1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/socket.h> 42 #include <sys/sbuf.h> 43 44 #include <machine/stdarg.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 #include <net/ethernet.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #include <net80211/ieee80211_ratectl.h> 59 #include <net80211/ieee80211_vht.h> 60 61 #include <net/bpf.h> 62 63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 64 [IEEE80211_MODE_AUTO] = "auto", 65 [IEEE80211_MODE_11A] = "11a", 66 [IEEE80211_MODE_11B] = "11b", 67 [IEEE80211_MODE_11G] = "11g", 68 [IEEE80211_MODE_FH] = "FH", 69 [IEEE80211_MODE_TURBO_A] = "turboA", 70 [IEEE80211_MODE_TURBO_G] = "turboG", 71 [IEEE80211_MODE_STURBO_A] = "sturboA", 72 [IEEE80211_MODE_HALF] = "half", 73 [IEEE80211_MODE_QUARTER] = "quarter", 74 [IEEE80211_MODE_11NA] = "11na", 75 [IEEE80211_MODE_11NG] = "11ng", 76 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 77 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 78 }; 79 /* map ieee80211_opmode to the corresponding capability bit */ 80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 81 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 82 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 83 [IEEE80211_M_STA] = IEEE80211_C_STA, 84 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 85 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 86 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 87 #ifdef IEEE80211_SUPPORT_MESH 88 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 89 #endif 90 }; 91 92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 93 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 94 95 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 98 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 99 static int ieee80211_media_setup(struct ieee80211com *ic, 100 struct ifmedia *media, int caps, int addsta, 101 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 102 static int media_status(enum ieee80211_opmode, 103 const struct ieee80211_channel *); 104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 105 106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 107 108 /* 109 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 110 */ 111 #define B(r) ((r) | IEEE80211_RATE_BASIC) 112 static const struct ieee80211_rateset ieee80211_rateset_11a = 113 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 114 static const struct ieee80211_rateset ieee80211_rateset_half = 115 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 116 static const struct ieee80211_rateset ieee80211_rateset_quarter = 117 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 118 static const struct ieee80211_rateset ieee80211_rateset_11b = 119 { 4, { B(2), B(4), B(11), B(22) } }; 120 /* NB: OFDM rates are handled specially based on mode */ 121 static const struct ieee80211_rateset ieee80211_rateset_11g = 122 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 123 #undef B 124 125 static int set_vht_extchan(struct ieee80211_channel *c); 126 127 /* 128 * Fill in 802.11 available channel set, mark 129 * all available channels as active, and pick 130 * a default channel if not already specified. 131 */ 132 void 133 ieee80211_chan_init(struct ieee80211com *ic) 134 { 135 #define DEFAULTRATES(m, def) do { \ 136 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 137 ic->ic_sup_rates[m] = def; \ 138 } while (0) 139 struct ieee80211_channel *c; 140 int i; 141 142 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 143 ("invalid number of channels specified: %u", ic->ic_nchans)); 144 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 145 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 146 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 147 for (i = 0; i < ic->ic_nchans; i++) { 148 c = &ic->ic_channels[i]; 149 KASSERT(c->ic_flags != 0, ("channel with no flags")); 150 /* 151 * Help drivers that work only with frequencies by filling 152 * in IEEE channel #'s if not already calculated. Note this 153 * mimics similar work done in ieee80211_setregdomain when 154 * changing regulatory state. 155 */ 156 if (c->ic_ieee == 0) 157 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 158 159 /* 160 * Setup the HT40/VHT40 upper/lower bits. 161 * The VHT80 math is done elsewhere. 162 */ 163 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 164 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 165 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 166 c->ic_flags); 167 168 /* Update VHT math */ 169 /* 170 * XXX VHT again, note that this assumes VHT80 channels 171 * are legit already 172 */ 173 set_vht_extchan(c); 174 175 /* default max tx power to max regulatory */ 176 if (c->ic_maxpower == 0) 177 c->ic_maxpower = 2*c->ic_maxregpower; 178 setbit(ic->ic_chan_avail, c->ic_ieee); 179 /* 180 * Identify mode capabilities. 181 */ 182 if (IEEE80211_IS_CHAN_A(c)) 183 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 184 if (IEEE80211_IS_CHAN_B(c)) 185 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 186 if (IEEE80211_IS_CHAN_ANYG(c)) 187 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 188 if (IEEE80211_IS_CHAN_FHSS(c)) 189 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 190 if (IEEE80211_IS_CHAN_108A(c)) 191 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 192 if (IEEE80211_IS_CHAN_108G(c)) 193 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 194 if (IEEE80211_IS_CHAN_ST(c)) 195 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 196 if (IEEE80211_IS_CHAN_HALF(c)) 197 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 198 if (IEEE80211_IS_CHAN_QUARTER(c)) 199 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 200 if (IEEE80211_IS_CHAN_HTA(c)) 201 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 202 if (IEEE80211_IS_CHAN_HTG(c)) 203 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 204 if (IEEE80211_IS_CHAN_VHTA(c)) 205 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 206 if (IEEE80211_IS_CHAN_VHTG(c)) 207 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 208 } 209 /* initialize candidate channels to all available */ 210 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 211 sizeof(ic->ic_chan_avail)); 212 213 /* sort channel table to allow lookup optimizations */ 214 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 215 216 /* invalidate any previous state */ 217 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 218 ic->ic_prevchan = NULL; 219 ic->ic_csa_newchan = NULL; 220 /* arbitrarily pick the first channel */ 221 ic->ic_curchan = &ic->ic_channels[0]; 222 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 223 224 /* fillin well-known rate sets if driver has not specified */ 225 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 226 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 227 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 230 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 231 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 232 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 233 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 234 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 236 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 237 238 /* 239 * Setup required information to fill the mcsset field, if driver did 240 * not. Assume a 2T2R setup for historic reasons. 241 */ 242 if (ic->ic_rxstream == 0) 243 ic->ic_rxstream = 2; 244 if (ic->ic_txstream == 0) 245 ic->ic_txstream = 2; 246 247 ieee80211_init_suphtrates(ic); 248 249 /* 250 * Set auto mode to reset active channel state and any desired channel. 251 */ 252 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 253 #undef DEFAULTRATES 254 } 255 256 static void 257 null_update_mcast(struct ieee80211com *ic) 258 { 259 260 ic_printf(ic, "need multicast update callback\n"); 261 } 262 263 static void 264 null_update_promisc(struct ieee80211com *ic) 265 { 266 267 ic_printf(ic, "need promiscuous mode update callback\n"); 268 } 269 270 static void 271 null_update_chw(struct ieee80211com *ic) 272 { 273 274 ic_printf(ic, "%s: need callback\n", __func__); 275 } 276 277 int 278 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 279 { 280 va_list ap; 281 int retval; 282 283 retval = printf("%s: ", ic->ic_name); 284 va_start(ap, fmt); 285 retval += vprintf(fmt, ap); 286 va_end(ap); 287 return (retval); 288 } 289 290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 291 static struct mtx ic_list_mtx; 292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 293 294 static int 295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 296 { 297 struct ieee80211com *ic; 298 struct sbuf sb; 299 char *sp; 300 int error; 301 302 error = sysctl_wire_old_buffer(req, 0); 303 if (error) 304 return (error); 305 sbuf_new_for_sysctl(&sb, NULL, 8, req); 306 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 307 sp = ""; 308 mtx_lock(&ic_list_mtx); 309 LIST_FOREACH(ic, &ic_head, ic_next) { 310 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 311 sp = " "; 312 } 313 mtx_unlock(&ic_list_mtx); 314 error = sbuf_finish(&sb); 315 sbuf_delete(&sb); 316 return (error); 317 } 318 319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 321 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 322 323 /* 324 * Attach/setup the common net80211 state. Called by 325 * the driver on attach to prior to creating any vap's. 326 */ 327 void 328 ieee80211_ifattach(struct ieee80211com *ic) 329 { 330 331 IEEE80211_LOCK_INIT(ic, ic->ic_name); 332 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 333 TAILQ_INIT(&ic->ic_vaps); 334 335 /* Create a taskqueue for all state changes */ 336 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 337 taskqueue_thread_enqueue, &ic->ic_tq); 338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 339 ic->ic_name); 340 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 341 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 342 /* 343 * Fill in 802.11 available channel set, mark all 344 * available channels as active, and pick a default 345 * channel if not already specified. 346 */ 347 ieee80211_chan_init(ic); 348 349 ic->ic_update_mcast = null_update_mcast; 350 ic->ic_update_promisc = null_update_promisc; 351 ic->ic_update_chw = null_update_chw; 352 353 ic->ic_hash_key = arc4random(); 354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 355 ic->ic_lintval = ic->ic_bintval; 356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 357 358 ieee80211_crypto_attach(ic); 359 ieee80211_node_attach(ic); 360 ieee80211_power_attach(ic); 361 ieee80211_proto_attach(ic); 362 #ifdef IEEE80211_SUPPORT_SUPERG 363 ieee80211_superg_attach(ic); 364 #endif 365 ieee80211_ht_attach(ic); 366 ieee80211_vht_attach(ic); 367 ieee80211_scan_attach(ic); 368 ieee80211_regdomain_attach(ic); 369 ieee80211_dfs_attach(ic); 370 371 ieee80211_sysctl_attach(ic); 372 373 mtx_lock(&ic_list_mtx); 374 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 375 mtx_unlock(&ic_list_mtx); 376 } 377 378 /* 379 * Detach net80211 state on device detach. Tear down 380 * all vap's and reclaim all common state prior to the 381 * device state going away. Note we may call back into 382 * driver; it must be prepared for this. 383 */ 384 void 385 ieee80211_ifdetach(struct ieee80211com *ic) 386 { 387 struct ieee80211vap *vap; 388 389 /* 390 * We use this as an indicator that ifattach never had a chance to be 391 * called, e.g. early driver attach failed and ifdetach was called 392 * during subsequent detach. Never fear, for we have nothing to do 393 * here. 394 */ 395 if (ic->ic_tq == NULL) 396 return; 397 398 mtx_lock(&ic_list_mtx); 399 LIST_REMOVE(ic, ic_next); 400 mtx_unlock(&ic_list_mtx); 401 402 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 403 404 /* 405 * The VAP is responsible for setting and clearing 406 * the VIMAGE context. 407 */ 408 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 409 ieee80211_com_vdetach(vap); 410 ieee80211_vap_destroy(vap); 411 } 412 ieee80211_waitfor_parent(ic); 413 414 ieee80211_sysctl_detach(ic); 415 ieee80211_dfs_detach(ic); 416 ieee80211_regdomain_detach(ic); 417 ieee80211_scan_detach(ic); 418 #ifdef IEEE80211_SUPPORT_SUPERG 419 ieee80211_superg_detach(ic); 420 #endif 421 ieee80211_vht_detach(ic); 422 ieee80211_ht_detach(ic); 423 /* NB: must be called before ieee80211_node_detach */ 424 ieee80211_proto_detach(ic); 425 ieee80211_crypto_detach(ic); 426 ieee80211_power_detach(ic); 427 ieee80211_node_detach(ic); 428 429 counter_u64_free(ic->ic_ierrors); 430 counter_u64_free(ic->ic_oerrors); 431 432 taskqueue_free(ic->ic_tq); 433 IEEE80211_TX_LOCK_DESTROY(ic); 434 IEEE80211_LOCK_DESTROY(ic); 435 } 436 437 struct ieee80211com * 438 ieee80211_find_com(const char *name) 439 { 440 struct ieee80211com *ic; 441 442 mtx_lock(&ic_list_mtx); 443 LIST_FOREACH(ic, &ic_head, ic_next) 444 if (strcmp(ic->ic_name, name) == 0) 445 break; 446 mtx_unlock(&ic_list_mtx); 447 448 return (ic); 449 } 450 451 void 452 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 453 { 454 struct ieee80211com *ic; 455 456 mtx_lock(&ic_list_mtx); 457 LIST_FOREACH(ic, &ic_head, ic_next) 458 (*f)(arg, ic); 459 mtx_unlock(&ic_list_mtx); 460 } 461 462 /* 463 * Default reset method for use with the ioctl support. This 464 * method is invoked after any state change in the 802.11 465 * layer that should be propagated to the hardware but not 466 * require re-initialization of the 802.11 state machine (e.g 467 * rescanning for an ap). We always return ENETRESET which 468 * should cause the driver to re-initialize the device. Drivers 469 * can override this method to implement more optimized support. 470 */ 471 static int 472 default_reset(struct ieee80211vap *vap, u_long cmd) 473 { 474 return ENETRESET; 475 } 476 477 /* 478 * Default for updating the VAP default TX key index. 479 * 480 * Drivers that support TX offload as well as hardware encryption offload 481 * may need to be informed of key index changes separate from the key 482 * update. 483 */ 484 static void 485 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 486 { 487 488 /* XXX assert validity */ 489 /* XXX assert we're in a key update block */ 490 vap->iv_def_txkey = kid; 491 } 492 493 /* 494 * Add underlying device errors to vap errors. 495 */ 496 static uint64_t 497 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 498 { 499 struct ieee80211vap *vap = ifp->if_softc; 500 struct ieee80211com *ic = vap->iv_ic; 501 uint64_t rv; 502 503 rv = if_get_counter_default(ifp, cnt); 504 switch (cnt) { 505 case IFCOUNTER_OERRORS: 506 rv += counter_u64_fetch(ic->ic_oerrors); 507 break; 508 case IFCOUNTER_IERRORS: 509 rv += counter_u64_fetch(ic->ic_ierrors); 510 break; 511 default: 512 break; 513 } 514 515 return (rv); 516 } 517 518 /* 519 * Prepare a vap for use. Drivers use this call to 520 * setup net80211 state in new vap's prior attaching 521 * them with ieee80211_vap_attach (below). 522 */ 523 int 524 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 525 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 526 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 527 { 528 struct ifnet *ifp; 529 530 ifp = if_alloc(IFT_ETHER); 531 if (ifp == NULL) { 532 ic_printf(ic, "%s: unable to allocate ifnet\n", 533 __func__); 534 return ENOMEM; 535 } 536 if_initname(ifp, name, unit); 537 ifp->if_softc = vap; /* back pointer */ 538 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 539 ifp->if_transmit = ieee80211_vap_transmit; 540 ifp->if_qflush = ieee80211_vap_qflush; 541 ifp->if_ioctl = ieee80211_ioctl; 542 ifp->if_init = ieee80211_init; 543 ifp->if_get_counter = ieee80211_get_counter; 544 545 vap->iv_ifp = ifp; 546 vap->iv_ic = ic; 547 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 548 vap->iv_flags_ext = ic->ic_flags_ext; 549 vap->iv_flags_ven = ic->ic_flags_ven; 550 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 551 552 /* 11n capabilities - XXX methodize */ 553 vap->iv_htcaps = ic->ic_htcaps; 554 vap->iv_htextcaps = ic->ic_htextcaps; 555 556 /* 11ac capabilities - XXX methodize */ 557 vap->iv_vhtcaps = ic->ic_vhtcaps; 558 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 559 560 vap->iv_opmode = opmode; 561 vap->iv_caps |= ieee80211_opcap[opmode]; 562 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 563 switch (opmode) { 564 case IEEE80211_M_WDS: 565 /* 566 * WDS links must specify the bssid of the far end. 567 * For legacy operation this is a static relationship. 568 * For non-legacy operation the station must associate 569 * and be authorized to pass traffic. Plumbing the 570 * vap to the proper node happens when the vap 571 * transitions to RUN state. 572 */ 573 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 574 vap->iv_flags |= IEEE80211_F_DESBSSID; 575 if (flags & IEEE80211_CLONE_WDSLEGACY) 576 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 577 break; 578 #ifdef IEEE80211_SUPPORT_TDMA 579 case IEEE80211_M_AHDEMO: 580 if (flags & IEEE80211_CLONE_TDMA) { 581 /* NB: checked before clone operation allowed */ 582 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 583 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 584 /* 585 * Propagate TDMA capability to mark vap; this 586 * cannot be removed and is used to distinguish 587 * regular ahdemo operation from ahdemo+tdma. 588 */ 589 vap->iv_caps |= IEEE80211_C_TDMA; 590 } 591 break; 592 #endif 593 default: 594 break; 595 } 596 /* auto-enable s/w beacon miss support */ 597 if (flags & IEEE80211_CLONE_NOBEACONS) 598 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 599 /* auto-generated or user supplied MAC address */ 600 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 601 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 602 /* 603 * Enable various functionality by default if we're 604 * capable; the driver can override us if it knows better. 605 */ 606 if (vap->iv_caps & IEEE80211_C_WME) 607 vap->iv_flags |= IEEE80211_F_WME; 608 if (vap->iv_caps & IEEE80211_C_BURST) 609 vap->iv_flags |= IEEE80211_F_BURST; 610 /* NB: bg scanning only makes sense for station mode right now */ 611 if (vap->iv_opmode == IEEE80211_M_STA && 612 (vap->iv_caps & IEEE80211_C_BGSCAN)) 613 vap->iv_flags |= IEEE80211_F_BGSCAN; 614 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 615 /* NB: DFS support only makes sense for ap mode right now */ 616 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 617 (vap->iv_caps & IEEE80211_C_DFS)) 618 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 619 /* NB: only flip on U-APSD for hostap/sta for now */ 620 if ((vap->iv_opmode == IEEE80211_M_STA) 621 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { 622 if (vap->iv_caps & IEEE80211_C_UAPSD) 623 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; 624 } 625 626 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 627 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 628 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 629 /* 630 * Install a default reset method for the ioctl support; 631 * the driver can override this. 632 */ 633 vap->iv_reset = default_reset; 634 635 /* 636 * Install a default crypto key update method, the driver 637 * can override this. 638 */ 639 vap->iv_update_deftxkey = default_update_deftxkey; 640 641 ieee80211_sysctl_vattach(vap); 642 ieee80211_crypto_vattach(vap); 643 ieee80211_node_vattach(vap); 644 ieee80211_power_vattach(vap); 645 ieee80211_proto_vattach(vap); 646 #ifdef IEEE80211_SUPPORT_SUPERG 647 ieee80211_superg_vattach(vap); 648 #endif 649 ieee80211_ht_vattach(vap); 650 ieee80211_vht_vattach(vap); 651 ieee80211_scan_vattach(vap); 652 ieee80211_regdomain_vattach(vap); 653 ieee80211_radiotap_vattach(vap); 654 ieee80211_vap_reset_erp(vap); 655 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 656 657 return 0; 658 } 659 660 /* 661 * Activate a vap. State should have been prepared with a 662 * call to ieee80211_vap_setup and by the driver. On return 663 * from this call the vap is ready for use. 664 */ 665 int 666 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 667 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 668 { 669 struct ifnet *ifp = vap->iv_ifp; 670 struct ieee80211com *ic = vap->iv_ic; 671 struct ifmediareq imr; 672 int maxrate; 673 674 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 675 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 676 __func__, ieee80211_opmode_name[vap->iv_opmode], 677 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 678 679 /* 680 * Do late attach work that cannot happen until after 681 * the driver has had a chance to override defaults. 682 */ 683 ieee80211_node_latevattach(vap); 684 ieee80211_power_latevattach(vap); 685 686 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 687 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 688 ieee80211_media_status(ifp, &imr); 689 /* NB: strip explicit mode; we're actually in autoselect */ 690 ifmedia_set(&vap->iv_media, 691 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 692 if (maxrate) 693 ifp->if_baudrate = IF_Mbps(maxrate); 694 695 ether_ifattach(ifp, macaddr); 696 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 697 /* hook output method setup by ether_ifattach */ 698 vap->iv_output = ifp->if_output; 699 ifp->if_output = ieee80211_output; 700 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 701 702 IEEE80211_LOCK(ic); 703 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 704 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 705 #ifdef IEEE80211_SUPPORT_SUPERG 706 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 707 #endif 708 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 709 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 710 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 711 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 712 713 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 714 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 715 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 716 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 717 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 718 IEEE80211_UNLOCK(ic); 719 720 return 1; 721 } 722 723 /* 724 * Tear down vap state and reclaim the ifnet. 725 * The driver is assumed to have prepared for 726 * this; e.g. by turning off interrupts for the 727 * underlying device. 728 */ 729 void 730 ieee80211_vap_detach(struct ieee80211vap *vap) 731 { 732 struct ieee80211com *ic = vap->iv_ic; 733 struct ifnet *ifp = vap->iv_ifp; 734 735 CURVNET_SET(ifp->if_vnet); 736 737 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 738 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 739 740 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 741 ether_ifdetach(ifp); 742 743 ieee80211_stop(vap); 744 745 /* 746 * Flush any deferred vap tasks. 747 */ 748 ieee80211_draintask(ic, &vap->iv_nstate_task); 749 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 750 ieee80211_draintask(ic, &vap->iv_wme_task); 751 ieee80211_draintask(ic, &ic->ic_parent_task); 752 753 /* XXX band-aid until ifnet handles this for us */ 754 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 755 756 IEEE80211_LOCK(ic); 757 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 758 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 759 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 760 #ifdef IEEE80211_SUPPORT_SUPERG 761 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 762 #endif 763 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 764 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 765 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 766 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 767 768 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 769 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 770 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 771 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 772 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 773 774 /* NB: this handles the bpfdetach done below */ 775 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 776 if (vap->iv_ifflags & IFF_PROMISC) 777 ieee80211_promisc(vap, false); 778 if (vap->iv_ifflags & IFF_ALLMULTI) 779 ieee80211_allmulti(vap, false); 780 IEEE80211_UNLOCK(ic); 781 782 ifmedia_removeall(&vap->iv_media); 783 784 ieee80211_radiotap_vdetach(vap); 785 ieee80211_regdomain_vdetach(vap); 786 ieee80211_scan_vdetach(vap); 787 #ifdef IEEE80211_SUPPORT_SUPERG 788 ieee80211_superg_vdetach(vap); 789 #endif 790 ieee80211_vht_vdetach(vap); 791 ieee80211_ht_vdetach(vap); 792 /* NB: must be before ieee80211_node_vdetach */ 793 ieee80211_proto_vdetach(vap); 794 ieee80211_crypto_vdetach(vap); 795 ieee80211_power_vdetach(vap); 796 ieee80211_node_vdetach(vap); 797 ieee80211_sysctl_vdetach(vap); 798 799 if_free(ifp); 800 801 CURVNET_RESTORE(); 802 } 803 804 /* 805 * Count number of vaps in promisc, and issue promisc on 806 * parent respectively. 807 */ 808 void 809 ieee80211_promisc(struct ieee80211vap *vap, bool on) 810 { 811 struct ieee80211com *ic = vap->iv_ic; 812 813 IEEE80211_LOCK_ASSERT(ic); 814 815 if (on) { 816 if (++ic->ic_promisc == 1) 817 ieee80211_runtask(ic, &ic->ic_promisc_task); 818 } else { 819 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 820 __func__, ic)); 821 if (--ic->ic_promisc == 0) 822 ieee80211_runtask(ic, &ic->ic_promisc_task); 823 } 824 } 825 826 /* 827 * Count number of vaps in allmulti, and issue allmulti on 828 * parent respectively. 829 */ 830 void 831 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 832 { 833 struct ieee80211com *ic = vap->iv_ic; 834 835 IEEE80211_LOCK_ASSERT(ic); 836 837 if (on) { 838 if (++ic->ic_allmulti == 1) 839 ieee80211_runtask(ic, &ic->ic_mcast_task); 840 } else { 841 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 842 __func__, ic)); 843 if (--ic->ic_allmulti == 0) 844 ieee80211_runtask(ic, &ic->ic_mcast_task); 845 } 846 } 847 848 /* 849 * Synchronize flag bit state in the com structure 850 * according to the state of all vap's. This is used, 851 * for example, to handle state changes via ioctls. 852 */ 853 static void 854 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 855 { 856 struct ieee80211vap *vap; 857 int bit; 858 859 IEEE80211_LOCK_ASSERT(ic); 860 861 bit = 0; 862 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 863 if (vap->iv_flags & flag) { 864 bit = 1; 865 break; 866 } 867 if (bit) 868 ic->ic_flags |= flag; 869 else 870 ic->ic_flags &= ~flag; 871 } 872 873 void 874 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 875 { 876 struct ieee80211com *ic = vap->iv_ic; 877 878 IEEE80211_LOCK(ic); 879 if (flag < 0) { 880 flag = -flag; 881 vap->iv_flags &= ~flag; 882 } else 883 vap->iv_flags |= flag; 884 ieee80211_syncflag_locked(ic, flag); 885 IEEE80211_UNLOCK(ic); 886 } 887 888 /* 889 * Synchronize flags_ht bit state in the com structure 890 * according to the state of all vap's. This is used, 891 * for example, to handle state changes via ioctls. 892 */ 893 static void 894 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 895 { 896 struct ieee80211vap *vap; 897 int bit; 898 899 IEEE80211_LOCK_ASSERT(ic); 900 901 bit = 0; 902 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 903 if (vap->iv_flags_ht & flag) { 904 bit = 1; 905 break; 906 } 907 if (bit) 908 ic->ic_flags_ht |= flag; 909 else 910 ic->ic_flags_ht &= ~flag; 911 } 912 913 void 914 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 915 { 916 struct ieee80211com *ic = vap->iv_ic; 917 918 IEEE80211_LOCK(ic); 919 if (flag < 0) { 920 flag = -flag; 921 vap->iv_flags_ht &= ~flag; 922 } else 923 vap->iv_flags_ht |= flag; 924 ieee80211_syncflag_ht_locked(ic, flag); 925 IEEE80211_UNLOCK(ic); 926 } 927 928 /* 929 * Synchronize flags_vht bit state in the com structure 930 * according to the state of all vap's. This is used, 931 * for example, to handle state changes via ioctls. 932 */ 933 static void 934 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 935 { 936 struct ieee80211vap *vap; 937 int bit; 938 939 IEEE80211_LOCK_ASSERT(ic); 940 941 bit = 0; 942 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 943 if (vap->iv_flags_vht & flag) { 944 bit = 1; 945 break; 946 } 947 if (bit) 948 ic->ic_flags_vht |= flag; 949 else 950 ic->ic_flags_vht &= ~flag; 951 } 952 953 void 954 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 955 { 956 struct ieee80211com *ic = vap->iv_ic; 957 958 IEEE80211_LOCK(ic); 959 if (flag < 0) { 960 flag = -flag; 961 vap->iv_flags_vht &= ~flag; 962 } else 963 vap->iv_flags_vht |= flag; 964 ieee80211_syncflag_vht_locked(ic, flag); 965 IEEE80211_UNLOCK(ic); 966 } 967 968 /* 969 * Synchronize flags_ext bit state in the com structure 970 * according to the state of all vap's. This is used, 971 * for example, to handle state changes via ioctls. 972 */ 973 static void 974 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 975 { 976 struct ieee80211vap *vap; 977 int bit; 978 979 IEEE80211_LOCK_ASSERT(ic); 980 981 bit = 0; 982 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 983 if (vap->iv_flags_ext & flag) { 984 bit = 1; 985 break; 986 } 987 if (bit) 988 ic->ic_flags_ext |= flag; 989 else 990 ic->ic_flags_ext &= ~flag; 991 } 992 993 void 994 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 995 { 996 struct ieee80211com *ic = vap->iv_ic; 997 998 IEEE80211_LOCK(ic); 999 if (flag < 0) { 1000 flag = -flag; 1001 vap->iv_flags_ext &= ~flag; 1002 } else 1003 vap->iv_flags_ext |= flag; 1004 ieee80211_syncflag_ext_locked(ic, flag); 1005 IEEE80211_UNLOCK(ic); 1006 } 1007 1008 static __inline int 1009 mapgsm(u_int freq, u_int flags) 1010 { 1011 freq *= 10; 1012 if (flags & IEEE80211_CHAN_QUARTER) 1013 freq += 5; 1014 else if (flags & IEEE80211_CHAN_HALF) 1015 freq += 10; 1016 else 1017 freq += 20; 1018 /* NB: there is no 907/20 wide but leave room */ 1019 return (freq - 906*10) / 5; 1020 } 1021 1022 static __inline int 1023 mappsb(u_int freq, u_int flags) 1024 { 1025 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1026 } 1027 1028 /* 1029 * Convert MHz frequency to IEEE channel number. 1030 */ 1031 int 1032 ieee80211_mhz2ieee(u_int freq, u_int flags) 1033 { 1034 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1035 if (flags & IEEE80211_CHAN_GSM) 1036 return mapgsm(freq, flags); 1037 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1038 if (freq == 2484) 1039 return 14; 1040 if (freq < 2484) 1041 return ((int) freq - 2407) / 5; 1042 else 1043 return 15 + ((freq - 2512) / 20); 1044 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1045 if (freq <= 5000) { 1046 /* XXX check regdomain? */ 1047 if (IS_FREQ_IN_PSB(freq)) 1048 return mappsb(freq, flags); 1049 return (freq - 4000) / 5; 1050 } else 1051 return (freq - 5000) / 5; 1052 } else { /* either, guess */ 1053 if (freq == 2484) 1054 return 14; 1055 if (freq < 2484) { 1056 if (907 <= freq && freq <= 922) 1057 return mapgsm(freq, flags); 1058 return ((int) freq - 2407) / 5; 1059 } 1060 if (freq < 5000) { 1061 if (IS_FREQ_IN_PSB(freq)) 1062 return mappsb(freq, flags); 1063 else if (freq > 4900) 1064 return (freq - 4000) / 5; 1065 else 1066 return 15 + ((freq - 2512) / 20); 1067 } 1068 return (freq - 5000) / 5; 1069 } 1070 #undef IS_FREQ_IN_PSB 1071 } 1072 1073 /* 1074 * Convert channel to IEEE channel number. 1075 */ 1076 int 1077 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1078 { 1079 if (c == NULL) { 1080 ic_printf(ic, "invalid channel (NULL)\n"); 1081 return 0; /* XXX */ 1082 } 1083 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1084 } 1085 1086 /* 1087 * Convert IEEE channel number to MHz frequency. 1088 */ 1089 u_int 1090 ieee80211_ieee2mhz(u_int chan, u_int flags) 1091 { 1092 if (flags & IEEE80211_CHAN_GSM) 1093 return 907 + 5 * (chan / 10); 1094 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1095 if (chan == 14) 1096 return 2484; 1097 if (chan < 14) 1098 return 2407 + chan*5; 1099 else 1100 return 2512 + ((chan-15)*20); 1101 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1102 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1103 chan -= 37; 1104 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1105 } 1106 return 5000 + (chan*5); 1107 } else { /* either, guess */ 1108 /* XXX can't distinguish PSB+GSM channels */ 1109 if (chan == 14) 1110 return 2484; 1111 if (chan < 14) /* 0-13 */ 1112 return 2407 + chan*5; 1113 if (chan < 27) /* 15-26 */ 1114 return 2512 + ((chan-15)*20); 1115 return 5000 + (chan*5); 1116 } 1117 } 1118 1119 static __inline void 1120 set_extchan(struct ieee80211_channel *c) 1121 { 1122 1123 /* 1124 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1125 * "the secondary channel number shall be 'N + [1,-1] * 4' 1126 */ 1127 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1128 c->ic_extieee = c->ic_ieee + 4; 1129 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1130 c->ic_extieee = c->ic_ieee - 4; 1131 else 1132 c->ic_extieee = 0; 1133 } 1134 1135 /* 1136 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1137 * 1138 * This for now uses a hard-coded list of 80MHz wide channels. 1139 * 1140 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1141 * wide channel we've already decided upon. 1142 * 1143 * For VHT80 and VHT160, there are only a small number of fixed 1144 * 80/160MHz wide channels, so we just use those. 1145 * 1146 * This is all likely very very wrong - both the regulatory code 1147 * and this code needs to ensure that all four channels are 1148 * available and valid before the VHT80 (and eight for VHT160) channel 1149 * is created. 1150 */ 1151 1152 struct vht_chan_range { 1153 uint16_t freq_start; 1154 uint16_t freq_end; 1155 }; 1156 1157 struct vht_chan_range vht80_chan_ranges[] = { 1158 { 5170, 5250 }, 1159 { 5250, 5330 }, 1160 { 5490, 5570 }, 1161 { 5570, 5650 }, 1162 { 5650, 5730 }, 1163 { 5735, 5815 }, 1164 { 0, 0, } 1165 }; 1166 1167 static int 1168 set_vht_extchan(struct ieee80211_channel *c) 1169 { 1170 int i; 1171 1172 if (! IEEE80211_IS_CHAN_VHT(c)) { 1173 return (0); 1174 } 1175 1176 if (IEEE80211_IS_CHAN_VHT20(c)) { 1177 c->ic_vht_ch_freq1 = c->ic_ieee; 1178 return (1); 1179 } 1180 1181 if (IEEE80211_IS_CHAN_VHT40(c)) { 1182 if (IEEE80211_IS_CHAN_HT40U(c)) 1183 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1184 else if (IEEE80211_IS_CHAN_HT40D(c)) 1185 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1186 else 1187 return (0); 1188 return (1); 1189 } 1190 1191 if (IEEE80211_IS_CHAN_VHT80(c)) { 1192 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1193 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1194 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1195 int midpoint; 1196 1197 midpoint = vht80_chan_ranges[i].freq_start + 40; 1198 c->ic_vht_ch_freq1 = 1199 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1200 c->ic_vht_ch_freq2 = 0; 1201 #if 0 1202 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1203 __func__, c->ic_ieee, c->ic_freq, midpoint, 1204 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1205 #endif 1206 return (1); 1207 } 1208 } 1209 return (0); 1210 } 1211 1212 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1213 __func__, 1214 c->ic_ieee, 1215 c->ic_flags); 1216 1217 return (0); 1218 } 1219 1220 /* 1221 * Return whether the current channel could possibly be a part of 1222 * a VHT80 channel. 1223 * 1224 * This doesn't check that the whole range is in the allowed list 1225 * according to regulatory. 1226 */ 1227 static int 1228 is_vht80_valid_freq(uint16_t freq) 1229 { 1230 int i; 1231 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1232 if (freq >= vht80_chan_ranges[i].freq_start && 1233 freq < vht80_chan_ranges[i].freq_end) 1234 return (1); 1235 } 1236 return (0); 1237 } 1238 1239 static int 1240 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1241 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1242 { 1243 struct ieee80211_channel *c; 1244 1245 if (*nchans >= maxchans) 1246 return (ENOBUFS); 1247 1248 #if 0 1249 printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n", 1250 __func__, 1251 *nchans, 1252 ieee, 1253 freq, 1254 flags); 1255 #endif 1256 1257 c = &chans[(*nchans)++]; 1258 c->ic_ieee = ieee; 1259 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1260 c->ic_maxregpower = maxregpower; 1261 c->ic_maxpower = 2 * maxregpower; 1262 c->ic_flags = flags; 1263 c->ic_vht_ch_freq1 = 0; 1264 c->ic_vht_ch_freq2 = 0; 1265 set_extchan(c); 1266 set_vht_extchan(c); 1267 1268 return (0); 1269 } 1270 1271 static int 1272 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1273 uint32_t flags) 1274 { 1275 struct ieee80211_channel *c; 1276 1277 KASSERT(*nchans > 0, ("channel list is empty\n")); 1278 1279 if (*nchans >= maxchans) 1280 return (ENOBUFS); 1281 1282 #if 0 1283 printf("%s: %d: flags=0x%08x\n", 1284 __func__, 1285 *nchans, 1286 flags); 1287 #endif 1288 1289 c = &chans[(*nchans)++]; 1290 c[0] = c[-1]; 1291 c->ic_flags = flags; 1292 c->ic_vht_ch_freq1 = 0; 1293 c->ic_vht_ch_freq2 = 0; 1294 set_extchan(c); 1295 set_vht_extchan(c); 1296 1297 return (0); 1298 } 1299 1300 /* 1301 * XXX VHT-2GHz 1302 */ 1303 static void 1304 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40) 1305 { 1306 int nmodes; 1307 1308 nmodes = 0; 1309 if (isset(bands, IEEE80211_MODE_11B)) 1310 flags[nmodes++] = IEEE80211_CHAN_B; 1311 if (isset(bands, IEEE80211_MODE_11G)) 1312 flags[nmodes++] = IEEE80211_CHAN_G; 1313 if (isset(bands, IEEE80211_MODE_11NG)) 1314 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1315 if (ht40) { 1316 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1317 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1318 } 1319 flags[nmodes] = 0; 1320 } 1321 1322 static void 1323 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1324 { 1325 int nmodes; 1326 1327 /* 1328 * the addchan_list function seems to expect the flags array to 1329 * be in channel width order, so the VHT bits are interspersed 1330 * as appropriate to maintain said order. 1331 * 1332 * It also assumes HT40U is before HT40D. 1333 */ 1334 nmodes = 0; 1335 1336 /* 20MHz */ 1337 if (isset(bands, IEEE80211_MODE_11A)) 1338 flags[nmodes++] = IEEE80211_CHAN_A; 1339 if (isset(bands, IEEE80211_MODE_11NA)) 1340 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1341 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1342 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1343 IEEE80211_CHAN_VHT20; 1344 } 1345 1346 /* 40MHz */ 1347 if (ht40) { 1348 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1349 } 1350 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1351 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U 1352 | IEEE80211_CHAN_VHT40U; 1353 } 1354 if (ht40) { 1355 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1356 } 1357 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1358 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D 1359 | IEEE80211_CHAN_VHT40D; 1360 } 1361 1362 /* 80MHz */ 1363 if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1364 flags[nmodes++] = IEEE80211_CHAN_A | 1365 IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; 1366 flags[nmodes++] = IEEE80211_CHAN_A | 1367 IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; 1368 } 1369 1370 /* XXX VHT80+80 */ 1371 /* XXX VHT160 */ 1372 flags[nmodes] = 0; 1373 } 1374 1375 static void 1376 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1377 { 1378 1379 flags[0] = 0; 1380 if (isset(bands, IEEE80211_MODE_11A) || 1381 isset(bands, IEEE80211_MODE_11NA) || 1382 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1383 if (isset(bands, IEEE80211_MODE_11B) || 1384 isset(bands, IEEE80211_MODE_11G) || 1385 isset(bands, IEEE80211_MODE_11NG) || 1386 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1387 return; 1388 1389 getflags_5ghz(bands, flags, ht40, vht80); 1390 } else 1391 getflags_2ghz(bands, flags, ht40); 1392 } 1393 1394 /* 1395 * Add one 20 MHz channel into specified channel list. 1396 * You MUST NOT mix bands when calling this. It will not add 5ghz 1397 * channels if you have any B/G/N band bit set. 1398 */ 1399 /* XXX VHT */ 1400 int 1401 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1402 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1403 uint32_t chan_flags, const uint8_t bands[]) 1404 { 1405 uint32_t flags[IEEE80211_MODE_MAX]; 1406 int i, error; 1407 1408 getflags(bands, flags, 0, 0); 1409 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1410 1411 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1412 flags[0] | chan_flags); 1413 for (i = 1; flags[i] != 0 && error == 0; i++) { 1414 error = copychan_prev(chans, maxchans, nchans, 1415 flags[i] | chan_flags); 1416 } 1417 1418 return (error); 1419 } 1420 1421 static struct ieee80211_channel * 1422 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1423 uint32_t flags) 1424 { 1425 struct ieee80211_channel *c; 1426 int i; 1427 1428 flags &= IEEE80211_CHAN_ALLTURBO; 1429 /* brute force search */ 1430 for (i = 0; i < nchans; i++) { 1431 c = &chans[i]; 1432 if (c->ic_freq == freq && 1433 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1434 return c; 1435 } 1436 return NULL; 1437 } 1438 1439 /* 1440 * Add 40 MHz channel pair into specified channel list. 1441 */ 1442 /* XXX VHT */ 1443 int 1444 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1445 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1446 { 1447 struct ieee80211_channel *cent, *extc; 1448 uint16_t freq; 1449 int error; 1450 1451 freq = ieee80211_ieee2mhz(ieee, flags); 1452 1453 /* 1454 * Each entry defines an HT40 channel pair; find the 1455 * center channel, then the extension channel above. 1456 */ 1457 flags |= IEEE80211_CHAN_HT20; 1458 cent = findchannel(chans, *nchans, freq, flags); 1459 if (cent == NULL) 1460 return (EINVAL); 1461 1462 extc = findchannel(chans, *nchans, freq + 20, flags); 1463 if (extc == NULL) 1464 return (ENOENT); 1465 1466 flags &= ~IEEE80211_CHAN_HT; 1467 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1468 maxregpower, flags | IEEE80211_CHAN_HT40U); 1469 if (error != 0) 1470 return (error); 1471 1472 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1473 maxregpower, flags | IEEE80211_CHAN_HT40D); 1474 1475 return (error); 1476 } 1477 1478 /* 1479 * Fetch the center frequency for the primary channel. 1480 */ 1481 uint32_t 1482 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1483 { 1484 1485 return (c->ic_freq); 1486 } 1487 1488 /* 1489 * Fetch the center frequency for the primary BAND channel. 1490 * 1491 * For 5, 10, 20MHz channels it'll be the normally configured channel 1492 * frequency. 1493 * 1494 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the 1495 * wide channel, not the centre of the primary channel (that's ic_freq). 1496 * 1497 * For 80+80MHz channels this will be the centre of the primary 1498 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1499 */ 1500 uint32_t 1501 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1502 { 1503 1504 /* 1505 * VHT - use the pre-calculated centre frequency 1506 * of the given channel. 1507 */ 1508 if (IEEE80211_IS_CHAN_VHT(c)) 1509 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1510 1511 if (IEEE80211_IS_CHAN_HT40U(c)) { 1512 return (c->ic_freq + 10); 1513 } 1514 if (IEEE80211_IS_CHAN_HT40D(c)) { 1515 return (c->ic_freq - 10); 1516 } 1517 1518 return (c->ic_freq); 1519 } 1520 1521 /* 1522 * For now, no 80+80 support; it will likely always return 0. 1523 */ 1524 uint32_t 1525 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1526 { 1527 1528 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1529 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1530 1531 return (0); 1532 } 1533 1534 /* 1535 * Adds channels into specified channel list (ieee[] array must be sorted). 1536 * Channels are already sorted. 1537 */ 1538 static int 1539 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1540 const uint8_t ieee[], int nieee, uint32_t flags[]) 1541 { 1542 uint16_t freq; 1543 int i, j, error; 1544 int is_vht; 1545 1546 for (i = 0; i < nieee; i++) { 1547 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1548 for (j = 0; flags[j] != 0; j++) { 1549 /* 1550 * Notes: 1551 * + HT40 and VHT40 channels occur together, so 1552 * we need to be careful that we actually allow that. 1553 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1554 * make sure it's not skipped because of the overlap 1555 * check used for (V)HT40. 1556 */ 1557 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1558 1559 /* 1560 * Test for VHT80. 1561 * XXX This is all very broken right now. 1562 * What we /should/ do is: 1563 * 1564 * + check that the frequency is in the list of 1565 * allowed VHT80 ranges; and 1566 * + the other 3 channels in the list are actually 1567 * also available. 1568 */ 1569 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1570 if (! is_vht80_valid_freq(freq)) 1571 continue; 1572 1573 /* 1574 * Test for (V)HT40. 1575 * 1576 * This is also a fall through from VHT80; as we only 1577 * allow a VHT80 channel if the VHT40 combination is 1578 * also valid. If the VHT40 form is not valid then 1579 * we certainly can't do VHT80.. 1580 */ 1581 if (flags[j] & IEEE80211_CHAN_HT40D) 1582 /* 1583 * Can't have a "lower" channel if we are the 1584 * first channel. 1585 * 1586 * Can't have a "lower" channel if it's below/ 1587 * within 20MHz of the first channel. 1588 * 1589 * Can't have a "lower" channel if the channel 1590 * below it is not 20MHz away. 1591 */ 1592 if (i == 0 || ieee[i] < ieee[0] + 4 || 1593 freq - 20 != 1594 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1595 continue; 1596 if (flags[j] & IEEE80211_CHAN_HT40U) 1597 /* 1598 * Can't have an "upper" channel if we are 1599 * the last channel. 1600 * 1601 * Can't have an "upper" channel be above the 1602 * last channel in the list. 1603 * 1604 * Can't have an "upper" channel if the next 1605 * channel according to the math isn't 20MHz 1606 * away. (Likely for channel 13/14.) 1607 */ 1608 if (i == nieee - 1 || 1609 ieee[i] + 4 > ieee[nieee - 1] || 1610 freq + 20 != 1611 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1612 continue; 1613 1614 if (j == 0) { 1615 error = addchan(chans, maxchans, nchans, 1616 ieee[i], freq, 0, flags[j]); 1617 } else { 1618 error = copychan_prev(chans, maxchans, nchans, 1619 flags[j]); 1620 } 1621 if (error != 0) 1622 return (error); 1623 } 1624 } 1625 1626 return (0); 1627 } 1628 1629 int 1630 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1631 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1632 int ht40) 1633 { 1634 uint32_t flags[IEEE80211_MODE_MAX]; 1635 1636 /* XXX no VHT for now */ 1637 getflags_2ghz(bands, flags, ht40); 1638 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1639 1640 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1641 } 1642 1643 int 1644 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1645 int maxchans, int *nchans, const uint8_t bands[], int ht40) 1646 { 1647 const uint8_t default_chan_list[] = 1648 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1649 1650 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1651 default_chan_list, nitems(default_chan_list), bands, ht40)); 1652 } 1653 1654 int 1655 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1656 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1657 int ht40) 1658 { 1659 uint32_t flags[IEEE80211_MODE_MAX]; 1660 int vht80 = 0; 1661 1662 /* 1663 * For now, assume VHT == VHT80 support as a minimum. 1664 */ 1665 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1666 vht80 = 1; 1667 1668 getflags_5ghz(bands, flags, ht40, vht80); 1669 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1670 1671 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1672 } 1673 1674 /* 1675 * Locate a channel given a frequency+flags. We cache 1676 * the previous lookup to optimize switching between two 1677 * channels--as happens with dynamic turbo. 1678 */ 1679 struct ieee80211_channel * 1680 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1681 { 1682 struct ieee80211_channel *c; 1683 1684 flags &= IEEE80211_CHAN_ALLTURBO; 1685 c = ic->ic_prevchan; 1686 if (c != NULL && c->ic_freq == freq && 1687 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1688 return c; 1689 /* brute force search */ 1690 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1691 } 1692 1693 /* 1694 * Locate a channel given a channel number+flags. We cache 1695 * the previous lookup to optimize switching between two 1696 * channels--as happens with dynamic turbo. 1697 */ 1698 struct ieee80211_channel * 1699 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1700 { 1701 struct ieee80211_channel *c; 1702 int i; 1703 1704 flags &= IEEE80211_CHAN_ALLTURBO; 1705 c = ic->ic_prevchan; 1706 if (c != NULL && c->ic_ieee == ieee && 1707 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1708 return c; 1709 /* brute force search */ 1710 for (i = 0; i < ic->ic_nchans; i++) { 1711 c = &ic->ic_channels[i]; 1712 if (c->ic_ieee == ieee && 1713 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1714 return c; 1715 } 1716 return NULL; 1717 } 1718 1719 /* 1720 * Lookup a channel suitable for the given rx status. 1721 * 1722 * This is used to find a channel for a frame (eg beacon, probe 1723 * response) based purely on the received PHY information. 1724 * 1725 * For now it tries to do it based on R_FREQ / R_IEEE. 1726 * This is enough for 11bg and 11a (and thus 11ng/11na) 1727 * but it will not be enough for GSM, PSB channels and the 1728 * like. It also doesn't know about legacy-turbog and 1729 * legacy-turbo modes, which some offload NICs actually 1730 * support in weird ways. 1731 * 1732 * Takes the ic and rxstatus; returns the channel or NULL 1733 * if not found. 1734 * 1735 * XXX TODO: Add support for that when the need arises. 1736 */ 1737 struct ieee80211_channel * 1738 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1739 const struct ieee80211_rx_stats *rxs) 1740 { 1741 struct ieee80211com *ic = vap->iv_ic; 1742 uint32_t flags; 1743 struct ieee80211_channel *c; 1744 1745 if (rxs == NULL) 1746 return (NULL); 1747 1748 /* 1749 * Strictly speaking we only use freq for now, 1750 * however later on we may wish to just store 1751 * the ieee for verification. 1752 */ 1753 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1754 return (NULL); 1755 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1756 return (NULL); 1757 1758 /* 1759 * If the rx status contains a valid ieee/freq, then 1760 * ensure we populate the correct channel information 1761 * in rxchan before passing it up to the scan infrastructure. 1762 * Offload NICs will pass up beacons from all channels 1763 * during background scans. 1764 */ 1765 1766 /* Determine a band */ 1767 /* XXX should be done by the driver? */ 1768 if (rxs->c_freq < 3000) { 1769 flags = IEEE80211_CHAN_G; 1770 } else { 1771 flags = IEEE80211_CHAN_A; 1772 } 1773 1774 /* Channel lookup */ 1775 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1776 1777 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1778 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1779 __func__, 1780 (int) rxs->c_freq, 1781 (int) rxs->c_ieee, 1782 flags, 1783 c); 1784 1785 return (c); 1786 } 1787 1788 static void 1789 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1790 { 1791 #define ADD(_ic, _s, _o) \ 1792 ifmedia_add(media, \ 1793 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1794 static const u_int mopts[IEEE80211_MODE_MAX] = { 1795 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1796 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1797 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1798 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1799 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1800 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1801 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1802 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1803 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1804 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1805 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1806 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1807 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1808 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1809 }; 1810 u_int mopt; 1811 1812 mopt = mopts[mode]; 1813 if (addsta) 1814 ADD(ic, mword, mopt); /* STA mode has no cap */ 1815 if (caps & IEEE80211_C_IBSS) 1816 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1817 if (caps & IEEE80211_C_HOSTAP) 1818 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1819 if (caps & IEEE80211_C_AHDEMO) 1820 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1821 if (caps & IEEE80211_C_MONITOR) 1822 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1823 if (caps & IEEE80211_C_WDS) 1824 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1825 if (caps & IEEE80211_C_MBSS) 1826 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1827 #undef ADD 1828 } 1829 1830 /* 1831 * Setup the media data structures according to the channel and 1832 * rate tables. 1833 */ 1834 static int 1835 ieee80211_media_setup(struct ieee80211com *ic, 1836 struct ifmedia *media, int caps, int addsta, 1837 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1838 { 1839 int i, j, rate, maxrate, mword, r; 1840 enum ieee80211_phymode mode; 1841 const struct ieee80211_rateset *rs; 1842 struct ieee80211_rateset allrates; 1843 1844 /* 1845 * Fill in media characteristics. 1846 */ 1847 ifmedia_init(media, 0, media_change, media_stat); 1848 maxrate = 0; 1849 /* 1850 * Add media for legacy operating modes. 1851 */ 1852 memset(&allrates, 0, sizeof(allrates)); 1853 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1854 if (isclr(ic->ic_modecaps, mode)) 1855 continue; 1856 addmedia(media, caps, addsta, mode, IFM_AUTO); 1857 if (mode == IEEE80211_MODE_AUTO) 1858 continue; 1859 rs = &ic->ic_sup_rates[mode]; 1860 for (i = 0; i < rs->rs_nrates; i++) { 1861 rate = rs->rs_rates[i]; 1862 mword = ieee80211_rate2media(ic, rate, mode); 1863 if (mword == 0) 1864 continue; 1865 addmedia(media, caps, addsta, mode, mword); 1866 /* 1867 * Add legacy rate to the collection of all rates. 1868 */ 1869 r = rate & IEEE80211_RATE_VAL; 1870 for (j = 0; j < allrates.rs_nrates; j++) 1871 if (allrates.rs_rates[j] == r) 1872 break; 1873 if (j == allrates.rs_nrates) { 1874 /* unique, add to the set */ 1875 allrates.rs_rates[j] = r; 1876 allrates.rs_nrates++; 1877 } 1878 rate = (rate & IEEE80211_RATE_VAL) / 2; 1879 if (rate > maxrate) 1880 maxrate = rate; 1881 } 1882 } 1883 for (i = 0; i < allrates.rs_nrates; i++) { 1884 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1885 IEEE80211_MODE_AUTO); 1886 if (mword == 0) 1887 continue; 1888 /* NB: remove media options from mword */ 1889 addmedia(media, caps, addsta, 1890 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1891 } 1892 /* 1893 * Add HT/11n media. Note that we do not have enough 1894 * bits in the media subtype to express the MCS so we 1895 * use a "placeholder" media subtype and any fixed MCS 1896 * must be specified with a different mechanism. 1897 */ 1898 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1899 if (isclr(ic->ic_modecaps, mode)) 1900 continue; 1901 addmedia(media, caps, addsta, mode, IFM_AUTO); 1902 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1903 } 1904 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1905 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1906 addmedia(media, caps, addsta, 1907 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1908 i = ic->ic_txstream * 8 - 1; 1909 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1910 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1911 rate = ieee80211_htrates[i].ht40_rate_400ns; 1912 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1913 rate = ieee80211_htrates[i].ht40_rate_800ns; 1914 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1915 rate = ieee80211_htrates[i].ht20_rate_400ns; 1916 else 1917 rate = ieee80211_htrates[i].ht20_rate_800ns; 1918 if (rate > maxrate) 1919 maxrate = rate; 1920 } 1921 1922 /* 1923 * Add VHT media. 1924 */ 1925 for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) { 1926 if (isclr(ic->ic_modecaps, mode)) 1927 continue; 1928 addmedia(media, caps, addsta, mode, IFM_AUTO); 1929 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 1930 1931 /* XXX TODO: VHT maxrate */ 1932 } 1933 1934 return maxrate; 1935 } 1936 1937 /* XXX inline or eliminate? */ 1938 const struct ieee80211_rateset * 1939 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1940 { 1941 /* XXX does this work for 11ng basic rates? */ 1942 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1943 } 1944 1945 /* XXX inline or eliminate? */ 1946 const struct ieee80211_htrateset * 1947 ieee80211_get_suphtrates(struct ieee80211com *ic, 1948 const struct ieee80211_channel *c) 1949 { 1950 return &ic->ic_sup_htrates; 1951 } 1952 1953 void 1954 ieee80211_announce(struct ieee80211com *ic) 1955 { 1956 int i, rate, mword; 1957 enum ieee80211_phymode mode; 1958 const struct ieee80211_rateset *rs; 1959 1960 /* NB: skip AUTO since it has no rates */ 1961 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1962 if (isclr(ic->ic_modecaps, mode)) 1963 continue; 1964 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1965 rs = &ic->ic_sup_rates[mode]; 1966 for (i = 0; i < rs->rs_nrates; i++) { 1967 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1968 if (mword == 0) 1969 continue; 1970 rate = ieee80211_media2rate(mword); 1971 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1972 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1973 } 1974 printf("\n"); 1975 } 1976 ieee80211_ht_announce(ic); 1977 ieee80211_vht_announce(ic); 1978 } 1979 1980 void 1981 ieee80211_announce_channels(struct ieee80211com *ic) 1982 { 1983 const struct ieee80211_channel *c; 1984 char type; 1985 int i, cw; 1986 1987 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1988 for (i = 0; i < ic->ic_nchans; i++) { 1989 c = &ic->ic_channels[i]; 1990 if (IEEE80211_IS_CHAN_ST(c)) 1991 type = 'S'; 1992 else if (IEEE80211_IS_CHAN_108A(c)) 1993 type = 'T'; 1994 else if (IEEE80211_IS_CHAN_108G(c)) 1995 type = 'G'; 1996 else if (IEEE80211_IS_CHAN_HT(c)) 1997 type = 'n'; 1998 else if (IEEE80211_IS_CHAN_A(c)) 1999 type = 'a'; 2000 else if (IEEE80211_IS_CHAN_ANYG(c)) 2001 type = 'g'; 2002 else if (IEEE80211_IS_CHAN_B(c)) 2003 type = 'b'; 2004 else 2005 type = 'f'; 2006 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2007 cw = 40; 2008 else if (IEEE80211_IS_CHAN_HALF(c)) 2009 cw = 10; 2010 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2011 cw = 5; 2012 else 2013 cw = 20; 2014 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2015 , c->ic_ieee, c->ic_freq, type 2016 , cw 2017 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2018 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2019 , c->ic_maxregpower 2020 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2021 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2022 ); 2023 } 2024 } 2025 2026 static int 2027 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2028 { 2029 switch (IFM_MODE(ime->ifm_media)) { 2030 case IFM_IEEE80211_11A: 2031 *mode = IEEE80211_MODE_11A; 2032 break; 2033 case IFM_IEEE80211_11B: 2034 *mode = IEEE80211_MODE_11B; 2035 break; 2036 case IFM_IEEE80211_11G: 2037 *mode = IEEE80211_MODE_11G; 2038 break; 2039 case IFM_IEEE80211_FH: 2040 *mode = IEEE80211_MODE_FH; 2041 break; 2042 case IFM_IEEE80211_11NA: 2043 *mode = IEEE80211_MODE_11NA; 2044 break; 2045 case IFM_IEEE80211_11NG: 2046 *mode = IEEE80211_MODE_11NG; 2047 break; 2048 case IFM_AUTO: 2049 *mode = IEEE80211_MODE_AUTO; 2050 break; 2051 default: 2052 return 0; 2053 } 2054 /* 2055 * Turbo mode is an ``option''. 2056 * XXX does not apply to AUTO 2057 */ 2058 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2059 if (*mode == IEEE80211_MODE_11A) { 2060 if (flags & IEEE80211_F_TURBOP) 2061 *mode = IEEE80211_MODE_TURBO_A; 2062 else 2063 *mode = IEEE80211_MODE_STURBO_A; 2064 } else if (*mode == IEEE80211_MODE_11G) 2065 *mode = IEEE80211_MODE_TURBO_G; 2066 else 2067 return 0; 2068 } 2069 /* XXX HT40 +/- */ 2070 return 1; 2071 } 2072 2073 /* 2074 * Handle a media change request on the vap interface. 2075 */ 2076 int 2077 ieee80211_media_change(struct ifnet *ifp) 2078 { 2079 struct ieee80211vap *vap = ifp->if_softc; 2080 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2081 uint16_t newmode; 2082 2083 if (!media2mode(ime, vap->iv_flags, &newmode)) 2084 return EINVAL; 2085 if (vap->iv_des_mode != newmode) { 2086 vap->iv_des_mode = newmode; 2087 /* XXX kick state machine if up+running */ 2088 } 2089 return 0; 2090 } 2091 2092 /* 2093 * Common code to calculate the media status word 2094 * from the operating mode and channel state. 2095 */ 2096 static int 2097 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2098 { 2099 int status; 2100 2101 status = IFM_IEEE80211; 2102 switch (opmode) { 2103 case IEEE80211_M_STA: 2104 break; 2105 case IEEE80211_M_IBSS: 2106 status |= IFM_IEEE80211_ADHOC; 2107 break; 2108 case IEEE80211_M_HOSTAP: 2109 status |= IFM_IEEE80211_HOSTAP; 2110 break; 2111 case IEEE80211_M_MONITOR: 2112 status |= IFM_IEEE80211_MONITOR; 2113 break; 2114 case IEEE80211_M_AHDEMO: 2115 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2116 break; 2117 case IEEE80211_M_WDS: 2118 status |= IFM_IEEE80211_WDS; 2119 break; 2120 case IEEE80211_M_MBSS: 2121 status |= IFM_IEEE80211_MBSS; 2122 break; 2123 } 2124 if (IEEE80211_IS_CHAN_HTA(chan)) { 2125 status |= IFM_IEEE80211_11NA; 2126 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2127 status |= IFM_IEEE80211_11NG; 2128 } else if (IEEE80211_IS_CHAN_A(chan)) { 2129 status |= IFM_IEEE80211_11A; 2130 } else if (IEEE80211_IS_CHAN_B(chan)) { 2131 status |= IFM_IEEE80211_11B; 2132 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2133 status |= IFM_IEEE80211_11G; 2134 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2135 status |= IFM_IEEE80211_FH; 2136 } 2137 /* XXX else complain? */ 2138 2139 if (IEEE80211_IS_CHAN_TURBO(chan)) 2140 status |= IFM_IEEE80211_TURBO; 2141 #if 0 2142 if (IEEE80211_IS_CHAN_HT20(chan)) 2143 status |= IFM_IEEE80211_HT20; 2144 if (IEEE80211_IS_CHAN_HT40(chan)) 2145 status |= IFM_IEEE80211_HT40; 2146 #endif 2147 return status; 2148 } 2149 2150 void 2151 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2152 { 2153 struct ieee80211vap *vap = ifp->if_softc; 2154 struct ieee80211com *ic = vap->iv_ic; 2155 enum ieee80211_phymode mode; 2156 2157 imr->ifm_status = IFM_AVALID; 2158 /* 2159 * NB: use the current channel's mode to lock down a xmit 2160 * rate only when running; otherwise we may have a mismatch 2161 * in which case the rate will not be convertible. 2162 */ 2163 if (vap->iv_state == IEEE80211_S_RUN || 2164 vap->iv_state == IEEE80211_S_SLEEP) { 2165 imr->ifm_status |= IFM_ACTIVE; 2166 mode = ieee80211_chan2mode(ic->ic_curchan); 2167 } else 2168 mode = IEEE80211_MODE_AUTO; 2169 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2170 /* 2171 * Calculate a current rate if possible. 2172 */ 2173 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2174 /* 2175 * A fixed rate is set, report that. 2176 */ 2177 imr->ifm_active |= ieee80211_rate2media(ic, 2178 vap->iv_txparms[mode].ucastrate, mode); 2179 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2180 /* 2181 * In station mode report the current transmit rate. 2182 */ 2183 imr->ifm_active |= ieee80211_rate2media(ic, 2184 vap->iv_bss->ni_txrate, mode); 2185 } else 2186 imr->ifm_active |= IFM_AUTO; 2187 if (imr->ifm_status & IFM_ACTIVE) 2188 imr->ifm_current = imr->ifm_active; 2189 } 2190 2191 /* 2192 * Set the current phy mode and recalculate the active channel 2193 * set based on the available channels for this mode. Also 2194 * select a new default/current channel if the current one is 2195 * inappropriate for this mode. 2196 */ 2197 int 2198 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2199 { 2200 /* 2201 * Adjust basic rates in 11b/11g supported rate set. 2202 * Note that if operating on a hal/quarter rate channel 2203 * this is a noop as those rates sets are different 2204 * and used instead. 2205 */ 2206 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2207 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2208 2209 ic->ic_curmode = mode; 2210 ieee80211_reset_erp(ic); /* reset global ERP state */ 2211 2212 return 0; 2213 } 2214 2215 /* 2216 * Return the phy mode for with the specified channel. 2217 */ 2218 enum ieee80211_phymode 2219 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2220 { 2221 2222 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2223 return IEEE80211_MODE_VHT_2GHZ; 2224 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2225 return IEEE80211_MODE_VHT_5GHZ; 2226 else if (IEEE80211_IS_CHAN_HTA(chan)) 2227 return IEEE80211_MODE_11NA; 2228 else if (IEEE80211_IS_CHAN_HTG(chan)) 2229 return IEEE80211_MODE_11NG; 2230 else if (IEEE80211_IS_CHAN_108G(chan)) 2231 return IEEE80211_MODE_TURBO_G; 2232 else if (IEEE80211_IS_CHAN_ST(chan)) 2233 return IEEE80211_MODE_STURBO_A; 2234 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2235 return IEEE80211_MODE_TURBO_A; 2236 else if (IEEE80211_IS_CHAN_HALF(chan)) 2237 return IEEE80211_MODE_HALF; 2238 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2239 return IEEE80211_MODE_QUARTER; 2240 else if (IEEE80211_IS_CHAN_A(chan)) 2241 return IEEE80211_MODE_11A; 2242 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2243 return IEEE80211_MODE_11G; 2244 else if (IEEE80211_IS_CHAN_B(chan)) 2245 return IEEE80211_MODE_11B; 2246 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2247 return IEEE80211_MODE_FH; 2248 2249 /* NB: should not get here */ 2250 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2251 __func__, chan->ic_freq, chan->ic_flags); 2252 return IEEE80211_MODE_11B; 2253 } 2254 2255 struct ratemedia { 2256 u_int match; /* rate + mode */ 2257 u_int media; /* if_media rate */ 2258 }; 2259 2260 static int 2261 findmedia(const struct ratemedia rates[], int n, u_int match) 2262 { 2263 int i; 2264 2265 for (i = 0; i < n; i++) 2266 if (rates[i].match == match) 2267 return rates[i].media; 2268 return IFM_AUTO; 2269 } 2270 2271 /* 2272 * Convert IEEE80211 rate value to ifmedia subtype. 2273 * Rate is either a legacy rate in units of 0.5Mbps 2274 * or an MCS index. 2275 */ 2276 int 2277 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2278 { 2279 static const struct ratemedia rates[] = { 2280 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2281 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2282 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2283 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2284 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2285 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2286 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2287 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2288 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2289 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2290 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2291 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2292 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2293 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2294 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2295 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2296 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2297 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2298 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2299 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2300 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2301 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2302 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2303 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2304 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2305 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2306 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2307 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2308 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2309 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2310 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2311 }; 2312 static const struct ratemedia htrates[] = { 2313 { 0, IFM_IEEE80211_MCS }, 2314 { 1, IFM_IEEE80211_MCS }, 2315 { 2, IFM_IEEE80211_MCS }, 2316 { 3, IFM_IEEE80211_MCS }, 2317 { 4, IFM_IEEE80211_MCS }, 2318 { 5, IFM_IEEE80211_MCS }, 2319 { 6, IFM_IEEE80211_MCS }, 2320 { 7, IFM_IEEE80211_MCS }, 2321 { 8, IFM_IEEE80211_MCS }, 2322 { 9, IFM_IEEE80211_MCS }, 2323 { 10, IFM_IEEE80211_MCS }, 2324 { 11, IFM_IEEE80211_MCS }, 2325 { 12, IFM_IEEE80211_MCS }, 2326 { 13, IFM_IEEE80211_MCS }, 2327 { 14, IFM_IEEE80211_MCS }, 2328 { 15, IFM_IEEE80211_MCS }, 2329 { 16, IFM_IEEE80211_MCS }, 2330 { 17, IFM_IEEE80211_MCS }, 2331 { 18, IFM_IEEE80211_MCS }, 2332 { 19, IFM_IEEE80211_MCS }, 2333 { 20, IFM_IEEE80211_MCS }, 2334 { 21, IFM_IEEE80211_MCS }, 2335 { 22, IFM_IEEE80211_MCS }, 2336 { 23, IFM_IEEE80211_MCS }, 2337 { 24, IFM_IEEE80211_MCS }, 2338 { 25, IFM_IEEE80211_MCS }, 2339 { 26, IFM_IEEE80211_MCS }, 2340 { 27, IFM_IEEE80211_MCS }, 2341 { 28, IFM_IEEE80211_MCS }, 2342 { 29, IFM_IEEE80211_MCS }, 2343 { 30, IFM_IEEE80211_MCS }, 2344 { 31, IFM_IEEE80211_MCS }, 2345 { 32, IFM_IEEE80211_MCS }, 2346 { 33, IFM_IEEE80211_MCS }, 2347 { 34, IFM_IEEE80211_MCS }, 2348 { 35, IFM_IEEE80211_MCS }, 2349 { 36, IFM_IEEE80211_MCS }, 2350 { 37, IFM_IEEE80211_MCS }, 2351 { 38, IFM_IEEE80211_MCS }, 2352 { 39, IFM_IEEE80211_MCS }, 2353 { 40, IFM_IEEE80211_MCS }, 2354 { 41, IFM_IEEE80211_MCS }, 2355 { 42, IFM_IEEE80211_MCS }, 2356 { 43, IFM_IEEE80211_MCS }, 2357 { 44, IFM_IEEE80211_MCS }, 2358 { 45, IFM_IEEE80211_MCS }, 2359 { 46, IFM_IEEE80211_MCS }, 2360 { 47, IFM_IEEE80211_MCS }, 2361 { 48, IFM_IEEE80211_MCS }, 2362 { 49, IFM_IEEE80211_MCS }, 2363 { 50, IFM_IEEE80211_MCS }, 2364 { 51, IFM_IEEE80211_MCS }, 2365 { 52, IFM_IEEE80211_MCS }, 2366 { 53, IFM_IEEE80211_MCS }, 2367 { 54, IFM_IEEE80211_MCS }, 2368 { 55, IFM_IEEE80211_MCS }, 2369 { 56, IFM_IEEE80211_MCS }, 2370 { 57, IFM_IEEE80211_MCS }, 2371 { 58, IFM_IEEE80211_MCS }, 2372 { 59, IFM_IEEE80211_MCS }, 2373 { 60, IFM_IEEE80211_MCS }, 2374 { 61, IFM_IEEE80211_MCS }, 2375 { 62, IFM_IEEE80211_MCS }, 2376 { 63, IFM_IEEE80211_MCS }, 2377 { 64, IFM_IEEE80211_MCS }, 2378 { 65, IFM_IEEE80211_MCS }, 2379 { 66, IFM_IEEE80211_MCS }, 2380 { 67, IFM_IEEE80211_MCS }, 2381 { 68, IFM_IEEE80211_MCS }, 2382 { 69, IFM_IEEE80211_MCS }, 2383 { 70, IFM_IEEE80211_MCS }, 2384 { 71, IFM_IEEE80211_MCS }, 2385 { 72, IFM_IEEE80211_MCS }, 2386 { 73, IFM_IEEE80211_MCS }, 2387 { 74, IFM_IEEE80211_MCS }, 2388 { 75, IFM_IEEE80211_MCS }, 2389 { 76, IFM_IEEE80211_MCS }, 2390 }; 2391 int m; 2392 2393 /* 2394 * Check 11n rates first for match as an MCS. 2395 */ 2396 if (mode == IEEE80211_MODE_11NA) { 2397 if (rate & IEEE80211_RATE_MCS) { 2398 rate &= ~IEEE80211_RATE_MCS; 2399 m = findmedia(htrates, nitems(htrates), rate); 2400 if (m != IFM_AUTO) 2401 return m | IFM_IEEE80211_11NA; 2402 } 2403 } else if (mode == IEEE80211_MODE_11NG) { 2404 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2405 if (rate & IEEE80211_RATE_MCS) { 2406 rate &= ~IEEE80211_RATE_MCS; 2407 m = findmedia(htrates, nitems(htrates), rate); 2408 if (m != IFM_AUTO) 2409 return m | IFM_IEEE80211_11NG; 2410 } 2411 } 2412 rate &= IEEE80211_RATE_VAL; 2413 switch (mode) { 2414 case IEEE80211_MODE_11A: 2415 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2416 case IEEE80211_MODE_QUARTER: 2417 case IEEE80211_MODE_11NA: 2418 case IEEE80211_MODE_TURBO_A: 2419 case IEEE80211_MODE_STURBO_A: 2420 return findmedia(rates, nitems(rates), 2421 rate | IFM_IEEE80211_11A); 2422 case IEEE80211_MODE_11B: 2423 return findmedia(rates, nitems(rates), 2424 rate | IFM_IEEE80211_11B); 2425 case IEEE80211_MODE_FH: 2426 return findmedia(rates, nitems(rates), 2427 rate | IFM_IEEE80211_FH); 2428 case IEEE80211_MODE_AUTO: 2429 /* NB: ic may be NULL for some drivers */ 2430 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2431 return findmedia(rates, nitems(rates), 2432 rate | IFM_IEEE80211_FH); 2433 /* NB: hack, 11g matches both 11b+11a rates */ 2434 /* fall thru... */ 2435 case IEEE80211_MODE_11G: 2436 case IEEE80211_MODE_11NG: 2437 case IEEE80211_MODE_TURBO_G: 2438 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2439 case IEEE80211_MODE_VHT_2GHZ: 2440 case IEEE80211_MODE_VHT_5GHZ: 2441 /* XXX TODO: need to figure out mapping for VHT rates */ 2442 return IFM_AUTO; 2443 } 2444 return IFM_AUTO; 2445 } 2446 2447 int 2448 ieee80211_media2rate(int mword) 2449 { 2450 static const int ieeerates[] = { 2451 -1, /* IFM_AUTO */ 2452 0, /* IFM_MANUAL */ 2453 0, /* IFM_NONE */ 2454 2, /* IFM_IEEE80211_FH1 */ 2455 4, /* IFM_IEEE80211_FH2 */ 2456 2, /* IFM_IEEE80211_DS1 */ 2457 4, /* IFM_IEEE80211_DS2 */ 2458 11, /* IFM_IEEE80211_DS5 */ 2459 22, /* IFM_IEEE80211_DS11 */ 2460 44, /* IFM_IEEE80211_DS22 */ 2461 12, /* IFM_IEEE80211_OFDM6 */ 2462 18, /* IFM_IEEE80211_OFDM9 */ 2463 24, /* IFM_IEEE80211_OFDM12 */ 2464 36, /* IFM_IEEE80211_OFDM18 */ 2465 48, /* IFM_IEEE80211_OFDM24 */ 2466 72, /* IFM_IEEE80211_OFDM36 */ 2467 96, /* IFM_IEEE80211_OFDM48 */ 2468 108, /* IFM_IEEE80211_OFDM54 */ 2469 144, /* IFM_IEEE80211_OFDM72 */ 2470 0, /* IFM_IEEE80211_DS354k */ 2471 0, /* IFM_IEEE80211_DS512k */ 2472 6, /* IFM_IEEE80211_OFDM3 */ 2473 9, /* IFM_IEEE80211_OFDM4 */ 2474 54, /* IFM_IEEE80211_OFDM27 */ 2475 -1, /* IFM_IEEE80211_MCS */ 2476 -1, /* IFM_IEEE80211_VHT */ 2477 }; 2478 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2479 ieeerates[IFM_SUBTYPE(mword)] : 0; 2480 } 2481 2482 /* 2483 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2484 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2485 */ 2486 #define mix(a, b, c) \ 2487 do { \ 2488 a -= b; a -= c; a ^= (c >> 13); \ 2489 b -= c; b -= a; b ^= (a << 8); \ 2490 c -= a; c -= b; c ^= (b >> 13); \ 2491 a -= b; a -= c; a ^= (c >> 12); \ 2492 b -= c; b -= a; b ^= (a << 16); \ 2493 c -= a; c -= b; c ^= (b >> 5); \ 2494 a -= b; a -= c; a ^= (c >> 3); \ 2495 b -= c; b -= a; b ^= (a << 10); \ 2496 c -= a; c -= b; c ^= (b >> 15); \ 2497 } while (/*CONSTCOND*/0) 2498 2499 uint32_t 2500 ieee80211_mac_hash(const struct ieee80211com *ic, 2501 const uint8_t addr[IEEE80211_ADDR_LEN]) 2502 { 2503 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2504 2505 b += addr[5] << 8; 2506 b += addr[4]; 2507 a += addr[3] << 24; 2508 a += addr[2] << 16; 2509 a += addr[1] << 8; 2510 a += addr[0]; 2511 2512 mix(a, b, c); 2513 2514 return c; 2515 } 2516 #undef mix 2517 2518 char 2519 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2520 { 2521 if (IEEE80211_IS_CHAN_ST(c)) 2522 return 'S'; 2523 if (IEEE80211_IS_CHAN_108A(c)) 2524 return 'T'; 2525 if (IEEE80211_IS_CHAN_108G(c)) 2526 return 'G'; 2527 if (IEEE80211_IS_CHAN_VHT(c)) 2528 return 'v'; 2529 if (IEEE80211_IS_CHAN_HT(c)) 2530 return 'n'; 2531 if (IEEE80211_IS_CHAN_A(c)) 2532 return 'a'; 2533 if (IEEE80211_IS_CHAN_ANYG(c)) 2534 return 'g'; 2535 if (IEEE80211_IS_CHAN_B(c)) 2536 return 'b'; 2537 return 'f'; 2538 } 2539