; 1782 if (addsta) 1783 ADD(ic, mword, mopt); /* STA mode has no cap */ 1784 if (caps & IEEE80211_C_IBSS) 1785 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1786 if (caps & IEEE80211_C_HOSTAP) 1787 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1788 if (caps & IEEE80211_C_AHDEMO) 1789 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1790 if (caps & IEEE80211_C_MONITOR) 1791 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1792 if (caps & IEEE80211_C_WDS) 1793 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1794 if (caps & IEEE80211_C_MBSS) 1795 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1796 #undef ADD 1797 } 1798 1799 /* 1800 * Setup the media data structures according to the channel and 1801 * rate tables. 1802 */ 1803 static int 1804 ieee80211_media_setup(struct ieee80211com *ic, 1805 struct ifmedia *media, int caps, int addsta, 1806 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1807 { 1808 int i, j, rate, maxrate, mword, r; 1809 enum ieee80211_phymode mode; 1810 const struct ieee80211_rateset *rs; 1811 struct ieee80211_rateset allrates; 1812 1813 /* 1814 * Fill in media characteristics. 1815 */ 1816 ifmedia_init(media, 0, media_change, media_stat); 1817 maxrate = 0; 1818 /* 1819 * Add media for legacy operating modes. 1820 */ 1821 memset(&allrates, 0, sizeof(allrates)); 1822 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1823 if (isclr(ic->ic_modecaps, mode)) 1824 continue; 1825 addmedia(media, caps, addsta, mode, IFM_AUTO); 1826 if (mode == IEEE80211_MODE_AUTO) 1827 continue; 1828 rs = &ic->ic_sup_rates[mode]; 1829 for (i = 0; i < rs->rs_nrates; i++) { 1830 rate = rs->rs_rates[i]; 1831 mword = ieee80211_rate2media(ic, rate, mode); 1832 if (mword == 0) 1833 continue; 1834 addmedia(media, caps, addsta, mode, mword); 1835 /* 1836 * Add legacy rate to the collection of all rates. 1837 */ 1838 r = rate & IEEE80211_RATE_VAL; 1839 for (j = 0; j < allrates.rs_nrates; j++) 1840 if (allrates.rs_rates[j] == r) 1841 break; 1842 if (j == allrates.rs_nrates) { 1843 /* unique, add to the set */ 1844 allrates.rs_rates[j] = r; 1845 allrates.rs_nrates++; 1846 } 1847 rate = (rate & IEEE80211_RATE_VAL) / 2; 1848 if (rate > maxrate) 1849 maxrate = rate; 1850 } 1851 } 1852 for (i = 0; i < allrates.rs_nrates; i++) { 1853 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1854 IEEE80211_MODE_AUTO); 1855 if (mword == 0) 1856 continue; 1857 /* NB: remove media options from mword */ 1858 addmedia(media, caps, addsta, 1859 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1860 } 1861 /* 1862 * Add HT/11n media. Note that we do not have enough 1863 * bits in the media subtype to express the MCS so we 1864 * use a "placeholder" media subtype and any fixed MCS 1865 * must be specified with a different mechanism. 1866 */ 1867 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1868 if (isclr(ic->ic_modecaps, mode)) 1869 continue; 1870 addmedia(media, caps, addsta, mode, IFM_AUTO); 1871 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1872 } 1873 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1874 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1875 addmedia(media, caps, addsta, 1876 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1877 i = ic->ic_txstream * 8 - 1; 1878 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1879 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1880 rate = ieee80211_htrates[i].ht40_rate_400ns; 1881 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1882 rate = ieee80211_htrates[i].ht40_rate_800ns; 1883 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1884 rate = ieee80211_htrates[i].ht20_rate_400ns; 1885 else 1886 rate = ieee80211_htrates[i].ht20_rate_800ns; 1887 if (rate > maxrate) 1888 maxrate = rate; 1889 } 1890 1891 /* 1892 * Add VHT media. 1893 */ 1894 for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) { 1895 if (isclr(ic->ic_modecaps, mode)) 1896 continue; 1897 addmedia(media, caps, addsta, mode, IFM_AUTO); 1898 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 1899 1900 /* XXX TODO: VHT maxrate */ 1901 } 1902 1903 return maxrate; 1904 } 1905 1906 /* XXX inline or eliminate? */ 1907 const struct ieee80211_rateset * 1908 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1909 { 1910 /* XXX does this work for 11ng basic rates? */ 1911 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1912 } 1913 1914 /* XXX inline or eliminate? */ 1915 const struct ieee80211_htrateset * 1916 ieee80211_get_suphtrates(struct ieee80211com *ic, 1917 const struct ieee80211_channel *c) 1918 { 1919 return &ic->ic_sup_htrates; 1920 } 1921 1922 void 1923 ieee80211_announce(struct ieee80211com *ic) 1924 { 1925 int i, rate, mword; 1926 enum ieee80211_phymode mode; 1927 const struct ieee80211_rateset *rs; 1928 1929 /* NB: skip AUTO since it has no rates */ 1930 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1931 if (isclr(ic->ic_modecaps, mode)) 1932 continue; 1933 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1934 rs = &ic->ic_sup_rates[mode]; 1935 for (i = 0; i < rs->rs_nrates; i++) { 1936 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1937 if (mword == 0) 1938 continue; 1939 rate = ieee80211_media2rate(mword); 1940 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1941 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1942 } 1943 printf("\n"); 1944 } 1945 ieee80211_ht_announce(ic); 1946 ieee80211_vht_announce(ic); 1947 } 1948 1949 void 1950 ieee80211_announce_channels(struct ieee80211com *ic) 1951 { 1952 const struct ieee80211_channel *c; 1953 char type; 1954 int i, cw; 1955 1956 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1957 for (i = 0; i < ic->ic_nchans; i++) { 1958 c = &ic->ic_channels[i]; 1959 if (IEEE80211_IS_CHAN_ST(c)) 1960 type = 'S'; 1961 else if (IEEE80211_IS_CHAN_108A(c)) 1962 type = 'T'; 1963 else if (IEEE80211_IS_CHAN_108G(c)) 1964 type = 'G'; 1965 else if (IEEE80211_IS_CHAN_HT(c)) 1966 type = 'n'; 1967 else if (IEEE80211_IS_CHAN_A(c)) 1968 type = 'a'; 1969 else if (IEEE80211_IS_CHAN_ANYG(c)) 1970 type = 'g'; 1971 else if (IEEE80211_IS_CHAN_B(c)) 1972 type = 'b'; 1973 else 1974 type = 'f'; 1975 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1976 cw = 40; 1977 else if (IEEE80211_IS_CHAN_HALF(c)) 1978 cw = 10; 1979 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1980 cw = 5; 1981 else 1982 cw = 20; 1983 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1984 , c->ic_ieee, c->ic_freq, type 1985 , cw 1986 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1987 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1988 , c->ic_maxregpower 1989 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1990 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1991 ); 1992 } 1993 } 1994 1995 static int 1996 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1997 { 1998 switch (IFM_MODE(ime->ifm_media)) { 1999 case IFM_IEEE80211_11A: 2000 *mode = IEEE80211_MODE_11A; 2001 break; 2002 case IFM_IEEE80211_11B: 2003 *mode = IEEE80211_MODE_11B; 2004 break; 2005 case IFM_IEEE80211_11G: 2006 *mode = IEEE80211_MODE_11G; 2007 break; 2008 case IFM_IEEE80211_FH: 2009 *mode = IEEE80211_MODE_FH; 2010 break; 2011 case IFM_IEEE80211_11NA: 2012 *mode = IEEE80211_MODE_11NA; 2013 break; 2014 case IFM_IEEE80211_11NG: 2015 *mode = IEEE80211_MODE_11NG; 2016 break; 2017 case IFM_AUTO: 2018 *mode = IEEE80211_MODE_AUTO; 2019 break; 2020 default: 2021 return 0; 2022 } 2023 /* 2024 * Turbo mode is an ``option''. 2025 * XXX does not apply to AUTO 2026 */ 2027 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2028 if (*mode == IEEE80211_MODE_11A) { 2029 if (flags & IEEE80211_F_TURBOP) 2030 *mode = IEEE80211_MODE_TURBO_A; 2031 else 2032 *mode = IEEE80211_MODE_STURBO_A; 2033 } else if (*mode == IEEE80211_MODE_11G) 2034 *mode = IEEE80211_MODE_TURBO_G; 2035 else 2036 return 0; 2037 } 2038 /* XXX HT40 +/- */ 2039 return 1; 2040 } 2041 2042 /* 2043 * Handle a media change request on the vap interface. 2044 */ 2045 int 2046 ieee80211_media_change(struct ifnet *ifp) 2047 { 2048 struct ieee80211vap *vap = ifp->if_softc; 2049 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2050 uint16_t newmode; 2051 2052 if (!media2mode(ime, vap->iv_flags, &newmode)) 2053 return EINVAL; 2054 if (vap->iv_des_mode != newmode) { 2055 vap->iv_des_mode = newmode; 2056 /* XXX kick state machine if up+running */ 2057 } 2058 return 0; 2059 } 2060 2061 /* 2062 * Common code to calculate the media status word 2063 * from the operating mode and channel state. 2064 */ 2065 static int 2066 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2067 { 2068 int status; 2069 2070 status = IFM_IEEE80211; 2071 switch (opmode) { 2072 case IEEE80211_M_STA: 2073 break; 2074 case IEEE80211_M_IBSS: 2075 status |= IFM_IEEE80211_ADHOC; 2076 break; 2077 case IEEE80211_M_HOSTAP: 2078 status |= IFM_IEEE80211_HOSTAP; 2079 break; 2080 case IEEE80211_M_MONITOR: 2081 status |= IFM_IEEE80211_MONITOR; 2082 break; 2083 case IEEE80211_M_AHDEMO: 2084 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2085 break; 2086 case IEEE80211_M_WDS: 2087 status |= IFM_IEEE80211_WDS; 2088 break; 2089 case IEEE80211_M_MBSS: 2090 status |= IFM_IEEE80211_MBSS; 2091 break; 2092 } 2093 if (IEEE80211_IS_CHAN_HTA(chan)) { 2094 status |= IFM_IEEE80211_11NA; 2095 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2096 status |= IFM_IEEE80211_11NG; 2097 } else if (IEEE80211_IS_CHAN_A(chan)) { 2098 status |= IFM_IEEE80211_11A; 2099 } else if (IEEE80211_IS_CHAN_B(chan)) { 2100 status |= IFM_IEEE80211_11B; 2101 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2102 status |= IFM_IEEE80211_11G; 2103 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2104 status |= IFM_IEEE80211_FH; 2105 } 2106 /* XXX else complain? */ 2107 2108 if (IEEE80211_IS_CHAN_TURBO(chan)) 2109 status |= IFM_IEEE80211_TURBO; 2110 #if 0 2111 if (IEEE80211_IS_CHAN_HT20(chan)) 2112 status |= IFM_IEEE80211_HT20; 2113 if (IEEE80211_IS_CHAN_HT40(chan)) 2114 status |= IFM_IEEE80211_HT40; 2115 #endif 2116 return status; 2117 } 2118 2119 void 2120 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2121 { 2122 struct ieee80211vap *vap = ifp->if_softc; 2123 struct ieee80211com *ic = vap->iv_ic; 2124 enum ieee80211_phymode mode; 2125 2126 imr->ifm_status = IFM_AVALID; 2127 /* 2128 * NB: use the current channel's mode to lock down a xmit 2129 * rate only when running; otherwise we may have a mismatch 2130 * in which case the rate will not be convertible. 2131 */ 2132 if (vap->iv_state == IEEE80211_S_RUN || 2133 vap->iv_state == IEEE80211_S_SLEEP) { 2134 imr->ifm_status |= IFM_ACTIVE; 2135 mode = ieee80211_chan2mode(ic->ic_curchan); 2136 } else 2137 mode = IEEE80211_MODE_AUTO; 2138 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2139 /* 2140 * Calculate a current rate if possible. 2141 */ 2142 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2143 /* 2144 * A fixed rate is set, report that. 2145 */ 2146 imr->ifm_active |= ieee80211_rate2media(ic, 2147 vap->iv_txparms[mode].ucastrate, mode); 2148 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2149 /* 2150 * In station mode report the current transmit rate. 2151 */ 2152 imr->ifm_active |= ieee80211_rate2media(ic, 2153 vap->iv_bss->ni_txrate, mode); 2154 } else 2155 imr->ifm_active |= IFM_AUTO; 2156 if (imr->ifm_status & IFM_ACTIVE) 2157 imr->ifm_current = imr->ifm_active; 2158 } 2159 2160 /* 2161 * Set the current phy mode and recalculate the active channel 2162 * set based on the available channels for this mode. Also 2163 * select a new default/current channel if the current one is 2164 * inappropriate for this mode. 2165 */ 2166 int 2167 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2168 { 2169 /* 2170 * Adjust basic rates in 11b/11g supported rate set. 2171 * Note that if operating on a hal/quarter rate channel 2172 * this is a noop as those rates sets are different 2173 * and used instead. 2174 */ 2175 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2176 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2177 2178 ic->ic_curmode = mode; 2179 ieee80211_reset_erp(ic); /* reset ERP state */ 2180 2181 return 0; 2182 } 2183 2184 /* 2185 * Return the phy mode for with the specified channel. 2186 */ 2187 enum ieee80211_phymode 2188 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2189 { 2190 2191 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2192 return IEEE80211_MODE_VHT_2GHZ; 2193 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2194 return IEEE80211_MODE_VHT_5GHZ; 2195 else if (IEEE80211_IS_CHAN_HTA(chan)) 2196 return IEEE80211_MODE_11NA; 2197 else if (IEEE80211_IS_CHAN_HTG(chan)) 2198 return IEEE80211_MODE_11NG; 2199 else if (IEEE80211_IS_CHAN_108G(chan)) 2200 return IEEE80211_MODE_TURBO_G; 2201 else if (IEEE80211_IS_CHAN_ST(chan)) 2202 return IEEE80211_MODE_STURBO_A; 2203 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2204 return IEEE80211_MODE_TURBO_A; 2205 else if (IEEE80211_IS_CHAN_HALF(chan)) 2206 return IEEE80211_MODE_HALF; 2207 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2208 return IEEE80211_MODE_QUARTER; 2209 else if (IEEE80211_IS_CHAN_A(chan)) 2210 return IEEE80211_MODE_11A; 2211 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2212 return IEEE80211_MODE_11G; 2213 else if (IEEE80211_IS_CHAN_B(chan)) 2214 return IEEE80211_MODE_11B; 2215 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2216 return IEEE80211_MODE_FH; 2217 2218 /* NB: should not get here */ 2219 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2220 __func__, chan->ic_freq, chan->ic_flags); 2221 return IEEE80211_MODE_11B; 2222 } 2223 2224 struct ratemedia { 2225 u_int match; /* rate + mode */ 2226 u_int media; /* if_media rate */ 2227 }; 2228 2229 static int 2230 findmedia(const struct ratemedia rates[], int n, u_int match) 2231 { 2232 int i; 2233 2234 for (i = 0; i < n; i++) 2235 if (rates[i].match == match) 2236 return rates[i].media; 2237 return IFM_AUTO; 2238 } 2239 2240 /* 2241 * Convert IEEE80211 rate value to ifmedia subtype. 2242 * Rate is either a legacy rate in units of 0.5Mbps 2243 * or an MCS index. 2244 */ 2245 int 2246 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2247 { 2248 static const struct ratemedia rates[] = { 2249 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2250 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2251 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2252 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2253 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2254 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2255 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2256 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2257 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2258 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2259 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2260 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2261 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2262 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2263 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2264 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2265 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2266 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2267 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2268 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2269 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2270 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2271 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2272 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2273 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2274 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2275 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2276 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2277 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2278 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2279 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2280 }; 2281 static const struct ratemedia htrates[] = { 2282 { 0, IFM_IEEE80211_MCS }, 2283 { 1, IFM_IEEE80211_MCS }, 2284 { 2, IFM_IEEE80211_MCS }, 2285 { 3, IFM_IEEE80211_MCS }, 2286 { 4, IFM_IEEE80211_MCS }, 2287 { 5, IFM_IEEE80211_MCS }, 2288 { 6, IFM_IEEE80211_MCS }, 2289 { 7, IFM_IEEE80211_MCS }, 2290 { 8, IFM_IEEE80211_MCS }, 2291 { 9, IFM_IEEE80211_MCS }, 2292 { 10, IFM_IEEE80211_MCS }, 2293 { 11, IFM_IEEE80211_MCS }, 2294 { 12, IFM_IEEE80211_MCS }, 2295 { 13, IFM_IEEE80211_MCS }, 2296 { 14, IFM_IEEE80211_MCS }, 2297 { 15, IFM_IEEE80211_MCS }, 2298 { 16, IFM_IEEE80211_MCS }, 2299 { 17, IFM_IEEE80211_MCS }, 2300 { 18, IFM_IEEE80211_MCS }, 2301 { 19, IFM_IEEE80211_MCS }, 2302 { 20, IFM_IEEE80211_MCS }, 2303 { 21, IFM_IEEE80211_MCS }, 2304 { 22, IFM_IEEE80211_MCS }, 2305 { 23, IFM_IEEE80211_MCS }, 2306 { 24, IFM_IEEE80211_MCS }, 2307 { 25, IFM_IEEE80211_MCS }, 2308 { 26, IFM_IEEE80211_MCS }, 2309 { 27, IFM_IEEE80211_MCS }, 2310 { 28, IFM_IEEE80211_MCS }, 2311 { 29, IFM_IEEE80211_MCS }, 2312 { 30, IFM_IEEE80211_MCS }, 2313 { 31, IFM_IEEE80211_MCS }, 2314 { 32, IFM_IEEE80211_MCS }, 2315 { 33, IFM_IEEE80211_MCS }, 2316 { 34, IFM_IEEE80211_MCS }, 2317 { 35, IFM_IEEE80211_MCS }, 2318 { 36, IFM_IEEE80211_MCS }, 2319 { 37, IFM_IEEE80211_MCS }, 2320 { 38, IFM_IEEE80211_MCS }, 2321 { 39, IFM_IEEE80211_MCS }, 2322 { 40, IFM_IEEE80211_MCS }, 2323 { 41, IFM_IEEE80211_MCS }, 2324 { 42, IFM_IEEE80211_MCS }, 2325 { 43, IFM_IEEE80211_MCS }, 2326 { 44, IFM_IEEE80211_MCS }, 2327 { 45, IFM_IEEE80211_MCS }, 2328 { 46, IFM_IEEE80211_MCS }, 2329 { 47, IFM_IEEE80211_MCS }, 2330 { 48, IFM_IEEE80211_MCS }, 2331 { 49, IFM_IEEE80211_MCS }, 2332 { 50, IFM_IEEE80211_MCS }, 2333 { 51, IFM_IEEE80211_MCS }, 2334 { 52, IFM_IEEE80211_MCS }, 2335 { 53, IFM_IEEE80211_MCS }, 2336 { 54, IFM_IEEE80211_MCS }, 2337 { 55, IFM_IEEE80211_MCS }, 2338 { 56, IFM_IEEE80211_MCS }, 2339 { 57, IFM_IEEE80211_MCS }, 2340 { 58, IFM_IEEE80211_MCS }, 2341 { 59, IFM_IEEE80211_MCS }, 2342 { 60, IFM_IEEE80211_MCS }, 2343 { 61, IFM_IEEE80211_MCS }, 2344 { 62, IFM_IEEE80211_MCS }, 2345 { 63, IFM_IEEE80211_MCS }, 2346 { 64, IFM_IEEE80211_MCS }, 2347 { 65, IFM_IEEE80211_MCS }, 2348 { 66, IFM_IEEE80211_MCS }, 2349 { 67, IFM_IEEE80211_MCS }, 2350 { 68, IFM_IEEE80211_MCS }, 2351 { 69, IFM_IEEE80211_MCS }, 2352 { 70, IFM_IEEE80211_MCS }, 2353 { 71, IFM_IEEE80211_MCS }, 2354 { 72, IFM_IEEE80211_MCS }, 2355 { 73, IFM_IEEE80211_MCS }, 2356 { 74, IFM_IEEE80211_MCS }, 2357 { 75, IFM_IEEE80211_MCS }, 2358 { 76, IFM_IEEE80211_MCS }, 2359 }; 2360 int m; 2361 2362 /* 2363 * Check 11n rates first for match as an MCS. 2364 */ 2365 if (mode == IEEE80211_MODE_11NA) { 2366 if (rate & IEEE80211_RATE_MCS) { 2367 rate &= ~IEEE80211_RATE_MCS; 2368 m = findmedia(htrates, nitems(htrates), rate); 2369 if (m != IFM_AUTO) 2370 return m | IFM_IEEE80211_11NA; 2371 } 2372 } else if (mode == IEEE80211_MODE_11NG) { 2373 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2374 if (rate & IEEE80211_RATE_MCS) { 2375 rate &= ~IEEE80211_RATE_MCS; 2376 m = findmedia(htrates, nitems(htrates), rate); 2377 if (m != IFM_AUTO) 2378 return m | IFM_IEEE80211_11NG; 2379 } 2380 } 2381 rate &= IEEE80211_RATE_VAL; 2382 switch (mode) { 2383 case IEEE80211_MODE_11A: 2384 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2385 case IEEE80211_MODE_QUARTER: 2386 case IEEE80211_MODE_11NA: 2387 case IEEE80211_MODE_TURBO_A: 2388 case IEEE80211_MODE_STURBO_A: 2389 return findmedia(rates, nitems(rates), 2390 rate | IFM_IEEE80211_11A); 2391 case IEEE80211_MODE_11B: 2392 return findmedia(rates, nitems(rates), 2393 rate | IFM_IEEE80211_11B); 2394 case IEEE80211_MODE_FH: 2395 return findmedia(rates, nitems(rates), 2396 rate | IFM_IEEE80211_FH); 2397 case IEEE80211_MODE_AUTO: 2398 /* NB: ic may be NULL for some drivers */ 2399 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2400 return findmedia(rates, nitems(rates), 2401 rate | IFM_IEEE80211_FH); 2402 /* NB: hack, 11g matches both 11b+11a rates */ 2403 /* fall thru... */ 2404 case IEEE80211_MODE_11G: 2405 case IEEE80211_MODE_11NG: 2406 case IEEE80211_MODE_TURBO_G: 2407 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2408 case IEEE80211_MODE_VHT_2GHZ: 2409 case IEEE80211_MODE_VHT_5GHZ: 2410 /* XXX TODO: need to figure out mapping for VHT rates */ 2411 return IFM_AUTO; 2412 } 2413 return IFM_AUTO; 2414 } 2415 2416 int 2417 ieee80211_media2rate(int mword) 2418 { 2419 static const int ieeerates[] = { 2420 -1, /* IFM_AUTO */ 2421 0, /* IFM_MANUAL */ 2422 0, /* IFM_NONE */ 2423 2, /* IFM_IEEE80211_FH1 */ 2424 4, /* IFM_IEEE80211_FH2 */ 2425 2, /* IFM_IEEE80211_DS1 */ 2426 4, /* IFM_IEEE80211_DS2 */ 2427 11, /* IFM_IEEE80211_DS5 */ 2428 22, /* IFM_IEEE80211_DS11 */ 2429 44, /* IFM_IEEE80211_DS22 */ 2430 12, /* IFM_IEEE80211_OFDM6 */ 2431 18, /* IFM_IEEE80211_OFDM9 */ 2432 24, /* IFM_IEEE80211_OFDM12 */ 2433 36, /* IFM_IEEE80211_OFDM18 */ 2434 48, /* IFM_IEEE80211_OFDM24 */ 2435 72, /* IFM_IEEE80211_OFDM36 */ 2436 96, /* IFM_IEEE80211_OFDM48 */ 2437 108, /* IFM_IEEE80211_OFDM54 */ 2438 144, /* IFM_IEEE80211_OFDM72 */ 2439 0, /* IFM_IEEE80211_DS354k */ 2440 0, /* IFM_IEEE80211_DS512k */ 2441 6, /* IFM_IEEE80211_OFDM3 */ 2442 9, /* IFM_IEEE80211_OFDM4 */ 2443 54, /* IFM_IEEE80211_OFDM27 */ 2444 -1, /* IFM_IEEE80211_MCS */ 2445 -1, /* IFM_IEEE80211_VHT */ 2446 }; 2447 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2448 ieeerates[IFM_SUBTYPE(mword)] : 0; 2449 } 2450 2451 /* 2452 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2453 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2454 */ 2455 #define mix(a, b, c) \ 2456 do { \ 2457 a -= b; a -= c; a ^= (c >> 13); \ 2458 b -= c; b -= a; b ^= (a << 8); \ 2459 c -= a; c -= b; c ^= (b >> 13); \ 2460 a -= b; a -= c; a ^= (c >> 12); \ 2461 b -= c; b -= a; b ^= (a << 16); \ 2462 c -= a; c -= b; c ^= (b >> 5); \ 2463 a -= b; a -= c; a ^= (c >> 3); \ 2464 b -= c; b -= a; b ^= (a << 10); \ 2465 c -= a; c -= b; c ^= (b >> 15); \ 2466 } while (/*CONSTCOND*/0) 2467 2468 uint32_t 2469 ieee80211_mac_hash(const struct ieee80211com *ic, 2470 const uint8_t addr[IEEE80211_ADDR_LEN]) 2471 { 2472 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2473 2474 b += addr[5] << 8; 2475 b += addr[4]; 2476 a += addr[3] << 24; 2477 a += addr[2] << 16; 2478 a += addr[1] << 8; 2479 a += addr[0]; 2480 2481 mix(a, b, c); 2482 2483 return c; 2484 } 2485 #undef mix 2486 2487 char 2488 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2489 { 2490 if (IEEE80211_IS_CHAN_ST(c)) 2491 return 'S'; 2492 if (IEEE80211_IS_CHAN_108A(c)) 2493 return 'T'; 2494 if (IEEE80211_IS_CHAN_108G(c)) 2495 return 'G'; 2496 if (IEEE80211_IS_CHAN_VHT(c)) 2497 return 'v'; 2498 if (IEEE80211_IS_CHAN_HT(c)) 2499 return 'n'; 2500 if (IEEE80211_IS_CHAN_A(c)) 2501 return 'a'; 2502 if (IEEE80211_IS_CHAN_ANYG(c)) 2503 return 'g'; 2504 if (IEEE80211_IS_CHAN_B(c)) 2505 return 'b'; 2506 return 'f'; 2507 } 2508