1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 #include <net80211/ieee80211_ratectl.h> 53 54 #include <net/bpf.h> 55 56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 57 [IEEE80211_MODE_AUTO] = "auto", 58 [IEEE80211_MODE_11A] = "11a", 59 [IEEE80211_MODE_11B] = "11b", 60 [IEEE80211_MODE_11G] = "11g", 61 [IEEE80211_MODE_FH] = "FH", 62 [IEEE80211_MODE_TURBO_A] = "turboA", 63 [IEEE80211_MODE_TURBO_G] = "turboG", 64 [IEEE80211_MODE_STURBO_A] = "sturboA", 65 [IEEE80211_MODE_HALF] = "half", 66 [IEEE80211_MODE_QUARTER] = "quarter", 67 [IEEE80211_MODE_11NA] = "11na", 68 [IEEE80211_MODE_11NG] = "11ng", 69 }; 70 /* map ieee80211_opmode to the corresponding capability bit */ 71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 72 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 73 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 74 [IEEE80211_M_STA] = IEEE80211_C_STA, 75 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 76 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 77 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 78 #ifdef IEEE80211_SUPPORT_MESH 79 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 80 #endif 81 }; 82 83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 84 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 85 86 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 87 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 88 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 89 static int ieee80211_media_setup(struct ieee80211com *ic, 90 struct ifmedia *media, int caps, int addsta, 91 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 92 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 93 static int ieee80211com_media_change(struct ifnet *); 94 static int media_status(enum ieee80211_opmode, 95 const struct ieee80211_channel *); 96 97 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 98 99 /* 100 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 101 */ 102 #define B(r) ((r) | IEEE80211_RATE_BASIC) 103 static const struct ieee80211_rateset ieee80211_rateset_11a = 104 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 105 static const struct ieee80211_rateset ieee80211_rateset_half = 106 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 107 static const struct ieee80211_rateset ieee80211_rateset_quarter = 108 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 109 static const struct ieee80211_rateset ieee80211_rateset_11b = 110 { 4, { B(2), B(4), B(11), B(22) } }; 111 /* NB: OFDM rates are handled specially based on mode */ 112 static const struct ieee80211_rateset ieee80211_rateset_11g = 113 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 114 #undef B 115 116 /* 117 * Fill in 802.11 available channel set, mark 118 * all available channels as active, and pick 119 * a default channel if not already specified. 120 */ 121 static void 122 ieee80211_chan_init(struct ieee80211com *ic) 123 { 124 #define DEFAULTRATES(m, def) do { \ 125 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 126 ic->ic_sup_rates[m] = def; \ 127 } while (0) 128 struct ieee80211_channel *c; 129 int i; 130 131 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 132 ("invalid number of channels specified: %u", ic->ic_nchans)); 133 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 134 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 135 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 136 for (i = 0; i < ic->ic_nchans; i++) { 137 c = &ic->ic_channels[i]; 138 KASSERT(c->ic_flags != 0, ("channel with no flags")); 139 /* 140 * Help drivers that work only with frequencies by filling 141 * in IEEE channel #'s if not already calculated. Note this 142 * mimics similar work done in ieee80211_setregdomain when 143 * changing regulatory state. 144 */ 145 if (c->ic_ieee == 0) 146 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 147 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 148 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 149 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 150 c->ic_flags); 151 /* default max tx power to max regulatory */ 152 if (c->ic_maxpower == 0) 153 c->ic_maxpower = 2*c->ic_maxregpower; 154 setbit(ic->ic_chan_avail, c->ic_ieee); 155 /* 156 * Identify mode capabilities. 157 */ 158 if (IEEE80211_IS_CHAN_A(c)) 159 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 160 if (IEEE80211_IS_CHAN_B(c)) 161 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 162 if (IEEE80211_IS_CHAN_ANYG(c)) 163 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 164 if (IEEE80211_IS_CHAN_FHSS(c)) 165 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 166 if (IEEE80211_IS_CHAN_108A(c)) 167 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 168 if (IEEE80211_IS_CHAN_108G(c)) 169 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 170 if (IEEE80211_IS_CHAN_ST(c)) 171 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 172 if (IEEE80211_IS_CHAN_HALF(c)) 173 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 174 if (IEEE80211_IS_CHAN_QUARTER(c)) 175 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 176 if (IEEE80211_IS_CHAN_HTA(c)) 177 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 178 if (IEEE80211_IS_CHAN_HTG(c)) 179 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 180 } 181 /* initialize candidate channels to all available */ 182 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 183 sizeof(ic->ic_chan_avail)); 184 185 /* sort channel table to allow lookup optimizations */ 186 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 187 188 /* invalidate any previous state */ 189 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 190 ic->ic_prevchan = NULL; 191 ic->ic_csa_newchan = NULL; 192 /* arbitrarily pick the first channel */ 193 ic->ic_curchan = &ic->ic_channels[0]; 194 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 195 196 /* fillin well-known rate sets if driver has not specified */ 197 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 198 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 199 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 200 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 201 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 202 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 203 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 204 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 205 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 206 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 207 208 /* 209 * Set auto mode to reset active channel state and any desired channel. 210 */ 211 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 212 #undef DEFAULTRATES 213 } 214 215 static void 216 null_update_mcast(struct ifnet *ifp) 217 { 218 if_printf(ifp, "need multicast update callback\n"); 219 } 220 221 static void 222 null_update_promisc(struct ifnet *ifp) 223 { 224 if_printf(ifp, "need promiscuous mode update callback\n"); 225 } 226 227 static int 228 null_transmit(struct ifnet *ifp, struct mbuf *m) 229 { 230 m_freem(m); 231 ifp->if_oerrors++; 232 return EACCES; /* XXX EIO/EPERM? */ 233 } 234 235 static int 236 null_output(struct ifnet *ifp, struct mbuf *m, 237 struct sockaddr *dst, struct route *ro) 238 { 239 if_printf(ifp, "discard raw packet\n"); 240 return null_transmit(ifp, m); 241 } 242 243 static void 244 null_input(struct ifnet *ifp, struct mbuf *m) 245 { 246 if_printf(ifp, "if_input should not be called\n"); 247 m_freem(m); 248 } 249 250 /* 251 * Attach/setup the common net80211 state. Called by 252 * the driver on attach to prior to creating any vap's. 253 */ 254 void 255 ieee80211_ifattach(struct ieee80211com *ic, 256 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 257 { 258 struct ifnet *ifp = ic->ic_ifp; 259 struct sockaddr_dl *sdl; 260 struct ifaddr *ifa; 261 262 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 263 264 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 265 TAILQ_INIT(&ic->ic_vaps); 266 267 /* Create a taskqueue for all state changes */ 268 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 269 taskqueue_thread_enqueue, &ic->ic_tq); 270 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq", 271 ifp->if_xname); 272 /* 273 * Fill in 802.11 available channel set, mark all 274 * available channels as active, and pick a default 275 * channel if not already specified. 276 */ 277 ieee80211_media_init(ic); 278 279 ic->ic_update_mcast = null_update_mcast; 280 ic->ic_update_promisc = null_update_promisc; 281 282 ic->ic_hash_key = arc4random(); 283 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 284 ic->ic_lintval = ic->ic_bintval; 285 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 286 287 ieee80211_crypto_attach(ic); 288 ieee80211_node_attach(ic); 289 ieee80211_power_attach(ic); 290 ieee80211_proto_attach(ic); 291 #ifdef IEEE80211_SUPPORT_SUPERG 292 ieee80211_superg_attach(ic); 293 #endif 294 ieee80211_ht_attach(ic); 295 ieee80211_scan_attach(ic); 296 ieee80211_regdomain_attach(ic); 297 ieee80211_dfs_attach(ic); 298 299 ieee80211_sysctl_attach(ic); 300 301 ifp->if_addrlen = IEEE80211_ADDR_LEN; 302 ifp->if_hdrlen = 0; 303 if_attach(ifp); 304 ifp->if_mtu = IEEE80211_MTU_MAX; 305 ifp->if_broadcastaddr = ieee80211broadcastaddr; 306 ifp->if_output = null_output; 307 ifp->if_input = null_input; /* just in case */ 308 ifp->if_resolvemulti = NULL; /* NB: callers check */ 309 310 ifa = ifaddr_byindex(ifp->if_index); 311 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 312 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 313 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 314 sdl->sdl_alen = IEEE80211_ADDR_LEN; 315 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 316 ifa_free(ifa); 317 } 318 319 /* 320 * Detach net80211 state on device detach. Tear down 321 * all vap's and reclaim all common state prior to the 322 * device state going away. Note we may call back into 323 * driver; it must be prepared for this. 324 */ 325 void 326 ieee80211_ifdetach(struct ieee80211com *ic) 327 { 328 struct ifnet *ifp = ic->ic_ifp; 329 struct ieee80211vap *vap; 330 331 if_detach(ifp); 332 333 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 334 ieee80211_vap_destroy(vap); 335 ieee80211_waitfor_parent(ic); 336 337 ieee80211_sysctl_detach(ic); 338 ieee80211_dfs_detach(ic); 339 ieee80211_regdomain_detach(ic); 340 ieee80211_scan_detach(ic); 341 #ifdef IEEE80211_SUPPORT_SUPERG 342 ieee80211_superg_detach(ic); 343 #endif 344 ieee80211_ht_detach(ic); 345 /* NB: must be called before ieee80211_node_detach */ 346 ieee80211_proto_detach(ic); 347 ieee80211_crypto_detach(ic); 348 ieee80211_power_detach(ic); 349 ieee80211_node_detach(ic); 350 351 ifmedia_removeall(&ic->ic_media); 352 taskqueue_free(ic->ic_tq); 353 IEEE80211_LOCK_DESTROY(ic); 354 } 355 356 /* 357 * Default reset method for use with the ioctl support. This 358 * method is invoked after any state change in the 802.11 359 * layer that should be propagated to the hardware but not 360 * require re-initialization of the 802.11 state machine (e.g 361 * rescanning for an ap). We always return ENETRESET which 362 * should cause the driver to re-initialize the device. Drivers 363 * can override this method to implement more optimized support. 364 */ 365 static int 366 default_reset(struct ieee80211vap *vap, u_long cmd) 367 { 368 return ENETRESET; 369 } 370 371 /* 372 * Prepare a vap for use. Drivers use this call to 373 * setup net80211 state in new vap's prior attaching 374 * them with ieee80211_vap_attach (below). 375 */ 376 int 377 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 378 const char name[IFNAMSIZ], int unit, int opmode, int flags, 379 const uint8_t bssid[IEEE80211_ADDR_LEN], 380 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 381 { 382 struct ifnet *ifp; 383 384 ifp = if_alloc(IFT_ETHER); 385 if (ifp == NULL) { 386 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 387 __func__); 388 return ENOMEM; 389 } 390 if_initname(ifp, name, unit); 391 ifp->if_softc = vap; /* back pointer */ 392 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 393 ifp->if_start = ieee80211_start; 394 ifp->if_ioctl = ieee80211_ioctl; 395 ifp->if_init = ieee80211_init; 396 /* NB: input+output filled in by ether_ifattach */ 397 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 398 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 399 IFQ_SET_READY(&ifp->if_snd); 400 401 vap->iv_ifp = ifp; 402 vap->iv_ic = ic; 403 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 404 vap->iv_flags_ext = ic->ic_flags_ext; 405 vap->iv_flags_ven = ic->ic_flags_ven; 406 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 407 vap->iv_htcaps = ic->ic_htcaps; 408 vap->iv_htextcaps = ic->ic_htextcaps; 409 vap->iv_opmode = opmode; 410 vap->iv_caps |= ieee80211_opcap[opmode]; 411 switch (opmode) { 412 case IEEE80211_M_WDS: 413 /* 414 * WDS links must specify the bssid of the far end. 415 * For legacy operation this is a static relationship. 416 * For non-legacy operation the station must associate 417 * and be authorized to pass traffic. Plumbing the 418 * vap to the proper node happens when the vap 419 * transitions to RUN state. 420 */ 421 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 422 vap->iv_flags |= IEEE80211_F_DESBSSID; 423 if (flags & IEEE80211_CLONE_WDSLEGACY) 424 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 425 break; 426 #ifdef IEEE80211_SUPPORT_TDMA 427 case IEEE80211_M_AHDEMO: 428 if (flags & IEEE80211_CLONE_TDMA) { 429 /* NB: checked before clone operation allowed */ 430 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 431 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 432 /* 433 * Propagate TDMA capability to mark vap; this 434 * cannot be removed and is used to distinguish 435 * regular ahdemo operation from ahdemo+tdma. 436 */ 437 vap->iv_caps |= IEEE80211_C_TDMA; 438 } 439 break; 440 #endif 441 } 442 /* auto-enable s/w beacon miss support */ 443 if (flags & IEEE80211_CLONE_NOBEACONS) 444 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 445 /* auto-generated or user supplied MAC address */ 446 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 447 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 448 /* 449 * Enable various functionality by default if we're 450 * capable; the driver can override us if it knows better. 451 */ 452 if (vap->iv_caps & IEEE80211_C_WME) 453 vap->iv_flags |= IEEE80211_F_WME; 454 if (vap->iv_caps & IEEE80211_C_BURST) 455 vap->iv_flags |= IEEE80211_F_BURST; 456 /* NB: bg scanning only makes sense for station mode right now */ 457 if (vap->iv_opmode == IEEE80211_M_STA && 458 (vap->iv_caps & IEEE80211_C_BGSCAN)) 459 vap->iv_flags |= IEEE80211_F_BGSCAN; 460 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 461 /* NB: DFS support only makes sense for ap mode right now */ 462 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 463 (vap->iv_caps & IEEE80211_C_DFS)) 464 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 465 466 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 467 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 468 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 469 /* 470 * Install a default reset method for the ioctl support; 471 * the driver can override this. 472 */ 473 vap->iv_reset = default_reset; 474 475 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 476 477 ieee80211_sysctl_vattach(vap); 478 ieee80211_crypto_vattach(vap); 479 ieee80211_node_vattach(vap); 480 ieee80211_power_vattach(vap); 481 ieee80211_proto_vattach(vap); 482 #ifdef IEEE80211_SUPPORT_SUPERG 483 ieee80211_superg_vattach(vap); 484 #endif 485 ieee80211_ht_vattach(vap); 486 ieee80211_scan_vattach(vap); 487 ieee80211_regdomain_vattach(vap); 488 ieee80211_radiotap_vattach(vap); 489 490 if (vap->iv_caps & IEEE80211_C_RATECTL) 491 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_AMRR); 492 493 return 0; 494 } 495 496 /* 497 * Activate a vap. State should have been prepared with a 498 * call to ieee80211_vap_setup and by the driver. On return 499 * from this call the vap is ready for use. 500 */ 501 int 502 ieee80211_vap_attach(struct ieee80211vap *vap, 503 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 504 { 505 struct ifnet *ifp = vap->iv_ifp; 506 struct ieee80211com *ic = vap->iv_ic; 507 struct ifmediareq imr; 508 int maxrate; 509 510 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 511 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 512 __func__, ieee80211_opmode_name[vap->iv_opmode], 513 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 514 515 /* 516 * Do late attach work that cannot happen until after 517 * the driver has had a chance to override defaults. 518 */ 519 ieee80211_node_latevattach(vap); 520 ieee80211_power_latevattach(vap); 521 522 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 523 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 524 ieee80211_media_status(ifp, &imr); 525 /* NB: strip explicit mode; we're actually in autoselect */ 526 ifmedia_set(&vap->iv_media, 527 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 528 if (maxrate) 529 ifp->if_baudrate = IF_Mbps(maxrate); 530 531 ether_ifattach(ifp, vap->iv_myaddr); 532 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 533 /* NB: disallow transmit */ 534 ifp->if_transmit = null_transmit; 535 ifp->if_output = null_output; 536 } else { 537 /* hook output method setup by ether_ifattach */ 538 vap->iv_output = ifp->if_output; 539 ifp->if_output = ieee80211_output; 540 } 541 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 542 543 IEEE80211_LOCK(ic); 544 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 545 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 546 #ifdef IEEE80211_SUPPORT_SUPERG 547 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 548 #endif 549 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 550 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 551 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 552 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 553 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 554 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 555 IEEE80211_UNLOCK(ic); 556 557 return 1; 558 } 559 560 /* 561 * Tear down vap state and reclaim the ifnet. 562 * The driver is assumed to have prepared for 563 * this; e.g. by turning off interrupts for the 564 * underlying device. 565 */ 566 void 567 ieee80211_vap_detach(struct ieee80211vap *vap) 568 { 569 struct ieee80211com *ic = vap->iv_ic; 570 struct ifnet *ifp = vap->iv_ifp; 571 572 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 573 __func__, ieee80211_opmode_name[vap->iv_opmode], 574 ic->ic_ifp->if_xname); 575 576 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 577 ether_ifdetach(ifp); 578 579 ieee80211_stop(vap); 580 581 /* 582 * Flush any deferred vap tasks. 583 */ 584 ieee80211_draintask(ic, &vap->iv_nstate_task); 585 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 586 587 /* XXX band-aid until ifnet handles this for us */ 588 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 589 590 IEEE80211_LOCK(ic); 591 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 592 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 593 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 594 #ifdef IEEE80211_SUPPORT_SUPERG 595 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 596 #endif 597 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 598 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 599 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 600 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 601 /* NB: this handles the bpfdetach done below */ 602 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 603 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 604 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 605 IEEE80211_UNLOCK(ic); 606 607 ifmedia_removeall(&vap->iv_media); 608 609 ieee80211_radiotap_vdetach(vap); 610 ieee80211_regdomain_vdetach(vap); 611 ieee80211_scan_vdetach(vap); 612 #ifdef IEEE80211_SUPPORT_SUPERG 613 ieee80211_superg_vdetach(vap); 614 #endif 615 ieee80211_ht_vdetach(vap); 616 /* NB: must be before ieee80211_node_vdetach */ 617 ieee80211_proto_vdetach(vap); 618 ieee80211_crypto_vdetach(vap); 619 ieee80211_power_vdetach(vap); 620 ieee80211_node_vdetach(vap); 621 ieee80211_sysctl_vdetach(vap); 622 623 if_free(ifp); 624 } 625 626 /* 627 * Synchronize flag bit state in the parent ifnet structure 628 * according to the state of all vap ifnet's. This is used, 629 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 630 */ 631 void 632 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 633 { 634 struct ifnet *ifp = ic->ic_ifp; 635 struct ieee80211vap *vap; 636 int bit, oflags; 637 638 IEEE80211_LOCK_ASSERT(ic); 639 640 bit = 0; 641 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 642 if (vap->iv_ifp->if_flags & flag) { 643 /* 644 * XXX the bridge sets PROMISC but we don't want to 645 * enable it on the device, discard here so all the 646 * drivers don't need to special-case it 647 */ 648 if (flag == IFF_PROMISC && 649 !(vap->iv_opmode == IEEE80211_M_MONITOR || 650 (vap->iv_opmode == IEEE80211_M_AHDEMO && 651 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 652 continue; 653 bit = 1; 654 break; 655 } 656 oflags = ifp->if_flags; 657 if (bit) 658 ifp->if_flags |= flag; 659 else 660 ifp->if_flags &= ~flag; 661 if ((ifp->if_flags ^ oflags) & flag) { 662 /* XXX should we return 1/0 and let caller do this? */ 663 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 664 if (flag == IFF_PROMISC) 665 ieee80211_runtask(ic, &ic->ic_promisc_task); 666 else if (flag == IFF_ALLMULTI) 667 ieee80211_runtask(ic, &ic->ic_mcast_task); 668 } 669 } 670 } 671 672 /* 673 * Synchronize flag bit state in the com structure 674 * according to the state of all vap's. This is used, 675 * for example, to handle state changes via ioctls. 676 */ 677 static void 678 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 679 { 680 struct ieee80211vap *vap; 681 int bit; 682 683 IEEE80211_LOCK_ASSERT(ic); 684 685 bit = 0; 686 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 687 if (vap->iv_flags & flag) { 688 bit = 1; 689 break; 690 } 691 if (bit) 692 ic->ic_flags |= flag; 693 else 694 ic->ic_flags &= ~flag; 695 } 696 697 void 698 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 699 { 700 struct ieee80211com *ic = vap->iv_ic; 701 702 IEEE80211_LOCK(ic); 703 if (flag < 0) { 704 flag = -flag; 705 vap->iv_flags &= ~flag; 706 } else 707 vap->iv_flags |= flag; 708 ieee80211_syncflag_locked(ic, flag); 709 IEEE80211_UNLOCK(ic); 710 } 711 712 /* 713 * Synchronize flags_ht bit state in the com structure 714 * according to the state of all vap's. This is used, 715 * for example, to handle state changes via ioctls. 716 */ 717 static void 718 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 719 { 720 struct ieee80211vap *vap; 721 int bit; 722 723 IEEE80211_LOCK_ASSERT(ic); 724 725 bit = 0; 726 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 727 if (vap->iv_flags_ht & flag) { 728 bit = 1; 729 break; 730 } 731 if (bit) 732 ic->ic_flags_ht |= flag; 733 else 734 ic->ic_flags_ht &= ~flag; 735 } 736 737 void 738 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 739 { 740 struct ieee80211com *ic = vap->iv_ic; 741 742 IEEE80211_LOCK(ic); 743 if (flag < 0) { 744 flag = -flag; 745 vap->iv_flags_ht &= ~flag; 746 } else 747 vap->iv_flags_ht |= flag; 748 ieee80211_syncflag_ht_locked(ic, flag); 749 IEEE80211_UNLOCK(ic); 750 } 751 752 /* 753 * Synchronize flags_ext bit state in the com structure 754 * according to the state of all vap's. This is used, 755 * for example, to handle state changes via ioctls. 756 */ 757 static void 758 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 759 { 760 struct ieee80211vap *vap; 761 int bit; 762 763 IEEE80211_LOCK_ASSERT(ic); 764 765 bit = 0; 766 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 767 if (vap->iv_flags_ext & flag) { 768 bit = 1; 769 break; 770 } 771 if (bit) 772 ic->ic_flags_ext |= flag; 773 else 774 ic->ic_flags_ext &= ~flag; 775 } 776 777 void 778 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 779 { 780 struct ieee80211com *ic = vap->iv_ic; 781 782 IEEE80211_LOCK(ic); 783 if (flag < 0) { 784 flag = -flag; 785 vap->iv_flags_ext &= ~flag; 786 } else 787 vap->iv_flags_ext |= flag; 788 ieee80211_syncflag_ext_locked(ic, flag); 789 IEEE80211_UNLOCK(ic); 790 } 791 792 static __inline int 793 mapgsm(u_int freq, u_int flags) 794 { 795 freq *= 10; 796 if (flags & IEEE80211_CHAN_QUARTER) 797 freq += 5; 798 else if (flags & IEEE80211_CHAN_HALF) 799 freq += 10; 800 else 801 freq += 20; 802 /* NB: there is no 907/20 wide but leave room */ 803 return (freq - 906*10) / 5; 804 } 805 806 static __inline int 807 mappsb(u_int freq, u_int flags) 808 { 809 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 810 } 811 812 /* 813 * Convert MHz frequency to IEEE channel number. 814 */ 815 int 816 ieee80211_mhz2ieee(u_int freq, u_int flags) 817 { 818 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 819 if (flags & IEEE80211_CHAN_GSM) 820 return mapgsm(freq, flags); 821 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 822 if (freq == 2484) 823 return 14; 824 if (freq < 2484) 825 return ((int) freq - 2407) / 5; 826 else 827 return 15 + ((freq - 2512) / 20); 828 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 829 if (freq <= 5000) { 830 /* XXX check regdomain? */ 831 if (IS_FREQ_IN_PSB(freq)) 832 return mappsb(freq, flags); 833 return (freq - 4000) / 5; 834 } else 835 return (freq - 5000) / 5; 836 } else { /* either, guess */ 837 if (freq == 2484) 838 return 14; 839 if (freq < 2484) { 840 if (907 <= freq && freq <= 922) 841 return mapgsm(freq, flags); 842 return ((int) freq - 2407) / 5; 843 } 844 if (freq < 5000) { 845 if (IS_FREQ_IN_PSB(freq)) 846 return mappsb(freq, flags); 847 else if (freq > 4900) 848 return (freq - 4000) / 5; 849 else 850 return 15 + ((freq - 2512) / 20); 851 } 852 return (freq - 5000) / 5; 853 } 854 #undef IS_FREQ_IN_PSB 855 } 856 857 /* 858 * Convert channel to IEEE channel number. 859 */ 860 int 861 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 862 { 863 if (c == NULL) { 864 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 865 return 0; /* XXX */ 866 } 867 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 868 } 869 870 /* 871 * Convert IEEE channel number to MHz frequency. 872 */ 873 u_int 874 ieee80211_ieee2mhz(u_int chan, u_int flags) 875 { 876 if (flags & IEEE80211_CHAN_GSM) 877 return 907 + 5 * (chan / 10); 878 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 879 if (chan == 14) 880 return 2484; 881 if (chan < 14) 882 return 2407 + chan*5; 883 else 884 return 2512 + ((chan-15)*20); 885 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 886 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 887 chan -= 37; 888 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 889 } 890 return 5000 + (chan*5); 891 } else { /* either, guess */ 892 /* XXX can't distinguish PSB+GSM channels */ 893 if (chan == 14) 894 return 2484; 895 if (chan < 14) /* 0-13 */ 896 return 2407 + chan*5; 897 if (chan < 27) /* 15-26 */ 898 return 2512 + ((chan-15)*20); 899 return 5000 + (chan*5); 900 } 901 } 902 903 /* 904 * Locate a channel given a frequency+flags. We cache 905 * the previous lookup to optimize switching between two 906 * channels--as happens with dynamic turbo. 907 */ 908 struct ieee80211_channel * 909 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 910 { 911 struct ieee80211_channel *c; 912 int i; 913 914 flags &= IEEE80211_CHAN_ALLTURBO; 915 c = ic->ic_prevchan; 916 if (c != NULL && c->ic_freq == freq && 917 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 918 return c; 919 /* brute force search */ 920 for (i = 0; i < ic->ic_nchans; i++) { 921 c = &ic->ic_channels[i]; 922 if (c->ic_freq == freq && 923 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 924 return c; 925 } 926 return NULL; 927 } 928 929 /* 930 * Locate a channel given a channel number+flags. We cache 931 * the previous lookup to optimize switching between two 932 * channels--as happens with dynamic turbo. 933 */ 934 struct ieee80211_channel * 935 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 936 { 937 struct ieee80211_channel *c; 938 int i; 939 940 flags &= IEEE80211_CHAN_ALLTURBO; 941 c = ic->ic_prevchan; 942 if (c != NULL && c->ic_ieee == ieee && 943 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 944 return c; 945 /* brute force search */ 946 for (i = 0; i < ic->ic_nchans; i++) { 947 c = &ic->ic_channels[i]; 948 if (c->ic_ieee == ieee && 949 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 950 return c; 951 } 952 return NULL; 953 } 954 955 static void 956 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 957 { 958 #define ADD(_ic, _s, _o) \ 959 ifmedia_add(media, \ 960 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 961 static const u_int mopts[IEEE80211_MODE_MAX] = { 962 [IEEE80211_MODE_AUTO] = IFM_AUTO, 963 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 964 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 965 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 966 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 967 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 968 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 969 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 970 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 971 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 972 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 973 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 974 }; 975 u_int mopt; 976 977 mopt = mopts[mode]; 978 if (addsta) 979 ADD(ic, mword, mopt); /* STA mode has no cap */ 980 if (caps & IEEE80211_C_IBSS) 981 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 982 if (caps & IEEE80211_C_HOSTAP) 983 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 984 if (caps & IEEE80211_C_AHDEMO) 985 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 986 if (caps & IEEE80211_C_MONITOR) 987 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 988 if (caps & IEEE80211_C_WDS) 989 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 990 if (caps & IEEE80211_C_MBSS) 991 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 992 #undef ADD 993 } 994 995 /* 996 * Setup the media data structures according to the channel and 997 * rate tables. 998 */ 999 static int 1000 ieee80211_media_setup(struct ieee80211com *ic, 1001 struct ifmedia *media, int caps, int addsta, 1002 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1003 { 1004 int i, j, mode, rate, maxrate, mword, r; 1005 const struct ieee80211_rateset *rs; 1006 struct ieee80211_rateset allrates; 1007 1008 /* 1009 * Fill in media characteristics. 1010 */ 1011 ifmedia_init(media, 0, media_change, media_stat); 1012 maxrate = 0; 1013 /* 1014 * Add media for legacy operating modes. 1015 */ 1016 memset(&allrates, 0, sizeof(allrates)); 1017 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1018 if (isclr(ic->ic_modecaps, mode)) 1019 continue; 1020 addmedia(media, caps, addsta, mode, IFM_AUTO); 1021 if (mode == IEEE80211_MODE_AUTO) 1022 continue; 1023 rs = &ic->ic_sup_rates[mode]; 1024 for (i = 0; i < rs->rs_nrates; i++) { 1025 rate = rs->rs_rates[i]; 1026 mword = ieee80211_rate2media(ic, rate, mode); 1027 if (mword == 0) 1028 continue; 1029 addmedia(media, caps, addsta, mode, mword); 1030 /* 1031 * Add legacy rate to the collection of all rates. 1032 */ 1033 r = rate & IEEE80211_RATE_VAL; 1034 for (j = 0; j < allrates.rs_nrates; j++) 1035 if (allrates.rs_rates[j] == r) 1036 break; 1037 if (j == allrates.rs_nrates) { 1038 /* unique, add to the set */ 1039 allrates.rs_rates[j] = r; 1040 allrates.rs_nrates++; 1041 } 1042 rate = (rate & IEEE80211_RATE_VAL) / 2; 1043 if (rate > maxrate) 1044 maxrate = rate; 1045 } 1046 } 1047 for (i = 0; i < allrates.rs_nrates; i++) { 1048 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1049 IEEE80211_MODE_AUTO); 1050 if (mword == 0) 1051 continue; 1052 /* NB: remove media options from mword */ 1053 addmedia(media, caps, addsta, 1054 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1055 } 1056 /* 1057 * Add HT/11n media. Note that we do not have enough 1058 * bits in the media subtype to express the MCS so we 1059 * use a "placeholder" media subtype and any fixed MCS 1060 * must be specified with a different mechanism. 1061 */ 1062 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1063 if (isclr(ic->ic_modecaps, mode)) 1064 continue; 1065 addmedia(media, caps, addsta, mode, IFM_AUTO); 1066 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1067 } 1068 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1069 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1070 addmedia(media, caps, addsta, 1071 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1072 /* XXX could walk htrates */ 1073 /* XXX known array size */ 1074 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1075 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1076 } 1077 return maxrate; 1078 } 1079 1080 void 1081 ieee80211_media_init(struct ieee80211com *ic) 1082 { 1083 struct ifnet *ifp = ic->ic_ifp; 1084 int maxrate; 1085 1086 /* NB: this works because the structure is initialized to zero */ 1087 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1088 /* 1089 * We are re-initializing the channel list; clear 1090 * the existing media state as the media routines 1091 * don't suppress duplicates. 1092 */ 1093 ifmedia_removeall(&ic->ic_media); 1094 } 1095 ieee80211_chan_init(ic); 1096 1097 /* 1098 * Recalculate media settings in case new channel list changes 1099 * the set of available modes. 1100 */ 1101 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1102 ieee80211com_media_change, ieee80211com_media_status); 1103 /* NB: strip explicit mode; we're actually in autoselect */ 1104 ifmedia_set(&ic->ic_media, 1105 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1106 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1107 if (maxrate) 1108 ifp->if_baudrate = IF_Mbps(maxrate); 1109 1110 /* XXX need to propagate new media settings to vap's */ 1111 } 1112 1113 /* XXX inline or eliminate? */ 1114 const struct ieee80211_rateset * 1115 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1116 { 1117 /* XXX does this work for 11ng basic rates? */ 1118 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1119 } 1120 1121 void 1122 ieee80211_announce(struct ieee80211com *ic) 1123 { 1124 struct ifnet *ifp = ic->ic_ifp; 1125 int i, mode, rate, mword; 1126 const struct ieee80211_rateset *rs; 1127 1128 /* NB: skip AUTO since it has no rates */ 1129 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1130 if (isclr(ic->ic_modecaps, mode)) 1131 continue; 1132 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1133 rs = &ic->ic_sup_rates[mode]; 1134 for (i = 0; i < rs->rs_nrates; i++) { 1135 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1136 if (mword == 0) 1137 continue; 1138 rate = ieee80211_media2rate(mword); 1139 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1140 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1141 } 1142 printf("\n"); 1143 } 1144 ieee80211_ht_announce(ic); 1145 } 1146 1147 void 1148 ieee80211_announce_channels(struct ieee80211com *ic) 1149 { 1150 const struct ieee80211_channel *c; 1151 char type; 1152 int i, cw; 1153 1154 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1155 for (i = 0; i < ic->ic_nchans; i++) { 1156 c = &ic->ic_channels[i]; 1157 if (IEEE80211_IS_CHAN_ST(c)) 1158 type = 'S'; 1159 else if (IEEE80211_IS_CHAN_108A(c)) 1160 type = 'T'; 1161 else if (IEEE80211_IS_CHAN_108G(c)) 1162 type = 'G'; 1163 else if (IEEE80211_IS_CHAN_HT(c)) 1164 type = 'n'; 1165 else if (IEEE80211_IS_CHAN_A(c)) 1166 type = 'a'; 1167 else if (IEEE80211_IS_CHAN_ANYG(c)) 1168 type = 'g'; 1169 else if (IEEE80211_IS_CHAN_B(c)) 1170 type = 'b'; 1171 else 1172 type = 'f'; 1173 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1174 cw = 40; 1175 else if (IEEE80211_IS_CHAN_HALF(c)) 1176 cw = 10; 1177 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1178 cw = 5; 1179 else 1180 cw = 20; 1181 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1182 , c->ic_ieee, c->ic_freq, type 1183 , cw 1184 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1185 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1186 , c->ic_maxregpower 1187 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1188 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1189 ); 1190 } 1191 } 1192 1193 static int 1194 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1195 { 1196 switch (IFM_MODE(ime->ifm_media)) { 1197 case IFM_IEEE80211_11A: 1198 *mode = IEEE80211_MODE_11A; 1199 break; 1200 case IFM_IEEE80211_11B: 1201 *mode = IEEE80211_MODE_11B; 1202 break; 1203 case IFM_IEEE80211_11G: 1204 *mode = IEEE80211_MODE_11G; 1205 break; 1206 case IFM_IEEE80211_FH: 1207 *mode = IEEE80211_MODE_FH; 1208 break; 1209 case IFM_IEEE80211_11NA: 1210 *mode = IEEE80211_MODE_11NA; 1211 break; 1212 case IFM_IEEE80211_11NG: 1213 *mode = IEEE80211_MODE_11NG; 1214 break; 1215 case IFM_AUTO: 1216 *mode = IEEE80211_MODE_AUTO; 1217 break; 1218 default: 1219 return 0; 1220 } 1221 /* 1222 * Turbo mode is an ``option''. 1223 * XXX does not apply to AUTO 1224 */ 1225 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1226 if (*mode == IEEE80211_MODE_11A) { 1227 if (flags & IEEE80211_F_TURBOP) 1228 *mode = IEEE80211_MODE_TURBO_A; 1229 else 1230 *mode = IEEE80211_MODE_STURBO_A; 1231 } else if (*mode == IEEE80211_MODE_11G) 1232 *mode = IEEE80211_MODE_TURBO_G; 1233 else 1234 return 0; 1235 } 1236 /* XXX HT40 +/- */ 1237 return 1; 1238 } 1239 1240 /* 1241 * Handle a media change request on the underlying interface. 1242 */ 1243 int 1244 ieee80211com_media_change(struct ifnet *ifp) 1245 { 1246 return EINVAL; 1247 } 1248 1249 /* 1250 * Handle a media change request on the vap interface. 1251 */ 1252 int 1253 ieee80211_media_change(struct ifnet *ifp) 1254 { 1255 struct ieee80211vap *vap = ifp->if_softc; 1256 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1257 uint16_t newmode; 1258 1259 if (!media2mode(ime, vap->iv_flags, &newmode)) 1260 return EINVAL; 1261 if (vap->iv_des_mode != newmode) { 1262 vap->iv_des_mode = newmode; 1263 /* XXX kick state machine if up+running */ 1264 } 1265 return 0; 1266 } 1267 1268 /* 1269 * Common code to calculate the media status word 1270 * from the operating mode and channel state. 1271 */ 1272 static int 1273 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1274 { 1275 int status; 1276 1277 status = IFM_IEEE80211; 1278 switch (opmode) { 1279 case IEEE80211_M_STA: 1280 break; 1281 case IEEE80211_M_IBSS: 1282 status |= IFM_IEEE80211_ADHOC; 1283 break; 1284 case IEEE80211_M_HOSTAP: 1285 status |= IFM_IEEE80211_HOSTAP; 1286 break; 1287 case IEEE80211_M_MONITOR: 1288 status |= IFM_IEEE80211_MONITOR; 1289 break; 1290 case IEEE80211_M_AHDEMO: 1291 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1292 break; 1293 case IEEE80211_M_WDS: 1294 status |= IFM_IEEE80211_WDS; 1295 break; 1296 case IEEE80211_M_MBSS: 1297 status |= IFM_IEEE80211_MBSS; 1298 break; 1299 } 1300 if (IEEE80211_IS_CHAN_HTA(chan)) { 1301 status |= IFM_IEEE80211_11NA; 1302 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1303 status |= IFM_IEEE80211_11NG; 1304 } else if (IEEE80211_IS_CHAN_A(chan)) { 1305 status |= IFM_IEEE80211_11A; 1306 } else if (IEEE80211_IS_CHAN_B(chan)) { 1307 status |= IFM_IEEE80211_11B; 1308 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1309 status |= IFM_IEEE80211_11G; 1310 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1311 status |= IFM_IEEE80211_FH; 1312 } 1313 /* XXX else complain? */ 1314 1315 if (IEEE80211_IS_CHAN_TURBO(chan)) 1316 status |= IFM_IEEE80211_TURBO; 1317 #if 0 1318 if (IEEE80211_IS_CHAN_HT20(chan)) 1319 status |= IFM_IEEE80211_HT20; 1320 if (IEEE80211_IS_CHAN_HT40(chan)) 1321 status |= IFM_IEEE80211_HT40; 1322 #endif 1323 return status; 1324 } 1325 1326 static void 1327 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1328 { 1329 struct ieee80211com *ic = ifp->if_l2com; 1330 struct ieee80211vap *vap; 1331 1332 imr->ifm_status = IFM_AVALID; 1333 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1334 if (vap->iv_ifp->if_flags & IFF_UP) { 1335 imr->ifm_status |= IFM_ACTIVE; 1336 break; 1337 } 1338 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1339 if (imr->ifm_status & IFM_ACTIVE) 1340 imr->ifm_current = imr->ifm_active; 1341 } 1342 1343 void 1344 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1345 { 1346 struct ieee80211vap *vap = ifp->if_softc; 1347 struct ieee80211com *ic = vap->iv_ic; 1348 enum ieee80211_phymode mode; 1349 1350 imr->ifm_status = IFM_AVALID; 1351 /* 1352 * NB: use the current channel's mode to lock down a xmit 1353 * rate only when running; otherwise we may have a mismatch 1354 * in which case the rate will not be convertible. 1355 */ 1356 if (vap->iv_state == IEEE80211_S_RUN) { 1357 imr->ifm_status |= IFM_ACTIVE; 1358 mode = ieee80211_chan2mode(ic->ic_curchan); 1359 } else 1360 mode = IEEE80211_MODE_AUTO; 1361 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1362 /* 1363 * Calculate a current rate if possible. 1364 */ 1365 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1366 /* 1367 * A fixed rate is set, report that. 1368 */ 1369 imr->ifm_active |= ieee80211_rate2media(ic, 1370 vap->iv_txparms[mode].ucastrate, mode); 1371 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1372 /* 1373 * In station mode report the current transmit rate. 1374 */ 1375 imr->ifm_active |= ieee80211_rate2media(ic, 1376 vap->iv_bss->ni_txrate, mode); 1377 } else 1378 imr->ifm_active |= IFM_AUTO; 1379 if (imr->ifm_status & IFM_ACTIVE) 1380 imr->ifm_current = imr->ifm_active; 1381 } 1382 1383 /* 1384 * Set the current phy mode and recalculate the active channel 1385 * set based on the available channels for this mode. Also 1386 * select a new default/current channel if the current one is 1387 * inappropriate for this mode. 1388 */ 1389 int 1390 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1391 { 1392 /* 1393 * Adjust basic rates in 11b/11g supported rate set. 1394 * Note that if operating on a hal/quarter rate channel 1395 * this is a noop as those rates sets are different 1396 * and used instead. 1397 */ 1398 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1399 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1400 1401 ic->ic_curmode = mode; 1402 ieee80211_reset_erp(ic); /* reset ERP state */ 1403 1404 return 0; 1405 } 1406 1407 /* 1408 * Return the phy mode for with the specified channel. 1409 */ 1410 enum ieee80211_phymode 1411 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1412 { 1413 1414 if (IEEE80211_IS_CHAN_HTA(chan)) 1415 return IEEE80211_MODE_11NA; 1416 else if (IEEE80211_IS_CHAN_HTG(chan)) 1417 return IEEE80211_MODE_11NG; 1418 else if (IEEE80211_IS_CHAN_108G(chan)) 1419 return IEEE80211_MODE_TURBO_G; 1420 else if (IEEE80211_IS_CHAN_ST(chan)) 1421 return IEEE80211_MODE_STURBO_A; 1422 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1423 return IEEE80211_MODE_TURBO_A; 1424 else if (IEEE80211_IS_CHAN_HALF(chan)) 1425 return IEEE80211_MODE_HALF; 1426 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1427 return IEEE80211_MODE_QUARTER; 1428 else if (IEEE80211_IS_CHAN_A(chan)) 1429 return IEEE80211_MODE_11A; 1430 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1431 return IEEE80211_MODE_11G; 1432 else if (IEEE80211_IS_CHAN_B(chan)) 1433 return IEEE80211_MODE_11B; 1434 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1435 return IEEE80211_MODE_FH; 1436 1437 /* NB: should not get here */ 1438 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1439 __func__, chan->ic_freq, chan->ic_flags); 1440 return IEEE80211_MODE_11B; 1441 } 1442 1443 struct ratemedia { 1444 u_int match; /* rate + mode */ 1445 u_int media; /* if_media rate */ 1446 }; 1447 1448 static int 1449 findmedia(const struct ratemedia rates[], int n, u_int match) 1450 { 1451 int i; 1452 1453 for (i = 0; i < n; i++) 1454 if (rates[i].match == match) 1455 return rates[i].media; 1456 return IFM_AUTO; 1457 } 1458 1459 /* 1460 * Convert IEEE80211 rate value to ifmedia subtype. 1461 * Rate is either a legacy rate in units of 0.5Mbps 1462 * or an MCS index. 1463 */ 1464 int 1465 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1466 { 1467 #define N(a) (sizeof(a) / sizeof(a[0])) 1468 static const struct ratemedia rates[] = { 1469 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1470 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1471 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1472 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1473 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1474 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1475 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1476 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1477 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1478 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1479 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1480 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1481 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1482 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1483 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1484 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1485 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1486 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1487 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1488 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1489 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1490 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1491 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1492 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1493 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1494 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1495 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1496 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1497 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1498 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1499 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1500 }; 1501 static const struct ratemedia htrates[] = { 1502 { 0, IFM_IEEE80211_MCS }, 1503 { 1, IFM_IEEE80211_MCS }, 1504 { 2, IFM_IEEE80211_MCS }, 1505 { 3, IFM_IEEE80211_MCS }, 1506 { 4, IFM_IEEE80211_MCS }, 1507 { 5, IFM_IEEE80211_MCS }, 1508 { 6, IFM_IEEE80211_MCS }, 1509 { 7, IFM_IEEE80211_MCS }, 1510 { 8, IFM_IEEE80211_MCS }, 1511 { 9, IFM_IEEE80211_MCS }, 1512 { 10, IFM_IEEE80211_MCS }, 1513 { 11, IFM_IEEE80211_MCS }, 1514 { 12, IFM_IEEE80211_MCS }, 1515 { 13, IFM_IEEE80211_MCS }, 1516 { 14, IFM_IEEE80211_MCS }, 1517 { 15, IFM_IEEE80211_MCS }, 1518 }; 1519 int m; 1520 1521 /* 1522 * Check 11n rates first for match as an MCS. 1523 */ 1524 if (mode == IEEE80211_MODE_11NA) { 1525 if (rate & IEEE80211_RATE_MCS) { 1526 rate &= ~IEEE80211_RATE_MCS; 1527 m = findmedia(htrates, N(htrates), rate); 1528 if (m != IFM_AUTO) 1529 return m | IFM_IEEE80211_11NA; 1530 } 1531 } else if (mode == IEEE80211_MODE_11NG) { 1532 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1533 if (rate & IEEE80211_RATE_MCS) { 1534 rate &= ~IEEE80211_RATE_MCS; 1535 m = findmedia(htrates, N(htrates), rate); 1536 if (m != IFM_AUTO) 1537 return m | IFM_IEEE80211_11NG; 1538 } 1539 } 1540 rate &= IEEE80211_RATE_VAL; 1541 switch (mode) { 1542 case IEEE80211_MODE_11A: 1543 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1544 case IEEE80211_MODE_QUARTER: 1545 case IEEE80211_MODE_11NA: 1546 case IEEE80211_MODE_TURBO_A: 1547 case IEEE80211_MODE_STURBO_A: 1548 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1549 case IEEE80211_MODE_11B: 1550 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1551 case IEEE80211_MODE_FH: 1552 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1553 case IEEE80211_MODE_AUTO: 1554 /* NB: ic may be NULL for some drivers */ 1555 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1556 return findmedia(rates, N(rates), 1557 rate | IFM_IEEE80211_FH); 1558 /* NB: hack, 11g matches both 11b+11a rates */ 1559 /* fall thru... */ 1560 case IEEE80211_MODE_11G: 1561 case IEEE80211_MODE_11NG: 1562 case IEEE80211_MODE_TURBO_G: 1563 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1564 } 1565 return IFM_AUTO; 1566 #undef N 1567 } 1568 1569 int 1570 ieee80211_media2rate(int mword) 1571 { 1572 #define N(a) (sizeof(a) / sizeof(a[0])) 1573 static const int ieeerates[] = { 1574 -1, /* IFM_AUTO */ 1575 0, /* IFM_MANUAL */ 1576 0, /* IFM_NONE */ 1577 2, /* IFM_IEEE80211_FH1 */ 1578 4, /* IFM_IEEE80211_FH2 */ 1579 2, /* IFM_IEEE80211_DS1 */ 1580 4, /* IFM_IEEE80211_DS2 */ 1581 11, /* IFM_IEEE80211_DS5 */ 1582 22, /* IFM_IEEE80211_DS11 */ 1583 44, /* IFM_IEEE80211_DS22 */ 1584 12, /* IFM_IEEE80211_OFDM6 */ 1585 18, /* IFM_IEEE80211_OFDM9 */ 1586 24, /* IFM_IEEE80211_OFDM12 */ 1587 36, /* IFM_IEEE80211_OFDM18 */ 1588 48, /* IFM_IEEE80211_OFDM24 */ 1589 72, /* IFM_IEEE80211_OFDM36 */ 1590 96, /* IFM_IEEE80211_OFDM48 */ 1591 108, /* IFM_IEEE80211_OFDM54 */ 1592 144, /* IFM_IEEE80211_OFDM72 */ 1593 0, /* IFM_IEEE80211_DS354k */ 1594 0, /* IFM_IEEE80211_DS512k */ 1595 6, /* IFM_IEEE80211_OFDM3 */ 1596 9, /* IFM_IEEE80211_OFDM4 */ 1597 54, /* IFM_IEEE80211_OFDM27 */ 1598 -1, /* IFM_IEEE80211_MCS */ 1599 }; 1600 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1601 ieeerates[IFM_SUBTYPE(mword)] : 0; 1602 #undef N 1603 } 1604 1605 /* 1606 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1607 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1608 */ 1609 #define mix(a, b, c) \ 1610 do { \ 1611 a -= b; a -= c; a ^= (c >> 13); \ 1612 b -= c; b -= a; b ^= (a << 8); \ 1613 c -= a; c -= b; c ^= (b >> 13); \ 1614 a -= b; a -= c; a ^= (c >> 12); \ 1615 b -= c; b -= a; b ^= (a << 16); \ 1616 c -= a; c -= b; c ^= (b >> 5); \ 1617 a -= b; a -= c; a ^= (c >> 3); \ 1618 b -= c; b -= a; b ^= (a << 10); \ 1619 c -= a; c -= b; c ^= (b >> 15); \ 1620 } while (/*CONSTCOND*/0) 1621 1622 uint32_t 1623 ieee80211_mac_hash(const struct ieee80211com *ic, 1624 const uint8_t addr[IEEE80211_ADDR_LEN]) 1625 { 1626 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1627 1628 b += addr[5] << 8; 1629 b += addr[4]; 1630 a += addr[3] << 24; 1631 a += addr[2] << 16; 1632 a += addr[1] << 8; 1633 a += addr[0]; 1634 1635 mix(a, b, c); 1636 1637 return c; 1638 } 1639 #undef mix 1640