xref: /freebsd/sys/net80211/ieee80211.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 
50 #include <net/bpf.h>
51 
52 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
53 	[IEEE80211_MODE_AUTO]	  = "auto",
54 	[IEEE80211_MODE_11A]	  = "11a",
55 	[IEEE80211_MODE_11B]	  = "11b",
56 	[IEEE80211_MODE_11G]	  = "11g",
57 	[IEEE80211_MODE_FH]	  = "FH",
58 	[IEEE80211_MODE_TURBO_A]  = "turboA",
59 	[IEEE80211_MODE_TURBO_G]  = "turboG",
60 	[IEEE80211_MODE_STURBO_A] = "sturboA",
61 	[IEEE80211_MODE_HALF]	  = "half",
62 	[IEEE80211_MODE_QUARTER]  = "quarter",
63 	[IEEE80211_MODE_11NA]	  = "11na",
64 	[IEEE80211_MODE_11NG]	  = "11ng",
65 };
66 /* map ieee80211_opmode to the corresponding capability bit */
67 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
68 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
69 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
70 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
71 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
72 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
73 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
74 };
75 
76 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
77 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
78 
79 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
80 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
81 static	int ieee80211_media_setup(struct ieee80211com *ic,
82 		struct ifmedia *media, int caps, int addsta,
83 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
84 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
85 static	int ieee80211com_media_change(struct ifnet *);
86 static	int media_status(enum ieee80211_opmode,
87 		const struct ieee80211_channel *);
88 
89 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
90 
91 /*
92  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
93  */
94 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
95 static const struct ieee80211_rateset ieee80211_rateset_11a =
96 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
97 static const struct ieee80211_rateset ieee80211_rateset_half =
98 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
99 static const struct ieee80211_rateset ieee80211_rateset_quarter =
100 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
101 static const struct ieee80211_rateset ieee80211_rateset_11b =
102 	{ 4, { B(2), B(4), B(11), B(22) } };
103 /* NB: OFDM rates are handled specially based on mode */
104 static const struct ieee80211_rateset ieee80211_rateset_11g =
105 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
106 #undef B
107 
108 /*
109  * Fill in 802.11 available channel set, mark
110  * all available channels as active, and pick
111  * a default channel if not already specified.
112  */
113 static void
114 ieee80211_chan_init(struct ieee80211com *ic)
115 {
116 #define	DEFAULTRATES(m, def) do { \
117 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
118 		ic->ic_sup_rates[m] = def; \
119 } while (0)
120 	struct ieee80211_channel *c;
121 	int i;
122 
123 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
124 		("invalid number of channels specified: %u", ic->ic_nchans));
125 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
126 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
127 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
128 	for (i = 0; i < ic->ic_nchans; i++) {
129 		c = &ic->ic_channels[i];
130 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
131 		/*
132 		 * Help drivers that work only with frequencies by filling
133 		 * in IEEE channel #'s if not already calculated.  Note this
134 		 * mimics similar work done in ieee80211_setregdomain when
135 		 * changing regulatory state.
136 		 */
137 		if (c->ic_ieee == 0)
138 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
139 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
140 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
141 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
142 			    c->ic_flags);
143 		/* default max tx power to max regulatory */
144 		if (c->ic_maxpower == 0)
145 			c->ic_maxpower = 2*c->ic_maxregpower;
146 		setbit(ic->ic_chan_avail, c->ic_ieee);
147 		/*
148 		 * Identify mode capabilities.
149 		 */
150 		if (IEEE80211_IS_CHAN_A(c))
151 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
152 		if (IEEE80211_IS_CHAN_B(c))
153 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
154 		if (IEEE80211_IS_CHAN_ANYG(c))
155 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
156 		if (IEEE80211_IS_CHAN_FHSS(c))
157 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
158 		if (IEEE80211_IS_CHAN_108A(c))
159 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
160 		if (IEEE80211_IS_CHAN_108G(c))
161 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
162 		if (IEEE80211_IS_CHAN_ST(c))
163 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
164 		if (IEEE80211_IS_CHAN_HALF(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
166 		if (IEEE80211_IS_CHAN_QUARTER(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
168 		if (IEEE80211_IS_CHAN_HTA(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
170 		if (IEEE80211_IS_CHAN_HTG(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
172 	}
173 	/* initialize candidate channels to all available */
174 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
175 		sizeof(ic->ic_chan_avail));
176 
177 	/* sort channel table to allow lookup optimizations */
178 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
179 
180 	/* invalidate any previous state */
181 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
182 	ic->ic_prevchan = NULL;
183 	ic->ic_csa_newchan = NULL;
184 	/* arbitrarily pick the first channel */
185 	ic->ic_curchan = &ic->ic_channels[0];
186 
187 	/* fillin well-known rate sets if driver has not specified */
188 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
189 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
190 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
191 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
192 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
193 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
194 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
195 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
196 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
197 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
198 
199 	/*
200 	 * Set auto mode to reset active channel state and any desired channel.
201 	 */
202 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
203 #undef DEFAULTRATES
204 }
205 
206 static void
207 null_update_mcast(struct ifnet *ifp)
208 {
209 	if_printf(ifp, "need multicast update callback\n");
210 }
211 
212 static void
213 null_update_promisc(struct ifnet *ifp)
214 {
215 	if_printf(ifp, "need promiscuous mode update callback\n");
216 }
217 
218 static int
219 null_output(struct ifnet *ifp, struct mbuf *m,
220 	struct sockaddr *dst, struct rtentry *rt0)
221 {
222 	if_printf(ifp, "discard raw packet\n");
223 	m_freem(m);
224 	return EIO;
225 }
226 
227 static void
228 null_input(struct ifnet *ifp, struct mbuf *m)
229 {
230 	if_printf(ifp, "if_input should not be called\n");
231 	m_freem(m);
232 }
233 
234 /*
235  * Attach/setup the common net80211 state.  Called by
236  * the driver on attach to prior to creating any vap's.
237  */
238 void
239 ieee80211_ifattach(struct ieee80211com *ic)
240 {
241 	struct ifnet *ifp = ic->ic_ifp;
242 	struct sockaddr_dl *sdl;
243 	struct ifaddr *ifa;
244 
245 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
246 
247 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
248 	TAILQ_INIT(&ic->ic_vaps);
249 	/*
250 	 * Fill in 802.11 available channel set, mark all
251 	 * available channels as active, and pick a default
252 	 * channel if not already specified.
253 	 */
254 	ieee80211_media_init(ic);
255 
256 	ic->ic_update_mcast = null_update_mcast;
257 	ic->ic_update_promisc = null_update_promisc;
258 
259 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
260 	ic->ic_lintval = ic->ic_bintval;
261 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
262 
263 	ieee80211_crypto_attach(ic);
264 	ieee80211_node_attach(ic);
265 	ieee80211_power_attach(ic);
266 	ieee80211_proto_attach(ic);
267 	ieee80211_ht_attach(ic);
268 	ieee80211_scan_attach(ic);
269 	ieee80211_regdomain_attach(ic);
270 
271 	ieee80211_sysctl_attach(ic);
272 
273 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
274 	ifp->if_hdrlen = 0;
275 	if_attach(ifp);
276 	ifp->if_mtu = IEEE80211_MTU_MAX;
277 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
278 	ifp->if_output = null_output;
279 	ifp->if_input = null_input;	/* just in case */
280 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
281 
282 	ifa = ifaddr_byindex(ifp->if_index);
283 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
284 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
285 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
286 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
287 	IEEE80211_ADDR_COPY(LLADDR(sdl), ic->ic_myaddr);
288 }
289 
290 /*
291  * Detach net80211 state on device detach.  Tear down
292  * all vap's and reclaim all common state prior to the
293  * device state going away.  Note we may call back into
294  * driver; it must be prepared for this.
295  */
296 void
297 ieee80211_ifdetach(struct ieee80211com *ic)
298 {
299 	struct ifnet *ifp = ic->ic_ifp;
300 	struct ieee80211vap *vap;
301 
302 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
303 		ieee80211_vap_destroy(vap);
304 	ieee80211_waitfor_parent(ic);
305 
306 	ieee80211_sysctl_detach(ic);
307 	ieee80211_regdomain_detach(ic);
308 	ieee80211_scan_detach(ic);
309 	ieee80211_ht_detach(ic);
310 	/* NB: must be called before ieee80211_node_detach */
311 	ieee80211_proto_detach(ic);
312 	ieee80211_crypto_detach(ic);
313 	ieee80211_power_detach(ic);
314 	ieee80211_node_detach(ic);
315 	ifmedia_removeall(&ic->ic_media);
316 
317 	IEEE80211_LOCK_DESTROY(ic);
318 	if_detach(ifp);
319 }
320 
321 /*
322  * Default reset method for use with the ioctl support.  This
323  * method is invoked after any state change in the 802.11
324  * layer that should be propagated to the hardware but not
325  * require re-initialization of the 802.11 state machine (e.g
326  * rescanning for an ap).  We always return ENETRESET which
327  * should cause the driver to re-initialize the device. Drivers
328  * can override this method to implement more optimized support.
329  */
330 static int
331 default_reset(struct ieee80211vap *vap, u_long cmd)
332 {
333 	return ENETRESET;
334 }
335 
336 /*
337  * Prepare a vap for use.  Drivers use this call to
338  * setup net80211 state in new vap's prior attaching
339  * them with ieee80211_vap_attach (below).
340  */
341 int
342 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
343 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
344 	const uint8_t bssid[IEEE80211_ADDR_LEN],
345 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
346 {
347 	struct ifnet *ifp;
348 
349 	ifp = if_alloc(IFT_ETHER);
350 	if (ifp == NULL) {
351 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
352 		    __func__);
353 		return ENOMEM;
354 	}
355 	if_initname(ifp, name, unit);
356 	ifp->if_softc = vap;			/* back pointer */
357 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
358 	ifp->if_start = ieee80211_start;
359 	ifp->if_ioctl = ieee80211_ioctl;
360 	ifp->if_watchdog = NULL;		/* NB: no watchdog routine */
361 	ifp->if_init = ieee80211_init;
362 	/* NB: input+output filled in by ether_ifattach */
363 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
364 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
365 	IFQ_SET_READY(&ifp->if_snd);
366 
367 	vap->iv_ifp = ifp;
368 	vap->iv_ic = ic;
369 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
370 	vap->iv_flags_ext = ic->ic_flags_ext;
371 	vap->iv_flags_ven = ic->ic_flags_ven;
372 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
373 	vap->iv_htcaps = ic->ic_htcaps;
374 	vap->iv_opmode = opmode;
375 	vap->iv_caps |= ieee80211_opcap[opmode];
376 	switch (opmode) {
377 	case IEEE80211_M_WDS:
378 		/*
379 		 * WDS links must specify the bssid of the far end.
380 		 * For legacy operation this is a static relationship.
381 		 * For non-legacy operation the station must associate
382 		 * and be authorized to pass traffic.  Plumbing the
383 		 * vap to the proper node happens when the vap
384 		 * transitions to RUN state.
385 		 */
386 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
387 		vap->iv_flags |= IEEE80211_F_DESBSSID;
388 		if (flags & IEEE80211_CLONE_WDSLEGACY)
389 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
390 		break;
391 #ifdef IEEE80211_SUPPORT_TDMA
392 	case IEEE80211_M_AHDEMO:
393 		if (flags & IEEE80211_CLONE_TDMA) {
394 			/* NB: checked before clone operation allowed */
395 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
396 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
397 			/*
398 			 * Propagate TDMA capability to mark vap; this
399 			 * cannot be removed and is used to distinguish
400 			 * regular ahdemo operation from ahdemo+tdma.
401 			 */
402 			vap->iv_caps |= IEEE80211_C_TDMA;
403 		}
404 		break;
405 #endif
406 	}
407 	/* auto-enable s/w beacon miss support */
408 	if (flags & IEEE80211_CLONE_NOBEACONS)
409 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
410 	/*
411 	 * Enable various functionality by default if we're
412 	 * capable; the driver can override us if it knows better.
413 	 */
414 	if (vap->iv_caps & IEEE80211_C_WME)
415 		vap->iv_flags |= IEEE80211_F_WME;
416 	if (vap->iv_caps & IEEE80211_C_BURST)
417 		vap->iv_flags |= IEEE80211_F_BURST;
418 	if (vap->iv_caps & IEEE80211_C_FF)
419 		vap->iv_flags |= IEEE80211_F_FF;
420 	if (vap->iv_caps & IEEE80211_C_TURBOP)
421 		vap->iv_flags |= IEEE80211_F_TURBOP;
422 	/* NB: bg scanning only makes sense for station mode right now */
423 	if (vap->iv_opmode == IEEE80211_M_STA &&
424 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
425 		vap->iv_flags |= IEEE80211_F_BGSCAN;
426 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
427 	/* NB: DFS support only makes sense for ap mode right now */
428 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
429 	    (vap->iv_caps & IEEE80211_C_DFS))
430 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
431 
432 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
433 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
434 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
435 	/*
436 	 * Install a default reset method for the ioctl support;
437 	 * the driver can override this.
438 	 */
439 	vap->iv_reset = default_reset;
440 
441 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
442 
443 	ieee80211_sysctl_vattach(vap);
444 	ieee80211_crypto_vattach(vap);
445 	ieee80211_node_vattach(vap);
446 	ieee80211_power_vattach(vap);
447 	ieee80211_proto_vattach(vap);
448 	ieee80211_ht_vattach(vap);
449 	ieee80211_scan_vattach(vap);
450 	ieee80211_regdomain_vattach(vap);
451 
452 	return 0;
453 }
454 
455 /*
456  * Activate a vap.  State should have been prepared with a
457  * call to ieee80211_vap_setup and by the driver.  On return
458  * from this call the vap is ready for use.
459  */
460 int
461 ieee80211_vap_attach(struct ieee80211vap *vap,
462 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
463 {
464 	struct ifnet *ifp = vap->iv_ifp;
465 	struct ieee80211com *ic = vap->iv_ic;
466 	struct ifmediareq imr;
467 	int maxrate;
468 
469 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
470 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
471 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
472 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
473 
474 	/*
475 	 * Do late attach work that cannot happen until after
476 	 * the driver has had a chance to override defaults.
477 	 */
478 	ieee80211_node_latevattach(vap);
479 	ieee80211_power_latevattach(vap);
480 
481 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
482 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
483 	ieee80211_media_status(ifp, &imr);
484 	/* NB: strip explicit mode; we're actually in autoselect */
485 	ifmedia_set(&vap->iv_media,
486 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
487 	if (maxrate)
488 		ifp->if_baudrate = IF_Mbps(maxrate);
489 
490 	ether_ifattach(ifp, vap->iv_myaddr);
491 	/* hook output method setup by ether_ifattach */
492 	vap->iv_output = ifp->if_output;
493 	ifp->if_output = ieee80211_output;
494 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
495 	bpfattach2(ifp, DLT_IEEE802_11, ifp->if_hdrlen, &vap->iv_rawbpf);
496 
497 	IEEE80211_LOCK(ic);
498 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
499 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
500 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
501 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
502 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
503 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT);
504 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40);
505 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
506 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
507 	IEEE80211_UNLOCK(ic);
508 
509 	return 1;
510 }
511 
512 /*
513  * Tear down vap state and reclaim the ifnet.
514  * The driver is assumed to have prepared for
515  * this; e.g. by turning off interrupts for the
516  * underlying device.
517  */
518 void
519 ieee80211_vap_detach(struct ieee80211vap *vap)
520 {
521 	struct ieee80211com *ic = vap->iv_ic;
522 	struct ifnet *ifp = vap->iv_ifp;
523 
524 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
525 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
526 	    ic->ic_ifp->if_xname);
527 
528 	IEEE80211_LOCK(ic);
529 	/* block traffic from above */
530 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
531 	/*
532 	 * Evil hack.  Clear the backpointer from the ifnet to the
533 	 * vap so any requests from above will return an error or
534 	 * be ignored.  In particular this short-circuits requests
535 	 * by the bridge to turn off promiscuous mode as a result
536 	 * of calling ether_ifdetach.
537 	 */
538 	ifp->if_softc = NULL;
539 	/*
540 	 * Stop the vap before detaching the ifnet.  Ideally we'd
541 	 * do this in the other order so the ifnet is inaccessible
542 	 * while we cleanup internal state but that is hard.
543 	 */
544 	ieee80211_stop_locked(vap);
545 
546 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
547 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
548 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
549 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
550 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
551 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT);
552 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40);
553 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
554 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
555 	IEEE80211_UNLOCK(ic);
556 
557 	/* XXX can't hold com lock */
558 	/* NB: bpfattach is called by ether_ifdetach and claims all taps */
559 	ether_ifdetach(ifp);
560 
561 	ifmedia_removeall(&vap->iv_media);
562 
563 	ieee80211_regdomain_vdetach(vap);
564 	ieee80211_scan_vdetach(vap);
565 	ieee80211_ht_vdetach(vap);
566 	/* NB: must be before ieee80211_node_vdetach */
567 	ieee80211_proto_vdetach(vap);
568 	ieee80211_crypto_vdetach(vap);
569 	ieee80211_power_vdetach(vap);
570 	ieee80211_node_vdetach(vap);
571 	ieee80211_sysctl_vdetach(vap);
572 
573 	if_free(ifp);
574 }
575 
576 /*
577  * Synchronize flag bit state in the parent ifnet structure
578  * according to the state of all vap ifnet's.  This is used,
579  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
580  */
581 void
582 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
583 {
584 	struct ifnet *ifp = ic->ic_ifp;
585 	struct ieee80211vap *vap;
586 	int bit, oflags;
587 
588 	IEEE80211_LOCK_ASSERT(ic);
589 
590 	bit = 0;
591 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
592 		if (vap->iv_ifp->if_flags & flag) {
593 			/*
594 			 * XXX the bridge sets PROMISC but we don't want to
595 			 * enable it on the device, discard here so all the
596 			 * drivers don't need to special-case it
597 			 */
598 			if (flag == IFF_PROMISC &&
599 			    vap->iv_opmode == IEEE80211_M_HOSTAP)
600 				continue;
601 			bit = 1;
602 			break;
603 		}
604 	oflags = ifp->if_flags;
605 	if (bit)
606 		ifp->if_flags |= flag;
607 	else
608 		ifp->if_flags &= ~flag;
609 	if ((ifp->if_flags ^ oflags) & flag) {
610 		/* XXX should we return 1/0 and let caller do this? */
611 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
612 			if (flag == IFF_PROMISC)
613 				ic->ic_update_promisc(ifp);
614 			else if (flag == IFF_ALLMULTI)
615 				ic->ic_update_mcast(ifp);
616 		}
617 	}
618 }
619 
620 /*
621  * Synchronize flag bit state in the com structure
622  * according to the state of all vap's.  This is used,
623  * for example, to handle state changes via ioctls.
624  */
625 static void
626 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
627 {
628 	struct ieee80211vap *vap;
629 	int bit;
630 
631 	IEEE80211_LOCK_ASSERT(ic);
632 
633 	bit = 0;
634 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
635 		if (vap->iv_flags & flag) {
636 			bit = 1;
637 			break;
638 		}
639 	if (bit)
640 		ic->ic_flags |= flag;
641 	else
642 		ic->ic_flags &= ~flag;
643 }
644 
645 void
646 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
647 {
648 	struct ieee80211com *ic = vap->iv_ic;
649 
650 	IEEE80211_LOCK(ic);
651 	if (flag < 0) {
652 		flag = -flag;
653 		vap->iv_flags &= ~flag;
654 	} else
655 		vap->iv_flags |= flag;
656 	ieee80211_syncflag_locked(ic, flag);
657 	IEEE80211_UNLOCK(ic);
658 }
659 
660 /*
661  * Synchronize flag bit state in the com structure
662  * according to the state of all vap's.  This is used,
663  * for example, to handle state changes via ioctls.
664  */
665 static void
666 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
667 {
668 	struct ieee80211vap *vap;
669 	int bit;
670 
671 	IEEE80211_LOCK_ASSERT(ic);
672 
673 	bit = 0;
674 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
675 		if (vap->iv_flags_ext & flag) {
676 			bit = 1;
677 			break;
678 		}
679 	if (bit)
680 		ic->ic_flags_ext |= flag;
681 	else
682 		ic->ic_flags_ext &= ~flag;
683 }
684 
685 void
686 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
687 {
688 	struct ieee80211com *ic = vap->iv_ic;
689 
690 	IEEE80211_LOCK(ic);
691 	if (flag < 0) {
692 		flag = -flag;
693 		vap->iv_flags_ext &= ~flag;
694 	} else
695 		vap->iv_flags_ext |= flag;
696 	ieee80211_syncflag_ext_locked(ic, flag);
697 	IEEE80211_UNLOCK(ic);
698 }
699 
700 static __inline int
701 mapgsm(u_int freq, u_int flags)
702 {
703 	freq *= 10;
704 	if (flags & IEEE80211_CHAN_QUARTER)
705 		freq += 5;
706 	else if (flags & IEEE80211_CHAN_HALF)
707 		freq += 10;
708 	else
709 		freq += 20;
710 	/* NB: there is no 907/20 wide but leave room */
711 	return (freq - 906*10) / 5;
712 }
713 
714 static __inline int
715 mappsb(u_int freq, u_int flags)
716 {
717 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
718 }
719 
720 /*
721  * Convert MHz frequency to IEEE channel number.
722  */
723 int
724 ieee80211_mhz2ieee(u_int freq, u_int flags)
725 {
726 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
727 	if (flags & IEEE80211_CHAN_GSM)
728 		return mapgsm(freq, flags);
729 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
730 		if (freq == 2484)
731 			return 14;
732 		if (freq < 2484)
733 			return ((int) freq - 2407) / 5;
734 		else
735 			return 15 + ((freq - 2512) / 20);
736 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
737 		if (freq <= 5000) {
738 			/* XXX check regdomain? */
739 			if (IS_FREQ_IN_PSB(freq))
740 				return mappsb(freq, flags);
741 			return (freq - 4000) / 5;
742 		} else
743 			return (freq - 5000) / 5;
744 	} else {				/* either, guess */
745 		if (freq == 2484)
746 			return 14;
747 		if (freq < 2484) {
748 			if (907 <= freq && freq <= 922)
749 				return mapgsm(freq, flags);
750 			return ((int) freq - 2407) / 5;
751 		}
752 		if (freq < 5000) {
753 			if (IS_FREQ_IN_PSB(freq))
754 				return mappsb(freq, flags);
755 			else if (freq > 4900)
756 				return (freq - 4000) / 5;
757 			else
758 				return 15 + ((freq - 2512) / 20);
759 		}
760 		return (freq - 5000) / 5;
761 	}
762 #undef IS_FREQ_IN_PSB
763 }
764 
765 /*
766  * Convert channel to IEEE channel number.
767  */
768 int
769 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
770 {
771 	if (c == NULL) {
772 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
773 		return 0;		/* XXX */
774 	}
775 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
776 }
777 
778 /*
779  * Convert IEEE channel number to MHz frequency.
780  */
781 u_int
782 ieee80211_ieee2mhz(u_int chan, u_int flags)
783 {
784 	if (flags & IEEE80211_CHAN_GSM)
785 		return 907 + 5 * (chan / 10);
786 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
787 		if (chan == 14)
788 			return 2484;
789 		if (chan < 14)
790 			return 2407 + chan*5;
791 		else
792 			return 2512 + ((chan-15)*20);
793 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
794 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
795 			chan -= 37;
796 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
797 		}
798 		return 5000 + (chan*5);
799 	} else {				/* either, guess */
800 		/* XXX can't distinguish PSB+GSM channels */
801 		if (chan == 14)
802 			return 2484;
803 		if (chan < 14)			/* 0-13 */
804 			return 2407 + chan*5;
805 		if (chan < 27)			/* 15-26 */
806 			return 2512 + ((chan-15)*20);
807 		return 5000 + (chan*5);
808 	}
809 }
810 
811 /*
812  * Locate a channel given a frequency+flags.  We cache
813  * the previous lookup to optimize switching between two
814  * channels--as happens with dynamic turbo.
815  */
816 struct ieee80211_channel *
817 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
818 {
819 	struct ieee80211_channel *c;
820 	int i;
821 
822 	flags &= IEEE80211_CHAN_ALLTURBO;
823 	c = ic->ic_prevchan;
824 	if (c != NULL && c->ic_freq == freq &&
825 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
826 		return c;
827 	/* brute force search */
828 	for (i = 0; i < ic->ic_nchans; i++) {
829 		c = &ic->ic_channels[i];
830 		if (c->ic_freq == freq &&
831 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
832 			return c;
833 	}
834 	return NULL;
835 }
836 
837 /*
838  * Locate a channel given a channel number+flags.  We cache
839  * the previous lookup to optimize switching between two
840  * channels--as happens with dynamic turbo.
841  */
842 struct ieee80211_channel *
843 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
844 {
845 	struct ieee80211_channel *c;
846 	int i;
847 
848 	flags &= IEEE80211_CHAN_ALLTURBO;
849 	c = ic->ic_prevchan;
850 	if (c != NULL && c->ic_ieee == ieee &&
851 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
852 		return c;
853 	/* brute force search */
854 	for (i = 0; i < ic->ic_nchans; i++) {
855 		c = &ic->ic_channels[i];
856 		if (c->ic_ieee == ieee &&
857 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
858 			return c;
859 	}
860 	return NULL;
861 }
862 
863 static void
864 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
865 {
866 #define	ADD(_ic, _s, _o) \
867 	ifmedia_add(media, \
868 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
869 	static const u_int mopts[IEEE80211_MODE_MAX] = {
870 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
871 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
872 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
873 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
874 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
875 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
876 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
877 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
878 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
879 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
880 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
881 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
882 	};
883 	u_int mopt;
884 
885 	mopt = mopts[mode];
886 	if (addsta)
887 		ADD(ic, mword, mopt);	/* STA mode has no cap */
888 	if (caps & IEEE80211_C_IBSS)
889 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
890 	if (caps & IEEE80211_C_HOSTAP)
891 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
892 	if (caps & IEEE80211_C_AHDEMO)
893 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
894 	if (caps & IEEE80211_C_MONITOR)
895 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
896 	if (caps & IEEE80211_C_WDS)
897 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
898 #undef ADD
899 }
900 
901 /*
902  * Setup the media data structures according to the channel and
903  * rate tables.
904  */
905 static int
906 ieee80211_media_setup(struct ieee80211com *ic,
907 	struct ifmedia *media, int caps, int addsta,
908 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
909 {
910 	int i, j, mode, rate, maxrate, mword, r;
911 	const struct ieee80211_rateset *rs;
912 	struct ieee80211_rateset allrates;
913 
914 	/*
915 	 * Fill in media characteristics.
916 	 */
917 	ifmedia_init(media, 0, media_change, media_stat);
918 	maxrate = 0;
919 	/*
920 	 * Add media for legacy operating modes.
921 	 */
922 	memset(&allrates, 0, sizeof(allrates));
923 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
924 		if (isclr(ic->ic_modecaps, mode))
925 			continue;
926 		addmedia(media, caps, addsta, mode, IFM_AUTO);
927 		if (mode == IEEE80211_MODE_AUTO)
928 			continue;
929 		rs = &ic->ic_sup_rates[mode];
930 		for (i = 0; i < rs->rs_nrates; i++) {
931 			rate = rs->rs_rates[i];
932 			mword = ieee80211_rate2media(ic, rate, mode);
933 			if (mword == 0)
934 				continue;
935 			addmedia(media, caps, addsta, mode, mword);
936 			/*
937 			 * Add legacy rate to the collection of all rates.
938 			 */
939 			r = rate & IEEE80211_RATE_VAL;
940 			for (j = 0; j < allrates.rs_nrates; j++)
941 				if (allrates.rs_rates[j] == r)
942 					break;
943 			if (j == allrates.rs_nrates) {
944 				/* unique, add to the set */
945 				allrates.rs_rates[j] = r;
946 				allrates.rs_nrates++;
947 			}
948 			rate = (rate & IEEE80211_RATE_VAL) / 2;
949 			if (rate > maxrate)
950 				maxrate = rate;
951 		}
952 	}
953 	for (i = 0; i < allrates.rs_nrates; i++) {
954 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
955 				IEEE80211_MODE_AUTO);
956 		if (mword == 0)
957 			continue;
958 		/* NB: remove media options from mword */
959 		addmedia(media, caps, addsta,
960 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
961 	}
962 	/*
963 	 * Add HT/11n media.  Note that we do not have enough
964 	 * bits in the media subtype to express the MCS so we
965 	 * use a "placeholder" media subtype and any fixed MCS
966 	 * must be specified with a different mechanism.
967 	 */
968 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
969 		if (isclr(ic->ic_modecaps, mode))
970 			continue;
971 		addmedia(media, caps, addsta, mode, IFM_AUTO);
972 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
973 	}
974 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
975 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
976 		addmedia(media, caps, addsta,
977 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
978 		/* XXX could walk htrates */
979 		/* XXX known array size */
980 		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
981 			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
982 	}
983 	return maxrate;
984 }
985 
986 void
987 ieee80211_media_init(struct ieee80211com *ic)
988 {
989 	struct ifnet *ifp = ic->ic_ifp;
990 	int maxrate;
991 
992 	/* NB: this works because the structure is initialized to zero */
993 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
994 		/*
995 		 * We are re-initializing the channel list; clear
996 		 * the existing media state as the media routines
997 		 * don't suppress duplicates.
998 		 */
999 		ifmedia_removeall(&ic->ic_media);
1000 	}
1001 	ieee80211_chan_init(ic);
1002 
1003 	/*
1004 	 * Recalculate media settings in case new channel list changes
1005 	 * the set of available modes.
1006 	 */
1007 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1008 		ieee80211com_media_change, ieee80211com_media_status);
1009 	/* NB: strip explicit mode; we're actually in autoselect */
1010 	ifmedia_set(&ic->ic_media,
1011 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1012 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1013 	if (maxrate)
1014 		ifp->if_baudrate = IF_Mbps(maxrate);
1015 
1016 	/* XXX need to propagate new media settings to vap's */
1017 }
1018 
1019 /* XXX inline or eliminate? */
1020 const struct ieee80211_rateset *
1021 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1022 {
1023 	/* XXX does this work for 11ng basic rates? */
1024 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1025 }
1026 
1027 void
1028 ieee80211_announce(struct ieee80211com *ic)
1029 {
1030 	struct ifnet *ifp = ic->ic_ifp;
1031 	int i, mode, rate, mword;
1032 	const struct ieee80211_rateset *rs;
1033 
1034 	/* NB: skip AUTO since it has no rates */
1035 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1036 		if (isclr(ic->ic_modecaps, mode))
1037 			continue;
1038 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1039 		rs = &ic->ic_sup_rates[mode];
1040 		for (i = 0; i < rs->rs_nrates; i++) {
1041 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1042 			if (mword == 0)
1043 				continue;
1044 			rate = ieee80211_media2rate(mword);
1045 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1046 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1047 		}
1048 		printf("\n");
1049 	}
1050 	ieee80211_ht_announce(ic);
1051 }
1052 
1053 void
1054 ieee80211_announce_channels(struct ieee80211com *ic)
1055 {
1056 	const struct ieee80211_channel *c;
1057 	char type;
1058 	int i, cw;
1059 
1060 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1061 	for (i = 0; i < ic->ic_nchans; i++) {
1062 		c = &ic->ic_channels[i];
1063 		if (IEEE80211_IS_CHAN_ST(c))
1064 			type = 'S';
1065 		else if (IEEE80211_IS_CHAN_108A(c))
1066 			type = 'T';
1067 		else if (IEEE80211_IS_CHAN_108G(c))
1068 			type = 'G';
1069 		else if (IEEE80211_IS_CHAN_HT(c))
1070 			type = 'n';
1071 		else if (IEEE80211_IS_CHAN_A(c))
1072 			type = 'a';
1073 		else if (IEEE80211_IS_CHAN_ANYG(c))
1074 			type = 'g';
1075 		else if (IEEE80211_IS_CHAN_B(c))
1076 			type = 'b';
1077 		else
1078 			type = 'f';
1079 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1080 			cw = 40;
1081 		else if (IEEE80211_IS_CHAN_HALF(c))
1082 			cw = 10;
1083 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1084 			cw = 5;
1085 		else
1086 			cw = 20;
1087 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1088 			, c->ic_ieee, c->ic_freq, type
1089 			, cw
1090 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1091 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1092 			, c->ic_maxregpower
1093 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1094 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1095 		);
1096 	}
1097 }
1098 
1099 static int
1100 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1101 {
1102 	switch (IFM_MODE(ime->ifm_media)) {
1103 	case IFM_IEEE80211_11A:
1104 		*mode = IEEE80211_MODE_11A;
1105 		break;
1106 	case IFM_IEEE80211_11B:
1107 		*mode = IEEE80211_MODE_11B;
1108 		break;
1109 	case IFM_IEEE80211_11G:
1110 		*mode = IEEE80211_MODE_11G;
1111 		break;
1112 	case IFM_IEEE80211_FH:
1113 		*mode = IEEE80211_MODE_FH;
1114 		break;
1115 	case IFM_IEEE80211_11NA:
1116 		*mode = IEEE80211_MODE_11NA;
1117 		break;
1118 	case IFM_IEEE80211_11NG:
1119 		*mode = IEEE80211_MODE_11NG;
1120 		break;
1121 	case IFM_AUTO:
1122 		*mode = IEEE80211_MODE_AUTO;
1123 		break;
1124 	default:
1125 		return 0;
1126 	}
1127 	/*
1128 	 * Turbo mode is an ``option''.
1129 	 * XXX does not apply to AUTO
1130 	 */
1131 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1132 		if (*mode == IEEE80211_MODE_11A) {
1133 			if (flags & IEEE80211_F_TURBOP)
1134 				*mode = IEEE80211_MODE_TURBO_A;
1135 			else
1136 				*mode = IEEE80211_MODE_STURBO_A;
1137 		} else if (*mode == IEEE80211_MODE_11G)
1138 			*mode = IEEE80211_MODE_TURBO_G;
1139 		else
1140 			return 0;
1141 	}
1142 	/* XXX HT40 +/- */
1143 	return 1;
1144 }
1145 
1146 /*
1147  * Handle a media change request on the underlying interface.
1148  */
1149 int
1150 ieee80211com_media_change(struct ifnet *ifp)
1151 {
1152 	return EINVAL;
1153 }
1154 
1155 /*
1156  * Handle a media change request on the vap interface.
1157  */
1158 int
1159 ieee80211_media_change(struct ifnet *ifp)
1160 {
1161 	struct ieee80211vap *vap = ifp->if_softc;
1162 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1163 	uint16_t newmode;
1164 
1165 	if (!media2mode(ime, vap->iv_flags, &newmode))
1166 		return EINVAL;
1167 	if (vap->iv_des_mode != newmode) {
1168 		vap->iv_des_mode = newmode;
1169 		return ENETRESET;
1170 	}
1171 	return 0;
1172 }
1173 
1174 /*
1175  * Common code to calculate the media status word
1176  * from the operating mode and channel state.
1177  */
1178 static int
1179 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1180 {
1181 	int status;
1182 
1183 	status = IFM_IEEE80211;
1184 	switch (opmode) {
1185 	case IEEE80211_M_STA:
1186 		break;
1187 	case IEEE80211_M_IBSS:
1188 		status |= IFM_IEEE80211_ADHOC;
1189 		break;
1190 	case IEEE80211_M_HOSTAP:
1191 		status |= IFM_IEEE80211_HOSTAP;
1192 		break;
1193 	case IEEE80211_M_MONITOR:
1194 		status |= IFM_IEEE80211_MONITOR;
1195 		break;
1196 	case IEEE80211_M_AHDEMO:
1197 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1198 		break;
1199 	case IEEE80211_M_WDS:
1200 		status |= IFM_IEEE80211_WDS;
1201 		break;
1202 	}
1203 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1204 		status |= IFM_IEEE80211_11NA;
1205 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1206 		status |= IFM_IEEE80211_11NG;
1207 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1208 		status |= IFM_IEEE80211_11A;
1209 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1210 		status |= IFM_IEEE80211_11B;
1211 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1212 		status |= IFM_IEEE80211_11G;
1213 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1214 		status |= IFM_IEEE80211_FH;
1215 	}
1216 	/* XXX else complain? */
1217 
1218 	if (IEEE80211_IS_CHAN_TURBO(chan))
1219 		status |= IFM_IEEE80211_TURBO;
1220 #if 0
1221 	if (IEEE80211_IS_CHAN_HT20(chan))
1222 		status |= IFM_IEEE80211_HT20;
1223 	if (IEEE80211_IS_CHAN_HT40(chan))
1224 		status |= IFM_IEEE80211_HT40;
1225 #endif
1226 	return status;
1227 }
1228 
1229 static void
1230 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1231 {
1232 	struct ieee80211com *ic = ifp->if_l2com;
1233 	struct ieee80211vap *vap;
1234 
1235 	imr->ifm_status = IFM_AVALID;
1236 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1237 		if (vap->iv_ifp->if_flags & IFF_UP) {
1238 			imr->ifm_status |= IFM_ACTIVE;
1239 			break;
1240 		}
1241 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1242 	if (imr->ifm_status & IFM_ACTIVE)
1243 		imr->ifm_current = imr->ifm_active;
1244 }
1245 
1246 void
1247 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1248 {
1249 	struct ieee80211vap *vap = ifp->if_softc;
1250 	struct ieee80211com *ic = vap->iv_ic;
1251 	enum ieee80211_phymode mode;
1252 
1253 	imr->ifm_status = IFM_AVALID;
1254 	/*
1255 	 * NB: use the current channel's mode to lock down a xmit
1256 	 * rate only when running; otherwise we may have a mismatch
1257 	 * in which case the rate will not be convertible.
1258 	 */
1259 	if (vap->iv_state == IEEE80211_S_RUN) {
1260 		imr->ifm_status |= IFM_ACTIVE;
1261 		mode = ieee80211_chan2mode(ic->ic_curchan);
1262 	} else
1263 		mode = IEEE80211_MODE_AUTO;
1264 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1265 	/*
1266 	 * Calculate a current rate if possible.
1267 	 */
1268 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1269 		/*
1270 		 * A fixed rate is set, report that.
1271 		 */
1272 		imr->ifm_active |= ieee80211_rate2media(ic,
1273 			vap->iv_txparms[mode].ucastrate, mode);
1274 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1275 		/*
1276 		 * In station mode report the current transmit rate.
1277 		 */
1278 		imr->ifm_active |= ieee80211_rate2media(ic,
1279 			vap->iv_bss->ni_txrate, mode);
1280 	} else
1281 		imr->ifm_active |= IFM_AUTO;
1282 	if (imr->ifm_status & IFM_ACTIVE)
1283 		imr->ifm_current = imr->ifm_active;
1284 }
1285 
1286 /*
1287  * Set the current phy mode and recalculate the active channel
1288  * set based on the available channels for this mode.  Also
1289  * select a new default/current channel if the current one is
1290  * inappropriate for this mode.
1291  */
1292 int
1293 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1294 {
1295 	/*
1296 	 * Adjust basic rates in 11b/11g supported rate set.
1297 	 * Note that if operating on a hal/quarter rate channel
1298 	 * this is a noop as those rates sets are different
1299 	 * and used instead.
1300 	 */
1301 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1302 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1303 
1304 	ic->ic_curmode = mode;
1305 	ieee80211_reset_erp(ic);	/* reset ERP state */
1306 
1307 	return 0;
1308 }
1309 
1310 /*
1311  * Return the phy mode for with the specified channel.
1312  */
1313 enum ieee80211_phymode
1314 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1315 {
1316 
1317 	if (IEEE80211_IS_CHAN_HTA(chan))
1318 		return IEEE80211_MODE_11NA;
1319 	else if (IEEE80211_IS_CHAN_HTG(chan))
1320 		return IEEE80211_MODE_11NG;
1321 	else if (IEEE80211_IS_CHAN_108G(chan))
1322 		return IEEE80211_MODE_TURBO_G;
1323 	else if (IEEE80211_IS_CHAN_ST(chan))
1324 		return IEEE80211_MODE_STURBO_A;
1325 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1326 		return IEEE80211_MODE_TURBO_A;
1327 	else if (IEEE80211_IS_CHAN_HALF(chan))
1328 		return IEEE80211_MODE_HALF;
1329 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1330 		return IEEE80211_MODE_QUARTER;
1331 	else if (IEEE80211_IS_CHAN_A(chan))
1332 		return IEEE80211_MODE_11A;
1333 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1334 		return IEEE80211_MODE_11G;
1335 	else if (IEEE80211_IS_CHAN_B(chan))
1336 		return IEEE80211_MODE_11B;
1337 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1338 		return IEEE80211_MODE_FH;
1339 
1340 	/* NB: should not get here */
1341 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1342 		__func__, chan->ic_freq, chan->ic_flags);
1343 	return IEEE80211_MODE_11B;
1344 }
1345 
1346 struct ratemedia {
1347 	u_int	match;	/* rate + mode */
1348 	u_int	media;	/* if_media rate */
1349 };
1350 
1351 static int
1352 findmedia(const struct ratemedia rates[], int n, u_int match)
1353 {
1354 	int i;
1355 
1356 	for (i = 0; i < n; i++)
1357 		if (rates[i].match == match)
1358 			return rates[i].media;
1359 	return IFM_AUTO;
1360 }
1361 
1362 /*
1363  * Convert IEEE80211 rate value to ifmedia subtype.
1364  * Rate is either a legacy rate in units of 0.5Mbps
1365  * or an MCS index.
1366  */
1367 int
1368 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1369 {
1370 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1371 	static const struct ratemedia rates[] = {
1372 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1373 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1374 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1375 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1376 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1377 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1378 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1379 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1380 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1381 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1382 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1383 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1384 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1385 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1386 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1387 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1388 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1389 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1390 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1391 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1392 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1393 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1394 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1395 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1396 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1397 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1398 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1399 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1400 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1401 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1402 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1403 	};
1404 	static const struct ratemedia htrates[] = {
1405 		{   0, IFM_IEEE80211_MCS },
1406 		{   1, IFM_IEEE80211_MCS },
1407 		{   2, IFM_IEEE80211_MCS },
1408 		{   3, IFM_IEEE80211_MCS },
1409 		{   4, IFM_IEEE80211_MCS },
1410 		{   5, IFM_IEEE80211_MCS },
1411 		{   6, IFM_IEEE80211_MCS },
1412 		{   7, IFM_IEEE80211_MCS },
1413 		{   8, IFM_IEEE80211_MCS },
1414 		{   9, IFM_IEEE80211_MCS },
1415 		{  10, IFM_IEEE80211_MCS },
1416 		{  11, IFM_IEEE80211_MCS },
1417 		{  12, IFM_IEEE80211_MCS },
1418 		{  13, IFM_IEEE80211_MCS },
1419 		{  14, IFM_IEEE80211_MCS },
1420 		{  15, IFM_IEEE80211_MCS },
1421 	};
1422 	int m;
1423 
1424 	/*
1425 	 * Check 11n rates first for match as an MCS.
1426 	 */
1427 	if (mode == IEEE80211_MODE_11NA) {
1428 		if (rate & IEEE80211_RATE_MCS) {
1429 			rate &= ~IEEE80211_RATE_MCS;
1430 			m = findmedia(htrates, N(htrates), rate);
1431 			if (m != IFM_AUTO)
1432 				return m | IFM_IEEE80211_11NA;
1433 		}
1434 	} else if (mode == IEEE80211_MODE_11NG) {
1435 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1436 		if (rate & IEEE80211_RATE_MCS) {
1437 			rate &= ~IEEE80211_RATE_MCS;
1438 			m = findmedia(htrates, N(htrates), rate);
1439 			if (m != IFM_AUTO)
1440 				return m | IFM_IEEE80211_11NG;
1441 		}
1442 	}
1443 	rate &= IEEE80211_RATE_VAL;
1444 	switch (mode) {
1445 	case IEEE80211_MODE_11A:
1446 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1447 	case IEEE80211_MODE_QUARTER:
1448 	case IEEE80211_MODE_11NA:
1449 	case IEEE80211_MODE_TURBO_A:
1450 	case IEEE80211_MODE_STURBO_A:
1451 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1452 	case IEEE80211_MODE_11B:
1453 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1454 	case IEEE80211_MODE_FH:
1455 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1456 	case IEEE80211_MODE_AUTO:
1457 		/* NB: ic may be NULL for some drivers */
1458 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1459 			return findmedia(rates, N(rates),
1460 			    rate | IFM_IEEE80211_FH);
1461 		/* NB: hack, 11g matches both 11b+11a rates */
1462 		/* fall thru... */
1463 	case IEEE80211_MODE_11G:
1464 	case IEEE80211_MODE_11NG:
1465 	case IEEE80211_MODE_TURBO_G:
1466 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1467 	}
1468 	return IFM_AUTO;
1469 #undef N
1470 }
1471 
1472 int
1473 ieee80211_media2rate(int mword)
1474 {
1475 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1476 	static const int ieeerates[] = {
1477 		-1,		/* IFM_AUTO */
1478 		0,		/* IFM_MANUAL */
1479 		0,		/* IFM_NONE */
1480 		2,		/* IFM_IEEE80211_FH1 */
1481 		4,		/* IFM_IEEE80211_FH2 */
1482 		2,		/* IFM_IEEE80211_DS1 */
1483 		4,		/* IFM_IEEE80211_DS2 */
1484 		11,		/* IFM_IEEE80211_DS5 */
1485 		22,		/* IFM_IEEE80211_DS11 */
1486 		44,		/* IFM_IEEE80211_DS22 */
1487 		12,		/* IFM_IEEE80211_OFDM6 */
1488 		18,		/* IFM_IEEE80211_OFDM9 */
1489 		24,		/* IFM_IEEE80211_OFDM12 */
1490 		36,		/* IFM_IEEE80211_OFDM18 */
1491 		48,		/* IFM_IEEE80211_OFDM24 */
1492 		72,		/* IFM_IEEE80211_OFDM36 */
1493 		96,		/* IFM_IEEE80211_OFDM48 */
1494 		108,		/* IFM_IEEE80211_OFDM54 */
1495 		144,		/* IFM_IEEE80211_OFDM72 */
1496 		0,		/* IFM_IEEE80211_DS354k */
1497 		0,		/* IFM_IEEE80211_DS512k */
1498 		6,		/* IFM_IEEE80211_OFDM3 */
1499 		9,		/* IFM_IEEE80211_OFDM4 */
1500 		54,		/* IFM_IEEE80211_OFDM27 */
1501 		-1,		/* IFM_IEEE80211_MCS */
1502 	};
1503 	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1504 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1505 #undef N
1506 }
1507